高一数学必修5模块测试

合集下载

人教B版人教B版高中数学必修五必修模块5测试样题B版答案及评分参考.docx

人教B版人教B版高中数学必修五必修模块5测试样题B版答案及评分参考.docx

数学必修模块测试样题答案及评分参考数学5(人教B 版)一、选择题(每小题4分,共56分)题号 1 2 3 4 5 6 7 答案 B C A C B C D 题号 8 9 10 11 12 13 14 答案CCCBCCA二、填空题(每小题4分,共16分) 15.> 16.12n n a -= 17.(2,2)-18. 2(1)2 1 2)n n a n n =⎧=⎨-≥⎩(三、解答题(共3小题,共28分) 19.(本小题满分8分) 解:(Ⅰ)依题意,由余弦定理得22245(61)1c o s2452C +-==-⨯⨯. 120C ∠=︒ . ………………4分(Ⅱ)过点A 作AH 垂直BC 的延长线于H ,则53sin 5sin 602AH AC ACH =⋅=︒=. 所以1153453222ABCS BC AH ∆=⋅=⨯⨯= . ………………8分20.(本小题满分10分)B C AH解:设水池底面的长为x 米,则宽为48003x米,易知0x >,又设水池总造价为y 元. 根据题意,有48001600150120(2323)3y x x=⨯+⨯+⨯⨯ 1600240000720()x x=++16002400007202x x≥+⨯⋅ 297600=. 当1600,x x=即40x =时,等号成立. 所以,将水池的底面设计成边长为40米的正方形时,总造价最低,最低总造价为297600元..………………10分21.(本小题满分10分) 解:(Ⅰ)答案如图所示:………………3分 (Ⅱ)易知,后一个图形中的着色三角形个数是前一个的3倍,所以,着色三角形的个数的通项公式为:13n n b -=. ………………6分(Ⅲ)由题意知(1)2n n n a +=,11(1)23231n n n n n c n n --+⨯⨯=⋅+=, 所以 01113233n n S n -=⋅+⋅++⋅ ①12131323(1)33n n n S n n -=⋅+⋅++-⋅+⋅ ② ①-②得 0112(333)3n n n S n --=+++-⋅2n S -=13313nn n --⋅-. 即 (21)31()4n n n S n -+=∈N + . ………………10分。

浙江省瓯海中学高一数学模块(必修5)测试卷2008.4

浙江省瓯海中学高一数学模块(必修5)测试卷2008.4

浙江省瓯海中学2007学年第二学期高一数学模块(必修5)测试卷2008.4命题人:王春蕾说明:全卷共三大题,19小题,满分100分,考试时间为100分钟。

一、选择题(本大题共10小题,每小题4分,共40分) 1、下列命题正确的是 ( ) A .22bc ac b a >⇒> B .320b b a b a >⇒<< C .01>>⇒>b b a b a 且D .ba ab b a 110,33<⇒>>2、在△ABC 中,1,6a b A π==∠=,则∠B 等于( )A .3π B .3π或23π C .6π或56πD .23π3、等差数列{}n a 中,83,a a 是方程0532=--x x 的两个实数根,则此数列的前10项和=10S ( )A .15B .30C .50D .15+4、两灯塔A ,B 与海洋观察站C 的距离都等于100km, 灯塔A 在C 北偏东30︒,B 在C 南偏东60︒,则A ,B 之间的相距约( ) A .100kmB .173kmC .141kmD .180km5、用一个平面去截一个几何体,得到的截面是一个圆面,这个几何体可能是 ( )A .圆锥B .圆柱C .球体D .以上都可能6、一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是 ( ) A .28cm π B .212cm π C .216cm π D .220cm π7、已知,a b 是正实数,A 是,a b 的等差中项,G 是,a b 的等比中项,则( ) A .ab AG ≤B .ab AG ≥C .||ab AG ≤D .||ab AG ≥8、下列函数中,最小值为4的是 ( )A.4y xx =+ B.2y =C.4xxy e e-=+ D.4sin (0)sin y x x xπ=+<<9、计算机将信息转换成二进制数进行处理时,二进制即“逢二进一”.如2(1101)表示二进制的数,将它转换成十进制的形式是32102(1101)1212021213=⨯+⨯+⨯+⨯=,那么 将二进制数16111位转换成十进制数的形式是( )A .1722-B .1621-C .1622-D .1521-10、小正方形按照下图中的规律排列,每个图形中的小正方形的个数构成数列}{n a 有以下结论:①155=a ;②}{n a 是一个等差数列;③数列}{n a 是一个等比数列;④数列}{n a 的递推公式为),(11*+∈++=N n n a a n n 其中正确的是( )A .①②④B .①③④C .①②D .①④二、填空题(本大题共5小题,每小题4分,共20分)11、不等式211<x 的解集是 .12、如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的 表面积为 .13、△ABC 的三内角A 、B 、C 成等差数列,所对的三边a 、b 、c 成等比数列,则A C -= . 14、已知数列{a n }的通项公式a n =n n +⋯++21 ,b n =11+n n a a ,则{b n }的前n 项和为 .15、已知正数,x y 满足21x y +=,则11x y+的最小值为 .CAB 1正视图侧视图俯视图17、已知不等式:2860ax x +-<的解集为{}|1x x x b <>或. ⑴求,a b ;⑵解关于x 的不等式:23()30bx a m x am -++<.18、在梯形ABCD 中,AB ∥CD ,∠A=90°,∠B=45°,AB=32CD ,绕AB 边所在直线旋转一周所成的旋转体的表面积是(5π,求这个旋转体的体积。

