初一数学第十一章一元一次不等式单元测试题及标准答案

合集下载

苏科版七年级下册数学第11章《一元一次不等式》单元测试卷 附答案

苏科版七年级下册数学第11章《一元一次不等式》单元测试卷 附答案

苏科版七年级数学下册第11章《一元一次不等式》单元测试卷(满分120分)班级__________姓名__________学号__________成绩__________一.选择题(共10小题,满分30分,每小题3分)1.下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个2.下列各式中,是一元一次不等式的是()A.5+4>8B.2x﹣1C.2x≤5D.﹣3x≥03.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<05.下列不等式组是一元一次不等式组的是()A.B.C.D.6.以下说法中正确的是()A.若a>|b|,则a2>b2B.若a>b,则<C.若a>b,则ac2>bc2D.若a>b,c>d,则a﹣c>b﹣d7.有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天共读了100页,从第6天起的后5天中每天要至少读多少页?设从第6天起每天要读x页,根据题意得不等式为()A.5×100+5x>300B.5×100+5x≥300C.100+5x>300D.100+5x≥3008.把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x名同学,可列不等式7(x+4)>11x.A.每人分7本,则剩余4本B.每人分7本,则剩余的书可多分给4个人C.每人分4本,则剩余7本D.其中一个人分7本,则其他同学每人可分4本9.在方程组中,若未知数x,y满足x+y>0,则m的取值范围在数轴上的表示应是如图所示的()A.B.C.D.10.某企业决定购买A,B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)1210月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?为解决这个问题,设购买A型污水处理设备x台,所列不等式组正确的是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.一种药品的说明书上写着:“每日用量60~120mg,分4次服用”,一次服用这种药量x (mg)范围为mg.12.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.13.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,请列出以后几天平均每天至少要完成的土方数x应满足的不等式为.14.有甲、乙、丙三个同学在一起讨论一个一元一次不等式组,他们各说出该不等式组的一个性质:甲:它的所有的解为非负数;乙:其中一个不等式的解集为x≤8;丙:其中一个不等式在解的过程中需要改变不等号的方向.请试着写出符合上述条件的一个不等式组.15.若关于x的不等式组有2个整数解,则a的取值范围是.16.如图所示的是一个运算程序:若需要经过两次运算才能输出结果,则输入的x的取值范围是.三.解答题(共7小题,满分66分)17.(8分)解不等式方程组:.18.(9分)已知不等式组(1)用在数轴上画图的方式说明这个不等式组无解;(2)在不等式组的括号里填一个数,使不等式组有解,直接写出它的解集和整数解.19.(9分)已知关于x的不等式组(1)若a=2,求这个不等式组的解集;(2)若这个不等式组的整数解有3个,求a的取值范围.20.(8分)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2.又∵x>1,∴y+2>1.即y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围.21.(10分)某工厂现有甲种原料3600kg,乙种原料2410kg,计划利用这两种原料生产A,B两种产品共500件,产品每月均能全部售出.已知生产一件A产品需要甲原料9kg和乙原料3kg;生产一件B种产品需甲种原料4kg和乙种原料8kg.(1)设生产x件A种产品,写出x应满足的不等式组.(2)问一共有几种符合要求的生产方案?并列举出来.(3)若有两种销售定价方案,第一种定价方案可使A产品每件获得利润1.15万元,B 产品每件获得利润1.25万元;第二种定价方案可使A和B产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)22.(10分)定义:对于任何数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.(1)[﹣]=;(2)如果[a]=3,那么a的取值范围是;(3)如果[]=﹣3,求满足条件的所有整数x.23.(12分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.2.解:A、不含有未知数,错误;B、不是不等式,错误;C、符合一元一次不等式的定义,正确;D、分母含有未知数,是分式,错误.故选:C.3.解:不等式组的解集在数轴上表示为:,故选:D.4.解:如图可知,A、a<0,b>0,∴b>a,错误;B、a<0,b>0,∴ab<0,错误;C、a<﹣1,0<b<1,∴a+b<0,错误;D、正确.故选:D.5.解:A、不是一元一次不等式组,故本选项不符合题意;B、是一元一次不等式组,故本选项符合题意;C、不是一元一次不等式组,故本选项不符合题意;D、不是一元一次不等式组,故本选项不符合题意;故选:B.6.解:A、若a>|b|,则a2>b2,正确;B、若a>b,当a=1,b=﹣2,时则>,错误;C、若a>b,当c2=0时则ac2=bc2,错误;D、若a>b,c>d,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a﹣c=b﹣d,错误;故选:A.7.解:依题意有100+5x≥300.故选:D.8.解:由不等式7(x+4)>11x,可得,把一些书分给几名同学,若每人分7本,则可多分4个人;若每人分11本,则有剩余;故选:B.9.解:,①+②得,3(x+y)=3﹣m,解得x+y=1﹣,∵x+y>0,∴1﹣>0,解得m<3,在数轴上表示为:.故选:B.10.解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵每日用量60~120mg,分4次服用,∴60÷4=15(mg/次),120÷4=30(mg/次),故答案是:15mg≤x≤30.12.解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0∴原不等式化为:﹣2x﹣1>5解得x<﹣3.故答案为:x<﹣3.13.解:由题意,列出不等关系x(6﹣1﹣2)+60≥300,化简得3x≥300﹣60.14.解:∵一元一次不等式组的解集为非负数,∴其中一个不等式的解集必为x≥0,∵一个不等式在解的过程中需要改变不等号的方向,∴其中一个不等式中x的系数为负数,∴符合条件的一元一次不等式组可以为:(答案不唯一).故答案为:(答案不唯一).15.解:解不等式得:x≤2,解不等式得:x>a,∵不等式组有2个整数解,∴不等式组的解集为:a<x≤2,且两个整数解为:2,1,∴0≤a<1,即a的取值范围为:0≤a<1.故答案为:0≤a<1.16.解:根据题意得:,解得:1≤x<7.故答案为1≤x<7.三.解答题(共7小题,满分66分)17.解:由①得2x+x<3+6,3x<9x<3;由②得14x﹣5x≤﹣89x≤﹣8x≤﹣.由以上可得x≤﹣.18.解:(1)∵解不等式①得:x≥2,解不等式②得:x<﹣1,在数轴上表示不等式的解集为:从数轴可以看出:两不等式的解集没有公共部分,∴不等式组无解;(2)不等式组为:,不等式组的解集为2≤x≤4,不等式组的整数解为2,3,4.19.解:(1)解不等式①,得x≤6﹣a,解不等式②,得x>﹣2,当a=2时,不等式组的解集是﹣2<x≤4.(2)因为该不等式组的整数解有3个,所以这三个整数解应是﹣1,0,1,所以1≤6﹣a<2,所以a的取值范围是4<a≤5.20.解:∵x﹣y=3,∴x=y+3.又∵x>2,∴y+3>2.即y>﹣1.又∵y<1,∴﹣1<y<1.…①同理得:2<x<4.…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5.21.解:(1)由题意.(2)解第一个不等式得:x≤320,解第二个不等式得:x≥318,∴318≤x≤320,∵x为正整数,∴x=318、319、320,500﹣318=182,500﹣319=181,500﹣320=180,∴符合的生产方案为①生产A产品318件,B产品182件;②生产A产品319件,B产品181件;③生产A产品320件,B产品180件;(3)第一种定价方案下:①的利润为318×1.15+182×1.25=593.2(万元),②的利润为:319×1.15+181×1.25=593.1(万元)③的利润为320×1.15+180×1.25=593(万元)第二种定价方案下:①②③的利润均为500×1.2=600(万元),综上所述,第二种定价方案的利润比较多.22.解:(1)[﹣]=﹣4,故答案为:﹣4;(2)如果[a]=3,那么a的取值范围是3≤x<4,故答案为:3≤x<4;(3)由题意得﹣3≤<﹣2,解得:﹣3≤x<﹣,∴满足条件的所有整数x的值为﹣3、﹣2.23.解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m 当m=80时,w始终等于8000,取值与a无关.1、读书破万卷,下笔如有神。

苏科版七年级下册数学第11章 一元一次不等式 含答案

苏科版七年级下册数学第11章 一元一次不等式 含答案

苏科版七年级下册数学第11章一元一次不等式含答案一、单选题(共15题,共计45分)1、不等式的整数解的个数是( )A.1个B.3个C.2个D.4个2、的2倍不大于3与的差的一半,将其表示成不等式为()A. B. C. D.3、不等式3x+10≤1的解集在数轴上表示正确的是()A. B. C.D.4、不等式≤的正整数解有()A.1个B.2个C.3个D.4个5、已知x=2是不等式的解,且x=1不是这个不等式的解,则实数a的取值范围是()A.a>1B.a≤2C.1<a≤2D.1≤a≤26、某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折7、若整数同时满足不等式与,则该整数x是()A.1B.2C.3D.2和38、如果一元一次不等式组的解集为>3.则a的取值范围是: ( )A.a>3B.a≥3C.a≤3D.a<39、如图,函数和的图象相交于点,则不等式的解集为( )A. B. C. D.10、已知a、b、c都是实数,则关于三个不等式:a>b、a>b+c、c<0的逻辑关系的表述,下列正确的是( ) .A.因为a>b、c<0所以a>b+cB.因为a>b+c,c<0,所以a>bC.因为a>b+c,所以a>b,c<0D.因为a>b、a>b+c,所以c <011、把不等式组的解集表示在数轴上,下列选项不符合题意的是()A. B. C. D.12、在函数中,自变量x的取值范围是()A. x≥1B. x≥﹣1C. x≤1D. x≤﹣113、如图1为图2中三角柱ABCEFG的展开图,其中AE,BF,CG,DH是三角柱的边.若图1中,AD=10,CD=2,则下列何者可为AB长度?()A.2B.3C.4D.514、已知关于x的不等式(1-a)x>1的解集为x< ,则a的取值范围是( )A.a≥1B.0≤a<1C.a>1D.0<a≤115、若,则下列不等式成立的是()A. B. C. D.二、填空题(共10题,共计30分)16、不等式1<x<4的整数解为________.17、不等式组的解集是________.18、等式组的解集是x>4,那么m的取值范围是________19、 m的3倍与n的和不大于5,列不等式为________.20、当x<a<0时,x2与ax的大小关系是x2 ________ax.21、苹果的进价为每kg3.8元,销售中估计有5%的苹果正常损耗,为避免亏本,商家把售价应该至少定为每kg________元.22、不等式组的解集为________.23、不等式2x﹣1>3的解集为________24、若关于x的分式方程=的解为非负数,则a的取值范围是________.25、不等式组的解集是________.三、解答题(共5题,共计25分)26、解方程组、不等式(组)(1)(2)(3)(4)(在数轴上表示解集并写出符合的整数解)27、解不等式组,并将解集在数轴上表示出来.28、把一部分书分给几名同学,如果每人分3本,则余8本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有多少本?共有多少人?29、解不等式组,并把它的解集在数轴上表示出来.30、先化简,再求值:,其中实不等x式的非正整数解.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、B5、C6、B7、B8、C9、A11、B12、A13、C14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、29、。

