Poisson过程

合集下载

第三章泊松(Poisson)过程.

第三章泊松(Poisson)过程.
基础部张守成 2020年2月28日星期五
4. 齐次泊松过程的两个相关随机变量
设{N (t), t 0}是强度为的泊松过程,Wn(n 1)
表示事件第n次出现的等待时间.
W0 0
记 Ti Wi Wi1, i 1,2, 则Ti 表示第n-1次
事件发生到第n次事件发生的时间间隔.
(每小时)的泊松过程 {N(t), t 0}, 若每个人消费 的金额(元)为独立同分布的随机变量 Yn:
f ( y) 0.05e0.05 y ( y 0)
设 X(t) 表示 [0,t) 时间内该超市的总营业额,求3 小时内总营业额的期望和方差.
基础部张守成 2020年2月28日星期五
令 s 0, 根据假设 N (0) 0 可得
均值函数: E[N (t)] t,
方差函数: DN (t) Var[N (t )] t
E[ N (t)].
t
泊松过程的强度等于单位长时间间隔内发生的事件 数目的均值.
基础部张守成 2020年2月28日星期五
(2) 协方差函数:
设{N(t), t0}是强度的泊松过程,{Yk,k=1,2,}是
独立同分布随机变量序列,且与{N(t), t0}独立,令
N (t)
X (t) Yk , t 0 k 1
则称为复合泊松过程. 例 设N(t)是在(0, t]内来到某商店的顾客数,Yk是
N (t)
第k个顾客的花费,则 X (t) 是Yk (0, t]内的营业额. k 1
如果对任意的实数h 和 0 s h t h,
X (t h) X (s h) 和 X (t) X (s) 具有相同的分布, 则称增量具有平稳性.

二章Poisson过程-精品文档

二章Poisson过程-精品文档
k !
k t exp t Poison分布,即:p N s t N t k ,k 0 , 1 ,
• 例2.1顾客依Poisson过程到达某商店,速率为4人/小时。 已知商店上午9:oo开门。试求到9:30时仅到一位顾客,
而到11:30时总计已到达5位顾客的概率。
互独立同分布的随机变量,且与 相互独立, N t, t 0
称随机过程 为复合泊松过程。 X t, t 0
i位旅客的 NtΒιβλιοθήκη 位客人,就是 。 Et Wi i1
Nt
W t .而所要求的平均总等待时间
• 为求出它可以先求条件期望:
N t n E t W N t n t W N t n i i E 1 1 i i n nt E W t n i N 1 i
m 12 sds 195
12 0
195 195 p N 12 N 0 100 e ! K 0 K
100 K
• 2.3.2 复合Poisson过程 • 定义2.3设 是一个泊松过程, 是一列相 Y1,Y2 , N t, t 0
• 注意到给定 N 的联合密度是与 ( 0, t ] t n , W , i 1 , 2 , , n i 上均匀分布中随机样本 ,的次序统计量 U i 1 , 2 , ,n i,
U i 1 , 2 , ,n的联合密度是一样的。所以: i,
n n n nt E W t n E U E U iN i i i 1 i 1 i 1 2
的Poisson过程到达车站。若火

Poisson过程

Poisson过程

第三章 Poisson 过程教学目的:(1)了解计数过程的概念; (2)掌握泊松过程两种定义的等价性;(3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布;(4)了解泊松过程的三种推广。

教学重点:(1)泊松过程两种定义的等价性;(2)泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布;(3)泊松过程的三种推广。

教学难点:(1)泊松过程两种定义的等价性的证明; (2)泊松过程来到时刻的条件分布; (3)泊松过程的推广。

3.1 Poisson 过程教学目的:掌握Poisson 过程的定义及等价定义;会进行Poisson 过程相关的概率的计算。

教学重点:Poisson 过程的定义与其等价定义等价性的证明;Poisson 过程相关的概率的计算。

教学难点:Poisson 过程的定义与其等价定义等价性的证明。

Poisson 过程是一类重要的计数过程,先给出计数过程的定义定义3.1:{(),0}N t t ≥随机过程称为计数过程,如果()0N t t 表示从到时刻 某一A 特定事件发生的次数,它具备以下两个特点: (1)()N t 取值为整数;(2)()()()-()(,]s t N s N t N t N s s t <≤时,且表示时间A 内事件发生的次数。

计数过程有着广泛的应用,如:某商店一段时间内购物的顾客数;某段时 间内电话转换台呼叫的次数;加油站一段时间内等候加油的人数等。

如果在不相交的时间区间中发生的事件个数是独立的,则称该计数过程有独立增量。

即当123,t t t <<2132()-()()-()X t X t X t X t 有与是独立的。

若在任一时间区间中的事件个数的分布只依赖于,时间区间的长度则计数 过程有平稳增量。

即对一切12120(,]t t s t s t s <>++及,在中事件个数 21()()N t s N t s +-+12(,]t t 与区间中事件的个数21()()N t N t -有相同的分布。