数学必修5模块测试一

数学必修5模块测试一

数学必修5模块测试一(完成时间120分钟,全卷满分150分)一、选择题(本大题共10小题,每小题5分,满分50分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{}n a 中,已知公差12d =,且139960a a a +++=,则12100a a a +++=( ) A .170 B .150 C .145 D .1202.已知等数列{}n a 中,123n n a -=⨯,则由此数列的偶数项所组成的新数列的前n 项的和为( ) A .31n -B .3(31)n -C .1(91)4n -D .3(91)4n -3.)等比数列{}n a 的各项均为正数,且564718a a a a +=,则31323l o g l o g l o g a a a ++=( ) A .12 B .10 C .8 D .32log 5+ 4.二次不等式20ax bx c ++<的解集是全体实数的条件是( ) A .0a >⎧⎨∆>⎩B .0a >⎧⎨∆<⎩C .0a <⎧⎨∆>⎩D .0a <⎧⎨∆<⎩ 5.不等式30x ay ++>表示直线30x ay ++=( ) A .上方的平面区域 B .下方的平面区域 C .右方的平面区域 D .左方的平面区域6.函数423(0)y x x=-->的最值情况是( )A.有最小值2-B.有最大值2-C.有最小值2+ D .有最大值2+7.在△ABC中,已知sin 2sin cos A B C =,则该三角形的形状是( ) A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形8.在ABC ∆中,a x =,2,45b B ==︒,若ABC 有两解,则x 的取值范围是( ) A .(2,)+∞ B .(0,2) C. D .9.已知220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则22x y +的最大值与最小值分别是( )A .13,1B .13,2C .2,1 D13,45.10.计算机将信息转换成二进制数进行处理时,二进制即“逢二进一”.如2(1101)表示二进制的数,将它转换成十进制的形式是32102(1101)121202123=⨯+⨯+⨯+⨯=,那么将二进制数16111位转换成十进制数的形式是( )A .1722-B .1621-C .1622-D .15212- 二、填空题(本大题共4小题,每小题5分,满分20分)11.在等比数列{}n a 中,若3339,22a S ==,则q = .12.已知集合22{|160},{|430}A x x B x x x =-<=-+>,则A B =.13.在△ABC中,已知c=10,A=45°,C=30°,则b= .14.已知正数,x y 满足21x y +=,则11xy+的最小值为 .三、解答题(本大题共6小题,满分80分. 解答应写出必要的文字说明、证明过程或推演步骤) 15.(本小题满分13分)如图,我炮兵阵地位于A处,两观察所分别设于C,D,已知△ACD为边长等于a的正三角形.当目标出现于B时,测得∠CDB=45°,∠BCD=75°,试求炮击目标的距离AB. 16.(本小题满分13分)解关于x 的不等式: 2()(2)0a x x x --->其中常数a 是实数17.(本小题满分13分)已知n S 是等比数列{}n a 的前n 项的和,396,,S S S 成等差数列,求证285,,a a a 成等差数列. 18.(本小题满分13分)去年,某地区年用电量为akw ·h ,电价为0.8元/kw ·h ,今年计划将电价降到0.55元/kw ·h 至0.75元/kw ·h 之间,用户心理承受价位为0.4元/kWw ·h.经测算,下调电价后,实际电价和用户心理价仍存在差值,假设新增的用电量与这个差值破反比(比例系数为o.2a).该地区电力的成本为0.3元/kw ·h.,电价定为多少时仍可保证电力部门的收益比上年至少增长20%?19(14分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n+1=nn 2S n (n=1,2,3,…),证明 (1)数列{nS n}是等比数列; (2)S n+1=4a n . 20.(本小题满分14分)某工厂拟建一座平面为长方形,且面积为200平方米的三级污水处理池由于地形限制,长、宽都不能超过16米.如果池四周围壁建造单价为每米长400元,中间两道隔墙建造单价为每米长248元,池底建造单价为每平方米80元,那么如何设计污水池的长和宽,使总造价最低?数学必修5模块测试一参考答案1.选C .121001399241001399()()2()50a a a a a a a a a a a a d +++=+++++++=++++. 2.选D .新数列是首项为26a =,公比为9q =的等比数列,所以6(91)3(91)914n nn S -==--.3.选B .由等比数列的性质可知11029384756a a a a a a a a a a ====,所以569a a =,且 53132310312103563log log log log ()log ()5log 910a a a a a a a a ++====.4.选D .由二次函数的图象可知满足20ax bx c ++<恒成立时,二次函数2y ax bx c=++的图象开口向下且与x 轴无交点. 5.选C .原不等式即3x ay >--,表示直线3x ay =--的右方区域.6.选B .因为0x >,所以43x x +≥=2y ≤-43x x=即x ==”. 7.选C .sin 2cos sin AC B=得22222a a b c b ab +-=,化简得22b c =,即b c =. 8.选C.由正弦定理得2sin sin 45x x A A =⇔=︒,解此三角形要有两解,明显x <a b >,即2x >.9.选.如图作出区域图如右,22x y +的几何意义是点(,)P x y 到坐标原点距离的平方,显然最大值为213MO =,最小值为2NO 45=.10.选B .15140161611112121221=⨯+⨯++⨯=-位.11.填1或12-.2132a q =且211192a a q a q ++=两式相除得2210q q --=,解得1q =或12-.12.填R .{|44},{|1,3}A x x B x x x =-<<=<>或,所以A B R =.13.填.10sin 45sin 10a a =⇒=︒︒2222cos a b c bc A =+-得22100210cos45b b =+-⋅⋅︒,化简得21000b --=,解得b =.14.填3+.11112(2)()333y x x y x y x y x y +=++=++≥+=+,当且仅当2y xx y=,即x =时取“=”. 15.解:设,,PQ l AP x AQ y ===,则由余弦定理得2222cos x y xy A l +-=,其中,l A 均为定值 由基本不等式可得222x y xy +≥,所以x -3x -222cos xy xy A l -≤,即2222(1cos )4sin 2l l xy AA ≤=- 当且仅当2sin2l x y A ==时取“=”.故222cos 112sin sin 224sin 4sin22APQ A l l S xy A A A A ∆=≤⋅⋅=所以2sin2l AP AQ A ==时APQ ∆的面积取最大值.16.解:在BDC 中,180457560DBC ∠=︒-︒-︒=︒,由正弦定理得sin sin sin sin DC BC DC BC D B D B =⇒=⋅= 在ABC 中,7560135BCA ∠=︒+︒=︒,由余弦定理得2222222cos 13522353AB CB CA CB CA a a a a =+-⋅⋅⋅︒⎛=+-⋅⋅ ⎝⎭⎛=+ ⎝所以A 、B两地之间的距离为AB =.17.解:原不等式即()(1)(2)0x a x x -+-<(1)当1a <-时,原不等式的解为x a <,或12x -<<; (2)当1a =-时,原不等式的解为2x <,且1x ≠-;(3)当12x -<<时,原不等式的解为1x <-,或2a x <<; (4)当2a =时,原不等式的解为1x <-;(5)当2a >时,原不等式的解为1x <-,或2x a <<.18.证明:当1q =时,9131619,3,6S a S a S a ===,不满足9362S S S =+,即396,,S S S 不成等差数列;当1q ≠时,由396,,S S S 成等差数列得9361112(1)(1)(1)111a q a q a q q q q---=+--- 即9362(1)(1)(1)q q q -=-+- 所以742q q q =+ 所以741112a q a q a q =+即8522a a a =+,所以285,,a a a 成等差数列.19.解:设下调后的电价为x 元/ KW.h, 依题意知用电量增至电力部门的收益为,4.0a x k+-)75.055.0)(3.0)(4.0(≤≤-+-=x x a x ky 所以⎪⎩⎪⎨⎧≤≤+-⨯≥-⎪⎭⎫⎝⎛+-75.055.0%)201)](3.08.0([)3.0(4.02.0x a x a x a整理得⎩⎨⎧≤≤≥+-75.055.003.01.12x x x解此不等式得0.6075.0≤≤x答:当电价定为0.60元/KW.h 至0.75元/kw ·h 之间,仍可保证电力部门的收益比上年至少增长20%.20.解:设池长为x 米,则池宽x200米, 则1620016x x≤⎧⎪⎨≤⎪⎩ 解得12.516x ≤≤依题意,总造价为:200200()4002248280200f x x x x ⎛⎫=⋅++⋅⋅+⋅ ⎪⎝⎭32480016000x x ⎛⎫=++≥ ⎪⎝⎭8001600044800⋅= 当且仅当xx 324=即x =18时取“=”,所以“=”不成立.以下我们证明12.516x ≤≤时,()(16)f x f ≥3243241616x x ⇔+≥+(16)(16324)016x x x--≥因为12.516x ≤≤,所以160x -≤,163240x -<,从而上式成立,所以16x =时,()f x 取最小值.答:污水池的长为16米,宽为12.5米时,能使总造价最低.。

高中数学 模块综合测试(A)北师大版必修5(2021年整理)

高中数学 模块综合测试(A)北师大版必修5(2021年整理)

模块综合测试(A)(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等差数列{a n}中,a2=7,a4=15,则前10项和S10=( )A.100 B.210C.380 D.400答案:B1.在等差数列{a n}中,若a3+a4+a5+a6+a7=450,则a2+a8的值等于( )A.45 B.75C.180 D.300解析: ∵a2+a8=a3+a7=a4+a6=2a5,∴由已知得5a5=450,∴a5=90∴a2+a8=2a5=180。

答案:C2.在△ABC中,若b=2a sin B,则角A为( )A.30°或60° B.45°或60°C.120°或60° D.30°或150°解析:根据正弦定理sin B=2sin A sin B,所以sin A=错误!,所以A=30°或150°。

