STM32学习笔记
STM32学习笔记-USART程序解释(原子)
USART程序分析一 .H文件#ifndef __USART_H#define __USART_H#include <stm32f10x_lib.h>#include "stdio.h"extern u8 USART_RX_BUF[64]; //接收缓冲,最大63个字节.末字节为换行符extern u8 USART_RX_STA; //接收状态标记//如果想串口中断接收,请不要注释以下宏定义//#define EN_USART1_RX 使能串口1接收void uart_init(u32 pclk2,u32 bound);#endif解释:extern 作用域:如果整个工程由多个文件组成,在一个文件中想引用另外一个文件中已经定义的外部变量时,则只需在引用变量的文件中用extern关键字加以声明即可。
可见,其作用域从一个文件扩展到多个文件了。
例子:文件a.c的内容:#include <stdio.h>int BASE=2; //变量定义int exe(int x); //外部函数提前声明int main(int argc, char *agrv[]){int a=10;printf("%d^%d = %d\n",BASE,a,exe(a));return 0;}文件b.c的内容:#include <stdio.h>extern BASE; //外部变量声明int exe(int x){int i;int ret=1;for(i=0;i<x;i++){ret*=BASE;}return ret;}利用gcc工具编译gcc a.c b.c –o demo,再运行./demo,结果为2^10= 1024。
其中,在a.c文件中定义BASE=2,在b.c中引用BASE时,需要用extern关键字声明其为外部变量,否则编译会找不到该变量。
《STM32Cube高效开发教程》笔记
《STM32Cube高效开发教程》读书笔记目录一、前言 (2)1.1 书籍简介 (3)1.2 编写目的 (4)二、STM32Cube概述 (5)2.1 STM32Cube的意义 (6)2.2 STM32Cube的主要特点 (7)三、安装与配置 (9)3.1 STM32Cube的安装 (10)3.2 开发环境的配置 (11)四、创建项目 (12)4.1 新建项目 (13)4.2 项目设置 (14)五、HAL库介绍 (15)5.1 HAL库简介 (16)5.2 HAL库的主要组件 (18)六、STM32最小系统 (19)6.1 STM32最小系统的组成 (21)6.2 STM32最小系统的应用 (22)七、GPIO操作 (24)7.1 GPIO的基本概念 (25)7.2 GPIO的操作方法 (26)八、中断系统 (28)8.1 中断的基本概念 (29)8.2 中断的处理过程 (31)九、定时器 (33)9.1 定时器的功能介绍 (34)9.2 定时器的操作方法 (36)十五、文件系统 (37)一、前言随着科技的飞速发展,嵌入式系统已广泛应用于我们生活的方方面面,从智能手机到自动驾驶汽车,其重要性不言而喻。
而STM32作为一款广泛应用的微控制器系列,以其高性能、低功耗和丰富的外设资源赢得了广大开发者的青睐。
为了帮助开发者更好地掌握STM32系列微控制器的开发技巧,提升开发效率,我们特别推出了《STM32Cube 高效开发教程》。
本书以STM32Cube为核心,通过生动的实例和详细的讲解,全面介绍了STM32系列微控制器的开发过程。
无论是初学者还是有一定基础的开发者,都能从中找到适合自己的学习内容。
通过本书的学习,读者将能够更加深入地理解STM32的内部结构和工作原理,掌握其编程方法和调试技巧,从而更加高效地进行嵌入式系统的开发和应用。
在科技日新月异的今天,STM32系列微控制器将继续扮演着举足轻重的角色。
stm32学习经历(5篇可选)
stm32学习经历(5篇可选)第一篇:stm32学习经历随便写写,关于stm32 最近在学习stm32,写点东西,虽然简单,但都是原创啊开发板是前辈画的,好像是用来测试一个3G功能的,不过对于我来说太远;我要来了3个,自己焊了一个最小系统,好在公司资源还是不错的,器件芯片有,还可以问问前辈--对公司还是比较满意的,虽然工资少了点,但学东西第一位O(∩_∩)O~。
最开始当然是建工程了,这个真不太会,前前后后竟用了一周(时间真长,别见笑啊),上网查资料,问前辈,自己琢磨。
总算搞定,然后从GPIO开始学,开始还真没什么头绪(虽然在大学学点51,但完全没有真正应用,顶多是跑马灯实验),开始纠结是从寄存器开始学还是从库函数开始学,后来看到一句“用库函数入门,用寄存器提高”于是下定决心用库,但当时没有库的概念,结果走了很多弯路,看了很多不必要的东西,当时竟没理解到只是调用库就OK了,别的不用管。
最后潜心的在教程网看完一个例程后照猫画虎写了一个,经过了多次调试以后,灯终于亮了!那个兴奋啊。
再次还要感谢希望自己坚持下去,早日能写出一个属于自己的程序,完成一个说的过去的功能,下面把我的程序粘出来,和大家分享下,大虾看到了别见笑啊注:1.有两个灯,PA4 B12,都是低电平点亮2.有两个按键,PB8 和 PB9,按下是低电平3.