第三章 泊松过程

第三章 泊松过程

第一节、泊松过程的基本概念
证明: (1) 0 N (0) N1 (0) N2 (0) 可得 N1 (0) N2 (0) 0 (2)由N(t)的独立增量性可得,N1 (t ), N2 (t ) 也为独立增量过程; (3)记 N (t s) N (t ) N (t , t s) P[ N1 (t , t s ) k1 ]
泊松过程(Poisson process)最早由法国人Poisson于 1837年引入。
主 要 内 容
第一节 第二节 第三节 第四节 第五节 第六节
泊松过程的基本概念 相邻时间的时间间隔 剩余寿命与年龄 非时齐泊松过程 复合泊松过程 更新过程
第一节、泊松过程的基本概念
一、定义 一随机过程N (t ), t 0 ,若满足条件: (1)是一计数过程,且N(0)=0; (零初值性) (2)任取 0 t1 t2 tn , (独立增量过程) N (t1 ), N (t2 ) N (t1 ), , N (tn ) N (tn1 ) 相互独立; (3)s, t 0, n 0, P[ N (s t ) N (s) n] P[ N (t ) n] (增量平稳性) (4)对任意 t 0 和充分小的 t 0 ,有 P[ N (t t ) N (t ) 1] t o(t ) P[ N (t t ) N (t ) 2] o(t ) 称N (t ), t 0 是强度 为的时齐泊松过程。 其中 0 称 为强度常数。
即 N (s t ) N ( s) 是参数为 t 的泊松分布。
证明
第一节、泊松过程的基本概念
泊松过程的等价定义: 一计数过程N (t ), t 0 ,若满足条件: (1)N(0)=0; (2)N(t)是独立增量过程; (3)对 s, t 0, N (s t ) N (s) P(t ) ,即

泊松过程poisson

泊松过程poisson
分析、推荐系统等。
研究如何将泊松过程与其他 随机过程进行更有效的结合,
以更好地描述复杂现象。
探索如何利用机器学习方法改 进泊松过程的参数估计和模型 选择,以提高模型的预测能力
和解释性。
THANKS
泊松分布的性质
泊松分布具有指数衰减的性质, 即随着时间的推移,事件发生的
概率逐渐减小。
泊松分布的期望值和方差都是参 数λ(λ > 0),即E(X)=λ, D(X)=λ。
当λ增加时,泊松分布的概率密 度函数值也增加,表示事件发生
的频率更高。
泊松分布的应用场景
通信网络
泊松分布用于描述在一定 时间内到达的电话呼叫或 数据包的数量。
生物信息学中的泊松过程
在生物信息学中,泊松过程用于描述基因表达、蛋白质相互 作用等生物过程中的随机事件。例如,基因表达数据可以用 泊松过程来分析,以了解基因表达的模式和规律。
通过泊松过程,生物信息学家可以识别出与特定生物学功能 或疾病相关的基因,为药物研发和个性化医疗提供有价值的 线索。
06 泊松过程的扩展与展望
交通流量分析
泊松分布用于描述在一定 时间内经过某个地点的车 辆数量。
生物学和医学研究
泊松分布可以用于描述在 一定时间内发生的事件数 量,例如基因突变或细菌 繁殖。
04 泊松过程的模拟与实现
离散时间的模拟
01
定义时间间隔
首先确定模拟的时间区间,并将其 划分为一系列离散的时间点。
随机抽样
使用随机数生成器,在每个时间间 隔内随机决定是否发生事件。
有限可加性
在有限的时间间隔内,泊松过 程中发生的事件数量服从二项
分布。
与其他随机过程的比较
与马尔可夫链的比较

poisson过程 大数定律

poisson过程 大数定律

poisson过程大数定律
大数定律(Law of Large Numbers)是概率论中的一个定理,它描述了当独立随机变量的个数很大时,这些随机变量的均值会接近它们的期望值。

对于泊松过程(Poisson Process)来说,它是一种随机过程,用来描述事件在一定时间或空间范围内的随机发生情况。

泊松过程的特点是事件发生的间隔时间服从指数分布。

如果我们在一段时间内观察泊松过程发生的事件次数,根据大数定律,当观察事件次数足够大时,这些事件次数的平均值会接近于其期望值,即泊松分布的参数λ乘以观察的时间长度。

换句话说,当观察时间足够长时,泊松过程的事件发生率的估计值会越来越接近真实的发生率。

用数学符号表示,设N(t)为在时间段[0,t]内发生的事件次数,λ为泊松分布的参数(表示单位时间内事件的平均发生率),则根据大数定律:
lim(t->∞) N(t)/t = λ
即当观察时间t趋向无穷大时,事件次数N(t)除以观察时间t 的比值会接近λ。

总结起来,大数定律表明,当观察时间足够长时,泊松过程的事件发生率的估计值会越来越接近真实的发生率。

这个定律在
众多实际应用中具有重要的意义,尤其在统计学和概率论中扮演着重要的角色。

泊松过程的定义

泊松过程的定义

泊松过程的定义泊松过程(Poisson Process)是一种随机过程,它表示了在固定时间段内发生的不同类型事件的概率分布。

泊松过程由泊松分布发展而来,它是一种概率分布,其中包含一个无限的平均特征。

泊松过程是一种重要的概率过程,在许多领域都有应用,例如通讯、生物学、信号处理等等。

泊松过程的定义是描述一个不断发生的随机事件的概率分布,即它是一种持续的随机过程,表示在给定的时间段内,某种类型的事件在某个时间段内会发生多少次。

这种过程的性质是:在一个给定的时间段内,随机事件的发生次数是一个服从泊松分布的随机变量。

泊松过程的定义一般可以描述为:设定一个时间段Δt,若在Δt内某种类型的事件发生m次,则该事件的发生概率满足泊松分布:P(m) = (λΔt)^me-λΔt/ m!,其中λ 是发生次数的平均数,Δt 是时间段,m 是发生次数。