答案:D3.a∈R,且a2+a<0,那么-a,-a3,a2的大小关系是( )A.a2>-a3>-a B.-a>a2>-a3C.-a3>a2>-a D.a2>-a>-a3解析:由a2+a<0得-1<a<0,∴-a>a2>-a3。

答案:B4.设等差数列{a n}的前n项和为S n。

若a1=-11,a4+a6=-6,则当S n取最小值时,n等于()A.6 B.7C.8 D.9解析:a4+a6=2a5=-6,∴a5=-3,∴d=错误!=2,∴S n=-11n+错误!·2=n2-12n.故n=6时S n取最小值.答案:A5.△ABC中,a、b、c分别为A、B、C的对边,如果a,b,c成等差数列,B=30°,△ABC 的面积为错误!,那么b=( )A.错误!B.1+错误!C.错误!D.2+错误!解析:2b=a+c,S=错误!ac sin B=错误!,∴ac=6。

高一数学必修五模块综合试题

高一数学必修五模块综合试题

数学模块综合复习一、选择题(每小题5分,共60分)1.在△ABC 中,若a =2 ,b =030A = , 则B 等于 ( )A .60 B .60或 120 C .30 D .30或1502.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为 ( )A . 81B .120C .168D .1923.设n S 是等差数列{}n a 的前n 项和,若3613S S =,则612S S = ( ) (A )310 (B )13 (C )18 (D )194.已知{a n }是等差数列,且a 2+ a 3+ a 8+ a 11=48,则a 6+ a 7= ( )A .12B .16C .20D .245.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和是( )A.130B.170C.210D.2606.已知点(3,1)和(- 4,6)在直线3x -2y +a =0的两侧,则a 的取值范围是( )A. a <-7或 a >24B. a =7 或 a =24C. -7<a <24D. -24<a <77.已知等比数列{}n a 的公比13q =-,则13572468a a a a a a a a ++++++等于( ) A.13- B.3- C.13 D.3 8.设b a >,d c >,则下列不等式成立的是( )。

A.d b c a ->-B.bd ac >C.bd c a > D.c a d b +<+ 9.如果方程02)1(22=-+-+m x m x 的两个实根一个小于‒1,另一个大于1,那么实数 m 的取值范围是( )A .)22(,-B .(-2,0)C .(-2,1)D .(0,1)10若实数b a ,满足21a b +=,则39a b+的最小值是( )(A )18 (B )32 (C )6 (D )3612.三角形ABC 的三个顶点坐标为(0,4)A ,(2,0)B -,(2,0)C ,点(,)x y 是三角形ABC 及其内部的任意一点,则3z x y =-的最小值为( )(A )6- (B )4- (C )2- (D )6二、填空题(每小题5分,共30分) 11.在ABC ∆中, 若21cos ,3-==A a ,则ABC ∆的外接圆的半径为 _____. 12.在△ABC 中,若=++=A c bc b a 则,222_________。

人教a版数学必修5模块过关测试题及详细答案

人教a版数学必修5模块过关测试题及详细答案

人教a 版数学必修5模块测试题一.选择题(本题共10小题,每小题5分,共50分.) 1. 在△ABC 中,角A 、B 、C 成等差数列,则角B 为( ) (A) 30° B 60° (C) 90° (D) 120°2.在ABC ∆中,bc c b a ++=222,则A 等于 ( )A ︒︒︒︒30.45.60.120.D C B3.在等比数列{}n a 中,若0n a >且3764a a =,5a 的值为 ( )A .2B .4C .6D .8 4.在等比数列}{n a 中, ,8,1641=-=a a 则=7a ( )A.4-B.4±C. 2-D. 2± 5.已知,,a b c R ∈,则下列推理正确的是 ( )A.22ab am bm >⇒> B.a ba b c c>⇒> C.3311,0a b ab a b >>⇒< D.2211,0a b ab a b>>⇒<6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若bcos C +ccos B =asin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定7.如图:B C D ,,三点在地面同一直线上,a DC=,从D C ,两点测得A 点仰角分别是()βαβ<a ,,则A 点离地面的高度AB 等于 ( )A.()αββα-⋅sin sin sin a B.()βαβα-⋅cos sin sin aC()αββα-⋅sin cos sin a D .()βαβα-⋅cos sin cos a8. 设变量,x y 满足约束条件0,0,220,x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则32z x y =-的最大值为( )9.定义在(-∞,0)∪(0,+∞)上的函数()f x ,如果对于任意给定的等比数列{a n},{f (a n)}仍是等比数列,则称()f x 为“保等比数列函数”。