苏科版七年级下册数学第11章《一元一次不等式》单元测试卷-附答案

苏科版七年级下册数学第11章《一元一次不等式》单元测试卷-附答案

苏科版七年级数学下册第11章《一元一次不等式》单元测试卷(满分120分)班级__________姓名__________学号__________成绩__________一.选择题(共10小题,满分30分,每小题3分)1.下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个2.下列各式中,是一元一次不等式的是()A.5+4>8B.2x﹣1C.2x≤5D.﹣3x≥03.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<05.下列不等式组是一元一次不等式组的是()A.B.C.D.6.以下说法中正确的是()A.若a>|b|,则a2>b2B.若a>b,则<C.若a>b,则ac2>bc2D.若a>b,c>d,则a﹣c>b﹣d7.有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天共读了100页,从第6天起的后5天中每天要至少读多少页?设从第6天起每天要读x页,根据题意得不等式为()A.5×100+5x>300B.5×100+5x≥300C.100+5x>300D.100+5x≥3008.把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x名同学,可列不等式7(x+4)>11x.A.每人分7本,则剩余4本B.每人分7本,则剩余的书可多分给4个人C.每人分4本,则剩余7本D.其中一个人分7本,则其他同学每人可分4本9.在方程组中,若未知数x,y满足x+y>0,则m的取值范围在数轴上的表示应是如图所示的()A.B.C.D.10.某企业决定购买A,B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)1210月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?为解决这个问题,设购买A型污水处理设备x台,所列不等式组正确的是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.一种药品的说明书上写着:“每日用量60~120mg,分4次服用”,一次服用这种药量x(mg)范围为mg.12.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.13.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,请列出以后几天平均每天至少要完成的土方数x应满足的不等式为.14.有甲、乙、丙三个同学在一起讨论一个一元一次不等式组,他们各说出该不等式组的一个性质:甲:它的所有的解为非负数;乙:其中一个不等式的解集为x≤8;丙:其中一个不等式在解的过程中需要改变不等号的方向.请试着写出符合上述条件的一个不等式组.15.若关于x的不等式组有2个整数解,则a的取值范围是.16.如图所示的是一个运算程序:若需要经过两次运算才能输出结果,则输入的x的取值范围是.三.解答题(共7小题,满分66分)17.(8分)解不等式方程组:.18.(9分)已知不等式组(1)用在数轴上画图的方式说明这个不等式组无解;(2)在不等式组的括号里填一个数,使不等式组有解,直接写出它的解集和整数解.19.(9分)已知关于x的不等式组(1)若a=2,求这个不等式组的解集;(2)若这个不等式组的整数解有3个,求a的取值范围.20.(8分)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2.又∵x>1,∴y+2>1.即y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围.21.(10分)某工厂现有甲种原料3600kg,乙种原料2410kg,计划利用这两种原料生产A,B两种产品共500件,产品每月均能全部售出.已知生产一件A产品需要甲原料9kg和乙原料3kg;生产一件B 种产品需甲种原料4kg和乙种原料8kg.(1)设生产x件A种产品,写出x应满足的不等式组.(2)问一共有几种符合要求的生产方案?并列举出来.(3)若有两种销售定价方案,第一种定价方案可使A产品每件获得利润1.15万元,B产品每件获得利润1.25万元;第二种定价方案可使A和B产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)22.(10分)定义:对于任何数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.(1)[﹣]=;(2)如果[a]=3,那么a的取值范围是;(3)如果[]=﹣3,求满足条件的所有整数x.23.(12分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.2.解:A、不含有未知数,错误;B、不是不等式,错误;C、符合一元一次不等式的定义,正确;D、分母含有未知数,是分式,错误.故选:C.3.解:不等式组的解集在数轴上表示为:,故选:D.4.解:如图可知,A、a<0,b>0,∴b>a,错误;B、a<0,b>0,∴ab<0,错误;C、a<﹣1,0<b<1,∴a+b<0,错误;D、正确.故选:D.5.解:A、不是一元一次不等式组,故本选项不符合题意;B、是一元一次不等式组,故本选项符合题意;C、不是一元一次不等式组,故本选项不符合题意;D、不是一元一次不等式组,故本选项不符合题意;故选:B.6.解:A、若a>|b|,则a2>b2,正确;B、若a>b,当a=1,b=﹣2,时则>,错误;C、若a>b,当c2=0时则ac2=bc2,错误;D、若a>b,c>d,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a﹣c=b﹣d,错误;故选:A.7.解:依题意有100+5x≥300.故选:D.8.解:由不等式7(x+4)>11x,可得,把一些书分给几名同学,若每人分7本,则可多分4个人;若每人分11本,则有剩余;故选:B.9.解:,①+②得,3(x+y)=3﹣m,解得x+y=1﹣,∵x+y>0,∴1﹣>0,解得m<3,在数轴上表示为:.故选:B.10.解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵每日用量60~120mg,分4次服用,∴60÷4=15(mg/次),120÷4=30(mg/次),故答案是:15mg≤x≤30.12.解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0∴原不等式化为:﹣2x﹣1>5解得x<﹣3.故答案为:x<﹣3.13.解:由题意,列出不等关系x(6﹣1﹣2)+60≥300,化简得3x≥300﹣60.14.解:∵一元一次不等式组的解集为非负数,∴其中一个不等式的解集必为x≥0,∵一个不等式在解的过程中需要改变不等号的方向,∴其中一个不等式中x的系数为负数,∴符合条件的一元一次不等式组可以为:(答案不唯一).故答案为:(答案不唯一).15.解:解不等式得:x≤2,解不等式得:x>a,∵不等式组有2个整数解,∴不等式组的解集为:a<x≤2,且两个整数解为:2,1,∴0≤a<1,即a的取值范围为:0≤a<1.故答案为:0≤a<1.16.解:根据题意得:,解得:1≤x<7.故答案为1≤x<7.三.解答题(共7小题,满分66分)17.解:由①得2x+x<3+6,3x<9x<3;由②得14x﹣5x≤﹣89x≤﹣8x≤﹣.由以上可得x≤﹣.18.解:(1)∵解不等式①得:x≥2,解不等式②得:x<﹣1,在数轴上表示不等式的解集为:从数轴可以看出:两不等式的解集没有公共部分,∴不等式组无解;(2)不等式组为:,不等式组的解集为2≤x≤4,不等式组的整数解为2,3,4.19.解:(1)解不等式①,得x≤6﹣a,解不等式②,得x>﹣2,当a=2时,不等式组的解集是﹣2<x≤4.(2)因为该不等式组的整数解有3个,所以这三个整数解应是﹣1,0,1,所以1≤6﹣a<2,所以a的取值范围是4<a≤5.20.解:∵x﹣y=3,∴x=y+3.又∵x>2,∴y+3>2.即y>﹣1.又∵y<1,∴﹣1<y<1.…①同理得:2<x<4.…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5.21.解:(1)由题意.(2)解第一个不等式得:x≤320,解第二个不等式得:x≥318,∴318≤x≤320,∵x为正整数,∴x=318、319、320,500﹣318=182,500﹣319=181,500﹣320=180,∴符合的生产方案为①生产A产品318件,B产品182件;②生产A产品319件,B产品181件;③生产A产品320件,B产品180件;(3)第一种定价方案下:①的利润为318×1.15+182×1.25=593.2(万元),②的利润为:319×1.15+181×1.25=593.1(万元)③的利润为320×1.15+180×1.25=593(万元)第二种定价方案下:①②③的利润均为500×1.2=600(万元),综上所述,第二种定价方案的利润比较多.22.解:(1)[﹣]=﹣4,故答案为:﹣4;(2)如果[a]=3,那么a的取值范围是3≤x<4,故答案为:3≤x<4;(3)由题意得﹣3≤<﹣2,解得:﹣3≤x<﹣,∴满足条件的所有整数x的值为﹣3、﹣2.23.解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m当m=80时,w始终等于8000,取值与a无关.精品word 完整版-行业资料分享1、读书破万卷,下笔如有神。