泊松过程的定义还包括“独立性”的要求,即在一定的时间段内,发生的每一次事件都是相互独立的。

此外,泊松过程还有一个重要的性质——“不确定性”,即在一定时间段内,发生的每一次事件是不确定的,也就是说,我们不能准确预测每次发生的次数。

泊松过程是一种重要的概率过程,在一定的时间段内,对某种事件的发生次数的预测,可以使用泊松分布来实现。

泊松过程的应用可以追溯到19世纪,由法国数学家和物理学家泊松(Simeon Denis Poisson)发现,并且受到广泛的应用。

泊松过程的定义和性质是概率论中的重要概念,它主要用于描述在一定的时间段内,某种类型的事件发生的概率分布。

它可以用来描述不同类型事件发生的概率,从而可以模拟不同类型事件的发生情况。

同时,它可以用来研究一定时间段内,某种类型事件发生的概率,从而帮助我们更好地预测未来事件的发生情况。

泊松过程公式范文

泊松过程公式范文

泊松过程公式范文泊松过程(Poisson process)是概率论中的一种重要的随机过程。

它以数学家西莫恩·庞加莱(Siméon Denis Poisson)的名字命名,他在19世纪早期首次引入了这个概念。

泊松过程是一种离散时间(时间按照一定的间隔划分)连续状态(可以不断地发生事件)的随机过程。

泊松过程的定义是:在一段时间内,事件发生的次数服从泊松分布(Poisson distribution)。

这段时间可以是无穷小的时间间隔,也可以是有限的时间窗口。

泊松过程的关键特征是事件之间的时间间隔都是独立的且呈指数分布。

所谓指数分布是指事件之间的时间间隔满足指数分布的概率密度函数,即事件发生的概率与时间间隔的长度成正比。

泊松过程的数学定义可以表示为:P(N(t)=k)=(e^(-λt)*(λt)^k)/k!其中,N(t)表示在时间t内发生的事件次数,k表示事件的个数,λ表示单位时间内平均发生的事件个数。

根据泊松过程的定义,可以得到一些重要的性质和公式。

首先是事件发生的概率。

在时间t内发生k次事件的概率可以用公式P(N(t)=k)表示,其中λt表示单位时间内平均发生的事件个数。

这个公式是泊松分布的概率质量函数。

其次是事件之间的时间间隔。

由于泊松过程中时间间隔是独立的且呈指数分布,所以事件发生的时间间隔满足无记忆性(memoryless)的特性。

无记忆性意味着事件的发生与之前的事件的发生时间无关,只与发生事件的频率有关。

再次是事件的到达间隔。

事件的到达间隔是指两个连续事件之间的时间间隔。

根据泊松过程的定义,事件的到达间隔呈指数分布。

事件的到达间隔的期望值(也称为平均间隔)为1/λ,即单位事件到达的平均时间间隔。

最后是超过特定事件个数的概率。

假设我们需要计算在一定时间内超过n次事件发生的概率。

可以用公式P(N(t) > n) = 1 - P(N(t) <= n)= 1 - ∑(i=0 to n) (e^(-λt) * (λt)^i) / i!来计算。

2-1Poisson过程定义及其背景

2-1Poisson过程定义及其背景
第2章 Poisson 过程及其推广
1
2.1 定义及其背景
2
Poisson 过程(Poisson process)最早 是由法国人 Poisson 于 1837 年引入的, 故得名.
3
随机过程 Nt, t 0 称为计数过程,如果 Nt
表示从 0 到 t 时刻某一特定事件 A 发生的次数,它具 备以下两个特点:
⑴ Nt 0 且取值为整数; ⑵ s t 时,N s N t,且 Nt Ns 表示时
间 s, t内事件 A 发生的次数.
4
计数过程在实际中有着广泛的应用, 只要我们对所观察的事件出现的次数 感兴趣,就可以用计数过程来描述.
5
比如,考虑一段时间内某商店购物的顾客数,或 者某超市中等待结账的顾客数,经过公路上的某 一路口的汽车数量,某地区一段时间内某年龄段 的死亡人数,保险公司接到的索赔次数等,都可 以用计数过程来作为模型加以研究.
6
定义 2.1.1 一随机过程N t, t 0称为时齐
Poisson 过程,若满足:
⑴ 是一计数过程,且 N 0 0 ;
⑵ 是独立增量过程,即任取 0 t1 t2 tn ,
N t1, N t2 N t1, , N tn N tn1
相互独立;
7
⑶ 增量平稳性,即 s, t 0 , n 0 ,
时齐 Poisson 过程,若满足
⑴ N 0 0;
⑵ 是独立增量过程;
⑶ s, t 0 , Ns t Ns ~ Pt ,即其增量是
参数为 t 的 Poisson 分布.
23
13
另一方面,
P0h PNh 0 PNt h Nt 0 1 PNt h Nt 1 1 PNt h Nt 1 PNt h Nt 2 1 h oh oh 1 h oh .