人教版高中数学必修五模块综合测评1含解析

人教版高中数学必修五模块综合测评1含解析

模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a<1,b>1,那么下列命题中正确的是()A.1a>1b B.ba>1C.a2<b2D.ab<a+b 【解析】利用特值法,令a=-2,b=2.则1a<1b,A错;ba<0,B错;a2=b2,C错.【答案】 D2.一个等差数列的第5项a5=10,且a1+a2+a3=3,则有()A.a1=-2,d=3 B.a1=2,d=-3C.a1=-3,d=2 D.a1=3,d=-2【解析】∵a1+a2+a3=3且2a2=a1+a3,∴a2=1.又∵a5=a2+3d=1+3d=10,d=3.∴a1=a2-d=1-3=-2.【答案】 A3.已知△ABC的三个内角之比为A∶B∶C=3∶2∶1,那么对应的三边之比a∶b∶c等于()A.3∶2∶1 B.3∶2∶1C.3∶2∶1 D.2∶3∶1【解析】∵A∶B∶C=3∶2∶1,A+B+C=180°,∴A=90°,B=60°,C=30°.∴a∶b∶c=sin 90°∶sin 60°∶sin 30°=1∶32∶12=2∶3∶1.【答案】 D4.在坐标平面上,不等式组⎩⎨⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为( )A. 2B.32C.322 D .2【解析】 由题意得,图中阴影部分面积即为所求.B ,C 两点横坐标分别为-1,12.∴S △ABC =12×2×⎪⎪⎪⎪⎪⎪12-(-1)=32.【答案】 B5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若A =π3,b =1,△ABC 的面积为32,则a 的值为( )A .1B .2 C.32 D. 3【解析】 根据S =12bc sin A =32,可得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =3,故a = 3.【答案】 D6.(2016·龙岩高二检测)等差数列的第二,三,六项顺次成等比数列,且该等差数列不是常数数列,则这个等比数列的公比为( )A .3B .4C .5D .6【解析】 设等差数列的首项为a 1,公差为d , 则a 2=a 1+d ,a 3=a 1+2d ,a 6=a 1+5d ,又∵a 2·a 6=a 23,∴(a 1+2d )2=(a 1+d )(a 1+5d ),∴d =-2a 1,∴q =a 3a 2=3.【答案】 A7.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( ) A .0 B .-2 C .-52 D .-3【解析】 x 2+ax +1≥0在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立⇔ax ≥-x 2-1⇔a ≥⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x +1x max,∵x +1x ≥52, ∴-⎝ ⎛⎭⎪⎫x +1x ≤-52,∴a ≥-52.【答案】 C8.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0【解析】 ∵a 3,a 4,a 8成等比数列,∴a 24=a 3a 8,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),展开整理,得-3a 1d =5d 2,即a 1d =-53d 2.∵d ≠0,∴a 1d <0.∵S n =na 1+n (n -1)2d ,∴S 4=4a 1+6d ,dS 4=4a 1d +6d 2=-23d 2<0. 【答案】 B9.在数列{a n }中,a 1=2,a n +1-2a n =0(n ∈N *),b n 是a n 和a n +1的等差中项,设S n 为数列{b n }的前n 项和,则S 6=( )A .189B .186C .180D .192【解析】 由a n +1=2a n ,知{a n }为等比数列, ∴a n =2n . ∴2b n =2n +2n +1, 即b n =3·2n -1,∴S 6=3·1+3·2+…+3·25=189. 【答案】 A10.已知a ,b ,c ∈R ,a +b +c =0,abc >0,T =1a +1b +1c ,则( )A.T>0 B.T<0 C.T=0 D.T≥0【解析】法一取特殊值,a=2,b=c=-1,则T=-32<0,排除A,C,D,可知选B.法二由a+b+c=0,abc>0,知三数中一正两负,不妨设a>0,b<0,c<0,则T=1a+1b+1c=ab+bc+caabc=ab+c(b+a)abc=ab-c2abc.∵ab<0,-c2<0,abc>0,故T<0,应选B.【答案】 B11.△ABC的内角A,B,C所对的边分别为a,b,c,若B=2A,a=1,b =3,则c=()A.2 3 B.2 C. 2 D.1【解析】由正弦定理得:asin A=bsin B,∵B=2A,a=1,b=3,∴1sin A=32sin A cos A.∵A为三角形的内角,∴sin A≠0.∴cos A=3 2.又0<A<π,∴A=π6,∴B=2A=π3.∴C=π-A-B=π2,∴△ABC为直角三角形.由勾股定理得c=12+(3)2=2.【答案】 B12.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有()A.13项B.12项C.11项D.10项【解析】设该数列的前三项分别为a1,a1q,a1q2,后三项分别为a1q n-3,a1q n-2,a1q n-1.所以前三项之积a31q3=2,后三项之积a31q3n-6=4,两式相乘,得a 61q 3(n -1)=8,即a 21qn -1=2.又a 1·a 1q ·a 1q 2·…·a 1qn -1=64,所以a n1·qn (n -1)2=64,即(a 21q n -1)n =642,即2n =642,所以n =12.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.在△ABC 中,BC =2,B =π3,当△ABC 的面积等于32时,sin C =________. 【导学号:05920086】【解析】 由三角形的面积公式,得S =12AB ·BC sin π3=32,易求得AB =1,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos π3,得AC =3,再由三角形的面积公式,得S =12AC ·BC sin C =32,即可得出sin C =12.【答案】 1214.(2015·湖北高考)若变量x ,y 满足约束条件⎩⎨⎧x +y ≤4,x -y ≤2,3x -y ≥0,则3x +y 的最大值是________.【解析】 画出可行域,如图阴影部分所示,设z =3x +y ,则y =-3x +z ,平移直线y =-3x 知当直线y =-3x +z 过点A 时,z 取得最大值.由⎩⎨⎧x +y =4,x -y =2,可得A (3,1).故z max =3×3+1=10.【答案】 1015.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策.现知某种酒每瓶70元,不加附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税k 元(叫做税率k %),则每年的产销量将减少10k 万瓶.要使每年在此项经营中所收取附加税金不少于112万元,则k 的取值范围为________.【解析】 设产销量为每年x 万瓶,则销售收入每年70x 万元,从中征收的税金为70x ·k %万元,其中x =100-10k .由题意,得70(100-10k )k %≥112,整理得k 2-10k +16≤0,解得2≤k ≤8.【答案】 [2,8] 16.观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …照此规律,第n 个等式可为12-22+32-…+(-1)n -1n 2=________. 【解析】 分n 为奇数、偶数两种情况. 第n 个等式为12-22+32-…+(-1)n -1n 2.当n 为偶数时,分组求和:(12-22)+(32-42)+…+[(n -1)2-n 2]=-(3+7+11+15+…+2n -1)=-n2×(3+2n -1)2=-n (n +1)2.当n 为奇数时,第n 个等式为(12-22)+(32-42)+…+[(n -2)2-(n -1)2]+n 2=-n (n -1)2+n 2=n (n +1)2.综上,第n 个等式为 12-22+32-…+(-1)n -1n 2 =(-1)n +1n (n +1)2. 【答案】 (-1)n +1n (n +1)2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若m =(a 2+c 2-b 2,-3a ),n =(tan B ,c ),且m ⊥n ,求∠B 的值.【解】 由m ⊥n 得(a 2+c 2-b 2)·tan B -3a ·c =0,即(a 2+c 2-b 2)tan B =3ac ,得a 2+c 2-b 2=3ac tan B , 所以cos B =a 2+c 2-b 22ac =32tan B , 即tan B cos B =32,即sin B =32, 所以∠B =π3或∠B =2π3.18.(本小题满分12分)在等差数列{a n }中,S 9=-36,S 13=-104,在等比数列{b n }中,b 5=a 5,b 7=a 7, 求b 6. 【导学号:05920087】【解】 ∵S 9=-36=9a 5,∴a 5=-4, ∵S 13=-104=13a 7,∴a 7=-8. ∴b 26=b 5·b 7=a 5 ·a 7=32. ∴b 6=±4 2.19.(本小题满分12分)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 【导学号:05920088】【解】 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0.(1)当a =0时,原不等式化为x +1≤0⇒x ≤-1;(2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1;(3)当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.①当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a ; ②当2a =-1,即a =-2时,原不等式等价于x =-1; ③当2a <-1,即-2<a <0时,原不等式等价于2a ≤x ≤-1. 综上所述:当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a ,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞.20.(本小题满分12分)设△ABC 的内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a =1,b =2,cos C =14.(1)求△ABC 的周长; (2)求cos A 的值.【解】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4. ∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5. (2)∵cos C =14,∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫142=154. ∴sin A =a sin C c =1542=158. ∵a <c ,∴A <C ,故A 为锐角, ∴cos A =1-sin 2A =1-⎝⎛⎭⎪⎫1582=78. 21.(本小题满分12分)(2016·宝鸡模拟)已知数列{a n }满足a 1=5,a 2=5,a n+1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.【解】 (1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2), ∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列.(2)由(1)得a n +1+2a n =15×3n -1=5×3n , 则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1, 即a n =2×(-2)n -1+3n (n ∈N *).22.(本小题满分12分)某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:原料 每种产品所需原料(t) 现有原 料数(t) A B 甲 2 1 14 乙 1 3 18 利润(万元/t)53—(1)在现有原料条件下,生产A ,B 两种产品各多少时,才能使利润最大? (2)每吨B 产品的利润在什么范围变化时,原最优解不变?当超出这个范围时,最优解有何变化?【解】 (1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎨⎧2x +y ≤14,x +3y ≤18,x ≥0,y ≥0,作出可行域如图:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品245 t ,B 产品225 t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m ,又k AB =-2,k CB =-13,要使最优解仍为B 点, 则-2≤-5m ≤-13,解得52≤m ≤15,则B 产品的利润在52万元/t 与15万元/t 之间时,原最优解仍为生产A 产品245 t ,B 产品225 t ,若B 产品的利润超过15万元/t ,则最优解为C (0,6),即只生产B 产品6 t ,若B 产品利润低于52万元/t ,则最优解为A (7,0),即只生产A 产品7 t.附赠材料答题六注意 :规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点:第一,考前做好准备工作。