第11章《一元一次不等式》单元测试及答案

第11章《一元一次不等式》单元测试及答案

第11章《一元一次不等式》单元测试一、填空1.用“>”或“<”填空:(1)若a>b,则a+c b+c;(2)若m+2<n+2,则m﹣4n﹣4;(3)若b>﹣1,则b+10;(4)若a<b,则﹣3a﹣3b;(5)若>,则a b;(6)若a<b,则﹣2a+1﹣2b+1.2.判断下列各题的推导是否正确,并说明理由.(1)因为7.5>5.7,所以﹣7.5<﹣5.7;(2)因为a+8>4,所以a>﹣4;(3)因为4a>4b,所以a>b;(4)因为﹣1>﹣2,所以﹣a﹣1>﹣a﹣2.3.写出使下列推理成立的条件.(1)4m>2m:;(2)如果a>b,那么ac<bc:;(3)如果a>b,那么ac2>bc2:;(4)如果ax<b,那么x>:.4.若a>b,c<0,用“>”或“<”填空:(1)a+3b+1;(2)﹣a﹣b;(3)ac2bc2;(4).5.若是一元一次不等式,则m=.6.不等式x﹣1≥﹣3的解集为,其中不等式的负整数解为.7.不等式3(x+1)≥5x﹣3的正整数解是.8.若不等式(2k+1)x<2k+1的解集是x>1,则k的范围是.9.解不等式:2(x+1)﹣3(x+2)<0;并把解集在数轴上表示出来.二、选择10.下列不等式变形正确的是()A.由4x﹣1>2,得4x>1 B.由5x>3,得x>C.由>0,得y>2 D.由﹣2x<4,得x>﹣211.若a<b<0,则下列式子:①a+1<b+2;②>1;③a+b<ab;④<中,正确的有()A.1个B.2个C.3个D.4个12.若不等式ax>b的解集是x>,则a的范围是()A.a≥0B.a≤0C.a>0 D.a<0三、解答13.根据不等式的性质,把下列不等式化为“x>a”或“x<a”的形式,并说出每次变形的依据.(1)x+3<﹣2;(2)x>﹣1;(3)7x>6x﹣4;(4)﹣x﹣1<0.14.(1)甲在不等式﹣10<0的两边都乘﹣1,竟得到10<0!为什么?(2)乙在不等式2x>5x两边同除以x,竟得到2>5!又是为什么?(3)你能利用不等式的性质将不等式“a>b”变形为“b<a”吗?试试看.15.一辆12个座位的汽车上已有4名乘客,到一个站后又上来x个人,车上仍有空位,可以得到怎样的不等式?并判断x的取值范围.16.比较两个数的大小可以通过它们的差来判断.例如要比较a和b的大小,那么:当a﹣b>0时,一定有a>b;当a﹣b=0时,一定有a=b;当a﹣b<0时,一定有a<b.反之也成立.因此,我们常常将要比较的两个数先作差计算,再根据差的符号来判断这两个数的大小.根据上述结论,试比较x4+2x2+2与x4+x2+2x的大小关系.17.下面是解不等式的部分过程,如果错误,说明错误原因并改正;如果正确,说明理由.(1)由2x>﹣4,得x<﹣2;(2)由16x﹣8>32﹣24x,得2x﹣1>4﹣3x;(3)由﹣3x>12,得x<﹣4.18.解下列不等式,并把解集在数轴上表示出来:(1)7+x>3;(2)x<1;(3)4+3x>6﹣2x.19.解答下列各题:(1)x取何值时,代数式3x+2的值不大于代数式4x+3的值?(2)当m为何值时,关于x的方程x﹣1=m的解不小于3?(3)求不等式2x﹣3<5的最大整数解.20.某辆汽车油箱中原有油60L,汽车每行驶1km耗油0.08L,请你估计行驶多少千米后油箱中的油少于20L.21.小丽在学了这节内容后,总结出:解一元一次不等式,就是利用不等式的性质把所要求的不等式转化为“x>a”或“x<a”的形式.你同意小丽的观点吗?请自编、自解一个一元一次不等式,再体会小丽的说法.参考答案与试题解析一、填空1.用“>”或“<”填空:(1)若a>b,则a+c>b+c;(2)若m+2<n+2,则m﹣4<n﹣4;(3)若b>﹣1,则b+1>0;(4)若a<b,则﹣3a>﹣3b;(5)若>,则a>b;(6)若a<b,则﹣2a+1>﹣2b+1.【考点】不等式的性质.【分析】(1)根据不等式的性质1,进而得出答案;(2)根据不等式的性质1,进而得出答案;(3)根据不等式的性质1,进而得出答案;(4)根据不等式的性质2,进而得出答案;(5)根据不等式的性质2,进而得出答案;(6)根据不等式的性质2,进而得出答案.【解答】解:(1)若a>b,则a+c>b+c;(2)若m+2<n+2,则m﹣4<n﹣4;(3)若b>﹣1,则b+1>0;(4)若a<b,则﹣3a>﹣3b;(5)若>,则a>b;(6)若a<b,则﹣2a+1>﹣2b+1.故答案为:(1)>;(2)<;(3)>;(4)>;(5)>;(6)>.【点评】此题主要考查了不等式的性质,正确把握不等式的性质是解题关键.2.判断下列各题的推导是否正确,并说明理由.(1)因为7.5>5.7,所以﹣7.5<﹣5.7;(2)因为a+8>4,所以a>﹣4;(3)因为4a>4b,所以a>b;(4)因为﹣1>﹣2,所以﹣a﹣1>﹣a﹣2.【考点】不等式的性质.【分析】(1)根据不等式的性质2,进而得出答案;(2)根据不等式的性质1,进而得出答案;(3)根据不等式的性质2,进而得出答案;(4)根据不等式的性质1,进而得出答案.【解答】解:(1)因为7.5>5.7,所以﹣7.5<﹣5.7,正确,利用不等式两边同乘以一个负数不等号的方向改变;(2)因为a+8>4,所以a>﹣4,正确,利用不等式两边同加上或减去同一个数不等号的方向不变;(3)因为4a>4b,所以a>b;正确,利用不等式两边同除以一个数不等号的方向不变;(4)因为﹣1>﹣2,所以﹣a﹣1>﹣a﹣2,正确,利用不等式两边同加上或减去同一个数不等号的方向不变.【点评】此题主要考查了不等式的性质,正确把握不等式的性质是解题关键.3.写出使下列推理成立的条件.(1)4m>2m:m>0;(2)如果a>b,那么ac<bc:c<0;(3)如果a>b,那么ac2>bc2:c≠0;(4)如果ax<b,那么x>:a<0.【考点】不等式的性质.【分析】(1)根据不等式的基本性质得出即可;(2)根据不等式的基本性质(不等式的两边都乘以同一个负数,不等号的方向要改变)得出即可;(3)根据不等式的基本性质(不等式的两边都乘以同一个正数,不等号的方向不发生变化)得出即可;(4)根据不等式的基本性质(不等式的两边都乘以同一个负数,不等号的方向要改变)得出即可.【解答】解:(1)当m>0时,4m>2m,故答案为:m>0;(2)∵a>b,c<0,∴ac<bc,故答案为:c<0;(3)当c≠0时,当a>b时,ac2>bc2,故答案为:c≠0;(4)当a<0时,∵ax<b,∴x>,故答案为:a<0【点评】本题考查了不等式的基本性质的应用,注意:不等式的基本性质是:①不等式的两边都加上或都减去同一个数或同一个整式,不等式的符号不改变;②不等式的两边都乘以同一个正数,不等号的方向不改变;③不等式的两边都乘以同一个负数,不等号的方向要改变.4.若a>b,c<0,用“>”或“<”填空:(1)a+3>b+1;(2)﹣a<﹣b;(3)ac2>bc2;(4)>.【考点】不等式的性质.【分析】(1)根据不等式的性质1,进而得出答案;(2)根据不等式的性质2,进而得出答案;(3)根据不等式的性质2,进而得出答案;(4)根据不等式的性质2,进而得出答案.【解答】解:(1)a+3>b+1;(2)﹣a<﹣b;(3)ac2 >bc2;(4)>.故答案为:(1)>,(2)<,(3)>,(4)>.【点评】此题主要考查了不等式的性质,正确把握不等式的性质是解题关键.5.若是一元一次不等式,则m=1.【考点】一元一次不等式的定义.【分析】根据一元一次不等式的定义,2m﹣1=1,求解即可.【解答】解:根据题意2m﹣1=1,解得m=1.故答案为:m=1.【点评】本题考查一元一次不等式定义的“未知数的最高次数为1次”这一条件.6.不等式x﹣1≥﹣3的解集为x≥﹣2,其中不等式的负整数解为﹣2,﹣1.【考点】一元一次不等式的整数解.【分析】首先移项,然后合并同类项即可解不等式,然后确定不等式的负整数解即可.【解答】解:移项,得:x≥﹣3+1,即x≥﹣2.则负整数解是:﹣2,﹣1.故答案是:x≥﹣2;﹣2,﹣1.【点评】本题考查了一元一次不等式的整数解,正确解不等式是关键.7.不等式3(x+1)≥5x﹣3的正整数解是1,2,3.【考点】一元一次不等式组的整数解.【专题】计算题.【分析】先求出不等式的解集,然后求其正整数解.【解答】解:∵不等式3(x+1)≥5x﹣3的解集是x≤3,∴正整数解是1,2,3.【点评】本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.8.若不等式(2k+1)x<2k+1的解集是x>1,则k的范围是k<﹣.【考点】解一元一次不等式.【专题】计算题.【分析】本题中不等式的解的不等号与原不等式的不等号正好相反,所以,2k+1<0,据此即可求得k的取值范围.【解答】解:∵不等式(2k+1)x<2k+1的解集是x>1,∴2k+1<0,∴k<﹣.【点评】本题考查的是不等式两边同除以一个负数时不等号的方向改变.9.解不等式:2(x+1)﹣3(x+2)<0;并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】去括号整理后,应把含x的项移到不等号的左边,移项及合并后两边都除以不等号的系数即可.【解答】解:去括号得,2x+2﹣3x﹣6<0,移项及合并得,﹣x<4,系数化为1,得x>﹣4.解集在数轴上表示为:【点评】本题需注意的知识点是:在不等式两边都除以一个负数时,应只改变不等号的方向,余下该怎么除还怎么除.二、选择10.下列不等式变形正确的是()A.由4x﹣1>2,得4x>1 B.由5x>3,得x>C.由>0,得y>2 D.由﹣2x<4,得x>﹣2【考点】不等式的性质.【分析】根据不等式的性质1,可判断A,根据不等式的性质2,可判断B、C,根据不等式的性质3,可判断D.【解答】解:A 4x﹣1>2,4x>3,故A错误;B 5x>3,x>,故B错误;C,y>0,故C错误;D﹣2x<4,x>﹣2,故D正确;故选:D.【点评】本题考查了不等式的性质,注意不等式的性质3,两边都乘或除以同一个负数,不等号的方向改变.11.若a<b<0,则下列式子:①a+1<b+2;②>1;③a+b<ab;④<中,正确的有()A.1个B.2个C.3个D.4个【考点】不等式的性质.【分析】根据不等式的基本性质判断.【解答】解:∵a<b∴a+1<b+1<b+2因而①一定成立;a<b<0即a,b同号.并且|a|>|b|因而②>1一定成立;④<一定不成立;∵a<b<0即a,b都是负数.∴ab>0 a+b<0∴③a+b<ab一定成立.正确的有①②③共有3个式子成立.故选C.【点评】本题比较简单的作法是用特殊值法,如令a=﹣3 b=﹣2代入各式看是否成立.12.若不等式ax>b的解集是x>,则a的范围是()A.a≥0B.a≤0C.a>0 D.a<0【考点】解一元一次不等式.【专题】常规题型.【分析】根据不等式的性质2,不等式的两边同时除以一个正数,不等号的方向不改变,即a>0.【解答】解:∵不等式ax>b的解集是x>,∴a>0,故选C.【点评】本题考查了利用不等式的基本性质解不等式的能力,要熟练掌握.三、解答13.根据不等式的性质,把下列不等式化为“x>a”或“x<a”的形式,并说出每次变形的依据.(1)x+3<﹣2;(2)x>﹣1;(3)7x>6x﹣4;(4)﹣x﹣1<0.【考点】不等式的性质.【分析】(1)先移项,再合并即可;(2)不等式的两边都乘以3即可;(3)先移项,再合并即可;(4)先移项,再不等式的两边都乘以﹣1即可.【解答】解:(1)∵x+3<﹣2,∴x<﹣2﹣3(不等式的基本性质1),∴x<﹣5(合并同类项);(2)∵x>﹣1,∴x>﹣3(不等式的基本性质2);(3)∵7x>6x﹣4,∴7x﹣6x>﹣4(不等式的基本性质1),x>﹣4(合并同类项);(4)﹣x﹣1<0,﹣x<1(不等式的基本性质1),x>﹣1(不等式的基本性质3).【点评】本题考查了不等式的基本性质的应用,注意:不等式的基本性质是:①不等式的两边都加上或都减去同一个数或同一个整式,不等式的符号不改变;②不等式的两边都乘以同一个正数,不等号的方向不改变;③不等式的两边都乘以同一个负数,不等号的方向要改变.14.(1)甲在不等式﹣10<0的两边都乘﹣1,竟得到10<0!为什么?(2)乙在不等式2x>5x两边同除以x,竟得到2>5!又是为什么?(3)你能利用不等式的性质将不等式“a>b”变形为“b<a”吗?试试看.【考点】不等式的性质.【分析】(1)根据不等式的基本性质3判断即可;(2)根据已知求出x是负数,根据不等式的基本性质3判断即可;(3)移项,再两边都除以﹣1即可.【解答】解:(1)不对,不等式的两边都乘以﹣1,不等式的符号要改变,即10>0;(2)2x>5x∴2x﹣5x>0,﹣3x>0,∴x<0,即不等式的两边都除以一个负数x,不等式的符号要改变,即2<5;(3)能,如∵a>b,∴﹣b>﹣a,∴b<a.【点评】本题考查了不等式的基本性质的应用,注意:不等式的基本性质是:①不等式的两边都加上或都减去同一个数或同一个整式,不等式的符号不改变;②不等式的两边都乘以同一个正数,不等号的方向不改变;③不等式的两边都乘以同一个负数,不等号的方向要改变.15.一辆12个座位的汽车上已有4名乘客,到一个站后又上来x个人,车上仍有空位,可以得到怎样的不等式?并判断x的取值范围.【考点】由实际问题抽象出一元一次不等式.【分析】根据题意可得:车上的原有人数+上来x个人<12,再解不等式即可.【解答】解:由题意得:4+x<12,解得:x<8.【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,找出题目中的不等关系,列出不等式.16.比较两个数的大小可以通过它们的差来判断.例如要比较a和b的大小,那么:当a﹣b>0时,一定有a>b;当a﹣b=0时,一定有a=b;当a﹣b<0时,一定有a<b.反之也成立.因此,我们常常将要比较的两个数先作差计算,再根据差的符号来判断这两个数的大小.根据上述结论,试比较x4+2x2+2与x4+x2+2x的大小关系.【考点】不等式的性质.【分析】先作差:(x4+2x2+2)﹣(x4+x2+2x),然后根据差的符号来判断这两个数的大小.【解答】解:∵(x4+2x2+2)﹣(x4+x2+2x),=x4+2x2+2﹣x4﹣x2﹣2x=x2﹣2x+2=(x﹣1)2+1.在实数范围内,无论x取何值,(x﹣1)2+1>0总成立,∴∵(x4+2x2+2)﹣(x4+x2+2x)>0,∴x4+2x2+2>x4+x2+2x.【点评】本题考查了不等式的性质.(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.17.下面是解不等式的部分过程,如果错误,说明错误原因并改正;如果正确,说明理由.(1)由2x>﹣4,得x<﹣2;(2)由16x﹣8>32﹣24x,得2x﹣1>4﹣3x;(3)由﹣3x>12,得x<﹣4.【考点】不等式的性质.【专题】计算题.【分析】(1)根据等式的两边同时乘以(或除以)同一个正数,不等号的方向不变进行判断;(2)根据等式的两边同时乘以(或除以)同一个正数,不等号的方向不变进行判断;(3)根据不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行判断.【解答】解:(1)错误.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以由2x>﹣4,得x>﹣2;(2)正确.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以把16x ﹣8>32﹣24x两边都除以8得到2x﹣1>4﹣3x;(3)正确.不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,所以﹣3x >12两边都除以﹣3,得到x<﹣4.【点评】本题考查了不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.18.解下列不等式,并把解集在数轴上表示出来:(1)7+x>3;(2)x<1;(3)4+3x>6﹣2x.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】(1)通过移项可以求得x的取值范围;(2)化未知数系数为1来求x的取值范围;(3)通过移项、合并同类项,化系数为1来求x的取值范围【解答】解:(1)移项,得x>﹣4.表示在数轴上为:;(2)不等式的两边同时乘以﹣2,不等号的方向改变,即x>﹣2,表示在数轴上是:;(3)移项、合并同类项,得5x>2,化系数为1,得x>2.5.表示在数轴上为:【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.19.解答下列各题:(1)x取何值时,代数式3x+2的值不大于代数式4x+3的值?(2)当m为何值时,关于x的方程x﹣1=m的解不小于3?(3)求不等式2x﹣3<5的最大整数解.【考点】解一元一次不等式;一元一次不等式的整数解.【分析】(1)先根据代数式3x+2的值不大于代数式4x+3的值列出关于x的不等式,求出x的取值范围即可;(2)先把m当作已知条件求出x的值,再根据x的值不小于3得出关于m的不等式,求出m的值即可;(3)先求出不等式的解集,再得出x的最大整数解即可.【解答】解:(1)∵代数式3x+2的值不大于代数式4x+3的值,∴3x+2≤4x+3,解得x≥﹣1.(2)解方程得,x=2m+2,∵方程的解不小于3,∴2m+2≥3,即2m≥1,解得m≥;(3)移项得,2x<5+3,合并同类项得,2x<8,x的系数化为1得,x<4.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.20.某辆汽车油箱中原有油60L,汽车每行驶1km耗油0.08L,请你估计行驶多少千米后油箱中的油少于20L.【考点】一元一次不等式的应用.【分析】读出题意,根据关系式,剩余油量=总油量﹣耗油量,列出关系式解答即可.【解答】解:设估计行驶x千米后油箱中的油少于20L.依题意,得60﹣0.08x<20,解得,x>500.答:估计行驶500千米后油箱中的油少于20L.【点评】本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,依题意列出不等式进行求解.21.小丽在学了这节内容后,总结出:解一元一次不等式,就是利用不等式的性质把所要求的不等式转化为“x>a”或“x<a”的形式.你同意小丽的观点吗?请自编、自解一个一元一次不等式,再体会小丽的说法.【考点】解一元一次不等式.【分析】根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.【解答】解:同意小丽的观点.如2x≥x+2,移项得2x﹣x≥2,解得x≥2.【点评】考查了解一元一次不等式,在解一元一次不等式的步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.。