泊松过程详细分析与公式

泊松过程详细分析与公式

泊松过程详细分析与公式泊松过程(Poisson process)是一种描述时间间隔发生事件的随机过程。

它由法国数学家西蒙·邦努力·泊松(Siméon Denis Poisson)创立,被广泛应用于各个领域,例如物理学、生物学、通信工程、金融学等。

泊松过程的定义如下:在一个时间段内,事件以一定频率随机发生,且事件之间是独立的。

泊松过程具有以下几个特点:1.事件的发生次数是离散的,且在一个固定时间段内可以是0个、1个、2个......无限多个。

2.事件之间的时间间隔是随机的,并且满足指数分布。

3.事件的发生频率是恒定的。

在泊松过程中,事件的发生次数服从泊松分布。

泊松分布的概率质量函数表示了事件在一个特定时间段内发生k次的概率,公式为:P(k)=(λ^k*e^(-λ))/k!其中,λ是事件的发生强度,也称为时间单位内事件发生的平均次数。

k是事件发生的次数。

泊松过程的强度参数λ可以理解为单位时间内事件发生的平均次数。

因此,单位时间内事件发生的概率为λ,单位时间内不发生事件的概率为1-λ。

泊松过程的平均时间间隔为1/λ,也即泊松过程中连续两次事件的时间间隔不超过1/λ的概率为1-e^(-λt),其中t表示时间间隔。

根据泊松过程的定义,事件之间的时间间隔是独立的,因此事件的发生时间是随机的。

泊松过程在实际应用中具有很大的灵活性。

例如,在通信工程中,泊松过程可以用来模拟数据包到达路由器的时间间隔;在金融学中,泊松过程可以用来模拟股票价格的变动情况;在生物学中,泊松过程可以用来研究神经元放电的规律。

通过对泊松过程的建模分析,可以更好地了解事件的发生规律,从而做出相应的决策。

总结起来,泊松过程是一种描述时间间隔发生事件的随机过程。

它具有离散和独立的特点,事件之间的时间间隔满足指数分布,事件的发生次数服从泊松分布。

泊松过程广泛应用于各个领域,通过对泊松过程的建模和分析,可以更好地理解事件的发生规律并做出相应的决策。

第三章poisson过程与更新过程解读

第三章poisson过程与更新过程解读
s,t 0, P(N (s t) N (s) k) (t)k et ,k N
k!
此即 N(s t) N(s) ~ P(t)
利用定理3.1.1 ,可得到Poission过程的等价定义:即
定义3.1.2 计数过程{N(t),t0}称为具有参数(或强度) λ 的Poission过程,如果 1)N(0)=0 , 2)具有独立增量性,

{P M s t M s m | N s t N (s) n m
n0
P N s t N s n m}

n0
Cm nm
pm (1
p)n
(t)nm et
(n m)!
(n m)! pm (1 p)n (t)nm et
泊松过程的自相关函数
RN t1,t2 E N t1 N t2 min t1,t2 2t1t2
泊松过程的自协方差函数
CN t1,t2 min t1,t2
例 3.1.1 (Poisson过程在排队论中的应用)设某火车 站售票从早上8:00开始,此售票处连续售票,乘客以 10人/小时的速率到达,求以下(1)9:00-10:00间最多 有5名乘客来此购票的概率(2)10:00-11:00没有人来 买票的概率(3)若已知8:00-11:00有10个人来买票, 则9:00-10:00间有5名乘客买票的概率。 例 3.1.2(事故发生次数及保险公司接到的索赔数)设 保险公司接到的索赔请求为以Poisson过程{N(t)},又假 设每次的赔付都是1,每月平均接到索赔要求为4次, 则一年中保险公司要支付的金额平均是多少?
的分布函数是 F (x)