北师大版高中数学必修5模块测试.doc

北师大版高中数学必修5模块测试.doc

C- S”q_D・S;'qnA. 8个B. 5个C. 4个D. 2个B-S q~n高中数学必修5模块测试第一部分(选择题,将答案写在后面表格中)-、选择题(每小题5分,10小题,共50分)1、在AABC 中,a = 2^3, b = 2y[2, B = 4亍,则人为()A. 60°或120PB.60PC.30P或150PD.3CP2、在AABC 中,a1 =b2 +c2 +bc,则A 等于()A.12CPB.6QPC.45°D3CP3、在AABC 中,A = 60°, b = 16,面积S = 22(\[3 ,则a 等于()A. .l(x/6B. 75C. 49D. 514、等比数列{a”}中a2a9 =3 ,则log3a x + log3a2 + +^309+^3等于()A. 9B. 27C. 81D. 2435、三个数a, b, c既是等差数列,又是等比数列,贝忆,b, c间的关系为()A. b-a =c-bB. b2=acC. a=b=c D・ a=b=cH06、等比数列{a”}的首项ai=l,公比为q,前n项和是S”,则数列]丄的前n项和是()W” J7、在等差数列{a”}中,前四项之和为40,最后四项之和为80,所有项之和是210, 则项数〃为()A. 12B. 14C. 15D. 168、已知则下列选项正确的是(), 2/2 a b 7A.a> b^> am > bm > — a > bc c1 1 9 1 1C. > Z?, ub > 0 => — <—D. u > b , cib > 0 => — < —a b a b9、已知= ,则兀+y的取值范围是()A. (0,1]B. [2,+oo)C. (0,4]D. [4,+oo)4兀+3y<12Y— V V —110、\ - 表示的平面区域内的整点的个数是(J>0x>0题号12345678910答案第二部分(非选择题)二、填空题(每小题5分,5小题,共25分)1 911>已知x > 0,y > 0,且一+ —= 1,求x+ y的最小值 ______________________兀y12、当兀取值范围是_______________ 时,函数y = x2 +X-12的值大于零13、a克糖水中含有b克塘(a>b>0),若在糖水中加入x克糖,则糖水变甜了。