程序开始后两个灯常亮,按下按键后熄灭,抬起后继续亮main.c中#include "stm32f10x.h" #include "stm32f10x_gpio.h" #include "stm32f10x_rcc.h" #include "stm32f10x_exti.h" void RCC_Configuration(void) //时钟配置函数{ ErrorStatus HSEStartUpStatus; //使能外部晶振RCC_HSEConfig(RCC_HSE_ON); //等待外部晶振稳定HSEStartUpStatus = RCC_WaitForHSEStartUp(); //如果外部晶振启动成功,则进行下一步操作if(HSEStartUpStatus==SUCCESS) { //设置HCLK(AHB时钟)=SYSCLK 将系统时钟进行分频后,作为AHB总线时钟RCC_HCLKConfig(RCC_SYSCLK_Div1); //PCLK1(APB1) = HCLK/2 将HCLK时钟2分频后给低速外部总线RCC_PCLK1Config(RCC_HCLK_Div2); //PCLK2(APB2) = HCLK HCLK时钟配置给高速外部总线 RCC_PCLK2Config(RCC_HCLK_Div1); //外部高速时钟HSE 4倍频RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_4); //启动PLL RCC_PLLCmd(ENABLE); //等待PLL稳定while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); //系统时钟SYSCLK来自PLL输出RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //切换时钟后等待系统时钟稳定 while(RCC_GetSYSCLKSource()!=0x08); } // 下面这些都是外设总线上所挂的外部设备时钟的配置RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_AP B2Periph_GPIOB|RCC_APB2Periph_AFIO, ENABLE); }void GPIO_Configuration(void) //GPIO配置函数{ //GPIO_DeInit(GPIOA); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin=GPIO_Pin_4;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode= GPIO_Mode_Out_PP; GPIO_Init(GPIOA,&GPIO_InitStructure);GPIO_InitStructure.GPIO_Pin=GPIO_Pin_12;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode= GPIO_Mode_Out_PP; GPIO_Init(GPIOB,&GPIO_InitStructure);GPIO_InitStructure.GPIO_Pin=GPIO_Pin_8|GPIO_Pin_9; GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode= GPIO_Mode_IPU;GPIO_Init(GPIOB,&GPIO_InitStructure); } void EXTI_Config(void) { EXTI_InitTypeDef EXTI_InitStructure; // 管脚选择GPIO_EXTILineConfig(GPIO_PortSourceGPIOB,GPIO_PinSource8);GPIO_EXTILineConfig(GPIO_PortSourceGPIOB,GPIO_PinSource9); // 清除 EXTI线路挂起位EXTI_ClearITPendingBit(EXTI_Line8|EXTI_Line9); // EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; EXTI_InitStructure.EXTI_Line = EXTI_Line8|EXTI_Line9; EXTI_InitStructure.EXTI_LineCmd = ENABLE; EXTI_Init(&EXTI_InitStructure); } void NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0);NVIC_InitStructure.NVIC_IRQChannel = EXTI9_5_IRQn; // 注意名称是“_IRQn”,不是“_IRQChannel”NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;// NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; // NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } int main(void) { RCC_Configuration(); GPIO_Configuration(); EXTI_Config(); NVIC_Config();while(1) { GPIO_ResetBits(GPIOB,GPIO_Pin_12); GPIO_ResetBits(GPIOA,GPIO_Pin_4); } } 中断文件 it.c中void EXTI9_5_IRQHandler(void) { if ( EXTI_GetITStatus(EXTI_Line8) != RESET ) { EXTI_ClearITPendingBit(EXTI_Line8);GPIO_SetBits(GPIOA,GPIO_Pin_4);while(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_8)==0); } if ( EXTI_GetITStatus(EXTI_Line9) != RESET ){ EXTI_ClearITPendingBit(EXTI_Line9);GPIO_SetBits(GPIOB,GPIO_Pin_12);while(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_9)==0);勤劳的蜜蜂有糖吃} }第二篇:STM32入门经历,高手不要进!现在STM32初学入门,写些关于入门的帮助,也算答谢帮助过我的人.