n 1
1 e x k 0

第4章Poisson过程

第4章Poisson过程

第4章Poisson过程Poisson过程是一种常见的随机过程,被广泛应用于各个领域,包括计算机科学、物理学、生物学等。

本章将介绍Poisson过程的定义、特性和应用,并详细解释其背后的数学原理。

1. Poisson过程的定义与特性Poisson过程是一个连续时间随机过程,其特点是在一定时间内事件发生的数量满足泊松分布。

具体来说,Poisson过程满足以下几个条件:1)事件发生的间隔是独立的,即事件之间的时间间隔是随机的且相互独立。

2)事件发生的概率是相等的,即在单位时间内事件发生的概率是恒定的。

3)事件发生的次数满足泊松分布,即在给定时间内事件发生的次数服从参数为λ的泊松分布,其中λ是单位时间内事件发生的平均次数。

Poisson过程的重要特性包括:1)非负增量性质:即在给定时间内,事件发生的次数是非负的。

2)无记忆性质:即给定过去的事件信息,事件发生的概率与未来的事件无关。

3)稀疏性质:即在大部分时间段内,事件都不会发生。

2. Poisson过程的应用Poisson过程在实际应用中有着广泛的应用。

以下是几个常见的应用例子:2) 网络流量建模:在网络流量分析中,可以使用Poisson过程来描述网络中的数据包到达情况,进而进行网络拥塞控制和负载均衡。

3) 突发事件模拟:在灾难响应和紧急情况下的资源调度中,可以使用Poisson过程来模拟事件的发生情况,进而进行调度和分配。

4) 电子设备故障:在电子设备可靠性分析中,可以使用Poisson过程来建模设备故障的发生情况,进而进行设备寿命评估和维修策略制定。

3. Poisson过程的数学原理Poisson过程的数学原理基于泊松分布和指数分布的性质。

泊松过程的定义要求事件发生的间隔是独立的,而指数分布的性质恰好满足了这一要求。

具体来说,如果事件之间的时间间隔满足参数为λ的指数分布,那么事件发生的次数就会满足参数为λ的泊松分布。

Poisson过程的数学表示可以使用随机变量N(t)来表示在时间段[0,t]内事件发生的次数。

应用随机过程第三章Poisson_过程剖析

应用随机过程第三章Poisson_过程剖析
设{N(t),t 0}是一个计数过程,且满足: (1) N(0)=0; (2)该过程是平稳独立增量过程; (3) 0, 当h 0时, P(N(t+h )-N(t)=1) h o(h); P(N(t+h )-N(t) 2) o(h).
将事件进行分解,再运用 (3)’.
计数过程、Poisson过程
定义 3.1
随机过程{N(t),t 0}称为计数过程,若N(t)表示 时间段[0,t]内某一事件A发生的次数,且满足 (1) N(t)取值为非负的整数; (2) 当s<t 时,N(s) N(t)且N(t) N(s)表示 (s,t]时间内事件A发生的次数.
定义 3.2
( pt )m pt 即 P(M(t)=m) e . m !
P(M(t)=m)= P(M(t)=m|N(t)=m+n) P(N(t)=m+n)
mn ( t ) m n t = Cn p (1 p ) e m+n (m n)! n =0 n ( (1 p ) t ) e t ( pt ) m m !n ! n =0 m n ( pt ) ( (1 p ) t ) e t m ! n =0 n! m ( pt ) e t e (1 p )t m ! m ( pt ) pt e . m ! n=0
(2)由Poisson过程的平稳独立增量性及N (1)的分布,得 P( N (4) N (3) 0 | N (3) N (2) 0) P( N (4) N (3) 0) P( N (1isson过程的平稳独立增量及N (t )的分布,得 P( N (4.5) N (0) 10, N (5.5) N (0) 20) P( N (4.5) N (0) 10, N (5.5) N (4.5) 10) P( N (4.5) N (0) 10) P( N (5.5) N (4.5) 10) P( N (4.5) 10) P( N (1) 10) (10 4.5)10 104.5 (10 1)10 101 e e 10! 10! 10 45 10 55 e . 2 (10!)

第三章 泊松(Poisson)过程

第三章 泊松(Poisson)过程
E[ N ( t )] t ,
DN (t ) Var[ N (t )] t
E[
N (t ) ]. t
泊松过程的强度等于单位长时间间隔内发生的事件 数目的均值.
基础部张守成 2014年6月18日星期三
(2)
协方差函数:
C N ( s, t ) mins, t , s, t 0.
基础部张守成 2014年6月18日星期三
(1) 7时至9时为t(2,4],则由非齐次泊松过程的 性质可得7时至9时乘车人数的数学期望为
E[ N (4) N (2)] m(4) m(2)
( t )dt
2
4
(200 400t )dt 1400dt
2 3
3
4
由于Wn Ti , 利用矩母函数容易证明
i 1
n
Wn ~ (n, ), 即Wn具有概率密度
t ( t )n 1 ,t 0 e fWn ( t ) ( n 1)! 0 , t 0
基础部张守成 2014年6月18日星期三
二、泊松过程的推广
由于 N ( s, t ) N ( t ) N ( s) ~ ( (t s )) , (1) E[ N (t ) N ( s )] Var[ N (t ) N ( s )] (t s ).
令 s 0, 根据假设 N (0) 0 可得
均值函数: 方差函数:
P Yn 2 0.4,P Yn 3 0.4, P Yn 4 0.1.
设X (t)表示 [0, t )时间内移民到该地的人口数, 求在五周内移民到该地人口数的的期望和方差.
X ( t ) Yn 是复合泊松过程, 解: 由Yn的分布律可得

2.6.1Poisson过程定义与性质

2.6.1Poisson过程定义与性质
Poisson 过程是一类特殊的计数过程,有很强的实际背景。 如果一个随机过程具有时间(或空间)上的均匀性(即时齐性) ,未来的变化与过去的变化没有关系(即独立增量性),并且 具有普通性,即该随机过程就是Poisson 过程.
2.6on 过程的有限维概率分布族、数字特征和 有限维特征函数族
下面求Poisson 过程的数字特征。
谢 谢!
2.6 Poisson 过程
Poisson 过程是一个理论上比较简单、而在实际中常被使 用的计算随机过程,它所描述的是考虑特定现象的发生 次数随时间变化的规律。
例如,电话交换台在某一段时间内来到的呼叫次数、放 射性裂变在某段时间内分裂出来的质子数、十字路口在 某一段时间内通过的车辆数、某服务站在一段时间内接 到的顾客数等,