人教A版高中数学必修五模块检测(含答案详解).docx

人教A版高中数学必修五模块检测(含答案详解).docx

高中数学学习材料马鸣风萧萧*整理制作模块检测(苏教版必修5)一、填空题(每小题5分,共70分)1.已知一等比数列的前三项依次为22x,x ,+33x +,那么2113-是此数列的第项. 2.若数列{ }的前n 项和S n =n 2-2n +3,则此数列的前3项依次为. 3.已知三个不同的实数c b a ,,成等差数列,且b c a ,,成等比数列,则::a b c =.4.在ABC △中,tan A 是以-4为第三项,4为第 七项的等差数列的公差,tan B 是以13为第三项, 9为第六项的等比数列的公比,则这个三角形是. 5.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132log log a a +++310log a =.6.若x ,y 均为整数,且满足约束条件20200≤,≥,≥,x y x y y +-⎧⎪-+⎨⎪⎩则2z x y =+的最大值为.7.已知在等差数列{ }中,01511>,=a S S ,则第一个使0<n a 的项是. 8.已知{}n a 是等比数列,41252==a a ,,则9.如果在△ABC 中,2sin cos =sin A B C ,那么△ABC 一定是 . 10.若关于x 的不等式()201x a x ab +++>的解集是{}1或4x|x x <->,则实数a b +的值为. 11.用两种材料做一个矩形框,按要求其长和宽分别选用价格为每米3元和5元的两种材料,且长和宽必须为整数米,现预算花费不超过100元,则做成的矩形框所围成的最大面积是 平方米.12.如图,在山脚A 处测得该山峰仰角为θ,对着山峰在平行地面上前进600 m 后测得仰角为原来的2倍,继续在平行地面上前进200 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度为.13.在200 m 高的山顶上,测得山下一塔的塔顶和塔底的俯角分别为30°和60°,则塔高为. 14.甲船在岛B 的正南方A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时乙船自B 出发以每小时6千米的速度向北偏东60°所航行的时间是.二、解答题(共90分)15.(14分)如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD,DC ,且拐弯处的转角为120︒.已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米).16.(14分)研究问题:“已知关于x 的不等式20ax bx c -+>的解集为(1,2),解关于x 的不等式20cx bx a -+>”有如下解法:解:由20ax bx c -+>得2110a b c x x ⎛⎫⎛⎫-+> ⎪ ⎪⎝⎭⎝⎭,令1y x =,则121y <<,所以不等式20cx bx a -+>的解集为112,⎛⎫⎪⎝⎭.参考上述解法,已知关于x 的不等式0k x b x a x c++<++的解集为()()2123,,--,求关于x 的不等式1011kx bx ax cx -+<--的解集.17.(14分)某家具厂有方木料90 ,五合板600 ,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 ,五合板2 ,生产每个书橱需要方木料0.2 ,五合板1 ,出售一张书桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所获利润最大?18.(16分)已知{}为各项都为正数的等比数列,=1,=256,为等差数列{}的前n项和,=2,5=2.(1)求{}和{}的通项公式;(2)设=++…+,求.19.(16分)已知数列{}n a满足1112n na,a a+==+ ()1n+∈N.(1)求数列{}n a的通项公式;(2)若数列{}n b满足114b-•214b-•…•14n b-=(1)n bna+(n∈+N),证明:{}n b是等差数列.20.(16分)已知函数2222()f x x x =-+,数列{ }的前n 项和为 ,点 (n , )(n ∈ )均在函数()y f x =的图象上. (1)求数列{ }的通项公式 及前n 项和 ;(2)存在k ∈ ,使得1212nS S S k n+++<对任意n ∈ 恒成立,求出k 的最小值.模块检测答题纸得分:一、填空题1. 2.3. 4.5. 6.7.8.9.10.11.12. 13.14.二、解答题15.16.17.18.19.20.模块检测 参考答案1.4 解析:由题意得 ,解得1x =-或4x =-.当1x =-时,220x +=,故舍去,所以333222x q x +==+,所以13211342n -⎛⎫⨯ ⎪⎝⎭-=-,所以4n =.2.213,, 解析:当1n =时,21112132-a S ==⨯+=;当2n =时,由221222233-S a a =+=⨯+=,得21a =;当3n =时,由2233233631-S a a a =++=⨯+=,得33a =.又,a b ≠∴4,2a b c b ==-.4.锐角三角形 解析:设等差数列为{}n a ,公差为d ,则7344,a a =-=,所以2d =,所以 设等比数列为{}n b ,公比为q ,则313b =,6b 9=,所以3q =,所以所以tan tan()1C A B =-+=,所以,,A B C 都是锐角,即此三角形为锐角三角形.5.10 解析:313231031210log log log log ()a a a a a a +++=5103563log ()log (3)10a a ===.6.4 解析:作出可行域如图中阴影部分,可知在可行域内的整点有()()()()()()201000102011,,,,,,,,,,,,---()()()011102,,,,,,分别代入2z x y =+可知当20,x y ==时,z 最大,为4.7.9a 解析:由511=S S 得12150+=a d .又10>a ,所以0<d . 而2 =()()12212170a n d n d +-=-<,所以2170->n ,即85>n .. 8.()32143n-- 解析: 41252==a a ,,∴.21,41==q a ∴=++++13221n n a a a a a a )41(332n --. 9.等腰三角形 解析一:∵ 在△ABC 中,++=πA B C ,即()C A B =π-+,∴()sin =sin +C A B . 由2sin cos =sin A B C ,得2sin cos =sin cos +cos sin A B A B A B ,即0sin cos -cos sin =A B A B ,即()0sin -=A B . 又∵-π<-<πA B ,∴ 0-=A B ,即=A B .∴△ABC 是等腰三角形. 解析二:利用正弦定理和余弦定理.2sin cos =sin A B C 可化为2a ·2222a +cbc ac-=, 即2222+-=a c b c ,即22-=0a b ,22=a b ,故=a b . ∴△ABC 是等腰三角形.10.-3 解析:由不等式的解集为{}1或4x|x x <->可得14,-是方程()210a x b x a +++=的两根,∴()14114,,a ab ⎧-+=-+⎪⎨-⨯=⎪⎩解得41,a b .=-=⎧⎨⎩∴3a b +=-.11.40 解析:设长x 米,宽y 米,则610100≤x y +,即3550≤x y +.∵5035+x y ≥≥35x y =时等号成立,又∵, x y 为正整数,∴ 只有当324525,x y ==时面积最大,此时面积40xy =平方米.12.300 m 解析:依题意可知600====AB BP BC CP ,,∴ 222cos 222θ+-==⋅BC BP PC BC BP ∴23015,θθ=︒=︒,∴ 60300sin (m )PD PC =∙︒==. 点评:本题主要考查了解三角形的实际应用,考查了学生分析问题和解决问题的能力.13.4003m 解析:依题意可得图象如图所示,从塔顶向山体引一条垂线CM ,垂足为M , 则0=∙︒AB BD tan 6,0=∙︒=AM CM BD CM tan 3,, ∴200tan 30tan 603=⨯︒=︒AB AM ,∴塔高()20040020033=-= C D m . 点评:本题主要考查构造三角形求解实际问题,属基础题.14.514小时 解析:假设经过x 小时两船相距最近,甲、乙分别行至,C D , 可知1046120﹣,,BC x BD x CBD ==∠=︒,22222212cos 104362104628201002﹣∠(﹣)(﹣)CD BC BD BC BD CBD x x x x x x ⎛⎫=+∙∙=+-∙∙∙-=-+ ⎪⎝⎭,当514x =小时,即1507分钟时距离最小. 点评:本题主要考查余弦定理的应用,关键在于画出图象,属基础题.15.解法一:设该扇形的半径为r 米.由题意,得500CD =米,300DA =米,60CDO ∠=︒, 在△CDO 中,2222cos 60 CD OD CD OD OC +-∙∙︒=,即()()222150030025003002r r r +--⨯-⨯=,解得490044511r =≈(米). 解法二:连接AC ,作OH AC ⊥,交AC 于点H , 由题意,得500CD =米,300AD =米,120,CDA ∠=︒在ACD △中,22222212cos 12050030025003007002AC CD AD CD AD =+-∙∙∙︒=++⨯⨯⨯=,∴700AC =(米),22211cos .214AC AD CD CAD AC AD +-∠==⋅⋅ 在HAO Rt △中,350AH =米,11cos 14∠HAO =, ∴ 4900445cos 11∠AH OA HAO ==≈(米).点评:解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解. 16.解:由于不等式0k x b++<的解集为2123(,)(,)--,则方程0k x bx a x c++=++的根分别为2123,,,--. 由1011kx bx ax cx -+<--,得1011 b k x a c x x -+<--, 因此方程1011 b k x a c x x-+=--的根为1111223--,,,.所以不等式1011kx bx ax cx -+<--的解集为1111232,,⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭. 17.解:由题意可列表格如下:(1)设只生产书桌a 张,可获得利润b 元, 则01902600⎧⎨⎩.a a ≤,≤,解得900300⎧⎨⎩a a ≤,≤,即300a ≤. 又80=b a ,所以当300=a 时,8030024000=⨯=b max (元), 即如果只安排生产书桌,最多可生产300张,可获得利润24000元.(2)设只生产书橱c 个,可获利润d 元,则02901600∙⎧⎨⎩.c c ≤,≤,解得450600⎧⎨⎩c c ≤,≤,即450c ≤.又120=d c ,所以当450=c 时,12045054000=⨯=d max (元), 即如果只安排生产书橱,最多可生产450个,可获得利润54000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元, 则010*********≤,≤,≥且,≥且,.x .y x y x x y y +⎧⎪⎪⎨⎪⎪+∈∈⎩Z Z 即2900260000≤,≤,≥且,≥且x y x y x x yy .⎧⎪⎪⎨++∈∈⎪⎪⎩Z Z 80120z x y =+.在平面直角坐标内作出上面不等式组 所表示的平面区域,即可行域如图阴 影部分. 作直线230:l x y +=. 把直线l 向右上方平移至1l 的位置时, 直线经过可行域上的点M ,此时 80120z x y =+取得最大值. 由29002600,,x y x y +=+=⎧⎨解得点M 的坐标为100400(,),所以当100400,x y ==时,8010012040056000max z =⨯+⨯=(元).因此,生产书桌100张、书橱400个,可使所获利润最大.18.解:(1)设{}n a 的公比为q ,由 = ,得4q =,所以 = .设{}n b 的公差为d ,由5852=S S 及12b =得3d =,所以1131()n n b n b d =+-=-.(2)因为()21124548431n n T n -=⨯⨯⨯++++-,① ()244245431n n T n ⨯⨯=+++-,②由②-①,得213234444312324())()(n n n n T n n ---++++-=+-∙=. 所以22433n n T n ⎛⎫=-∙+ ⎪⎝⎭.19.(1)解:∵ =2 +1(n ∈+N ),∴1+1=2+1n n a a +(),即1+1=2+1n n aa +,∴{}1n a +是以112a +=为首项,2为公比的等比数列.∴12n n a +=,即 -1( +N ).(2)证明:∵()121114441n n b b b b n a ---=+,∴()1242n n b b b nnb +++-=.∴()122n n b b b n nb ⎡⎤+++-=⎣⎦, ①()()()1211211n n n b b b b n n b ++⎡⎤++++-+=+⎣⎦. ②②-①,得()()11211n n n b n b nb ++-=+-,即()1120n n n b nb +--+=,③()21120n n nb n b ++-++=. ④ ④-③,得2120n n n nb nb nb ++-+=,即2120n n n b b b ++-+=,211+++-=-∈+N n n n n b b b b n (),故{}n b 是等差数列.20.解:(1)因为点 (n , )(n ∈ )均在函数()y f x =的图象上,所以2222n S n n =-+. 当1n =时, = =20;当2≥n 时, = - 424n =-+.120S =也符合.所以 (n ∈ ).(2)存在k ∈ ,使得1212n S S S k n +++<对任意n ∈ 恒成立,只需1212max n S S S n k ⎛⎫+++ ⎪⎝⎭>,由(1)知 ,所以222211()nS n n n -+=-=.当11n <时,0nS n >;当11n =时,0nS n =;当11n >时,0nS n <.所以当10n =或11n =时,1212n S S S n+++有最大值110.所以110k >. 又因为∈N k +,所以k 的最小值为111.。

苏教版高一数学必修5模块测试二答案详解

苏教版高一数学必修5模块测试二答案详解

必修五模块测试二一.填空题1. 2x 2-3x -2≥0的解集是 。

2.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.若a 、b 、c 成等比数列,且c=2a,则cosB= 。

3.如果点(5,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为 。

4.设α、β是方程x 2-2x+k 2=0的两根,且α,α+β,β成等比数列,则k= 。

5.已知m =a +1a -2(a >2),n =2x 212-()(x <0),则m 与n 的大小关系为 .6.若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则m 的范围是7.若以2,3,x 为三边组成一个锐角三角形,则x 的范围为 .8.数列{a n }中,a n >0且{a n a n+1}是公比为q(q >0)的等比数列,满足a n a n+1+a n+1a n+2>a n +2a n+3(n ∈N *),则公比q 的取值范围是 。

9.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦值是方程5x 2-7x-6=0的根,则此三角形的面积是____________________.10.数列{a n }的通项公式为a n =2n-49,S n 达到最小时,n 等于_______________.11.一段长为L m 的篱笆围成一个一边靠墙的矩形菜园,则菜园的最大面积是 。