苏科版七年级下册数学第11章 一元一次不等式 含答案

苏科版七年级下册数学第11章 一元一次不等式 含答案

苏科版七年级下册数学第11章一元一次不等式含答案一、单选题(共15题,共计45分)1、不等式组的解集在数轴上表示正确的是()A. B. C.D.2、一元一次不等式组的解集为x>a,且a≠-1,则a取值范围是().A.a>-1B.a<-1C.a>0D.a<03、若a<0<b,则()A.1﹣a<1﹣bB.a+1<b﹣1C.a 2<b 2D.a 3<a 2b4、如果a b,那么下列不等式不成立的是()A. B. C. D.5、不等式组的整数解有()A.0个B.5个C.6个D.无数个6、已知,下列不等式变形错误的是()A. B. C. D.7、已知,下列不等式中,不成立的是( )A.a+4>b+4B.a-8 b-8C.5a>5bD.1-a>1-b8、若a < c < 0 < b ,则abc与0的大小关系是()A. abc < 0B. abc =0C. abc > 0D.无法确定9、在平面直角坐标系中,若点P(m-2,m+1)在第二象限,则m的取值范围是()A.m<-1B.m>2C.-1<m<2D.m>-110、解不等式的下列过程中错误的是()A.去分母得B.去括号得C.移项,合并同类项得D.系数化为1,得11、已知,若为实数,则下列不等式中成立的是().A. B. C. D.a+c<b+c12、若x>y,则下列式子中错误的是()A.x-3>y-3B.C.x+3>y+3D.-3x>-3y13、若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程+ =1有正整数解,则所有满足条件的整数a的值之积是()A.7B.﹣14C.28D.﹣5614、若不等式组的解集中的任何一个x的值均不在2≤x≤5范围内,则a的取值范围是()A.a<1B.a<1或a>5C.a≤1或a≥5D.a<1且a>515、不等式组的解集在数轴上表示为()A. B. C. D.二、填空题(共10题,共计30分)16、若不等式组有解,则a的取值范围是________.17、满足的最大整数解是________.18、若5x3m-2-2>7是一元一次不等式,则m=________19、不等式组的解集是________.20、幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有________件.21、若a>b,则﹣2a+5________﹣2b+5(用“<”或“>”填空.)22、不等式组恰有两个整数解,则实数的取值范围是________.23、不等式组的解集为________.24、如果不等式组无解,那么m的取值范围是________.25、满足的最大整数是________.三、解答题(共5题,共计25分)26、解不等式组:并在数轴上表示其解集.27、解不等式组,并在数轴上表示其解集.28、解不等式<1﹣,把它的解集在数轴上表示出来,并写出该不等式的自然数解.29、若不等式组,的整数解是关于x的方程2x-4=ax的根,求a 的值.30、解不等式组:,并把解集在如图数轴上表示出来.参考答案一、单选题(共15题,共计45分)1、C2、A4、D5、B6、D7、D8、C9、C10、D11、A12、D13、A14、C15、C二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

初一数学第十一章一元一次不等式单元测试题及答案

初一数学第十一章一元一次不等式单元测试题及答案

第十一章?一元一次不等式?单元测试题一、 :〔本 共 10 小 ,每小 3 分,共 30 分〕1.a 的 3 倍与 3 的和不大于1,用不等式表示正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔 〕A . 3a 3 1 ;B . 3a 3 1 ;C . 3a3 1 ; D . 3a 3 1;2. 以下不等式中, 是一元一次不等式的有⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 〔 〕① 3x 7 0 ;② 2x y3 ;③ 2x2x 2x21;④317 ;xA.1 个; 个 ; 个; 个;3. 如果 x y , 以下 形中正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔〕A.1 x 1y ; B.1 x 1 y ; C. 3x 5 y ; D. x 3 y 3 ;222 24. 〔 2021?崇左〕不等式 x 5 4x 1的最大整数解是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔〕A .-2 ;B . -1 ;C .0;D .1;5. 不等式x 3〕x的解集在数 上表示 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔1A.B. C. D.6. 如果不等式b 1 x b 1 的解集是 x 1 ,那么 b 必 足⋯⋯⋯⋯⋯⋯⋯⋯⋯〔〕A. b1 ;B.b 1 ;C.b 1 ;D.b 1;7. 〔 2021 春?富 校 期末〕如果x 2 x 2 ,那么 x 的取 范 是⋯⋯⋯⋯〔〕A . x ≤ 2;B . x ≥ 2;C . x < 2;D . x > 2;x 2y 4k且 0yx1, k 的取 范 是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 〔〕8.y 2k2x1A.1 k1; B.0 k1 ;C.1 0 k1 ;2 2k 1 ; D.29. 假设不等式x a 0 有解, a 的取 范 是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔〕1 2xx 2A. a 1 ;B.a 1 ;C. a 1 ; D.a 1 ;10.〔 2021?路 区模 〕某商店以 价 260 元 一件商品,出售 价 398 元,由于售不好,商店准 降价出售,但要保 利 率不低于10%,那么最多可降价⋯⋯⋯〔〕A . 111 元;B . 112 元;C . 113 元;D . 114元;二、填空 :〔本 共8 小 ,每小3 分,共 24 分〕11. 用不等式表示“ 7 与 m 的 3 倍的和不是正数〞就是 .12. 不等式1 x2x 1的非负整数解的和是.232x 11的整数解是13. 不等式组3 .1 x3第 14题图14.〔 2021 春?麦积区校级期末〕关于 x 的不等式 2x a1 的解集如下列图,那么 a 的值是 .15. 〔 2021 春?大石桥市期末〕假设 a > b ,且 c 为有理数,那么ac2bc 2 .16. 假设不等式组3x a 11 x 1,那么 a b =.x3b 的解集为217.〔2021?温州校级模拟〕 关于 x 的不等式组只有 3 个整数解, 那么实数 a 的取值范围是.18. 〔 2021?兰山区一模〕如图,假设开始输入的 x 的值为正整数,最后输出的结果为144,那么满足条件的 x 的值为 .第 18题图三、解答题 :〔此题共 10 大题,总分值 76 分〕19. 〔此题总分值 16 分〕解以下不等式,并把第〔 1〕、〔 3〕两题的解集在数轴上表示出来 .〔1〕 3 1 x2 x 9 ;2 3x 1 x〔2〕 1;523x 1 x15x 2 3 x 2 〔4〕 13〔3〕4 4x;5 1 x2x x2 220. 〔此题总分值 8 分〕〔1〕 假设代数式2x3 与 x4的差不小于 1. 试求 x 的取值范围 .433 x 1 2 5x 3〔2〕求不等式组x 1 3x 的自然数解 .2 x 421. 〔此题总分值 6 分〕 关于 x 的方程2m55x1的解为负数,求m 的取值范围 .3422. 〔此题总分值 6 分〕如果一个三角形的三边长为连续奇数,且周长小于 21, 求这个三角形的三边长 .23. 〔此题总分值 6 分〕不等式3(x 2) 5 4( x 1) 6 的最小整数解为方程2x ax 3 的解,求代数式14 4a的值 .a24. 〔此题总分值6 分〕定义新运算:对于任意实数a ,b ,都有ab a ab1,等式右边是通常的加法、减法及乘法运算,比方:2 5 22 51 =-6+1=-5.( 1〕求 23 的值;( 2〕假设 3 x 的值小于 13,求 x 的取值范围,并在图所示的数轴上表示出来.25. 〔此题总分值8 分〕x 2y 5k 2〔2021. 金牛区期末〕关于x . y 的方程组的解是一对异号的数.x yk 4〔1〕求 k 的取值范围;1 〔2〕化简: kk 1 ;2〔3〕设 t k1.k 1 ,那么 t 的取值范围是226.〔此题总分值 6 分〕〔2021?本溪〕晨光文具店用进货款1620 元购进 A 品牌的文具盒40 个, B品牌的文具盒60个,其中 A 品牌文具盒的进货单价比 B 品牌文具盒的进货单价多 3 元.〔1〕求 A、 B 两种文具盒的进货单价?〔2〕 A 品牌文具盒的售价为23 元 / 个,假设使这批文具盒全部售完后利润不低于500 元,B品牌文具盒的销售单价最少是多少元?27.〔 6 分〕先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式x2 9 0 .解:∵ x2 9 ( x 3)(x 3) ,∴ ( x 3)( x 3) 0.由有理数的乘法法那么“两数相乘,同号得正〞,有〔 1〕x3 0 〔2〕x3 0 x 3 0 x 3 0解不等式组〔1〕,得x 3,解不等式组〔2〕,得x 3,故 ( x 3)( x 3) 0 的解集为x 3 或 x 3 ,即一元二次不等式x2 9 0 的解集为x 3 或x 3 .问题:求分式不等式5x 1 0 的解集 .32 x28.〔此题总分值 8 分〕某商店欲购进甲、乙两种商品,甲的进价是乙的进价的一半,进3 件甲商品和 1 件乙商品恰好用 200 元.甲、乙两种商品的售价每件分别为80 元、 130 元,该商店决定用不少于 6710 元且不超过 6810 元购进这两种商品共 100 件.(1〕求这两种商品的进价.(2〕该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?参考答案一、选择题: 1.B ; 2.B ;;4.A ;; 6.A ;7.B ;; 9.A ;; 二、填空题: 11.7 3m 0 ;12.15 ;13.-1 ,0,1,2,3; ;15. ;16.1 ;17. 2 a 1 ; 18. 29 或 6; 三、解答题: 19. 〔 1〕 x 1;〔2〕 x 1 ;〔 3〕 x 2 ;〔 4〕无解;20. 〔 1〕 x 5 ;〔2〕 2 7,自然数解为 , , ;2 x 0 1 217 3 21. m; 22. 三边长是: , , ; ; 24. 〔 〕 ;〔 〕 1 ,数轴 8 1 11 2 x25. 解:〔1〕 2 k 1〔 2〕当 2 k 1 时,原式 = k1 k 12k 1 ;1时,原式 = k 12 3 ;2当 1 kk 1222当 1<k <1 时,原式 = k 1 k 1 2k 1 ;2 22〔 3〕 3t 5 ;2 226. 解:〔1〕设 A 品牌文具盒的进价为 x 元/ 个,依题意得: 40x+60〔x-3 〕=1620, 解得: x=18,x-3=15 .答: A 品牌文具盒的进价为 18 元/ 个, B 品牌文具盒的进价为 15 元/个.〔 2〕设 B 品牌文具盒的销售单价为 y 元, 依题意得:〔 23-18 〕× 40+60〔y-15 〕≥ 500,解得: y ≥20.答: B 品牌文具盒的销售单价最少为 20 元.; 27. -0.2 <x <1.5 .28. 解:设甲商品的进价为 x 元,乙商品的进价为 y 元,由题意,得x 1 y 解得:x 402 y. 3x y20080答:甲商品的进价为 40 元,乙商品的进价为 80 元;〔 2〕设购进甲种商品 m 件,那么购进乙种商品〔 100-m 〕件,由题意,得40m80 100 m 67103 m 321, 40m80 100 m,解得: 29 6810 44∵ m 为整数,∴ m=30,31, 32,故有三种进货方案:方案 1,甲种商品 30 件,乙商品 70 件;方案 2,甲种商品 31件,乙商品 69 件;方案 3,甲种商品 32 件,乙商品 68 件.设利润为 W元,由题意,得 W=40m+50〔100-m〕=-10m+5000 ∴m=30时, W最大 =4700.。