第章 Poisson过程ppt课件

第章 Poisson过程ppt课件

(nk)!
k!(n n !k)! s k 1s n k,k0 ,1 ,2 , ,n .
精选课件
16
泊松过程的数字特征
均值函数 方差函数
N (t)E [N (t)]t
N 2(t)V ar[N (t)]t
自相关函数
R N (s,t) E [N (s)N (t)]
m in (s,t) 2 st s(t 1 ), (s t)
λ ο (3)存在λ 0 , 当 h 0 时, P { N ( t h ) N ( t) 1 } h ( h ) ,
ο (4)当 h 0 时, P { N ( t h ) N ( t) 2 } (h ) .
精选课件
10
Poisson过程的等价性(说明)
精选课件
11
Poisson过程定义的应用
证: (1) 因 {X1>t}={[0, t ]内事件A不出现} P{X1>t}=P{N(t)=0}=e-λt
F X 1 t 1 P X 1 t 1 e t , t 0 .
即X1 服从均值为1/λ的指数分布.
精选课件
21
(2) 由泊松过程的平稳独立增量性,有
P{X2>t|X1=s}=P{在(s, s+t ]内事件A不发生|X1=s }
(40.5)1 e40.5 (42)4 e42
1!
4!
0.0155
精选课件
8
事故的发生次数和保险公司接到的索赔数
若以N(t)表示[0,t]时间内发生事故的次数. Poisson过 程 {N(t),t 0}是很好的一种近似. 考虑保险公司每次 赔付都是1, 每月平均4次接到索赔要求,则一年中它 要付出的平均金额为多少?

随机过程第五章 Poisson过程

随机过程第五章  Poisson过程

第四节 更新过程
一、更新过程的定义及概念
1、定义
二、更新过程的均值函数 1、更新函数的定义
详细证明见本教材72页
定理4-12
三、更新方程
1、定义
定理4-14
例1:
四、极限定理和基本更新定理
1、定理4-15,设N={N(t),t≥0}为更新过程,则有 P(N(∞)=∞)=1
定理4-1的结论是合理的。事实上,由于Poisson过程 具有平稳独立增量,即过程在任何时刻都重新开始,所以 从任何时刻起,过程独立于先前发生的一切情况,且有与 原过程完全一样的分布,即过程是无记忆的。由于指数分 布具有无记忆性,因此,从直观上讲,到达时间间隔序列 服从指数分布是合理的。
二、等待时间服从卡方分布
• 所以,由式 • 和定理2-5,可知Sn的距母函数为:
• 而等式右边正是参数为n,λ的Γ分布的母距 函数,由母距函数的唯一定理,于是就证 明了Sn服从Γ分布。于是就得出下面的定理。
二、定理4-2
三、定理4-3
四、顺序统计量
五、定理4-4
例1:
六、定理4-5
例2:
第二节 非齐次Poisson过程和复合Poisson过程
注: 关于矩母函数的定义见下一页或参阅本教材P28
矩母函数
案例
二、定理4-2
1、伽马分布 • 伽玛分布是统计学中的一种连续概率函数, 包含两个参数α和β,其中α称为形状参数, β称为尺度参数。
• 假如,第n个事件到来的时刻Sn,也称为第n 个事件的等待时间,显然有
• • • •
若令S0=0,则 Sn=inf{t:t>Sn-1,Nt=n}, n≥1 用距母函数和订立2-5容易证明Sn~Γ(n,λ) 事实上,到达时间间隔序列{Xn}的距母函数 为:

第4讲第三章泊松过程

第4讲第三章泊松过程

k 1
n
et EDk E[eWk N (t) n](Dk 与N(t), Wk相互独立) k 1
n
et ED1 E[eWk N (t) n]
k 1
n
E(D1)et E[ eWk N (t) n]
k 1 n
E(D1)et E[
eUk ]
(根据定理3.4 )
k 1
E(D1)et E[ n eUk ] nE(D1)et E(eU1 ) k 1
注: 复合poisson过程 X(t)是包含泊松过程的一 个复合模型,通常不是泊松过程。
N (t)
定理3.6 设 X (t) 是Y复n ,t合 0泊松过程 n1
其中{N( t ),t≥0}是强度为λ的泊松过程,Yn,n=1, 2, …相互独立且同分布,则
1) {X( t ),t≥0 }是独立平稳、增量过程
P{N(s)=k | N(t)=n}, 0<k<n,0<s<t
证明:
P{N(s)=k | N(t)=n}
PN (s) k, N (t) n
P{N (t) n}
PN (s) k, N (t) N (s) n k
P{N (t) n}
PN (s) k PN (t) N (s) n k
当过程的到达率随时间而变化, 此假设就不合理 了.
若过程的增量平稳条件不满足,到达率随时间改变, 设到达率为时间函数λ( t ),则引入非齐次泊松过程概念:
定义:如果计数过程满足下列条件 1)N(0)=0; 2){N( t ),t≥0 }是一个独立增量过程;
3) P{N(t t) N(t) 1} (t)t o(t);
N (t)
iu Yk E e k 1

第4章 Poisson过程

第4章 Poisson过程

Fn t P X n t 1 et ,
t 0.
故Xn与X1 ,… Xn-1相互独立,且Xn也服从均值为1/λ的
指数布.
23
注 (1) 上述定理的结果应该在预料之中,因为泊
松过程有平稳增量,过程在任何时刻都“重新开
始”,这恰好就是“无记忆性”的体现,正好与指
数分布的“无记忆性”是对应的.
第 4章

