2.3-范德瓦尔斯结合、晶体结合的规律性

合集下载

2-4 范德瓦尔斯结合

2-4 范德瓦尔斯结合

例如: —— 惰性元素具有球对称,结合时排列最紧密以使势能最低 —— Ne、Ar、Kr、Xe的晶体都是面心立方 —— 透明的绝缘体,熔点特低 —— 分别为24K、84K、117K和161K
固体物理(Solid Physics) 重庆交通大学
范德瓦尔斯力的本质
1.葛生力(Keesom,亦称静电力)
葛生力:极性分子的永久偶极矩间的静电相互作 用。 最初,人们对范德瓦耳斯键的本质的认识来源于 葛生力(由Keesom1912年提出而得名)。 显然这种静电吸引力大小与偶极矩取向有关。
固体物理(Solid Physics) 重庆交通大学
有金属键的特点。(石墨是一种良导体,可做电
极等) Ⅲ.层与层之间以范德瓦尔斯键结合。(结合力 弱,所以石墨质地疏松,在层与层之间可插入其 它物质,制成石墨插层化合物。)
——石墨是共价键、金属键和分子键的混合键。
固体物理(Solid Physics)
重庆交通大学
2.SiO2、P2O5、B2O3等是形成玻璃的主要形
晶体总的势能
1 12 6 U ( r ) N ( 4 )[ A12 ( ) A6 ( ) ] 2 r r
—— 非极性分子晶体的晶格常数、结合能和体变模量
dU 0 晶格常数 dr r r0
d 2U 平衡状态体变模量 K (V ) 2 V0 dV
晶体的结合能 W U ( r0 )
—— 原子的极化率
2 p p p 两个电偶极子之间的相互作用能 E 1 2 1 6 3 r r
—— 作用能与p1的平方成正比,对时间的平均值不为零 —— 力随距离增加下降很快,两个原子之间的相互作用很弱 两个原子的相互作用势能
A B u( r ) 6 12 间作用力(分子键)成键;通过电偶极

2.2 晶体的结合类型

2.2 晶体的结合类型

2.3.5 氢键结合与氢键晶体
• 氢原子的电子参 与形成共价键 后,裸露的氢核 (质子)与另一 电负性较大的原 子通过静电作用 相互结合。
机动
目录
上页
下页
返回
结束
1. 由上讨论可知,原子结合成晶体时,是以以上哪种结合力 结合,很大程度上决定于它电负性特性。 2. Ⅴ、Ⅵ、Ⅶ族元素也可以形成共价键,但由于共价键的饱 和性,Ⅴ族元素只能形成三个共价键,Ⅵ、 Ⅶ 族元素则 只能分别形成二个,一个共价键,但仅有三个、二个、一 个共价键不能形成三维晶体。所以对Ⅴ族元素三个共价键 常在一个平面上,形成层状结构,而各原子间则靠范德瓦 尔斯力结合,对Ⅵ族元素,二个共价键常形成环状结构, 各个环之间依靠范德瓦尔斯力结合;对于Ⅶ族元素,常由 一个共价键先组成分子,而分子之间依靠范德瓦尔斯力形 成分子晶体。 3. 实际晶体的结合往往不是纯属哪一种键,而是包含两种或 更多种键,任何晶体都包含范德瓦尔斯键(电子分布的起 伏而产生的瞬时偶极矩总存在)。
—— 良好的导电本领 —— 结合能比前面两种晶 体要低一些 —— 过渡金属结合能较大
机动
目录
上页
下页
返回
结束
晶体的平衡 —— 依靠库仑作用力和一定的排斥力 排斥来自两个方面 —— 体积减小,电子云的密度增大,电子的动能将增加 —— 原子实相互接近到一定的距离时,它们的电子云发生 显著的重叠,将产生强烈的排斥作用 —— 金属性结合对原子的排列没有特殊的要求,容易造成 原子排列的不规范性,使其具有很大的范性
机动 目录 上页 下页 返回 结束
共价键结合的两个基本特征 —— 饱和性和方向性 饱和性 —— 共价键结合的原子能形成键的数目有一个最 大值,每个键有2个电子,分别来自两个原子 —— 共价键是由未配对的电子形成 —— 价电子壳层如果不到半满,所有电子都可以是不配 对的,因此成键的数目就是价电子数目 —— 价电子壳层超过半满时,根据泡利原理,部分电子 必须自旋相反配对,形成共价键数目小于价电子数目 IV族 — VII族的元素共价键数目符合8-N原则