希望象我这样想学STM32的朋友不用迷茫.(本入门只适合低手,高手不要见笑).1.硬件平台.现在可以买到学习有的有英蓓特的MCBSTM32 和万利的EK-STM32F,可能目前出来最好的还是的神舟系列开发板,包括神舟I号(103RBT),神舟II号(103VCT),神舟III号(103ZET),神舟iv号(107VCT)几款都有,反正这几个板我都买了,学校出钱买的,还挺实惠,让老板打了个折扣,如果你自己开板做,成本还比这高.学会了才自己做自己的板子吧.2.软件平台.现在流行的有Keil MDK 3.15b和 IAR EWARM 4.42A. 购买评估板时,里面的光盘已经带了.为什么选这两个平台,用的人多,你以后遇到问题,可以找人解决的机会就大.英蓓特的MCBSTM32用的是Keil MDK 平台, 万利的是 IAR EWARM.3.C语言知识如果想补这推荐一本入门的书C Primer Plus 中文版.这本也是入门的好书.4.ST的数据手册STM32F10x参考手册看完这个就对STM32的内部有认识.STM32 Document and library rules 个人认为这个最重要.因为你学会了C语言看例程时.很多如GPIO_SetBits GPIO_ResetBits.很多C语言以外的函数库.这些都是STM32的库文件.5.看例程.如keil MDK 3.15b下的C:/Keil/ARM/Boards/Keil/MCBSTM32 有很多例程.GPIO口,RTC,PWM,USB,CAN等等....你想到的都有例程.6.多上论坛,呵呵.....有不明问下高手,我也是这样.只要不断努力,你一定会成功的.第三篇:STM32学习心得笔记STM32学习心得笔记时钟篇在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。
STM32自学笔记
STM32⾃学笔记⼀、原⼦位操作:原⼦位操作定义在⽂件中。
令⼈感到奇怪的是位操作函数是对普通的内存地址进⾏操作的。
原⼦位操作在多数情况下是对⼀个字长的内存访问,因⽽位号该位于0-31之间(在64位机器上是0-63之间),但是对位号的范围没有限制。
原⼦操作中的位操作部分函数如下:void set_bit(int nr, void *addr)原⼦设置addr所指的第nr位void clear_bit(int nr, void *addr)原⼦的清空所指对象的第nr位void change_bit(nr, void *addr)原⼦的翻转addr所指的第nr位int test_bit(nr, void *addr)原⼦的返回addr位所指对象nr位inttest_and_set_bit(nr, void *addr)原⼦设置addr所指对象的第nr位,并返回原先的值int test_and_clear_bit(nr, void *addr)原⼦清空addr所指对象的第nr位,并返回原先的值int test_and_change_bit(nr, void *addr)原⼦翻转addr所指对象的第nr位,并返回原先的值unsigned long word = 0;set_bit(0, &word); /*第0位被设置*/set_bit(1, &word); /*第1位被设置*/clear_bit(1, &word); /*第1位被清空*/change_bit(0, &word); /*翻转第0位*/⼆、STM32的GPIO锁定:三、中断挂起:因为某种原因,中断不能马上执⾏,所以“挂起”等待。
⽐如有⾼、低级别的中断同时发⽣,就挂起低级别中断,等⾼级别中断程序执⾏完,在执⾏低级别中断。
四、固⽂件:固件(Firmware)就是写⼊EROM(可擦写只读存储器)或EEPROM(电可擦可编程只读存储器)中的程序。
STM32学习笔记及勘误手册
/******************************************************************* 文件名:书写程序中一些特别需要留意的地方文件编辑人:张恒编辑日期:15/11/23功能:快速查阅巩固知识点*******************************************************************/ 版本说明:v1.0版本:1.开始编辑书写整个文档,开始用的为TXT文档的形式,整理了部分学习到的东西和一些在书写常用程序中容易出错的地方,以及经常忽视细节而导致程序运行失败,是巩固知识点,提醒值得注意地方的工具文档。
2.添加的功能上基本涵盖了所有的模块,除了串口通信中的SPI和I2C、I2S等,应用是比较简单后续可能会添加。
3.对一些特定的功能综合应用并未加入进去,这是一个不好的地方,后续应该会随着学习总结更新,每次更新记录为一个版本。
// 2015/11/24;v1.1版本:1.将所有的TXT版本的文档全部转换为DOC模式,并且更新的加入了目录显示,显示为1级目录,方便查阅相关内容。
2.更新了SysTick书写中值得注意的地方3.更新了FSMC的一些细微操作,后续继续追捕更新书写细节。
V1.2版本:1.更新了FSMC部分功能显示,详细了FSMC的使用注意事项2.添加了RTC实时时钟的一些注意事项。
//2015/12/1;V1.3版本:1.更新RTC部分注意事项。
//2015/12/11V1.4版本:1.更新ADC校准标志部分注意事项。
2.更新了TIM1和TIM8的高级定时器特殊功能说明。
//2015/12/13V1.5版本:1.优化了部分注意事项,SysTick的写法上重新的定制写法。
2.优化了ADC在使用过程的一些细节注意地方。
3.面对最近出现的浮点数运算错误,配合AD数据进行总结。
4.RTC细节的把握-配置正确顺序的错误。
STM32学习笔记:读写内部Flash(介绍+附代码)
STM32学习笔记:读写内部Flash(介绍+附代码)⼀、介绍⾸先我们需要了解⼀个内存映射:stm32的flash地址起始于0x0800 0000,结束地址是0x0800 0000加上芯⽚实际的flash⼤⼩,不同的芯⽚flash⼤⼩不同。