12. 在△ABC 中,若sinB 、cos2A、sinC 成等比数列,则此三角形的形状为 。

13.将给定的25个数排成如图所示的数表, 若每行5个数按从左至右的顺序构成等差数列,每列的5个数按从上到下的顺序也构成等差数列,且表正中间一个数a 33=1,则表中所有数之和为__________.14.半圆O 的直径为2,A 为直径延长线上的一点,OA =2,B 为半圆上任意一点,以AB 为一边作等边三角形ABC.则四边形OACB 的面积最大值是 。

高中数学人教版必修5模块测试题及答案

高中数学人教版必修5模块测试题及答案

必修五数学模块测试题一、选择题:本大题共10小题,每小题5分,共50分1.在△ABC 中,,,A B C ∠∠∠所对的边分别为,,a b c ,则下列关系正确的是 A.222cos C a b c =+-B.222cos C a b c =-+C.222cos 2a b c C ab+-=D.222cos a b c C ab +-=2.不等式(2)(1)0x x +->的解集为 A.{}21x x x <->或 B.{}21x x -<< C.{}12x x x <->或D.{}12x x -<<3.n S 是等差数列{}n a 的前n 项和,如果10120S =,那么110a a +的值是 A.12B.24C.36D.484.在△ABC 中,,,A B C ∠∠∠所对的边分别为,,a b c ,若2220a b c +-<,则△ABC 是 A.锐角三角形B.直角三角形C.等腰三角形D. 钝角三角形5.在△ABC中,1,AB AC ==∠A =30︒,则△ABC 的面积等于D.126.对于任意实数a 、b 、c 、d ,下列命题: ①若a b >,0c ≠,则ac bc >; ②若a b >,则22ac bc >; ③若22ac bc >,则a b >; ④若a b >,则11a b< 中,真命题为 A. ①B. ②C. ③D. ④7.在△ABC 中, ,,A B C ∠∠∠所对的边分别为,,a b c ,若8,60,75a B C =∠=︒∠=︒,则b 等于A.B.C.D.3238.已知实数x 、y 满足约束条件⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则y x z 42+=的最大值为A.24B.20C.16D.129.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则1a 等于 A.4-B.6-C.8-D.10-10.在R 上定义运算a c ad bc b d =-,若32012x x x <-成立,则x 的取值范围是 A.(4,1)-B.(1,4)-C.(,4)(1,)-∞-+∞D.(,1)(4,)-∞-+∞二、填空题:本大题共4小题,每小题5分,共20分.11.比较大小:(2)(3)x x -+ 27x x +-(填入“>”,“<”,“=”之一). 12.在各项均为正数的等比数列{}n a 中,已知1231,6,a a a =+=则数列{}n a 的通项公式为 .13.用绳子围成一块矩形场地,若绳长为20米,则围成最大矩形的面积是__________平方米. 14.数列{}n a 的前n 项和为21n S n =+(*n ∈N ),则它的通项公式是_______. 三、解答题:本大题共3小题,共30分. 15.(10分)已知函数6)(2++=ax x x f .(Ⅰ)当5=a 时,解不等式0)(<x f ;(Ⅱ)若不等式()0f x >的解集为R ,求实数a 的取值范围.C16.(10分)某货轮在A 处看灯塔B在货轮北偏东75︒,距离为mile ;在A 处看灯塔C在货轮的北偏西30︒,距离为mile.货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120︒,求: (Ⅰ)A 处与D 处之间的距离; (Ⅱ)灯塔C 与D 处之间的距离.21.(本小题满分10分) (Ⅰ)下面图形由单位正方形组成,请观察图1至图4的规律,并依此规律,在横线上方处画出适当 的图形;(Ⅱ)下图中的三角形称为希尔宾斯基三角形,在下图四个三角形中,着色三角形的个数依次构成数列的前四项,依此着色方案继续对三角形着色,求着色三角形的个数的通项公式n b ;(Ⅲ)依照(Ⅰ)中规律,继续用单位正方形绘图,记每个图形中单位正方形的个数为(1,2,3,)n a n = ,设21n nn a b c n =+,求数列{}n c 的前n 项和n S .图1 图2 图3 图4数学必修5模块测试题答案及评分参考二、填空题(每小题5分,共20分) 15.> 16.12n n a -= 17.25 18. 2(1)2 1 2)n n a n n =⎧=⎨-≥⎩(三、解答题(共3小题,共30分) 19.(本小题满分10分)解: (Ⅰ)当5=a 时,65)(2++=x x x f .由0)(<x f ,得652++x x <0.即 (0)3)(2<++x x .所以 32x -<<-.………………5分(Ⅱ)若不等式0)(>x f 的解集为R ,则有=∆0642<⨯-a .解得6262<<-a ,即实数a的取值范围是)62,62(-. ……………10分20.(本小题满分10分)解:(Ⅰ)在△ABD 中,由已知得 ∠ADB =60,B =45. 由正弦定理得1sin 24sin AB BAD ADB===.………………5分(Ⅱ)在△ADC 中,由余弦定理得 2222c o s 30C D A D A CA D A C =+-⋅︒,解得CD =.所以A 处与D 处之间的距离为24 n mile ,灯塔C 与D 处之间的距离为 ………………10分21.(本小题满分10分) 解:(Ⅰ)答案如图所示:………………3分 (Ⅱ)易知,后一个图形中的着色三角形个数是前一个的3倍,所以,着色三角形的个数的通项公式为:13n n b -=. ………………6分(Ⅲ)由题意知(1)2n n n a +=,11(1)23231n n n n n c n n --+⨯⨯=⋅+=, 所以 01113233n n S n -=⋅+⋅++⋅①12131323(1)33n n n S n n -=⋅+⋅++-⋅+⋅ ②①-②得 0112(333)3n n n S n --=+++-⋅2n S -=13313nn n --⋅-. 即 (21)31()4n n n S n -+=∈N + . ………………10分。

高一数学必修模块5试题

高一数学必修模块5试题

高一数学必修模块5试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共3页.满分为150分。

考试时间120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡上,用2B 铅笔把考号及试卷类型填涂在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.第Ⅰ卷 选择题 共50分一.选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一项是符合题目要求的)1. 已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 A . 15 B . 30C. 31D. 642. 若全集U=R,集合M ={}24x x >,S =301x xx ⎧-⎫>⎨⎬+⎩⎭,则()UMS =A.{2}x x <-B. {23}x x x <-≥或C. {3}x x ≥D. {23}x x -≤< 3. 若1+2+22+……+2n >128,n ∈N*,则n 的最小值为A. 6B. 7C. 8D. 94. 在ABC 中,60B =,2b ac =,则ABC 一定是A 、等腰三角形B 、等边三角形C 、锐角三角形D 、钝角三角形5. 若不等式022>++bx ax 的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是 A.-10 B.-14 C. 10 D. 146. 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是A .14B .16C .18D .207.已知12=+y x ,则y x 42+的最小值为A .8B .6C .22D .238. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖的块数是A.42n +B.42n -C.24n +D.33n +9. 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有A .3,12min max ==z zB .,12max =z z 无最小值C .z z ,3min =无最大值D .z 既无最大值,也无最小值10.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x成立,则实数a 的取值范围是A .11a -<<B .02a <<C .1322a -<<D .3122a -<<第Ⅱ卷 非选择题 共100分二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在答题卡的横线上) 11. 已知△ABC 的三个内角A 、B 、C 成等差数列,且AB =1,BC =4,则边BC 上的中线AD 的长为 .12.b 克糖水中有a 克糖(b>a >0),若再加入m 克糖(m>0),则糖水更甜了,将这个事实用一个不等式表示为 . 13. 在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a = ________________.14.把正整数按上小下大、左小右大的原则排成如图三角形数 表(每行比上一行多一个数):设,i j a (i 、j ∈N*)是位于 这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如4,2a =8.若,i j a =,则i 、j 的值分别为________ ,__________三、解答题:(本大题共 6 小题,共 80分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修5模块测试
一、选择题 :(本大题共10小题 ,每小题5分,共50分,在每小题给出的四个选择项中,只有一项是符合题目要求的. 请将选择题答案填入下答题栏内)
1.在⊿ABC 中,∠B=300 ,∠C=450
,AB=1,则边AC 的长为( ). A .
3
6 B .
2
2 C .
2
1 D .
2
3
2.等比数列}{n a 中,公比1>q ,且12,84361==+a a a a ,则
11
6a a 等于
A .2
1 B .6
1 C .3
1 D .3
1或
61
5、在A B C ∆中,a,b,c 分别是C B A ∠∠∠,,所对应的边,︒=∠90C ,则
c
b a +的取值范围
是( ) A .(1,2) B .)2,1( C .]2,1( D .]2,1[
6. 已知变量x 、y 满足条件⎪⎩