固体物理学-晶体结合类型

固体物理学-晶体结合类型
根据测不准原理xpħ ,电子的动能正比于p2x-2V-2/3,故动能正 比于n2/3,n为自由电子密度,V为体积。价电子如果束缚在一个原子周 围,运动范围V较小,动能是比较高的。当价电子的运动范围为整个晶 体时,动能显著降低。
同时,由于距离增大,价电子与原子实之间的势能相对于 自由原子时要高。但由于自由电子屏蔽作用的存在,势能的 升高相对于动能的降低要小,二者能量之差就是金属结合的 主要来源。
12
I . 固体结合类型
------共价结合和共价晶体
13
共价键(氢分子为例)
•共价结合是靠两个原子各贡献一个电子,形成共价键。这样一对为两个 原子所共有的自旋相反配对的电子结构称为共价键。
•这对自旋相反的电子在两原子核之间的区域会形成较大的电子云密度, 同时受到两个原子核较强的库仑吸引作用,这就是共价键产生的物理根 源。
这种相互作用一定包括吸引和排斥两种类型。吸引力使粒子 聚集一起,排斥力使粒子之间保持一定间距,维持固体形态。 两种作用并存,粒子处于平衡状态,从而结合形成稳定的晶体 结构。这种维系原子结合在一起的作用力或称为“键”。
粒子之间的作用力应全部归结于静电相互作用,磁力和万有 引力忽略不计。粒子间的吸引作用可以归结为异性电荷间的库 仑吸引力;而排斥作用可以归结为同性电荷之间的库仑斥力以 及由泡利原理引起的排斥力。
4
根据键的特征,固体结合类型主要有以下几种:1. 金属 性结合;2. 共价结合;3. 离子性结合;4.范德瓦尔斯结合。 与结合力类型相对应,晶体可大致分为四种基本类型: 1. 金属晶体; 2. 共价晶体;3.离子晶体;4.分子晶体。
值得指出的是,以上这些类型之间的区分不是严格的, 某些固体的结合往往具有混合的特点或过渡的性质。

§2.6 范德瓦尔斯结合

§2.6 范德瓦尔斯结合
N
式中
aj 是参考原子i与其它任一原子 的距离r 同最近邻原子间 与其它任一原子j的距离 a j是参考原子 与其它任一原子 的距离 ij同最近邻原子间
j
A12 = ∑ ' 12 j a j
1
'1 , A6 = ∑ 6
N
的比值( )。试计算面心立方的A 距R的比值( aj = rij R )。试计算面心立方的 6和A12。 的比值 (1)只计及最近邻原子; (2)计及最近邻和次近邻原子。 (1)只计及最近邻原子; (2)计及最近邻和次近邻原子。 只计及最近邻原子 计及最近邻和次近邻原子 (1)面心立方 最近邻原子有12个 面心立方, 解: (1)面心立方,最近邻原子有 个,
r近 = R,
a1 = a2 = ⋅ ⋅ ⋅ = a12 = 1
上页 下页 返回 结束
A12 =
1 1 = 12 × 12 = 12 ∑ 12 1 j =1 a j
12
第二章 晶体的结合 12 1 1 A6 = ∑ 6 = 12 × 6 = 12 1 j =1 a j
(2)计及最近邻和次近邻 次近邻有 个。 计及最近邻和次近邻,次近邻有 计及最近邻和次近邻 次近邻有6个
上页
下页
返回
结束
第二章 晶体的结合 个惰性气体原子构成的分子晶体, 例1:由N个惰性气体原子构成的分子晶体,其总互作用势 个惰性气体原子构成的分子晶体 能可表示为
12 6 σ σ U( R) = 2Nε A − A6 12 R R
3. 晶体的结合能
dU dR =0
R0
2A R0 = 12 A 6
1/ 6
σ
U 0 = U ( R0 ) = −2源自ε A62 A12N

《固体物理基础》晶体的结合

《固体物理基础》晶体的结合

四、离子晶体的结合能
四、离子晶体的结合能
马德隆常数
第一次计算由Madellung完成。 Ewald建立了一个关于晶格求和计算的通用方法。
四、离子晶体的结合能
例1 正负一价离子组成的一维晶格
四、离子晶体的结合能
例2 正负一价离子组成的二维正方格子
四、离子晶体的结合能
B和n的确定
四、离子晶体的结合能
三、金属晶体
特征:
结合力:原子实和价电子云间的静电库仑力。 (无饱和性和方向性) 晶体结构:(每个金属原子的电子云分布基本 上是球对称的) 同一种金属原子—等径圆球堆 积—密堆积
→面心立方,六角密堆,体心立方 晶体特征:稳定,密度大,硬度高,熔点高, 导电,传热,延展性。
四、分子晶体
特征: 结合力:范德瓦尔斯力,结构单元瞬时 偶极矩的相互作用。 晶体结构:最密排方式。 特征:熔点低,硬度小。
不同原子的负电性相对大小的变化趋势: (1)同一周期内,负电性从左到右逐渐增强; (2)同一族内,负电性由上至下逐渐减弱; (3)周期表中越往下,同一周期内元素的负电
性差异越小。
元素和化合物晶体结合的规律
§ 2.2 晶体的结合能
一ห้องสมุดไป่ตู้结合能的意义
定义:处于稳定状态的晶体,其总能量(动能和 势能)比组成这个晶体的N个粒子在“自由”时的
总能量低,二者之差就是晶体的结合能:
“自由”是指各粒子都可以看作为独立的粒子, 粒子之间的距离足够大,以致它们间的相互作用可 以忽略。
一、结合能的意义
ε0包括:晶格能(组成晶体的粒子之间的相互 作用总势能) 、晶格振动能,其它晶体缺陷等 能量。 以εN为参考能位:
总相互作用能(晶格能)与结合能