RAM起始地址是0x2000 0000,结束地址是0x2000 0000加上芯⽚的RAM⼤⼩。
不同的芯⽚RAM也不同。
Flash中的内容⼀般⽤来存储代码和⼀些定义为const的数据,断电不丢失,RAM可以理解为内存,⽤来存储代码运⾏时的数据,变量等等。
掉电数据丢失。
STM32将外设等都映射为地址的形式,对地址的操作就是对外设的操作。
stm32的外设地址从0x4000 0000开始,可以看到在库⽂件中,是通过基于0x4000 0000地址的偏移量来操作寄存器以及外设的。
⼀般情况下,程序⽂件是从 0x0800 0000 地址写⼊,这个是STM32开始执⾏的地⽅,0x0800 0004是STM32的中断向量表的起始地址。
在使⽤keil进⾏编写程序时,其编程地址的设置⼀般是这样的:程序的写⼊地址从0x08000000(数好零的个数)开始的,其⼤⼩为0x80000也就是512K的空间,换句话说就是告诉编译器flash的空间是从0x08000000-0x08080000,RAM的地址从0x20000000开始,⼤⼩为0x10000也就是64K的RAM。
这与STM32的内存地址映射关系是对应的。
M3复位后,从0x08000004取出复位中断的地址,并且跳转到复位中断程序,中断执⾏完之后会跳到我们的main函数,main函数⾥边⼀般是⼀个死循环,进去后就不会再退出,当有中断发⽣的时候,M3将PC指针强制跳转回中断向量表,然后根据中断源进⼊对应的中断函数,执⾏完中断函数之后,再次返回main函数中。
⼤致的流程就是这样。
1.1、内部Flash的构成:STM32F429 的内部 FLASH 包含主存储器、系统存储器、 OTP 区域以及选项字节区域,它们的地址分布及⼤⼩如下:STM32F103的中容量内部 FLASH 包含主存储器、系统存储器、 OTP 区域以及选项字节区域,它们的地址分布及⼤⼩如下:注意STM32F105VC的是有64K或128页x2K=256k字节的内置闪存存储器,⽤于存放程序和数据。
stm32自学笔记共20页
•
LED0=1;
•
LED1=0;
•
delay_ms(300);
•
}
•}
第二章 跑马灯实验
• Led.c函数
• void LED_Init(void)
•{
•
RCC->APB2ENR|=1<<2; //使能PORTA时钟
•
GPIOA->CRH|=0XFFFFFFFF3;//PA8 推挽输出
•
GPIOA->ODR|=1<<8; //PA8 输出高
• JTAG_Set(JTAG_SWD_DISABLE);//关闭JTAG和SWD,在原理图上可以看 到PA13和PA15为键盘和JTAG与SWD所共用,而这两种方针接口,他们 和普通的IO口公用,当想使用普通IO口时,必须先把他们关闭。在这 个函数里面设置参数,如果为二进制数00,则代表全部使能,如果是 二进制数01,则是能SWD,如果是10,则表示全部关闭。JTAG是一种 国际标准测试协议,主要用于芯片内部的测试。
• }要想实现一个点亮led小灯的功能,最少只需对3个寄存器进行设 置,第一步是设置外设时钟使能先把PORTA时钟使能,接下来把IO
口设置为输出,在接下来设置输出为高电平还是低电平,这里使用 推挽输出(3.3v),推挽输出主要是增强驱动能力,为外部提供大电 流。
第二章 跑马灯实验
• #ifndef __LED_H • #define __LED_H • #include "sys.h" • #define LED0 PAout(8)// PA8 • #define LED1 PDout(2)// PD2 • void LED_Init(void);//初始化
STM32学习笔记-STM32F103ZET6
STM32F103 系列芯片的系统架构:系统结构:在每一次复位以后,所有除SRAM 和FLITF 以外的外设都被关闭,在使用一个外设之前,必须设置寄存器RCC_AHBENR 来打开该外设的时钟。
GPIO 输入输出,外部中断,定时器,串口。
理解了这四个外设,基本就入门了一款MCU。
时钟控制RCC:-4~16M 的外部高速晶振-内部8MHz 的高速RC 振荡器-内部40KHz低速RC 振荡器,看门狗时钟-内部锁相环(PLL,倍频),一般系统时钟都是外部或者内部高速时钟经过PLL 倍频后得到- 外部低速32.768K 的晶振,主要做RTC 时钟源ARM存储器映像:数据字节以小端格式存放在存储器中。
一个字里的最低地址字节被认为是该字的最低有效字节,而最高地址字节是最高有效字节。
存储器映像与寄存器映射:ARM 存储器映像4GB0X0000 00000X1FFF FFFF0X2000 00000X3FFF FFFF0X4000 00000X5FFF FFFF寄存器名称相对外设基地址的偏移值编号位表读写权限寄存器位功能说明使用C语言封装寄存器:1、总线和外设基地址封装利用地址偏移(1)定义外设基地址(Block2 首地址)(2)定义APB2总线基地址(相对外设基地址偏移固定)(3)定义GPIOX外设基地址(相对APB2总线基地址偏移固定)(4)定义GPIOX寄存器地址(相对GPIOX外设基地址偏移固定)(5)使用 C 语言指针操作寄存器进行读/写//定义外设基地址#define PERIPH_BASE ((unsigned int)0x40000000) 1)//定义APB2 总线基地址#define APB2PERIPH_BASE (PERIPH_BASE + 0x00010000) 2)//定义GPIOC 外设基地址#define GPIOC_BASE (AHB1PERIPH_BASE + 0x0800) 3)//定义寄存器基地址这里以GPIOC 为例#define GPIOC_CRL *(unsigned int*)(GPIOC_BASE+0x00) 4)#define GPIOC_CRH *(unsigned int*)(GPIOC_BASE+0x04)#define GPIOC_IDR *(unsigned int*)(GPIOC_BASE+0x08)#define