⎨⎧≤-+≤-≥09201
y x y x x 则x+y 的最大值是( ).
A .2
B .5
C .6
D .8
7、当x>1时不等式a x x ≥-+
1
1恒成立,则实数a 的取值范围是( )
A (]3,∞-
B [3,+)∞
C (]2,∞-
D [2,+)∞
10.在算式:“4130⨯+⨯= ”的两个 、
中填入两个正整数,使它们的倒数之和最小,则这两个数构成的数对() ,
应为 ( )
A、(4,4) B 、(5,10) C 、(3,18) D 、(6,12)
二、填空题(本大题共5小题,每小题4分,共20分。

把答案填在题中横线上。

)。

15. 若A(x,y)的横纵坐标都是整数,则把A 称作“整点”,在下列平面区域 30250
00
x y x y x y +-≥⎧⎪
+-≤⎪⎨
≥⎪⎪≥⎩内,整点个数是 . 14、在下列函数中,
B
A
C
北①|1|x
x y +
= ;②1
22
2++=
x
x
y ;③1)x ,0(2log
log
2
≠>+=且x x y x
; ④x x y x cot tan ,2
0+=<

;⑤x
x y -+=3
3;⑥24-+=x
x y ;⑦24-+
=
x
x y ;
⑧2log
2
2
+=x y ;
其中最小值为2的函数是 (填入正确命题的序号) 6、将全体正整数排成一个三角形数阵(如图)按照以上排列的规律,第n 行(n ≥3)从
左向右的第3 个数为 . 2
范围是 .
三、解答题(本大题共5小题,共40分。

解答应写出文字说明、证明过程或演算步骤)
16、(7分)解关于x 的不等式0)1)(1(<+--x x a
x )1(±≠a
19. (本小题满分12分) 已知数列
中,
,当
时,
, (1)证明数列
是一个等差数列; (2)求
.
18. 如图,货轮在海上以50海里/时的速度沿南偏东25 o 的方向航行,为了确定船位,货轮
在B 点处观测到灯塔A 在南偏东55 o 的方向.半小时后,货轮到达C
点处,观测到灯塔A 在北偏东80o 方向.求此时货轮与灯塔之间的距离(结果保留最简根式). 19.(本小题满分12分)
已知数列{a n }的前n 项和为S n ;且向量)3,4(),,(+==n b S n a n 共线. (1)求证:数列{a n }是等差数列; (2)求数列}1{
n
na 的前
n 项和T n 2<.
22.(本题满分10分)
在△ABC 中,a b +=10,cos C 是方程2
2320x x --=的一个根.
(I)求角C 的度数;
(Ⅱ)求△ABC 周长的最小值. 23.(本题满分12分)
已知数列{n a },其前n 项和n S 满足121(n n S S λλ+=+是大于0的常数),且131,4a a ==. (I)求λ的值;
(Ⅱ)求数列{n a }的通项公式n a ;
(Ⅲ)设数列{n na }的前n 项和为n T ,试比较2
n n T S 与的大小.
22、(本小题满分14分)
已知数列{}n a 的前n 项和为21n S n =+,数列{}n b 满足:21
n
n b a =
+,前n 项和为n T ,
设21n n n C T T +=-。

⑴ 求数列{}n b 的通项公式; ⑵ 求证:数列{}n C 是单调递减数列;
⑶ 若对n k ≥时,总有1621
n
C <成立,求自然数k 的最小值。

22. (本小题满分14分)已知数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项, 数列{}n b 中,11b =,点1(,)n n P b b +在直线02=+-y x 上. ⑴求1a 和2a 的值;
⑵求数列{}{},n n a b 的通项n a 和n b ;
⑶ 设n n n b a c ⋅=,求数列{}n c 的前n 项和n T .
19.已知a 、b 、c 分别是ABC ∆的三个内角A 、B 、C 所对的边 (1)若ABC ∆面积,60,2,2
3︒===
∆A c S ABC 求a 、b 的值;
(2)若B c a cos =,且A c b sin =,试判断ABC ∆的形状.
21. 已知数列{}n a 的前n 项和为n S ,且n S =22(1,2,3)n a n -=, 数列}{n b 中,11b =,点1(,)n n P b b +在直线20x y -+=上. (1)求数列{}n a 、}{n b 的通项n a 和n b ; (2)设n c =n a n b ,求数列{}n c 的前n 项和n T .
17、(10分)已知a 、b 、c 分别是ABC ∆的三个内角A 、B 、C 所对的边 【Ⅰ】若ABC ∆面积,60,2,2
3︒===
∆A c S ABC 求a 、b 的值;
【Ⅱ】若B c a cos =,且A c b sin =,试判断ABC ∆的形状.
、(10分)某工厂用7万元钱购买了一台新机器,运输安装费用2千元,每年投保、动力消耗的费用也为2千元,每年的保养、维修、更换易损零件的费用逐年增加,第一年为2千元,第二年为3千元,第三年为4千元,依此类推,即每年增加1千元.问这台机器最佳使用年限是多少年?并求出年平均费用的最小值.
2.(本小题满分14分)
已知数列{}n a 中,11a =,123n n a a +=+,数列{}n b 中,11b =,且点()1,n n b b +在直线
1y x =-上.
(Ⅰ) 求数列{}n a 的通项公式;
(Ⅱ)求数列{}n b 的通项公式;
(Ⅲ)若3n n c a =+,求数列{}n n b c 的前n 项和n S .
22.(本小题满分14分)设数列{}n a 前n 项和n S ,且22n n S a =-,令2log n n b a =
(1)试求数列{}n a 的通项公式; (2)设n n n
b c a =
,求证数列{}n c 的前n 和2n T <
18.(本小题满分14分)某房地产开发商投资81万元建一座写字楼,第一年装修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元. (Ⅰ)若扣除投资和各种装修费,则从第几年开始获取纯利润?
(Ⅱ)若干年后开发商为了投资其他项目,有两种处理方案:①年平均利润最大时以46万元出售该楼; ②纯利润总和最大时,以10万元出售该楼,问哪种方案盈利更多?
19、(10分)某厂使用两种零件A 、B 装配两种产品P 、Q ,该厂的生产能力是月产P 产品最多有2500件,月产Q 产品最多有1200件;而且组装一件P 产品要4个A 、2个B ,组装一件Q 产品要6个A 、8个B ,该厂在某个月能用的A 零件最多14000个;B 零件最多12000个。

已知P 产品每件利润1000元,Q 产品每件2000元,欲使月利润最大,需要组装P 、Q 产品各多少件?最大利润多少万元?。

相关文档
最新文档