Poisson过程
4.1 Poisson过程 4.2 与Poisson过程相联系的若干分布 4.3 Poisson过程的推广 4.4 更新过程
1
法国数学家 . 1781年6月21日生于法国卢瓦 雷省的皮蒂维耶,1840年4月25日卒于法国索镇.
1798年入巴黎综合工科学校深造. 在毕业时, 因优秀的研究论文而被指定为讲师, 受到拉普拉 斯、拉格朗日的赏识.
e
k

而取各个值的概率为
P{ X k}
k e
k!
, k 0, 1, 2, ( 0为常数)
则随机变量X 服从参数为 的泊松分布,简记为P()。
E( X ) ,
D( X )
4
复习
5
4.1 Poisson过程
计数过程
随机过程{N(t),t≥0}称为计数过程,如果N(t) 表示从0到 t 时刻某一特定事件A发生的次数,它
故 X(t)服从均值为 t 的泊松分布。
25
例题
早上 8:00开始有无穷多个人排队等候服务,只有 一名服务员,每个接受服务的时间是独立的服从均值为 20min的指数分布。那么,中午12: 00为止平均多少人 已离去,已有9个人接受服务的概率是多少? 解: 离去的人数{ N ( t )}是强度为3的Poisson过程(小时
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 Poisson 过程教学目的:(1)了解计数过程的概念; (2)掌握泊松过程两种定义的等价性;(3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布;(4)了解泊松过程的三种推广。

教学重点:(1)泊松过程两种定义的等价性;(2)泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布;(3)泊松过程的三种推广。

教学难点:(1)泊松过程两种定义的等价性的证明; (2)泊松过程来到时刻的条件分布; (3)泊松过程的推广。

3.1 Poisson 过程教学目的:掌握Poisson 过程的定义及等价定义;会进行Poisson 过程相关的概率的计算。

教学重点:Poisson 过程的定义与其等价定义等价性的证明;Poisson 过程相关的概率的计算。

教学难点:Poisson 过程的定义与其等价定义等价性的证明。

Poisson 过程是一类重要的计数过程,先给出计数过程的定义定义3.1:{(),0}N t t ≥随机过程称为计数过程,如果()0N t t 表示从到时刻 某一A 特定事件发生的次数,它具备以下两个特点: (1)()N t 取值为整数;(2)()()()-()(,]s t N s N t N t N s s t <≤时,且表示时间A 内事件发生的次数。

计数过程有着广泛的应用,如:某商店一段时间内购物的顾客数;某段时 间内电话转换台呼叫的次数;加油站一段时间内等候加油的人数等。

如果在不相交的时间区间中发生的事件个数是独立的,则称该计数过程有独立增量。

即当123,t t t <<2132()-()()-()X t X t X t X t 有与是独立的。

若在任一时间区间中的事件个数的分布只依赖于,时间区间的长度则计数 过程有平稳增量。

即对一切12120(,]t t s t s t s <>++及,在中事件个数 21()()N t s N t s +-+12(,]t t 与区间中事件的个数21()()N t N t -有相同的分布。

Poission 过程是计数过程,而且是一类最重要、应用广泛的计数过程,它最早于1837年由法国数学家Poission 引入。

.独立增量和平稳增量是某些级数过程的主要性质Poisson 过程是具有独立增量.和平稳增量的计数过程定义3.2:{(),0}(0)N t t λλ≥>计数过程称为参数为Poisson 过程,如果 (1)(0)0N =;(2)过程具有独立增量; (3),0,s t ≥对任意的(()-())P N t s N s n +=!ntt en λλ-=()例3.1:3/h 设顾客到达商店依次人的平均速度到达,Poisson 且服从分布, 9:00,已知商店上午开门试求(1)9:0010:005从到这一小时内最多有名顾客的概率?(2)9:3011:30到时仅到一位顾客,而到时总计已达到5位顾客的概率?(解:见板书。

)注:(1)Poisson 过程具有平稳增量。

(2)随机变量()N t 服从参数为t λ的Poisson 分布,故[()]E N t t λ=(显然,可以认为λ是单位时间内事件发生的平均次数,称λ是Poisson 过程的强度或速率或发生率。

)(3)0lim (()-()0)t P N t s N s +→+=0lim 1()tt e t o t λλ+-→==-+ 0lim (()-()1)t P N t s N s +→+=0lim ()t t te t o t λλλ+-→==+ 0lim (()-()2)()t P N t s N s o t +→+≥=(让同学们通过讨论来解释这几个极限结果的实际意义,适当引导学生结合实际并应用二项分布与Poisson 分布之间的关系来解释这3个极限。

),根据稀有事件原理在概率论中我们已经学到:,Bernoulli 试验中,每次试验成功的概率很小而,实验的次数很多时二项.Poisson 分布会逼近分布.这一现象也体现在随机过程中(0,]t 首先,将划分为 n 个相等的时间小区间,则由(4)'n →∞条件可知,当时,在每个小区间内事件220.→发生次或次以上的概率事件发生一次的概(),,tp h p nλλ≈⋅=率显然很小1这恰好是次.Bernoulli 试验1,,其中发生次为成功不发生的为失败再由(2)'给出 ,()N t n 的平稳增量就相当于次独立Bernoulli 试验中试验成功的总次数。