范德瓦尔斯结合

范德瓦尔斯结合

3.13 -0.027 -0.02 3.75 -0.089 -0.08 3.99 -0.120 -0.11 4.33 -0.172 -0.17 作业:p579, 2-6
小结
A12
A6
1、公式:W=-U(r0)
2、计算方法:由结构确定A12和A6, 由 U ( r ) 0 确定r0, r r
0
代入公式 W=-U(r0)
例:惰性气体晶体的结合能
(1)确定A12和A6
A12和A6只与晶体结构有关,惰性气体除He外,结 构均为面心立方晶格。
公式:
N 1 1 A12 12 , A6 6 j i a j j i a j
N个原子体系的总相互作用能
A B U ( r ) 6 12 r r
令:
A2 A , 4B B
1 6
12 6 则: U ( r ) 4 r r
林纳德-琼斯势
对于N个原子组成的分子晶体体系总的相互作用能:
设想两个惰性气体原子原子1和原子2相距为r设原子1的瞬时电偶极原子2感应到的瞬时电偶极矩为p相互作用能可知u随r增加而迅速下降表明这种相互作用很弱
§2-4 范德瓦尔斯结合—分子晶体
典型的分子晶体:惰性元素以及H2,o2,CH4等气
体在低温下形成的晶体。 基本特点:晶体中的原子或分子之间靠范德瓦尔 斯键相互结合。 性质:范德瓦尔斯力不依赖于原子间电子云的任 何交叠,是一种弱相互作用;故一般分子晶体都 是低熔点、低沸点且硬度小。
N
方法:与埃夫琴法计算马德隆常数相似,区别在
于计算A12和A6时,不需要考虑贡献因子。对于面心 立方晶格,常选8个立方体为一个大晶胞,只计到第

范德瓦尔斯力作用机制

范德瓦尔斯力作用机制

范德瓦尔斯力的动力学机制范德瓦尔斯力的动力学机制范德瓦尔斯力是存在于中性分子或原子之间的一种弱的电性吸引力。

它是分子间相互结合的主要原因,并且其中的色散力是惰性气体在低温下能液化甚至固化的重要原因。

下面是我从网上及资料和文献中查到的一些关于范德瓦尔斯力的动力学机制的资料。

范德瓦尔斯力的主要来源有三种作用机制:(1)、极性分子具有永久的电偶极矩,通常这些偶极矩杂乱无章地排列,因而极性分子是电中性的,但在极性分子晶体中这些偶极矩呈现规则排列,极性分子之间就会产生静电吸引力,称为葛生力又称“取向力”,它的大小与分子的极性变形性温度有关。

极性分子的偶极矩愈大,取向力愈大;温度愈高,取向力愈小。

(2)、无极分子中正负电荷系的中心重合,分子不具有电偶极矩,但当极性分子靠近它时,可使正、负电荷分开,产生诱导电偶极矩,从而在极性分子和无极性分子之间产生吸引力,称诱导力或德拜力。

(3)、一对非极性分子本身由于电子的概率运动,可以相互配合产生一对方向相反的瞬时偶极矩,这一对瞬时偶极矩相互作用,称为“色散力”。

这种机制是范德华力的主要来源,1930年由F.W.伦敦首先根据量子力学原理给出解释,因此也称为“伦敦力”。

对于上述三中机制共性是:永远存在于分子之间,属于是近程力且力的作用很小.无方向性和饱和性. 经常是色散力为主。

简单起见,将上述色散作用势推导出来:用带点粒子的线性谐振子代表瞬时偶极矩,r 为两个谐振子平衡点(正电荷所处的位置)之间的距离,1x 与2x 为带负电荷的质点在震动过程中离开平衡点的瞬时位移。

这两个振子的能量分别为21212121121212121kx p m kx mv E +=+= 22222222221212121kx p m kx mv E +=+=其中k 为振子的力常数,1p 与2p 为它们的动量。

当r 很大时,两振子间无相互作用力,系统的总能量为21E E +,此时振子的震动频率为mk πν210=;但当r 不很大时,振子间的相互作用能为⎥⎦⎤⎢⎣⎡+---+-+=21212012111141x r x r x x r r e u πε 当1x r >>、2x 时,上式可以展开并只取第一项而略去高次小的项,则系统的总能量可以写为1221u E E E ++=()3021222212221222r x x e x x k m p p πε-+++= 由于电场E 的作用,使振子产生一位移x ,且kx E =,k 为恢复常数。

范德瓦耳斯结合

范德瓦耳斯结合

2.两个惰性原子之间的相互作用势能两个相距为r 的原子,虽然电子是对称分布,但在某个瞬时具有电偶极矩,设原子1的瞬时电偶极矩,在r 处产生的电场为:α为原子的极化率如图所示,原子2在这个电场的作用下将感应形成偶极矩:44)-(2 321r pE p αα==范德瓦尔斯力引起的吸引能都与分子间距r 的6次方成反比,也称为范德瓦耳斯相互作用能,写为:a 、b 为两个参数。