苏科版七年级下册数学第11章 一元一次不等式 含答案

苏科版七年级下册数学第11章 一元一次不等式 含答案

苏科版七年级下册数学第11章一元一次不等式含答案一、单选题(共15题,共计45分)1、如果m>n,那么下列结论错误的是( )A.m+2>n+2B.m-2>n-2C.2m>2nD.-2m>-2n2、若,则下列变形正确的是()A. B. C. D.3、不等式组的解集在数轴上表示正确的是()A. B. C. D.4、若关于x的一元一次不等式组有解,则m的取值范围为()A.m>B.m≤C.m>﹣D.m≤﹣5、不等式组的解集在数轴上表示为()A. B. C.D.6、不等式x﹣5>4x﹣1的最大整数解是()A.﹣2B.﹣1C.0D.17、不等式4﹣3x≥2x﹣6的非负整数解有()A.1个B.2个C.3个D.4个8、已知关于的不等式组的解集为,则().A.-3B.3C.6D.-99、不等式在数轴上表示为( )A. B. C.D.10、不等式组的解集在数轴上表示正确的是( )A. B. C.D.11、下列各式中不是一元一次不等式组的是()A. B. C. D.12、若a>b,则下列不等式不成立的是( )A.a-2>b-2B.5-a>5-bC.7a>7bD.13、如果关于的不等式的解为,那么的取值范围是()A. B. C. D.14、不等式组的解是()A.2<x<3B.x>3或x<2C.无解D.x<215、在同一直角坐标系中,正比例函数y=2x的图象与反比例函数y= 的图象没有交点,则实数k的取值范围在数轴上表示为()A. B. C. D.二、填空题(共10题,共计30分)16、不等式3x﹣2≥4(x﹣1)的所有非负整数解的和为________.17、若关于的不等式组只有4个正整数解,则的取值范围为________.18、不等式组的解集为________.19、已知关于x的不等式组无解,则a的取值范围是________.20、如果不等式的正整数解有三个,则m的取值范围________.21、当x________时,代数式2x+5的值不大于零.22、不等式x≥﹣1.5的最小整数解是________23、满足不等式组的整数解是________.24、不等式的最小整数解为________.25、经历了漫长艰难的体训,初三学子即将迎来中考体考,初三某班的家长为孩子们准备了脉动饮料、士力架和葡萄糖口服液.已知脉动饮料、士力架和葡萄糖口服液的单价之和为22元,计划购买脉动饮料、士力架和葡萄糖口服液的数量总共不超过200,其中葡萄糖口服液的单价为10元,计划购买50支.脉动饮料的数量不多于士力架数量的一半,但至少购买30瓶.在做预算时,将脉动饮料和士力架的单价弄反了,结果在实际购买时,总费用比预算多了160元.若脉动饮料、士力架和葡萄糖口服液的单价均为整数,则实际购买脉动饮料、士力架和葡萄糖口服液的总费用最多需要花费________元.三、解答题(共5题,共计25分)26、解不等式组:,并把解集在数轴上表示出来.27、近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?28、解不等式组,并把解集在数轴上表示出来.29、解不等式组.30、解不等式组:,并把它的解集在数轴上表示出来.参考答案一、单选题(共15题,共计45分)1、D2、C3、A4、A5、C6、A7、C8、D9、D10、C11、C12、B13、B14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

【完整版】苏科版七年级下册数学第11章 一元一次不等式含答案

【完整版】苏科版七年级下册数学第11章 一元一次不等式含答案

苏科版七年级下册数学第11章一元一次不等式含答案一、单选题(共15题,共计45分)1、学生篮球赛中,小方共打了10场球.他在第6,7,8,9场比赛中分别得了:22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高.如果他所参加的10场比赛的平均得分超过18分,请问小方在前5场比赛中,总分可达到的最大值以及小方在第10场比赛中,得分可达到的最小值分别是()A.85、26B.85、27C.84、29D.84、282、已知x=2是不等式的解,且x=1不是这个不等式的解,则实数a的取值范围是()A.a>1B.a≤2C.1<a≤2D.1≤a≤23、不等式的解集是那么()A. B. C. D.4、不等式组的解集是()A.x>1B.x<2C.1≤x≤2D.1<x<25、不等式2x﹣1<1的解集在数轴上表示正确是()A. B. C. D.6、不等式3(x-1)≤5-x的非负整数解有( )A.1个B.2个C.3个D.4个7、△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A.4B.4或5C.5或6D.68、小颖准备用21元钱买笔和笔记本。

已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔。

A.1B.2C.3D.49、不等式-2x+1<0的解集是()A.x>﹣2B.x>C.x<﹣2D.x<10、已知不等式的负整数解恰好是-3,-2,-1.那么a满足条件()A. B. C. D.11、如果不等式的解集是,则( )A. B. C. D.12、已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)值为()A.6B.﹣6C.3D.﹣313、若关于x的不等式组无解,则m的取值范围是()A. B. C. D.14、已知()A.-15B.15C.-D.15、不等式的解是A. B. C. D.二、填空题(共10题,共计30分)16、不等式组的解集是________.17、已知关于x,y的方程组的解满足不等式x+y>3,则a的取值范围是________.18、当x________时,代数式1- 的值不大于代数式的值.19、已知一种卡车每辆至多能载3吨货物,现有50吨黄豆,若要一次运完这批黄豆,至少需要这种卡车________辆20、不等式,解得________,根据不等式的性质________,不等式两边________.21、如果不等式组无解,那么m的取值范围是________.22、不等式的解集是________.23、x与3的和不小于5,用不等式表示为________.24、不等式组的解集为________25、若不等式组有解,则a的取值范围是________.三、解答题(共5题,共计25分)26、解不等式组.27、解不等式组:,并把它的解在数轴上表示出来.28、解不等式组,并将解集在数轴上表示出来,并写出最小整数解29、某钢铁企业为了适应市场竞争的需要,提高生产效率,决定将一部分钢铁生产一线员工调整去从事服务工作,该企业有钢铁生产一线员工1000人,平均每人可创造年产值30万元,根据规划,调整出去的一部分一线员工后,余下的生产一线员工平均每人全年创造年产值可增加30%,调整到服务性工作岗位人员平均每人全年可创造产值24万元,如果要保证员工岗位调整后,现在全年总产值至少增加20%,且钢铁产品的产值不能超过33150万元,怎样安排调整到服务行业的人数?30、求不等式组的解集,并写出它的整数解.参考答案一、单选题(共15题,共计45分)1、C2、C3、A4、D5、D6、C7、B8、D9、A10、D11、A12、B13、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

完整版苏科版七年级下册数学第11章 一元一次不等式 含答案

完整版苏科版七年级下册数学第11章 一元一次不等式 含答案

苏科版七年级下册数学第11章一元一次不等式含答案一、单选题(共15题,共计45分)1、某乒乓球馆有两种计费方案,如下图表.李强和同学们打算周末去此乒乓球馆连续打球 4 小时,经服务生测算后,告知他们包场计费方案会比人数计费方案便宜,则他们参与包场的人数至少为()A.9B.8C.7D.62、若关于x的分式方程=2的解为正数,则m的取值范围是()A.m>﹣1B.m≠﹣1C.m>1 且m≠﹣1D.m>﹣1且m≠13、若关于x的不等式组无解,且关于y的方程=1的解为正数,则符合题意的整数a有()个.A.1个B.2个C.3个D.4个4、如果点P(m,1-2m)在第四象限,那么m的取值范围是( )A.0<m<B.- <n<0C.m<0D.m>5、若a>b,则下列不等式变形错误的是()A.a+1>b+1B.C.3a﹣4>3b﹣4D.4﹣3a>4﹣3b6、不等式2x≥x﹣1的解集在数轴上表示正确的是()A. B. C. D.7、张老师把手中一包棒棒糖准备分给幼儿园小班的小朋友,如果每个小朋友分3个棒棒糖,那么还剩59个;如果前面每一个小朋友分5个棒棒糖,则最后一个小朋友得到了棒棒糖,但不足3个.则张老师手中棒棒糖的个数为()A.141B.142C.151D.1528、下列不等式中是一元一次不等式的是()A.m<﹣mB.x﹣1≤yC.x 2﹣x﹣3≥0D.a+b>c9、如图,直线l经过第一、二、四象限,l的解析式是y=(m﹣3)x+m+2,则m的取值范围在数轴上表示为()A. B. C. D.10、某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法.第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售.你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买()块肥皂.A.5B.4C.3D.211、从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣3B.﹣2C.﹣D.12、不等式2x﹣3<1的解集在数轴上表示为()A. B. C.D.13、如果点M(3a﹣9,1+a)是第二象限的点,则a的取值范围在数轴上表示正确的是()A. B. C.D.14、某商品进价加价25%后出售,最后降价处理库存,要使后续销售不亏本,售价降价不能高于()A.20%B.25%C.30%D.40%15、若不等式组有解,则m的取值范围是()A.m>2B.m<2C.m≥2D.m≤2二、填空题(共10题,共计30分)16、如果a﹣3<b﹣3,那么a________ b.(填“>”“<”或“=”)17、不等式组的解集为________.18、不等式2x+5<11的正整数解是________.19、某班学生去旅游,安排住宿时发现,如果每间宿舍住4人,则有20人没宿舍住;如果每间住8人,则有一间不空也不满,则该班学生人数为________;宿舍间数为________.20、已知关于的不等式组,其中在数轴上的对应点如图所示,则这个不等式组的解集为________.21、对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到:“判断结果是否大于190?”为一次操作.如果操作只进行一次就停止,则x的取值范围是________.22、不等式组的解集是________.23、在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出________环的成绩。