由()Poisson N t 分布的二项逼近可知,将服从t Poisson λ参数为的分布。

(让学生讨论如何判断一个计数过程是不是Poisson 过程,则必须验证是否满足(1)——(3),条件(1)说明计数过程从0开始,条件(2)通常可以从我么对过程的实际情况去直接验证,然而条件(3)一般完全不清楚,如何去判断?是否可以从我们所得到的Poisson 过程的这三条性质来判断定义中的条件(3)是否成立?接下来就证明计数过程满足Poisson 过程定义中的条件(1)和(2)及这里的性质的时候,该计数过程是一个Poisson 过程。

于是得到Poisson 过程的等价定义)定义3.2’: 一计数过程{(),0}N t t ≥λ称为参数为Poisson 的过程,若满足:(1)'(0)0N =;(2)'是独立增量及平稳增量过程,即任取120,n t t t n N <<<<∈,1211()(0),()(),,()()n n N t N N t N t N t N t ----相互独立;,0,0,{()()}{()}s t n P N s t N t n P N t n ∀>≥+-===且 (3)'0,0,t h >>对任意和充分小的有{()()1}()P N t h N t h h λο+-==+(4)'0,0,t h >>对任意和充分小的有{()()2}()P N t h N t h ο+-≥=定理3.1: 3.2 3.2'定义与定义是等价的。

证明: 3.2' 3.2⇒定义定义由增量平稳性,记:(){()}{()()}n P t P N t n P N s t N s n ===+-= (I )0n =情形:因为{()0}{()0,()()0},0N t h N t N t h N t h +===+-=>我们有:0(){()0,()()0}P t h P N t N t h N t +==+-=00={()0}{()()0}()()P N t P N t h N t P t P h =+-==另一方面0(){()()0}1(())P h P N t h N t h h λο=+-==-+代入上式,我们有:000()()()()P t h P t h P t h h ολ+-⎛⎫=-+ ⎪⎝⎭令0h →我们有:0000()()()(0){(0)0}1t P t P t P t e P P N λλ-'=-⎧⇒=⎨===⎩ (II )0n >情形:因为:{()}{(),()()0}N t h n N t n N t h N t +===+-={()1,()()1}N t n N t h N t =-+-=2{(),()()}n l N t n l N t h N t l =⎡⎤=-+-=⎢⎥⎣⎦故有:1()()(1())()(())()n n n P t h P t h h P t h h h λολοο-+=--+++化简并令0h →得:1()()()n n n P t P t P t λλ-'=-+两边同乘以t e λ,移项后有:1()()(0){(0)}0t tn n nd e P t e P t dt P P N n λλλ-⎧⎡⎤=⎪⎣⎦⎨⎪===⎩ 当1n =时,有:111(),(0)0()()t td e P t P P t t e dtλλλλ-⎡⎤==⇒=⎣⎦ 由归纳法可得:0()(),!n tn t P t e n N n λλ-=∈注意:{()}{()}E N t E N t t tλλ=⇒=,因此λ代表单位时间内事件A 出现的平均次数。

3.2 3.2'⇒定义定义{()()1}P N t h N t +-={()(0)1}P N h N =-=1()1!hh eλλ-= 0()!nn h h n λλ∞=-=∑(1())h h o h λλ=-+()h o h λ=+--------(3)'——成立。

{()()2}P N t h N t +-≥{()(0)2}P N h N =-≥2()!nhn h en λλ∞-==∑ 2()!n hn h en λλ∞-==∑0()[1]!n hn h e h n λλλ∞-==--∑[1]h h e e h λλλ-=-- 1h h e he λλλ--=--()h ο=---------------------------(4)'——成立。

例3.2:{()0},N t t Poisson λ≥设,服从强度为的过程求(1{(5)4};P N =)(2{(5)4,(7.5)6,(12)9};P N N N ===)(3{(2)9|(5)4}.P N N ==)例3.3:A Poisson λ事件的发生形成强度为的过程{(),0},N t t ≥如果每次事件P 发生时以概率能够被记()M t t 录下来,并以表示时刻记录下来的事件总数,则 {(),0}M t t P Poisson λ≥是一个强度为的过程。

例3.4:,某商场为调查顾客到来的客源情况考察了男女.顾客来商场的人数假设男女顾客到达商场的人数分12Poisson 别是独立服从每分钟人与每分钟人的过程。

(1)到达商场顾客的总人数应该服从什么分布?(2)50,30t 已知时刻已有人到达的条件下问其中有位是女性顾客的概率有多大?平均有多少女性顾客?作业1:Poisson 设通过某十字路口的车流可以看做过程,1如果分钟内没有车 0.2.辆通过的概率为121()求分钟内有多于辆车通过的概率。

(2)5在分钟内平均通过的车辆数。

35()在分钟内平均通过的车辆数方差。

45()在分钟内至少有一辆车通过的概率。

3.2 Poisson 过程相联系的若干分布教学目的:掌握n X 和n T 的分布;理解事件发生时刻的条件分布。

教学重点:n X ,n T 的分布;事件发生时刻的条件分布。

教学难点:事件发生时刻的条件分布。

{(),0}Poisson N t t ≥过程的一条样本路径一般是1跳跃度为的阶梯型函数。

相关文档
最新文档