GPIOC_ODR *(unsigned int*)(GPIOC_BASE+0x0C)#define GPIOC_BSRR *(unsigned int*)(GPIOC_BASE+0x10)#define GPIOC_BRR *(unsigned int*)(GPIOC_BASE+0x14)#define GPIOC_LCKR *(unsigned int*)(GPIOC_BASE+0x18)//控制GPIOC 第0 管脚输出一个低电平5)GPIOC_BSRR = (0x01<<(16+0));//控制GPIOC 第0 管脚输出一个高电平GPIOC_BSRR = (0x01<<0);2、寄存器封装利用结构体、外设基地址和寄存器地址偏移typedef unsigned int uint32_t; /*无符号32 位变量*/typedef unsigned short int uint16_t; /*无符号16 位变量*//* GPIO 寄存器列表*/typedef struct{uint32_t CRL; /*GPIO 端口配置低寄存器地址偏移: 0x00 */uint32_t CRH; /*GPIO 端口配置高寄存器地址偏移: 0x04 */uint32_t IDR; /*GPIO 数据输入寄存器地址偏移: 0x08 */uint32_t ODR; /*GPIO 数据输出寄存器地址偏移: 0x0C */uint32_t BSRR; /*GPIO 位设置/清除寄存器地址偏移: 0x10 */uint32_t BRR; /*GPIO 端口位清除寄存器地址偏移: 0x14 */uint16_t LCKR; /*GPIO 端口配置锁定寄存器地址偏移: 0x18 */}GPIO_TypeDef;只要给结构体设置好首地址,就能把结构体内成员的地址确定下来,然后就能以结构体的形式访问寄存器。
stm32学习笔记--spi与iic
stm32学习笔记--spi与iic关于上次说的要改程序的问题,//读ADXL345 寄存器//addr:寄存器地址//返回值:读到的值u8 ADXL345_RD_Reg(u8 addr){u8 temp=0; IIC_Start(); IIC_Send_Byte(ADXL_WRITE); //发送写器件指令temp=IIC_Wait_Ack(); IIC_Send_Byte(addr); //发送寄存器地址temp=IIC_Wait_Ack(); IIC_Start(); //重新启动IIC_Send_Byte(ADXL_READ); //发送读器件指令temp=IIC_Wait_Ack(); temp=IIC_Read_Byte(0); //读取一个字节,不继续再读,发送NAK IIC_Stop(); //产生一个停止条件return temp; //返回读到的值} 这段写寄存器代码,不理解temp 为什么要被频繁的赋值,去掉后,宏观看来对结果没有影响。
第二个不理解的地方是为什么在发送寄存器地址之后要从新启动一次,因为在相似的写寄存器函数中,在相同的位置不存在重启代码。
注释掉该句之后显示ADXL345 error。
这两天主要看了三轴加速度计的程序,虽然例程里的能看懂,但是在四轴里的程序却不那么容易,我甚至不明白为什么他要自己写一个iic 的函数,我打算接下来把它的程序和例程里的程序对照来看,看能不能找到什么头绪。
下面是对以前学过内容的总结:对位的寻址操作为了实现对SARM、I/O 外设空间中某一位的操作,在寻址空间(4GB)另一地方取个别名区空间,从这地址开始,每一个字(32bit)就对应SRAM 或I/O 的一位。
即原来每个字节用一个地址,现在给字节中的每个位一个地址,实现了对位的寻址。
spi 与iic 之间各自的优劣1 硬件连接的优劣SPI 是[单主设备(single-master )]通信协议,这意味着总线中的只有一支中心设备能发起通信。
单片机STM32学习笔记
推挽输出与开漏输出的区别推挽输出推挽输出::可以输出高可以输出高,,低电平低电平,,连接数字器件连接数字器件; ;开漏输出开漏输出::输出端相当于三极管的集电极输出端相当于三极管的集电极. . 要得到高电平状态需要上拉电阻才行要得到高电平状态需要上拉电阻才行. . 适合于做电流型的驱动电流型的驱动,,其吸收电流的能力相对强其吸收电流的能力相对强((一般20ma 以内以内). ).推挽结构一般是指两个三极管分别受两互补信号的控制推挽结构一般是指两个三极管分别受两互补信号的控制,,总是在一个三极管导通的时候另一个截止另一个截止. .要实现“线与”需要用OC(open collector)collector)门电路门电路门电路..是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中以推挽方式存在于电路中,,各负责正负半周的波形放大任务各负责正负半周的波形放大任务,,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小关管每次只有一个导通,所以导通损耗小,,效率高。
输出既可以向负载灌电流,也可以从负载抽取电流。
抽取电流。
问题:问题:很多芯片的供电电压不一样,有3.3v 和5.0v 5.0v,需要把几种,需要把几种IC 的不同口连接在一起,是不是直接连接就可以了?实际上系统是应用在I2C 上面。
上面。
简答:简答:1、部分3.3V 器件有5V 兼容性,可以利用这种容性直接连接兼容性,可以利用这种容性直接连接2、应用电压转换器件,如TPS76733就是5V 输入,转换成3.3V 3.3V、、1A 输出。
输出。
开漏电路特点及应用在电路设计时我们常常遇到开漏(在电路设计时我们常常遇到开漏(open drain open drain )和开集()和开集()和开集(open collector open collector )的概念。
所)的概念。
所谓开漏电路概念中提到的“漏”就是指MOSFET 的漏极。
STM32学习笔记-SYS程序解释(原子)