苏科版七年级下册数学第11章 一元一次不等式 含答案

苏科版七年级下册数学第11章 一元一次不等式 含答案

苏科版七年级下册数学第11章一元一次不等式含答案一、单选题(共15题,共计45分)1、不等式的解集在数轴上表示正确的是()A. B. C. D.2、下列不等式中,是一元一次不等式的是()A.x 2+1>xB.﹣y+1>yC. >2D.x 2+1>03、不等式1﹣2x<5的负整数解集是()A.﹣1B.﹣2C.﹣1,﹣2D.﹣1,﹣2,04、在-2,-1,0,1,2中,不等式x+3>2的解有()A.1个B.2个C.3个D.4个5、已知a>b,则下列结论中正确的是()A.a+2<b+2B.a﹣2<b﹣2C.﹣2a<﹣2bD.6、织金六中李老师给经典诵读表现突出的若干同学发糖以示鼓励,若每人3颗,则剩4颗,若每人4颗,则最后一人能得到糖,但不足3颗,那么请问李老师最多准备了多少糖()A.18颗B.22颗C.25颗D.29颗7、把不等式组的解集表示在数轴上,如下图,正确的是()A. B. C.D.8、不等式组的整数解的和是()A.﹣1B.1C.0D.29、当a>b时,下列不等式中正确的是()A.2 a<2 bB.2 a+1<2 b+1C. a-3>b-3D.-a>-b10、如果不等式(a-1)x>a-1的解集为x<1,则( )A.a≠1B.a>1C.a<1D.a为任意有理数11、若关于的不等式组的整数解共有3个,则的取值范围是()A. B. C. D.12、若关于x的一元一次不等式组有解,则m的取值范围为()A. B. C. D.13、不等式2x+3≥5的解集在数轴上表示正确的是()A. B. C. D.14、在数轴上表示不等式的解集,正确是()A. B. C. D.15、某种衬衫的进价为400元,出售时标价为550元,由于换季,商店准备打折销售,但要保持利润不低于10%,那么至多打()A.6折B.7折C.8折D.9折二、填空题(共10题,共计30分)16、关于二次函数的三个结论:①若抛物线与x轴交于不同两点A,B,则a< 或a>0;②对任意实数m,都有x1=2+m与x2=2-m对应的函数值相等;③若3≤x≤4,对应的y的整数值有4个,则;其中正确的结论是________17、梁平百里竹海是国家4A级景区,位于重庆市梁平区西北部,景区内竹海绵延百里,风景迷人,其中“观音洞”、“寿海”、“竹海之门”景区最为出名,由于新冠疫情影响,景区特在去年12月12日对“寿海”和“竹海之门”两个景区的门票进行了线上限时秒杀销售和线下促销销售,当天销售结束后统计发现,线上限时秒杀销售的门票数量和线下促销销售的门票数量相同,线上限时秒杀销售的“竹海之门”的门票数量是线上限时秒杀销售门票总数量的,线下促销销售的“寿海”和“竹海之门”的门票单价相同,均为线上限时秒杀销售的两个景区的门票单价之和,线上限时秒杀销售和线下促销销售总销售额为1974元,且线上限时秒杀销售和线下促销销售的门票总销售量不少于200张,不超过300张,线上限时秒杀销售和线下促销销售的两种门票单价均为整数,则线上限时秒杀销售“寿海”景区的门票的销售额最多为________元.18、若关于x的一元一次不等式组的解集是,则a的取值是________.19、如图,要使输出值y大于100,则输入的最小正整数x是________.20、不等式组的解是________.21、学校举行百科知识抢答赛,共有20道题,规定每答对一题记10分,答错或放弃记﹣4分,八年级一班代表的得分目标为不低于88分,则这个队至少要答对________道题才能达到目标要求.22、若不等式(4-k)x>-1的解集为x,则k的取值范围是________ .23、用不等式表示“x与y的差不大于2”:________ 。

苏教版七年级数学下册第11章《一元一次不等式》单元测试卷(含答案)

苏教版七年级数学下册第11章《一元一次不等式》单元测试卷(含答案)

第11章《一元一次不等式》单元测试卷考试时间:100分钟;满分:100分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019春•江州区期中)已知x>y,则下列不等式不成立的是()A.x﹣6>y﹣6B.3x>3yC.﹣3x+6>﹣3y+6D.﹣2x<﹣2y2.(3分)(2019春•九龙坡区校级期中)下列不等式中,是一元一次不等式的是()A.4x﹣5y<1B.4y+2≤0C.﹣1<2D.x2﹣3>53.(3分)(2019秋•南关区校级期中)不等式组的解集用数轴表示为()A.B.C.D.4.(3分)(2019春•衡阳期中)不等式>1去分母后得()A.2(x﹣1)﹣x﹣2>1B.2(x﹣1)﹣x+2>1C.2(x﹣1)﹣x﹣2>4D.2(x﹣1)﹣x+2>45.(3分)(2019春•如皋市期中)用不等式表示“a的一半不小于﹣7”,正确的是()A.a≥﹣7B.a≤﹣7C.a>﹣7D.a<﹣76.(3分)(2018春•镇平县期中)不等式﹣3≥2(x﹣3)的非负整数解有()A.4个B.3个C.2个D.1个7.(3分)(2019春•博白县期中)若关于x的不等式3m﹣2x<9的解集是x>3,则实数m 的值为()A.5B.4C.3D.8.(3分)(2019春•庐阳区校级期中)某商品进价为700元,出售时标价为1100元,后由于商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可打()A.六折B.七折C.八折D.九折9.(3分)(2019春•蜀山区期中)关于x的不等式组的解集为x<2,那么a的取值范围为()A.a=2B.a>2C.a<2D.a≥210.(3分)(2019春•包河区期中)如果关于x的不等式组的整数解仅有7,8,9,设整数a与整数b的和为M,则M的值的个数为()A.3个B.9个C.7个D.5个二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2019春•南关区校级期中)如图,在框中解不等式的步骤中,应用不等式基本性质的是(填序号).解:3x﹣2(4﹣x)>6(1+x)..①3x﹣8+2x>6+6x…②3x﹣2x﹣6x>6+8…③﹣x>14…④x<﹣14…⑤12.(3分)(2019秋•衢州期中)如图,数轴上所表示的x的取值范围为.13.(3分)(2019秋•温州期中)关于x的方程2x﹣2m=x+4的解为正数,则m的取值范围是.14.(3分)(2019春•皇姑区校级期中)把一批书分给小朋友,每人5本,则余9本;每人7本,则最后一个小朋友得到书且不足4本,这批书有本.15.(3分)(2019春•杨浦区期中)已知关于x的不等式组无解,则m的取值范围是.16.(3分)(2018秋•雁塔区校级期中)若x为实数,则[x]表示不大于x的最大整数,例如:[1.6]=1,[π]=3,[2.8]=﹣3等[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x≤[x]+1.根据以上所述,则满足[x]=2x﹣1的所有x的和为.三.解答题(共6小题,满分52分)17.(8分)(2019秋•临安区期中)(1)若x>y,比较﹣3x+5与﹣3y+5的大小,并说明理由;(2)若x<y,且(a﹣3)x>(a﹣3)y,求a的取值范围.18.(8分)(2019春•包河区期中)(1)解不等式<1﹣;(2)解不等式组.19.(8分)(2019春•长春期中)已知关于y的方程4y+2m+1=2y+5的解是负数.(1)求m的取值范围;(2)当m取最小整数时,解关于x的不等式:x﹣120.(8分)(2019春•永春县期中)求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求分数形式的不等式:≥0的解集.21.(10分)(2019春•庐阳区校级期中)学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.(1)购买一件A道具和一件B道具各需要多少元?(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.①请问道具A最多购买多少件?②若其中A道具购买的件数不少于B道具购买件数,该班级共有几种方案?试写出所有方案,并求出最少费用为多少元?22.(10分)(2019春•晋安区期中)品牌甲乙进价(元/件)4580售价(元/件)75120某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如表:根据上述信息,该店决定用不少于6198元,但不超过6296元的资金购进这两种T恤共100件请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019春•江州区期中)已知x>y,则下列不等式不成立的是()A.x﹣6>y﹣6B.3x>3yC.﹣3x+6>﹣3y+6D.﹣2x<﹣2y【分析】根据不等式的性质,逐项判断即可.【答案】解:∵x>y,∴x﹣6>y﹣6,∴选项A不符合题意;∵x>y,∴3x>3y,∴选项B不符合题意;∵x>y,∴﹣3x<﹣3y,∴﹣3x+6<﹣3y+6,∴选项C符合题意;∵x>y,∴﹣2x<﹣2y,∴选项D不符合题意.故选:C.【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.2.(3分)(2019春•九龙坡区校级期中)下列不等式中,是一元一次不等式的是()A.4x﹣5y<1B.4y+2≤0C.﹣1<2D.x2﹣3>5【分析】根据一元一次不等式的定义逐个判断即可.【答案】解:A、不是一元一次不等式,故本选项不符合题意;B、是一元一次不等式,故本选项符合题意;C、不是一元一次不等式,故本选项不符合题意;D、不是一元一次不等式,故本选项不符合题意;故选:B.【点睛】本题考查了一元一次不等式的定义,能熟记一元一次不等式的定义的内容是解此题的关键.3.(3分)(2019秋•南关区校级期中)不等式组的解集用数轴表示为()A.B.C.D.【分析】先对不等式组进行化简,然后在数轴上分别表示出x的取值范围,它们相交的地方就是不等式组的解集.【答案】解:不等式组可化为:,在数轴上可表示为:故选:A.【点睛】本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(3分)(2019春•衡阳期中)不等式>1去分母后得()A.2(x﹣1)﹣x﹣2>1B.2(x﹣1)﹣x+2>1C.2(x﹣1)﹣x﹣2>4D.2(x﹣1)﹣x+2>4【分析】根据不等式性质2,两边都乘以分母最小公倍数4可得.【答案】解:不等式两边都乘以分母的最小公倍数4,得:2(x﹣1)﹣(x﹣2)>4,即:2(x﹣1)﹣x+2>4,故选:D.【点睛】本题主要考查不等式的基本性质2,去分母时要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.(3分)(2019春•如皋市期中)用不等式表示“a的一半不小于﹣7”,正确的是()A.a≥﹣7B.a≤﹣7C.a>﹣7D.a<﹣7【分析】抓住题干中的“不小于﹣7”,是指“大于”或“等于﹣7”,由此即可解决问题.【答案】解:根据题干“a的一半”可以列式为:a;“不小于﹣7”是指“大于等于﹣7”;那么用不等号连接起来是:a≥﹣7.故选:A.【点睛】此题考查了由实际问题抽象一元一次不等式的知识,属于基础题,理解“不小于”的含义是解答本题的关键.6.(3分)(2018春•镇平县期中)不等式﹣3≥2(x﹣3)的非负整数解有()A.4个B.3个C.2个D.1个【分析】先求出不等式的解集,在取值范围内可以找到非负整数解.【答案】解:x+3﹣6≥4(x﹣3),x+3﹣6≥4x﹣12,x﹣4x≥﹣12﹣3+6,﹣3x≥﹣9,x≤3,则不等式的非负整数解有0、1、2、3这4个数,故选:A.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.7.(3分)(2019春•博白县期中)若关于x的不等式3m﹣2x<9的解集是x>3,则实数m 的值为()A.5B.4C.3D.【分析】根据解不等式,可得不等式的解集,根据不等式的解集,可得关于m的方程,根据解方程,可得答案.【答案】解:解3m﹣2x<9,得x>.由不等式的解集,得=3.解得m=5.故选:A.【点睛】本题考查了不等式的解集,利用不等式的解集得出关于m的方程是解题关键.8.(3分)(2019春•庐阳区校级期中)某商品进价为700元,出售时标价为1100元,后由于商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可打()A.六折B.七折C.八折D.九折【分析】设打了x折,用售价×折扣﹣进价得出利润,根据利润率不低于10%,列不等式求解.【答案】解:设打了x折,由题意得,1100×0.1x﹣700≥700×10%,解得:x≥7.