排斥能的经验公式为:12)(r b r u =排斥因此两分子间的相互作用能可以表示为:6)(r ar u −=吸引126)(rbr a r u +−=(2-46)3.范德瓦耳斯相互作用能我们作出(2-47)式的函数曲线图,看式中的参数ε、σ所代表的意义。

εσ4)()( r U x f rx ==;令61211)(xx x f −=则(2-47)式子可以写为:47)-(2 4)(6126⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛∈=r r r u σσ引入新的参量:εand σ,两个原子的相互作用势能可以表示为:4.勒纳-琼斯(Lennard -Jones )势12.12 0612 ,0)(61713==∴=+−=−−x x x dxx df 即:曲线极小值对应于:U(r)/4εr/σ1.12作出(2-47)式的函数曲线如图所示:常数所代表的意义:参数σ反映了排斥力的作用范围,单位是Å(埃);ε反映吸引力的强弱,单位是erg (尔格)。

忽略惰性气体的动能,由N 个惰性气体原子组成的分子晶体的总相互作用势能为:⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛=6612122)(r A r A N r U σσε(2-48)A 12、A 6是与晶体结构有关的晶格求和常数。

对于面心立方结构:A 12=….≈12.13;A 6=…. ≈14.45求解A 12、A 6的方法看后面的例题。

根据势能函数的最小值可以确定晶格常数、结合能和体变模量。

范德瓦尔斯结合剖析

范德瓦尔斯结合剖析

矩为p1,r处电场应正比于p1/r3,原子2感应到的瞬时 电偶极矩为p2, 则r处电场应正比于
p2
E
p1
r3
(为原子极化率)
相互作用能
U
p1 p2 r3
p12
r6
,可知U随r增加而迅速下
降,表明这种相互作用很弱。
两个氦原子之间由于电子运动产生瞬时偶极子的 相关作用
(a)吸引态
氦原子
(b)排斥态
A12
(
r0
)12
A6
(
r0
)6
2NA62
4 A12
8.6N
K的表达式
2U
U
K (V V 2 )V0
V 2 2Nr3
2N
A12
(
r
)12
A6 ( r
)6
K
4A12 3
(
A6 A12
5
)2
75 3
惰性气体的林纳德-琼斯势参数
Ne
Ar
Kr
Xe
ε(ev) 0.0031 0.0104 0.0140 0.0200
第1近邻:12个 aj=1
第2 近邻:6个
aj= 2
第3 近邻:24个 aj= 3
A6 1216 6 ( 2 )6 24 ( 3)6 13.639
A12 12112 6 ( 2 )12 24 ( 3)12 12.127
若晶胞再选大些,则数据将更准确些, 通常对于面心立方结构:A6=14.45392, A12=12.13188。
构均为面心立方晶格。
公式:
A12
N ji
1 a1j2 , A6
N ji
1
a
6 j

第二章 晶体的结合

第二章 晶体的结合

固体材料是由大量的原子(或离子)组成约1 mol / cm 3原子(或离子)结合成晶体时,外层电子作重新分布,外层电子的不同分布产生了不同类型的结合力.Na Cl +=NaCl 离子键共价键金属键结合力类型决定了晶体的微观结构乃至宏观物理性质.本章主要介绍不同结合类型中原子间相互作用与晶体内能、晶体的微观结构和宏观物理性质之间的联系.共价键结合(金刚石)--原子间束缚非常强,导电性差金属键结合(金属Cu )--对电子束缚较弱,良导体——原子的电子分布核外电子的分布遵从泡利不相容原理、能量最低原理和洪特规则.能量最低原理电子在原子核外排布时,要尽可能使电子的能量最低1s、2s、2p、3s、3p、4s、3d、4p、4d……泡利不相容原理每一轨道中只能客纳自旋相反的两个电子.洪特规则电子在原子核外排布时,将尽可能分占不同的轨道,且自旋平行——原子的电子分布_----电离能_----电离能_----电离能_----电子亲和能_----原子电负性_----原子电负性2.Pauling鲍林提出的电负性计算方法(较通用):_----原子电负性•横向•电离能•亲和能•电负性按结合力的性质和特点,晶体可分为5种类型:离子晶体(离子结合)共价晶体(共价结合)金属晶体(金属结合)氢键晶体(氢键结合)如何理解各种晶体呢?离子晶体:正离子与负离子的吸引力就是库仑力.共价结合:靠近的两个电负性大的原子各出一个电子形成电子共享的形式.金属结合:原子实依靠原子实与电子云间的库仑力紧紧地吸引着.氢键结合:氢先与电负性大的原子形成共价结合后, 氢核与负电中心不在重合, 迫使它通过库仑力再与另一个电负性大的原子结合.分子结合:电偶极矩把原本分离的原子结合成了晶体. 电偶极矩的作用力实际就是库仑力.可见, 所有晶体结合类型都与库仑力有关.原子间相互作用势能----结合力的共性吸引力排斥力库仑引力库仑斥力泡利原理引起(1)吸引力和排斥力都是原子间距离r 的函数.注:(2)吸引力是长程力,排斥力短程力.(3)当r =r 0时, 原子间合力为零, 原子处于平衡.类比于弹簧振子()()⎟⎠⎞⎜⎝⎛−−=−=++11n m r nB r mA dr r du r f 为什么排斥力是短程力?()()()B A r u r u r u +−=+=()()⎜⎛−−=−=nB mA r du r f设晶体中第i个原子与第j个原子之间的相互作用势能u(r)为ij()()∑∑∑==NNNr u r u U 1晶体的结合能:()()∑=N r u Nr u晶格常数由于晶格具有周期性,设临近两原子间距R,则晶体体积可写成体弹性模量单位压强引起的体积的相对变化率。