SYS.C程序解释#i nclude <stm32f10x_lib.h>#include "sys.h"//设置向量表偏移地址〃NVIC_VectTab:基址//Offset: 偏移量//CHECK OK//091207void MY_NVIC_SetVectorTable(u32 NVIC_VectTab, u32 Offset){//检查参数合法性assert_param(IS_NVIC_VECTTAB(NVIC_VectTab));assert_param(IS_NVIC_OFFSET(Offset));SCB->VTOR = NVIC_VectTab|(Offset & (u32)0x1FFFFF80); // 设置NVIC 的向量表偏移寄存器//用于标识向量表是在COD区还是在RAM区}解释:前面两行是用来检查参数合法性,这里不作分析。
重点看第三行。
#defi ne NVIC_VectTab_RAM ((u32)0x)#defi ne NVIC_VectTab_FLASH @32)0x08000000)typedef struct{vuc32 CPUID; vu32 ICSR;vu32 VTOR; vu32 AIRCR;vu32 SCR;vu32 CCR;vu32 SHPR[3]; vu32 SHCSR;vu32 CFSR;vu32 HFSR;vu32 DFSR;vu32 MMFAR;vu32 BFAR; vu32 AFSR;} SCB_TypeDef;在VV权威指南>> 第一百零四页,有这么一段话:NVIC中有一个寄存器,称为向量表偏移量寄存器”在地址0xE000_ED08处),通过修改它的值就能定位向量表。
但必须注意的是:向量表的起始地址是有要求的:必须先求出系统中共有多少个向量,再把这个数字向上增大到是2的整次幕,而起始地址必须对齐到后者的边界上。
STM32学习笔记系统时钟和SysTick定时器
STM32学习笔记(3):系统时钟和SysTick定时器1.STM32的时钟系统在STM32中,一共有5个时钟源,分别是HSI、HSE、LSI、LSE、PLL(1)HSI是高速内部时钟,RC振荡器,频率为8MHz;(2)HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围是4MHz – 16MHz;(3)LSI是低速内部时钟,RC振荡器,频率为40KHz;(4)LSE是低速外部时钟,接频率为32.768KHz的石英晶体;(5)PLL为锁相环倍频输出,严格的来说并不算一个独立的时钟源,PLL 的输入可以接HSI/2、HSE或者HSE/2。
倍频可选择为2 – 16倍,但是其输出频率最大不得超过72MHz。
其中,40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。
另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。
STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。
该时钟源只能从PLL端获取,可以选择为1.5分频或者1分频,也就是,当需使用到USB模块时,PLL必须使能,并且时钟配置为48MHz 或72MHz。
另外STM32还可以选择一个时钟信号输出到MCO脚(PA.8)上,可以选择为PLL输出的2分频、HSI、HSE或者系统时钟。
系统时钟SYSCLK,它是提供STM32中绝大部分部件工作的时钟源。
系统时钟可以选择为PLL输出、HSI、HSE。
系系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各个模块使用,AHB分频器可以选择1、2、4、8、16、64、128、256、512分频,其分频器输出的时钟送给5大模块使用:(1)送给AHB总线、内核、内存和DMA使用的HCLK时钟;(2)通过8分频后送给Cortex的系统定时器时钟;(3)直接送给Cortex的空闲运行时钟FCLK;(4)送给APB1分频器。
STM32学习笔记:BIN文件通过ST-LINK烧录STM32芯片
STM32学习笔记:BIN⽂件通过ST-LINK烧录STM32芯⽚以下提供2种下载⽅式
KEIL编译下载
KEIL 5 在开发中还算是⽐较强⼤的⼀种平台。
在开发中通过编译再下载会显得很⽅便。
尽管这个是⽼⽣常谈的问题,但还是在这⾥补全这个设置步骤
1.点击“魔法棒”
2.Debug 设置
ST官⽅下载⽅式
有时候,我们通过各种途径得到了⼀个bin或者hex⽂件(⽐如使⽤了⽣成bin⽂件),那么我们应该怎么样把它烧录到板⼦中呢?下⾯介绍由ST官⽅下载器烧录bin或者hex到开发板的过程
烧录⽂件:BIN、或者HEX⽂件
烧录⽅式:ST-LINK
烧录芯⽚:STM32F429I
烧录准备:
1.开发板⾃带的⼀根USB线
2.官⽅烧录软件:(下载需要登录账号)
=================
具体步骤:
1.安装烧录软件,后打开。
2.连接好开发板到电脑。
3.Target --> Connect
(成功的结果)
4.Target --> Program & Verify
⽤Browse 打开⼀个程序编译结果 最好勾选Reset after programing Start
如果成功,则可以看到绿⾊字体的结果。
以上。
STM32学习笔记(5):通用定时器PWM输出
STM32学习笔记(5):通用定时器PWM输出1.TIMER输出PWM基本概念脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。
简单一点,就是对脉冲宽度的控制。
一般用来控制步进电机的速度等等。
STM32的定时器除了TIM6和TIM7之外,其他的定时器都可以用来产生PWM 输出,其中高级定时器TIM1和TIM8可以同时产生7路的PWM输出,而通用定时器也能同时产生4路的PWM输出。
1.1PWM输出模式STM32的PWM输出有两种模式,模式1和模式2,由TIMx_CCMRx寄存器中的OCxM位确定的(“110”为模式1,“111”为模式2)。