即至多打7折.故选:B.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于10%,列不等式求解.9.(3分)(2019春•蜀山区期中)关于x的不等式组的解集为x<2,那么a的取值范围为()A.a=2B.a>2C.a<2D.a≥2【分析】先解不等式3x﹣2>4(x﹣1)得到x<2,再根据x<2,由不等式组解集的规律即可得解.【答案】解:解不等式3x﹣2>4(x﹣1)得到x<2,∵关于x的不等式组的解集为x<2,∴a≥2.故选:D.【点睛】考查了解一元一次不等式组,关键是熟悉不等式组解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.10.(3分)(2019春•包河区期中)如果关于x的不等式组的整数解仅有7,8,9,设整数a与整数b的和为M,则M的值的个数为()A.3个B.9个C.7个D.5个【分析】先求出不等式组的解集,再得出关于a、b的不等式组,求出a、b的值,即可得出选项.【答案】解:解不等式①得:x>,解不等式②得:x≤,∴不等式组的解集为<x≤,∵关于x的不等式组的整数解仅有7,8,9,∴6≤<7,9≤<10,解得:15≤a<17.5,21≤b<23,∴a=15或16或17,b=21或22或23,设整数a与整数b的和为M,则M的值有15+21=36,15+22=37,15+23=38,16+21=37,16+22=38,16+23=39,17+21=38,17+22=39,17+23=40共5个,故选:D.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键是能求出a、b的值,难度适中.二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2019春•南关区校级期中)如图,在框中解不等式的步骤中,应用不等式基本性质的是①③⑤(填序号).解:3x﹣2(4﹣x)>6(1+x)..①3x﹣8+2x>6+6x…②3x﹣2x﹣6x>6+8…③﹣x>14…④x<﹣14…⑤【分析】根据不等式的基本性质逐一判断即可得.【答案】解:在框中解不等式的步骤中,应用不等式基本性质的是①、③、⑤,故答案为:①③⑤.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.(3分)(2019秋•衢州期中)如图,数轴上所表示的x的取值范围为﹣1<x≤3.【分析】根据数轴上表示的不等式的解集即可得结论.【答案】解:观察数轴可知:x>﹣1,且x≤3,所以x的取值范围为﹣1<x≤3.故答案为﹣1<x≤3.【点睛】本题考查了在数轴上表示不等式的解集,解决本题的关键是大于小的小于大的中间找.13.(3分)(2019秋•温州期中)关于x的方程2x﹣2m=x+4的解为正数,则m的取值范围是m>﹣2.【分析】求出方程的解,根据方程的解是正数得出4+2m>0,求出即可.【答案】解:2x﹣2m=x+4,∴x=4+2m,∵方程的解是正数,∴4+2m>0,∴m>﹣2.即m的取值范围是m>﹣2.【点睛】本题考查了解一元一次不等式和一元一次方程的应用,关键是求出方程的解进而得出不等式.14.(3分)(2019春•皇姑区校级期中)把一批书分给小朋友,每人5本,则余9本;每人7本,则最后一个小朋友得到书且不足4本,这批书有44本.【分析】设共有x个小朋友,则共有(5x+9)本书,根据最后一个小朋友得到书且不足4本,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为正整数即可得出结论.【答案】解:设共有x个小朋友,则共有(5x+9)本书,依题意,得:,解得:6<x<8.∵x为正整数,∴x=7,∴5x+9=44.故答案为:44.【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.15.(3分)(2019春•杨浦区期中)已知关于x的不等式组无解,则m的取值范围是m≤3.【分析】先按照一般步骤进行求解,因为大大小小无解,那么根据所解出的x的解集,将得到一个新的关于m不等式,解答即可.【答案】解:由不等式组可得,因为不等式组无解,根据大大小小找不到的原则可知m≤3.故答案为m≤3.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16.(3分)(2018秋•雁塔区校级期中)若x为实数,则[x]表示不大于x的最大整数,例如:[1.6]=1,[π]=3,[2.8]=﹣3等[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x≤[x]+1.根据以上所述,则满足[x]=2x﹣1的所有x的和为 1.5.【分析】根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.【答案】解:∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x﹣1,∴2x﹣1≤x<2x﹣1+1,解得,0<x≤1,∵2x﹣1是整数,∴x=0.5或x=1,∴0.5+1=1.5故答案为:1.5.【点睛】本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.三.解答题(共6小题,满分52分)17.(8分)(2019秋•临安区期中)(1)若x>y,比较﹣3x+5与﹣3y+5的大小,并说明理由;(2)若x<y,且(a﹣3)x>(a﹣3)y,求a的取值范围.【分析】(1)先在x>y的两边同乘以﹣3,变号,再在此基础上同加上5,不变号,即可得出结果;(2)根据题意,在不等式x<y的两边同时乘以(a﹣3)后不等号改变方向,根据不等式的性质3,得出a﹣3<0,解此不等式即可求解.【答案】解:(1)∵x>y,∴不等式两边同时乘以﹣3得:(不等式的基本性质3)﹣3x<﹣3y,∴不等式两边同时加上5得:5﹣3x<5﹣3y;(2)∵x<y,且(a﹣3)x>(a﹣3)y,∴a﹣3<0,解得a<3.即a的取值范围是a<3.【点睛】主要考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.18.(8分)(2019春•包河区期中)(1)解不等式<1﹣;(2)解不等式组.【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【答案】解:(1)去分母,得:2(2x﹣1)<6﹣3(2x+1),去括号,得:4x﹣2<6﹣6x﹣3,移项,得:4x+6x<6﹣3+2,合并同类项,得:10x<5,系数化为1,得:x<0.5;(2)解不等式6x+15>8x+6,得:x<4.5,解不等式≥x,得:x≥﹣2,所以原不等式组的解集为﹣2≤x<.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(8分)(2019春•长春期中)已知关于y的方程4y+2m+1=2y+5的解是负数.(1)求m的取值范围;(2)当m取最小整数时,解关于x的不等式:x﹣1【分析】(1)首先要解这个关于x的方程,然后根据解是负数,就可以得到一个关于m 的不等式,最后求出m的范围.(2)根据题意得出m=3,代入后解不等式即可求得x的解集.【答案】解:(1)4y+2m+1=2y+5解得y=2﹣m,根据题意得,2﹣m<0,∴m>2,(2)∵m是最小整数∴m=3,当m=3时,则x﹣1解得:x<﹣3.【点睛】本题主要考查解一元一次不等式和一元一次方程的能力,(1)是一个方程与不等式的综合题目.解关于x的不等式是本题的一个难点.(2)需注意,在不等式两边都除以一个负数时,应改变不等号的方向.20.(8分)(2019春•永春县期中)求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求分数形式的不等式:≥0的解集.【分析】(1)化为两个一元一次不等式组求解即可;(2)根据分式不等式大于零可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可【答案】解:(1)根据“异号两数相乘,积为负”可得:①或②,解不等式组①得无解,解不等式组②得,故原不等式的解集为:.(2)由有理数的除法法则“两数相除,同号得正”且“分母不能为0”,可知①,②,解不等式组①得:x>2;解不等式组②得:,故不等式的解集为x>2或.【点睛】本题考查了一元一次不等式组的应用的知识,解题的关键是根据已知信息经过加工得到解决此类问题的方法.21.(10分)(2019春•庐阳区校级期中)学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.(1)购买一件A道具和一件B道具各需要多少元?(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.①请问道具A最多购买多少件?②若其中A道具购买的件数不少于B道具购买件数,该班级共有几种方案?试写出所有方案,并求出最少费用为多少元?【分析】(1)设购买一件A道具需要x元,购买一件B道具需要y元,根据“购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买A道具m件,则购买B道具(60﹣m)件.①根据总价=单价×数量结合购买两种道具的总费用不超过620元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论;②由A道具购买的件数不少于B道具购买件数,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,结合①的结论及m为整数值即可得出各购买方案,再求出各购买方案所需费用,比较后即可得出最少费用.【答案】解:(1)设购买一件A道具需要x元,购买一件B道具需要y元,依题意,得:,解得:.答:购买一件A道具需要15元,购买一件B道具需要5元.(2)设购买A道具m件,则购买B道具(60﹣m)件.①依题意,得:15m+5(60﹣m)≤620,解得:m≤32.答:A道具最多购买32件.②依题意,得:m≥60﹣m,解得:m≥30,又∵m≤32,且m为整数,∴m=30,31,32.∴该班级共有3种购买方案,方案1:A道具购买30件,B道具购买30件;方案2:A 道具购买31件,B道具购买29件;方案3:A道具购买32件,B道具购买28件.方案1所需费用15×30+5×30=600(元),方案2所需费用15×31+5×29=610(元),方案3所需费用15×32=5×28=620(元).∵600<610<620,∴最少购买费用为600元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.22.(10分)(2019春•晋安区期中)品牌甲乙进价(元/件)4580售价(元/件)75120某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如表:根据上述信息,该店决定用不少于6198元,但不超过6296元的资金购进这两种T恤共100件请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?【分析】(1)设购进甲种T恤x件,则购进乙种T恤(100﹣x)件,根据总价=单价×数量结合总价不少于6198元且不超过6296元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为整数即可得出各进货方案;(2)设所获得利润为W元,根据总利润=每件的利润×销售数量(购进数量),即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.【答案】解:(1)设购进甲种T恤x件,则购进乙种T恤(100﹣x)件.依题意,得:,解得:48≤x≤51.∵x为正整数,∴x=49,50,51.∴有三种进货方案,方案一:购进甲种T恤49件,乙种T恤51件;方案二:购进甲种T恤50件,乙种T恤50件;方案三:购进甲种T恤51件,乙种T恤49件.(2)设所获得利润为W元.依题意,得:W=(75﹣45)x+(120﹣80)(100﹣x)=﹣10x+4000.∵k=﹣10<0,∴W值随x值的增大而减小,∴当x=49时,W取得最大值,最大值=﹣10×49+4000=3510.答:方案一该店购进甲种T恤49件,乙种T恤51件时获利最大,最大利润为3510元.【点睛】本题考查了一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式组;(2)根据各数量之间的关系,找出W 关于x的函数关系式.。