晶体的结合类型

晶体的结合类型
d 2u ( r ) m(m 1)a n(n 1)b m(m 1)a n m ( )0 2 m 2 n2 m 2 dr r r.0 r.0 r.0 m 1
0
n >m
a b u (r ) m n r r
3.结合力及结合能
(2)原子间的相互作用力
有效引力最大时,原子间距rm 。
q
o
2
·
x
x
x r0
E A E E
q
x 2 r02 4 x 2
4 o x 2 r02 4 2 2P 2qr0 EA EA 3 4 o x 4 0 x 3

2 xr0

4.分子晶体结合能
4.3非极性分子的结合
惰性气体分子不存在永久偶极矩:最外层电子壳层已经饱和,它不
2.5 氢键结合
分子中与电负性大的原子X以共价键相连的氢原子,还可以和另一
个电负性大的原子Y之间形成一种弱的键称为氢键。
O 2
H H
氢键
2 O Y
X
H

氢键有方向性和饱和性
H
冰是典型的氢键晶体,主要靠氢键结合,氢原子不但与一个氧原子形 成共价键,还和另一水分子中氧原子相吸引,后者结合较弱。氢键和范
1 q2 q2 q2 q2 u12 4π 0 r r x2 x1 r x1 r x2
q2 1 1 1 1 x x x 4π ε0 r 1 ( 2 1 ) 1 ( 1 ) 1 x2 r r r r
2
例:两原子的相互作用能可由 u ( r ) m n 得到,如果m=2, r r n=10. 且两原子形成一稳定的分子,其核间距为0.3nm, 平稳时

大连理工大学名词解释

大连理工大学名词解释

第一章原子结构与结合键电离能:基态原子失去最外层的一个电子所需的能量。

电子亲和能: 基态中性原子获得一个电子成为负离子所释放出的能量。

电负性:代表原子获得电子的能力,这个电子是元素原子自身以外的电子,而这种能力决定于原子结构。

离子键:原子间通过电子转移产生正离子和负离子,两者相互吸引所形成的化学键称为离子键共价键:两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定的化学结构叫做共价键金属键:由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成。

范德瓦尔斯键:一个分子中的带正电部分会吸引另一个分子中的带负电部分,这种结合力称为范德瓦尔斯键。

极化:分子中共价电子的非对称分布,使分子的某一部分比其他部分更偏于带正电或带负电的现象。

第二章晶体结构晶体:物质的基元在三维空间呈有规律的周期性重复排列所形成的物质。

长程有序:原子在三维空间呈有规律的周期性重复。

各向异性:材料的物理,化学或力学性能随方向的不同表现出一定差异的特性。

结点:为了便于分析晶体的周期性排列规律,将一个或一组刚性球抽象成一个点,这些点称为结点。

基元:被抽象的一个或一组原子。

空间点阵:结点在三维空间作周期性排列所形成的三位阵列。

晶格:为了便于描述空间点阵的模型,用3套平行的直线将所有结点连接起来,所形成的三维空间格架。

晶胞:从晶格中抽取具有代表性的基础单元。

点阵常数(晶格常数):以晶胞角上的某一结点为原点,以该晶胞上过原点的三个棱边为坐标轴x,y,z,则晶胞的形状和大小即可由这三条棱边a,b,c和棱边夹角α、β、γ这六个点阵参数来表示。