模式1和模式2的区别如下:110:PWM模式1-在向上计数时,一旦TIMx_CNT<TIMx_CCR1时通道1为有效电平,否则为无效电平;在向下计数时,一旦TIMx_CNT>TIMx_CCR1时通道1为无效电平(OC1REF=0),否则为有效电平(OC1REF=1)。
111:PWM模式2-在向上计数时,一旦TIMx_CNT<TIMx_CCR1时通道1为无效电平,否则为有效电平;在向下计数时,一旦TIMx_CNT>TIMx_CCR1时通道1为有效电平,否则为无效电平。
由此看来,模式1和模式2正好互补,互为相反,所以在运用起来差别也并不太大。
而从计数模式上来看,PWM也和TIMx在作定时器时一样,也有向上计数模式、向下计数模式和中心对齐模式,关于3种模式的具体资料,可以查看《STM32参考手册》的“14.3.9 PWM模式”一节,在此就不详细赘述了。
1.2PWM输出管脚PWM的输出管脚是确定好的,具体的引脚功能可以查看《STM32参考手册》的“8.3.7定时器复用功能重映射”一节。
在此需要强调的是,不同的TIMx有分配不同的引脚,但是考虑到管脚复用功能,STM32提出了一个重映像的概念,就是说通过设置某一些相关的寄存器,来使得在其他非原始指定的管脚上也能输出PWM。
STM32学习笔记,定时器,PWM,ADC,UART,DMA
RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD,\ ENABLE); //启动 AFIO RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE); //启动 TIM1 RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
//Step2. GPIO 做相应设置,为 AF 输出 //PA.8/9 口设置为 TIM1 的 OC1 输出口 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure);
}
关于 TIM 的操作,要注意的是 STM32 处理器因为低功耗的需要,各模块需要分别独立开启时钟,所以, 一定不要忘记给用到的模块和管脚使能时钟,因为这个原因,浪费了我好多时间阿~~!
STM32 笔记(二)TIM 模块产生 PWM 这个是 STM32 的 PWM 输出模式,STM32 的 TIM1 模块是增强型的定时器模块,天生就是为电机控制而生,可 以产生 3 组 6 路 PWM,同时每组 2 路 PWM 为互补,并可以带有死区,可以用来驱动 H 桥。
STM32学习笔记---SleepMode
STM32学习笔记——电源管理STM32的3种低功耗模式:1、睡眠模式__WFI(); __WFE();外部中断设置为中断模式时,__WFI()和__WFE()都能被中断唤醒;外部中断设置为事件模式时,只能唤醒__WFE();用事件唤醒时会唤醒2次,未找到原因(因按键性能不良,抖动严重);另外事件产生时不会置位标志位,不需要清除。
从睡眠模式返回时不需要重新设置系统时钟。
唤醒任意中断或事件唤醒对应的WFE、WFI.2、停机模式使用void PWR_EnterSTOPMode(uint32_t PWR_Regulator, uint8_t PWR_STOPEntry);进入停机模式;(1) 初始化用于唤醒的中断按键,配置为中断或事件;(2) 设置停止状态时的FLASH供电或掉电;(3) 选择电压调节器的工作模式并进入停止状态;(4) 使用按键中断唤醒芯片;(5) 重启HSE时钟,使系统完全恢复停止前的状态。
重启HSE时钟函数:SYSCLKConfig_STOP();static void SYSCLKConfig_STOP(void) /* After wake-up from STOP reconfigure the system clock */{RCC_HSEConfig(RCC_HSE_ON); /* 使能HSE */while (RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET); /* 等待HSE 准备就绪*/RCC_PLLCmd(ENABLE); /* 使能PLL */while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); /* 等待PLL 准备就绪*/RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); /* 选择PLL作为系统时钟源*/while (RCC_GetSYSCLKSource() != 0x08); /* 等待PLL被选择为系统时钟源*/}当进入待机和停止模式时,HSEON该位由硬件清零,外部振荡器HSE被关闭,所以如果使用到HSE,则唤醒后需要重新设置使用的HSE;当从待机和停止模式返回或用作系统时钟的外部4-16MHz振荡器发生故障时,HSI位由硬件置’1’启动内部8MHz的RC振荡器HSI 。
STM32_深入浅出(新手必看)
STM32学前班教程之一:为什么是它经过几天的学习,基本掌握了STM32的调试环境和一些基本知识。
想拿出来与大家共享,笨教程本着最大限度简化删减STM32入门的过程的思想,会把我的整个入门前的工作推荐给大家。
就算是给网上的众多教程、笔记的一种补充吧,所以叫学前班教程。
其中涉及产品一律隐去来源和品牌,以防广告之嫌。
全部汉字内容为个人笔记。
所有相关参考资料也全部列出。
:lol教程会分几篇,因为太长啦。
今天先来说说为什么是它——我选择STM32的原因。
我对未来的规划是以功能性为主的,在功能和面积之间做以平衡是我的首要选择,而把运算放在第二位,这根我的专业有关系。
里面的运算其实并不复杂,在入门阶段想尽量减少所接触的东西。
不过说实话,对DSP的外设并和开发环境不满意,这是为什么STM32一出就转向的原因。