布拉维点阵:根据每个结点的周围环境相同,用数学分析方法证明晶体中的空间点阵只有14种。

晶向:空间点阵中各结点列的方向代表晶体中原子排列的方向。

晶面:空间点阵中任意一组阵点的平面代表晶体中的原子平面。

晶向指数:晶列通过轴矢坐标系原点的直线上任取一格点,把该格点指数化为互质整数,称为晶向指数,表示为[h,k,l]。

离子键、共价键、金属键、范德瓦尔斯和氢键 晶体

离子键、共价键、金属键、范德瓦尔斯和氢键  晶体

吉林建筑工程学院材料学院
吉林建筑工程学院材料学院
2–3 非晶\准晶\纳米颗粒
2.有人说“晶体的内能就是晶体的结合
能”,对吗?
第二章 晶体的结合
• 解:这句话不对,晶体的结合能是指当晶体处于 稳定状态时的总能量(动能和势能)与组成这晶 体的N个原子在自由时的总能量之差, • 即。 Eb E N E0 (其中 Eb 为结合能, E N 为组成这晶体的N个原子在自由时的总能量,E0 为晶体的总能量)。而晶体的内能是指晶体处于 某一状态时(不一定是稳定平衡状态)的,其所 有组成粒子的动能和势能的总和。P31
吉林建筑工程学院材料学院
2–3 非晶\准晶\纳米颗粒
第二章 晶体的结合
杂化轨道
在成键过程中,由几个能量接近的原子轨道重新组
合成成键能力更强的新分子轨道的现象。 比如:金刚石的C原子的价电子组态先变成为2S1、 2P3,然后这四个价电子产生所谓轨道杂化。杂 化后的每个价电子含有(1/4)S和(3/4)P, 这样也才与C原子有四个等价的键不矛盾,这样 的电子轨道称为SP3杂化轨道。P27
吉林建筑工程学院材料学院
第二章 晶体的结合 2–3 非晶\准晶\纳米颗粒 3.当2个原子由相距很远而逐渐接近时,二原子间的
力与势能是如何逐渐变化的?
解:当2个原子由相距很远而逐渐接近时,2个原子间引力和斥力都 开始增大,但首先引力大于斥力,总的作用为引力, f (r)<0 ,而相 互作用势能 u(r)逐渐减小;当2个原子慢慢接近到平衡距离时,此时, 引力等于斥力,总的作用为零,f (r)=0 而相互作用势能u(r)达到最 小值;当2个原子间距离继续减小时,由于斥力急剧增大,此时,斥 力开始大于引力,总的作用为斥力, f (r)>0 ,而相互作用势能u(r) 也开始急剧增大。P32图2.4 r>r

2.3非极性分子晶体

2.3非极性分子晶体

x 2 r
2


2 x1 x 2 r2
P12 1 2 P22 1 2 qx1 x 2 E kx1 kx2 2m 2 2m 2 20 r 3

x1 1 2 ( 1 2 ) x2 1 2 ( 1 2 )
2 P12 1 P q 2 2 E k (12 22 ) 2 ( 1 2) 3 2m 2 2m 4π 0 r
dU dR 0
R0
2 A12 R0 A 6
1/ 6

U 0 U ( R0 )
2 A6
2 A12
N
平衡时最近邻原 子间距离
平衡时总的互作 用势能
2 U0 A6 平均每个原子的能量u0为:u0 N 2 A12
晶体的结合能: E
b
U 0 2 A
h 0
2
32π r
2 6
h 0
1 1 1 12 1 2 h h h 0 (1 E0 ) (1 ) 3 3 2 2 2 2π r 2π r
1 x 1 1 3 2 r 1 3 2π r x 1 2 x ( x 1) 2 24 1
12 6 U ( R ) 2 N A12 A6 R R
式中
A12
'
j
N
1
a 12 j
1 ' , A6 6 j a
N j
a j是参考原子i与其它任一原子j的距离rij同最近邻原子间
距R的比值( a j rij R )。试计算面心立方的A6和A12。 (1)只计及最近邻原子; (2)计及最近邻和次近邻原子。 解: (1)面心立方,最近邻原子有12个,

范德瓦耳斯结合

范德瓦耳斯结合
—— 1873年范德瓦耳斯(Van der Waals) 提出在实际气体 分子中,两个中性分子间存在着“分子力”
原子呈现出瞬时偶极矩
—— 惰性元素具有球对称,结合时排列最紧密以使势能 最低
—— Ne、Ar、Kr、Xe的晶体都是面心立方 —— 透明的绝缘体,熔点特低 —— 分别为24K、84K、117K和161K
A12 ( r
)12
A6 ( r
)6
]
—— 1/2因子: 相互作用能为两个原子共有
—— A12和A6: 与晶格结构有关的求和项
晶体总的势能
U(r)
1 2
N
(4
)[
A12
(
r
)12
A6
(
r
)6
]
—— 非极性分子晶体的晶格常数、结合能和体变模量
晶格常数
平衡状态体变模量 晶体的结合能
两个惰性原子之间的相互作用势能
—— 两个相距为r的原子,原子中电子是对称分布 —— 偶极矩作用
设原子1的瞬时电偶极矩
在r处产生的电场
原子1的电场
原子2在电场的作用下感应偶极矩 —— 原子的极化率
两个电偶极子之间的相互作用能
—— 作用能与p1的平方成正比,对时间的平均值不为零 —— 力随距离增加下降很快,两原子之间相互作用很弱
两个原子的相互作用势能u源自r)A r6B r12
—— B/r12: 重叠排斥势能,A和B为经验参数,都是正数
两原子相互作用势能
引入新的参量
相互作用势能 u(r) 4[( )12 ( )6 ]
r
r
—— 勒纳-琼斯(Lennard-Jones)势
晶体总的势能 — N 个原子
U
(r)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形成离子晶体
I 族的碱金属和 VII 族的卤族元素负电性 差别最大,它们之间形成最典型的离子晶体
随着元素之间负电性差别的减小,离子性结 合逐渐过渡到共价结合,从 I-Ⅶ 族的碱金属 卤化物到Ⅲ-Ⅴ族化合物,这种变化十分明显
从晶格结构来看, 碱金属卤化物具有 NaCl 或 CsCl 的典型离子晶格结构, 而Ⅲ-Ⅴ族化合物 具有类似于金刚石结构的闪锌矿结构;
同的,但具有基本相同的变化趋势
在具有 Z 个价电子的原子中, 一个价电子受到带正电
的原子实的库仑吸引作用, 其它 (Z-1) 个价电子对
它的平均作用可以看作起着屏蔽原子实的作用
假使屏蔽作用是完全的, 价电子将只受到 +e 电荷的吸引力
实际上,由于许多价电子属于同一壳层,它们的 相互屏蔽只是部分的,因此,作用在价电子上的 有效电荷在 +e 和 +Ze 之间,随 Z 增大而加强
证明: (1) 一对正负离子的平均吸引势为 e2
R
平均排斥势为 2B
Rn
晶体的内能或总的互作用势能为
U
N
e2
R
2B
Rn
由平衡条件dU 0 得到 NhomakorabeadR R0
B
e2
2n
Rn1 0
带回到内能表达式有
U
(R0
)
Ne2
R0
1
1 n
考虑到 2ln 2 并采用国际单位制, 则可写成
U
(R0
)
2Ne2 ln 2
3. 化合物晶体的结合规律
不同元素的组合形成合金或化合物晶体
不同金属元素之间依靠金属性结合形成合金固溶体
由于金属性结合的特点,它们和一般化合物不同, 所 包含不同元素的比例不是严格限定的, 而可以有一 定的变化范围, 甚至可以按任意比例形成合金 这个特点对于合金在技术上的广泛应用具有重要意义
周期表左端和右端的元素负电性有显著区别, 左端的金属元素容易失去电子, 右端的负电 性元素有较强的获得电子的能力, 因此它们
u(r)
4
r
12
r
6
4 6 A 4 12 B
勒纳-琼斯(Lennard-Jones)势
可由气相数据得出
惰性气体晶体的结合能就是晶体内所有 原子对之间的勒纳-琼斯势之和。如果 晶体内含有 N 个原子,总的势能就是
U
1 2
N
4
A12
r
12
A6
r
6
,
½ 因子是因为相互作用能为两个原子共有;
离子
惰性气体原子是依靠_____________结合成晶体的。 范德瓦耳斯键
马德隆常数取决于__________ 。 晶体结构
原子的负电性描述不同原子__________的能力。 束缚电子
金属的基本特性, 如高导电性、高导热性、大的 延展性、金属光泽, 都和金属的___________有关。
共有化电子
在电导率等物理性质上反映出了明显的各向异性、 垂直层面方向的电导率大约只有层面内的千分之一
石墨能与其它物质生成一系列化合物, 其结构上的 特点是, 这些物质的原子或分子排列成平行于石墨 层面的单层, 按一定的次序插进石墨晶体的层与层 之间的空间, 因此称之为石墨插层化合物
已发现的石墨插层化合物很多,插入物包括碱金 属、碱土金属、氧化物、硫化物以及强酸。通常 插层对石墨层面内及垂直层面内的电导都有影响
同一周期里原子束缚电子的能力从左到右应该不断增强
原子的电离能是使原子失去一个电子所必需的能量 因此可以用来表征原子对价电子束缚的强弱
从左到右,电离能不断增大的趋势十分明显
另外一个可以用来度量原子束缚电子能 力的量是亲和能,即一个中性原子获得
一个电子成为负离子时所放出的能量
亲和能和电离能的差别只在于,亲和能联系着
周期表由上到下, 负电性逐渐减弱 周期表愈往下, 一个周期内负电性的差别也愈小
2. 元素晶体的结合规律
周期表左端 I 族的元素 Li、Na、K、Rb、Cs 具有最 低的负电性,它们的晶体是典型的金属
负电性较低的元素对电子束缚较弱,容易失去 电子,因此在形成晶体时便采取金属性结合