下面是我自己做过的两块DSP28的全功能最小系统板,在做这两块板子的过程中发现要想尽力缩小DSP的面积实在不容易(目前只能达到50mm×45mm,这还是没有其他器件的情况下),尤其是双电源的供电方式和1.9V的电源让人很头疼。
后来因为一个项目,接触了LPC2148并做了一块板子,发现小型的ARM7在外设够用的情况下其实很不错,于是开始搜集相关芯片资料,也同时对小面积的AVR和51都进行了大致的比较,这个时候发现了CortexM3的STM32,比2148拥有更丰富和灵活的外设,性能几乎是2148两倍(按照MIPS值计算)。
正好2148我还没上手,就直接转了这款STM32F103。
与2811相比较(核心1.8V供电情况下),135MHz×1MIPS。
现在用STM32F103,72MHz×1.25MIPS,性能是DSP的66%,STM32F103R型(64管脚)芯片面积只有2811的51%,STM32F103C型(48管脚)面积是2811的25%,最大功耗是DSP的20%,单片价格是DSP的30%。
stm32寄存器版学习笔记定时计数器中断
stm32寄存器版学习笔记定时计数器中断STM32共有8个定时计数器,⾼级定时器: TIME1 TIME8是通⽤定时器:TIME2~TIME5基本定时器: TIME6和TIME7以TIME3通⽤定时器为例总结定时计数器的基本⽤法⼀:TIM3时钟使能APB1外设时钟使能寄存器(RCC_APB1ENR)Eg:RCC->APB1ENR|=1<<1; //使能TIM3时钟⼆:设置TIM3_ARR和TIM3_PSC的值通过这两个寄存器来设置⾃动重装的值以及分频系数⾃动重装载寄存器(TIMx_ARR)预分频器(TIMx_PSC)三:设置TIM3_DIER允许更新中断中断使能寄存器(TIMx_DIER)Eg: TIM3->DIER|=1<<0; //允许更新中断四:允许TIM3⼯作控制寄存器1(TIMx_CR1)CEN:使能计数器位0 0:禁⽌计数器; 1:使能计数器Eg: TIM3->CR1|=0x01; //使能定时器3 或 TIM3->CR1|=1<<0;五:TIM3中断分组设置直接调⽤MY_NVIC_Init()函数Eg:MY_NVIC_Init(1,3,TIM3_IRQChannel,2);//抢占1,⼦优先级3,组2六:编写中断服务函数状态寄存器(TIMx_SR)Eg: if(TIM3->SR&0X0001)//溢出中断Eg: //定时器3中断服务程序 void TIM3_IRQHandler(void) //TIM3_Int_Init(5000,7199); //10Khz的计数频率,计数到5000为500ms//500ms中断⼀次 { if(TIM3->SR&0X0001) //溢出中断 { //add your code } TIM3->SR&=~(1<<0); //清除中断标志位 }六:关于溢出事件的计算因为Stm32_Clock_Init函数⾥⾯已经初始化APB1的时钟为2分频,所以APB1的时钟是32MHz(系统时钟72MHz)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
输入模式初始化GPIOE2,3,4
①IO口初始化:GPIO_InitTypeDef GPIO_InitStructure;
②使能PORTA,PORTE时钟:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOE,ENABLE);
③PE.2.3.4端口配置:GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4;
④设置成(上拉)输入:GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
⑤GPIO_Init(GPIOE, &GPIO_InitStructure);
输出模式初始化
①IO口初始化:GPIO_InitTypeDef GPIO_InitStructure;
②使能PB,PE端口时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOE, ENABLE);
③3LED0-->PB.5 端口配置GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
④设置(推挽)输出模式GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
⑤设置IO口速度为50MHz GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
⑥说明初始化哪个端口GPIO_Init(GPIOB, &GPIO_InitStructure);
在LED灯试验中初始为高电平灭GPIO_SetBits(GPIOB,GPIO_Pin_5);
再初始化相同发输出模式时③④⑤可省略例如(经实验初始化恰好为不同IO口相同IO序号③可省略,应该不规范吧)
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; //LED1-->PE.5 端口配置, 推挽输出GPIO_Init(GPIOE, &GPIO_InitStructure); //推挽输出,IO口速度为50MHz GPIO_SetBits(GPIOE,GPIO_Pin_5); //PE.5 输出高
1,头文件可以定义所用的函数列表,方便查阅你可以调用的函数;
2,头文件可以定义很多宏定义,就是一些全局静态变量的定义,在这样的情况下,只要修改头文件的内容,程序就可以做相应的修改,不用亲自跑到繁琐的代码内去搜索。
3,头文件只是声明,不占内存空间,要知道其执行过程,要看你头文件所申明的函数是在哪个.c文件里定义的,才知道。
4,他并不是C自带的,可以不用。
5,调用了头文件,就等于赋予了调用某些函数的权限,如果你要算一个数的N次方,就要调用Pow()函数,而这个函数是定义在math.c里面的,要用这个函数,就必需调用math.h 这个头文件。