IV 族至 VI 族具有较强的负电性, 获得电子的能力 强,这种情况适于形成共价结合
共价结合的两个基本特征是________________。 方向性和饱和性
8-N 定则是指 IV 族至 VII 族元素的原子
________________________________。
所能形成的共价键的数目是 8-N
通常引入________来描写共价结合中离子性的成分。 电离度
例 带 ±e 电荷的两种离子相间排成一维晶格,
典型的结构是砷、锑、铋所形成的层状晶体;
磷和氮则首先形成共价结合的分子,再由范德 瓦耳斯作用结合为晶体
首先通过共价键结合成层状结构
每层原子通过共价键与另一层中三个原子结合
层状结构再叠起来通过微弱的范德瓦耳斯作用 结合成三维晶体
VI 族原子根据 8-N 定则 只能形成两个共价键,因 此依靠共价键只能把原子 连接成为一个链结构
p12
r6
这时因相互作用与 p1 的平方有关, 随时间平均并不为零
这种力随距离增加下降很快,相互作用很弱
这种方式结合的两个原子之间的相互作用能可以写成
AB u(r) r6 r12
后一项是重叠排斥能, 取这种形式是因为它可以满意
地拟合关于惰性气体的实验数据。A、B 是经验参数,
都是正数。也可改写为
中性原子+(-e) → 负离子 而电离能则联系着
正离子+(-e) →中性原子
为了比较不同原子束缚电子的能力,或者 说得失电子的难易程度,常常用负电性
Mulliken综合了电离能和亲和能而定义 负电性=0.18(电离能+亲和能),(单位:电子伏)
0.18 的选择只是为了使 Li 的负电性为 1
在一个周期内,从左到右有不断增强的趋势
设 N 为元胞数, B / R0n 为排斥势, R0 为正负离子间最 短的平衡值。证明, 当 N 很大时有
(1) 结合能
U
(R)
2Ne2 ln 2
40 R0
1
1 n
(2) 当压缩晶格时, R0 R0 (1 ) 且δ<<1, 则需做功
1 C 2
2
其中 C 2(n 1)N ln 2 e2
40 R0
2
C d 2U dR2
R02
R0
2(n 1)N ln 2 e2
4 0 R0
这些元素的共价结合体现了前面所讲的 8-N 定则, 并且在它们的晶格结构上有明显的反映
Ⅳ族元素最典型的结构是金刚石结构,除了碳形成金 刚石,锗、硅晶体也具有金刚石结构,锡在 13℃ 以 下稳定的相也具有金刚石结构,称为灰锡。金刚石结 构直接反映了共价结合的特点
V族元素原子按 8-N 定则只能形成 3 个共价键。由 于完全依靠每一个原子和三个近邻相结合不可能形成 一个三维晶格结构,元素晶体的结合具有复杂的性质
对低维体系的研究越来越引起人们的注意, 层状材料正是一类典型的二维体系。石墨 是研究最多的层状材料之一
每层内部,原子排列成六 角蜂巢状,层与层之间按 ABAB…的顺序堆积
每层内部, 碳原子经 sp²杂 化而形成共价键, 离子之间 相互作用比较强(第四个 pz 电子之间也形成弱的共价 键); 层与层之间靠范德瓦 耳斯键相互作用, 相互作用 很弱
§2-4 范德瓦耳斯结合
与前面几种结合不同,范德瓦耳斯结合中 原子和分子基本上保持着原来的电子结构
产生于原来具有稳定电子结构的原 子或分子之间, 如具有满壳层结构 的惰性气体元素, 或价电子已用于
形成共价键的饱和分子
干冰
是一种瞬时的电偶极矩的感应作用
设想有两个惰性气体原子, 原子 1 和原子 2, 相距为 r
化合物晶体中, 负电性相差大的形成离子晶体, 相差 小的形成共价结合, 金属元素之间形成合金固溶体
四种主要结合类型及相应晶体的物性
晶体类型
粒子类型
结合力形式
物理特性
离子晶体 共价晶体 金属晶体 分子晶体
正、负离子 原子
金属离子和自由电子
离子结合 共价结合 金属结合
熔点高、性脆 硬度大、绝缘、熔点高 硬度大、导电、熔点高
负电性最强的金刚石具有最强的共价键,它 是典型的绝缘体; 负电性最弱的铅是金属; 在中间的共价晶体硅、锗则是典型的半导体; 锡则在边缘上,13℃ 以下的灰锡具有金刚石 结构是半导体,在13℃ 以上为金属性的白锡
这些元素晶体表明,从强的负电性到弱的负 电性,结合由强的共价键逐渐减弱,以至于 转变为金属性结合,在电学性质上则表现为 由绝缘体经过半导体过渡到金属导体
虽然它们的电子云分布是球对称的, 但是在某 一个瞬间是有偶极矩(对时间的平均为零), 偶极矩之间存在相互作用
设原子 1 的瞬时偶极矩为 p1 , 在 r 处有电场正比于 p1/r³, 在这个电场作用下原子 2 将感应形成偶极矩 p2
p2
E
p1
r3
α是原子的极化率. 两个偶极矩之间的相互作用能为
p1 p2 r3
r 表示最近邻原子之间的间距;
A12,A6 与讨论离子结合时的 Madelung 常数相似, 是 只与晶体结构有关的晶格求和常数
与前面类似, 由势能函数可确定晶格常数、结合能、 体变模量。理论与实验之间符合的是比较好的
如果计入原子振动零点能的修正(对于质量较小的 原子是更加重要的), 可以使理论与实验符合的更好
碱金属卤化物是典型的离子晶体, 一般为绝 缘体, Ⅲ-Ⅴ族化合物则是良好的半导体材料
周期表从上到下负电性减弱以及同一周期内负电 性差别减小的趋势也在化合物中有明显的反映
Ⅱ-Ⅵ族化合物 ZnS 是绝缘体, CdSe 是半导体, HgTe 是导电性较强的半导体。 Ⅲ-Ⅴ族化合物 从 AlP 到 InSb 半导体导电性逐步加强
相关文档
最新文档