苏科新版 七年级下册数学 第11章 一元一次不等式 单元测试卷(解析版)

苏科新版 七年级下册数学 第11章 一元一次不等式 单元测试卷(解析版)

2021-2022学年苏科新版七年级下册数学《第11章一元一次不等式》单元测试卷一.选择题(共10小题,满分30分)1.用不等式表示“x的5倍大于﹣7”的数量关系是()A.5x<﹣7B.5x>﹣7C.x>7D.7x<52.下列实数中,不是2x+1≥x的解的是()A.﹣3B.﹣1C.0D.3.53.下列说法不正确的是()A.若a>b,则﹣4a<﹣4b B.若a<b,则ax2<bx2C.若a>b,则1﹣a<1﹣b D.若a>b,则a+x>b+x4.满足x>2021的最小整数是()A.2020B.2021C.2022D.20235.数x不大于3是指()A.x≤3B.x≥3C.x>3D.x<36.下列式子中,一元一次不等式组有()①;②;③;④;⑤.A.1个B.2个C.3个D.4个7.下列不等式中,是一元一次不等式的是()A.x<y B.a2+b2>0C.>1D.<0 8.要使4x﹣不大于3x+5,则x的最大值是()A.4B.6.5C.7D.不存在9.随着科技的进步,在很多城市都可以通过手机APP实时查看公交车到站情况.小聪同学想乘公交车,他走到A、B两站之间的C处,拿出手机查看了公交车到站情况,发现他与公交车的距离为700m(如图),此时他有两种选择:(1)与公交车相向而行,到A公交站去乘车;(2)与公交车同向而行,到B公交站去乘车.假设公交车的速度是小聪速度的6倍,小聪无论选择哪站乘坐都不会错过这辆公交车,则A,B两公交站之间的距离最大为()A.240m B.260m C.280m D.300m10.若不等式组恰有3个整数解,则m的取值范围是()A.﹣2≤m<﹣1B.﹣2<m≤﹣1C.﹣2≤m≤﹣1D.﹣2<m<﹣1二.填空题(共10小题,满分30分)11.鱼缸里饲养A、B两种鱼,A种鱼的生长温度x℃的范围是20≤x≤28,B种鱼的生长温度x℃的范围是19≤x≤25,那么鱼缸里的温度x℃应该控制在范围内.12.如果a>b,则﹣ac2﹣bc2(c≠0).13.如图,这是李强同学设计的一个计算机程序,规定从“输入一个x值“到判断“结果是否≥15为一次运行过程,如果程序运行两次就停止,那么x的取值范是.14.某校计划组织师生乘坐如图的大小两种客车去参加一次大型公益活动,每辆大客车的乘客座位数是35个,每辆小客车的乘客座位数是18个,这样租用6辆大客车和5辆小客车恰好全部坐满.由于最后参加活动的人数增加了30人,在保持租用车辆总数不变的情况下,学校决定调整租车方案,以确保乘载全部参加活动的师生,则该校最后参加活动的总人数为人,所租用小客车数量的最大值为辆.15.若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为.16.若﹣3x2m+7+2020>2021是一元一次不等式,则m=.17.现规定一种新运算,a※b=2a﹣b,其中a、b为常数.已知关于x的不等式k※x≤3的解集在数轴上表示如图,则k的值为.18.如图,用关于x的不等式表示公共部分是.19.不等式组的解集是.20.编出解集为x≥2的一元一次不等式和一元一次不等式组各一个:一元一次不等式为;一元一次不等式组为.三.解答题(共6小题,满分90分)21.要比较两个数a、b的大小,有时可以通过比较a﹣b与0的大小来解决:如果a﹣b>0,则a>b;如果a﹣b=0,则a=b;如果a﹣b<0,则a<b.(1)若x=2a2+3b,y=a2+3b﹣1,试比较x、y的大小.(2)若A=2m2+m+4,B=m2﹣3m﹣2,试比较A与B的大小关系.22.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和﹣5两点之间的距离.(2)若数轴上表示点x的数满足|x﹣1|=2,那么x=.(3)若数轴上表示点x的数满足﹣4<x<3,求|x﹣3|+|x+4|的值.23.(1)解不等式:1;(2)解方程组:.24.某商店购进甲、乙两种商品,若购进甲种商品3件和乙种商品4件需270元;若购进甲种商品6件和乙种商品5件需450元.(1)求甲、乙两种商品每件的进价分别为多少元?(2)该商店购进甲、乙两种商品共80件,其中甲种商品以每件70元出售,乙种商品以每件40元出售,甲、乙两种商品全部销售完,该商店所获利润不少于1300元,求至少购进甲种商品多少件?25.对于企业来说:科学技术永远是第一生产力,在长沙市里程最长、站点最多的地铁6号线建设过程中,某知名运输集团承包了地铁6号线多标段的土方运输任务,该集团为了出色完成承接任务,拟派出该集团自主研发的A、B两种新型运输车运输土方.已知4辆A型运输车与3辆B型运输车一次共运输土方64吨,2辆A型运输车与4辆B型运输车一次共运输土方52吨.(1)请问一辆A型运输车和一辆B型运输车一次各运输土方多少吨?(2)该运输集团决定派出A、B两种型号新型运输车共18辆参与运输土方,若每次运输土方总量不小于169吨,且B型运输车至少派出4辆,则有哪几种派车方案?26.在数轴上有A,B两点,其中点A所对应的数是a,点B所对应的数是1.已知A,B 两点的距离小于3,请你利用数轴.(1)写出a所满足的不等式;(2)数﹣3,0,4所对应的点到点B的距离小于3吗?参考答案与试题解析一.选择题(共10小题,满分30分)1.解:根据题意可得,5x>﹣7.故选:B.2.解:2x+1≥x,解得x≥﹣1,∵﹣3<﹣1,∴﹣3不是2x+1≥x的解,故选:A.3.解:A.若a>b,则﹣4a<﹣4b,此选项不合题意;B.当x=0时,ax2=bx2,此选项符合题意;C.若a>b,则1﹣a<1﹣b,此选项不合题意;D.若a>b,则a+x>b+x,此选项不合题意.故选:B.4.解:∵x>2021,∴最小整数解是2022,故选:C.5.解:数x不大于3是指x≤3;故选:A.6.解:一元一次不等式组有:①;②;共2个;故选:B.7.解:A、是二元一次不等式,不是一元一次不等式,故本选项不符合题意;B、是二元二次不等式,不是一元一次不等式,故本选项不符合题意;C、不等式的左边不是整式,不是一元一次不等式,故本选项不符合题意;D、是一元一次不等式,故本选项符合题意;故选:D.8.解:根据题意得:4x﹣≤3x+5,去分母得:8x﹣3≤6x+10,解得:x≤,则x的最大值为6.5,故选B.9.解:设看手机时小聪到A站的距离为xm,到B站的距离为ym.到A公交站:x≤,解得:x≤100;到B公交站:y≤,解得:y≤140.∴x+y≤100+140=240,即A,B两公交站之间的距离最大为240m.故选:A.10.解:不等式组恰有3个整数解,则整数解是0,﹣1,﹣2.根据题意得:﹣3≤m﹣1<﹣2,解得:﹣2≤m<﹣1.故选A.二.填空题(共10小题,满分30分)11.解:由题意得:,解得:20≤x≤25,故答案为:20≤x≤25.12.解:∵c≠0,∴c2>0.∵a>b,∴﹣a<﹣b.∴﹣ac2<﹣bc2.故答案是:<.13.解:由题意可得,,解得3≤x<7,故答案为:3≤x<7.14.解:该校最后参加活动的总人数为35×6+18×5+30=330(人).设租用小客车x辆,则租用大客车(6+5﹣x)辆,依题意得:18x+35(6+5﹣x)≥330,解得:x≤,又∵x为整数,∴x的最大值为3.故答案为:330;3.15.解:由3x+a≤2可得x≤,∵关于x的不等式3x+a≤2只有2个正整数解,∴2≤<3,解得﹣7<a≤﹣4,故答案为:﹣7<a≤﹣4.16.解:∵﹣3x2m+7+2020>2021是一元一次不等式,∴2m+7=1,∴m=﹣3;故答案为:﹣3.17.解:∵k※x≤3,∴2k﹣x≤3,∴﹣x≤3﹣2k,∴x≥﹣3+2k,从数轴可知:﹣3+2k=﹣1,解得:k=1,故答案为:1.18.解:如上图,用关于x的不等式表示公共部分是:﹣1≤x≤1,故答案为:﹣1≤x≤1.19.解:解不等式2x+5>3,得:x>﹣1,解不等式x﹣2<4x,得:x>﹣,则不等式组的解集为x>﹣,故答案为:x>﹣.20.解:x﹣2≥0;.答案不唯一三.解答题(共6小题,满分90分)21.解:(1)解:由于x﹣y=2a2+3b﹣(a2+3b﹣1)=a2+1>0,即x﹣y>0.所以x>y;(2)∵A=2m2+m+4,B=m2﹣3m﹣2,∴A﹣B=2m2+m+4﹣(m2﹣3m﹣2)=2m2+m+4﹣m2+3m+2=m2+4m+2=m2+4m+4﹣2=(m+2)2﹣2>0,∴A>B.22.解:(1)根据题意知数轴上表示﹣2和﹣5两点之间的距离为﹣2﹣(﹣5)=3,故答案为:3;(2)∵|x﹣1|=2,即在数轴上到表示1和x的点的距离为2,∴x=3或x=﹣1,故答案为:﹣1或3;(3)∵|x﹣3|+|x+4|表示在数轴上表示x的点到﹣4和3的点的距离之和,且x位于﹣4到3之间,∴||x﹣3|+|x+4|=3﹣x+x+4=7.23.解:(1)1,去分母,得2(2x﹣1)﹣3(5x+1)>6,去括号,得4x﹣2﹣15x﹣3>6,移项,得4x﹣15x>6+2+3,合并,得﹣11x>11,系数化为1,得x<﹣1.(2)方程组整理得,①+②得:7x﹣7y=0,解得:x=y③,把③代入①得:x=2,把x=2代入③得,y=2,所以方程组的解是:.24.解:(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,依题意得:,解得:.答:甲种商品每件的进价为50元,乙种商品每件的进价为30元.(2)设购进甲种商品m件,则购进乙种商品(80﹣m)件,依题意得:(70﹣50)m+(40﹣30)(80﹣m)≥1300,解得:m≥50.答:至少购进甲种商品50件.25.解:(1)设一辆A型运输车一次运土a吨,一辆B型运输车一次运土b吨,由题意可得:,解得,答:一辆A型运输车一次运土10吨,一辆B型运输车一次运土8吨;(2)设派出A型号的新型运输车x辆,则B型号的新型运输车(18﹣x)辆,由题意可得:10x+8(18﹣x),解得12.5≤x≤14,∵x为整数,∴x=13或14,∴有两种派送方案,方案一:派出A型号的新型运输车13辆,B型号的新型运输车5辆;方案二:派出A型号的新型运输车14辆,B型号的新型运输车4辆.26.解:(1)根据题意得:|a﹣1|<3,得出﹣2<a<4,(2)由(1)得:到点B的距离小于3的数在﹣2和4之间,∴在﹣3,0,4三个数中,只有0所对应的点到B点的距离小于3.。

苏科版七年级下册数学第11章 一元一次不等式 含答案

苏科版七年级下册数学第11章 一元一次不等式 含答案

苏科版七年级下册数学第11章一元一次不等式含答案一、单选题(共15题,共计45分)1、如果不等式的解集是,则不等式的解集是().A. B. C. D.2、如果关于x的分式方程-2= 有正整数解,且关于x的不等式组无解,那么符合条件的所有整数a的和是()A. B. C. D.3、不等式组的解集在数轴上表示正确的是()A. B.C.D.4、在不等式的变形过程中,出现错误的步骤是()A.5(2+x)≥3(2x﹣1)B.10+5x≥6x﹣3C.5x﹣6x≥﹣3﹣10 D.x≥135、已知a>b,则下列不等式中,正确的是()A.-3a>-3bB.- >-C.a-3>b-3D.3-a>3-b6、若,则下列结论中错误的是()A. B. C. D.7、已知实数a、b,若,则下列结论正确的是()A. B. C. D.8、已知不等式组的解集如图所示(原点没标出),则a的值为()A.﹣1B.0C.1D.29、如果a<b,下列各式中不一定正确的是()A.a-1<b-1B.-3a>-3bC. <D. <10、不等式3x﹣6≥0的解集在数轴上表示正确的是()A. B. C. D.11、不等式组的解集在数轴上表示为()A. B. C.D.12、不等式组的解集为( )A.x<-3B.x≤2C.-3<x≤2D.无解13、不等式3(x﹣1)≤5﹣x的非负整数解有()A.1个B.2个C.3个D.4个14、不等式>﹣1的正整数解的个数是()A.1个B.2个C.3个D.4个15、解不等式的下列过程中错误的是()A.去分母得B.去括号得&nbsp;C.移项,合并同类项得D.系数化为1,得二、填空题(共10题,共计30分)16、某药品说明书上标明药品保存的温度是(10±4) ℃,设该药品合适的保存温度为t ℃,则t的取值范围是________.17、不等式3(2+x)>2x的最小负整效是________.18、不等式2x+5≤12的正整数解是________19、关于x﹣a=2的解为正数,则a的取值范围为________.20、一元一次不等式的特殊解问题分两步解答:一是________;二是根据问题的条件,在求出的范围内确定满足条件的解.21、在一次社会实践活动中,某班的活动经费最多有900元.此次活动租车需300元,每个学生活动期间所需经费为15元,则参加这次活动的学生人数最多为________.22、不等式3x+2>2(x-1)的解集为________,在数轴上表示为.________23、若关于x的分式方程=2的解为负数,则k的取值范围为________.24、两根木棒长分别为5和7,要选择第三根木棒将其钉成三角形,•若第三根木棒的长选取偶数时,有________种选取情况.25、无论m为何值,点A(m,5-2m)不可能在第________象限.三、解答题(共5题,共计25分)26、求满足的最大整数解27、某班同学去春游花了250元包租了一辆客车,如果参加春游的同学每人交8元钱租车费,还不够,如果每人交9元,还用不了.用不等式表示出上述问题中存在的不等关系.28、解不等式组,并把解集在数轴上表示出来..29、解不等式,并把解集在数轴上表示出来.30、解不等式,并把解集在数轴上表示出来.参考答案一、单选题(共15题,共计45分)1、B3、D4、A5、C6、C7、D8、D9、C10、B11、A12、A13、C14、D15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

苏教版七年级数学下册第11章一元一次不等式单元测试卷(含答案)

苏教版七年级数学下册第11章一元一次不等式单元测试卷(含答案)

第七章一元一次不等式单元测试卷满分:100分时间:60分钟得分:__________ 一、选择题(每题3分,共24分)1.下列式子:①2x-7≥-3;②12x->;③7<9;④x2+3x>1;⑤()2112aa-+≤;⑥m-n>3,其中是一元一次不等式的有( )A.1个B.2个C.3个D.4个2.下列不等式一定成立的是( )A.5a>4a B.x+2<x+3 C.-a>-2a D.42 a a >3.不等式组2130xx≤⎧⎨+≥⎩,的解集在数轴上可以表示为( )4.关于x的方程5x-2m=-4-x的解满足2<x<10,则m的取值范围是( ) A.m>8 B.m<32 C.8<m<32 D.m<8或m>32 5.已知三角形的一边长是(x+3)cm,该边上的高是5 cm,它的面积不大于20 cm2,则( ) A.x>5 B.-3<x≤5 C.x≥-3 D.x≤56.要使函数y= (2m-3)x+(3n+1)的图象经过x、y轴的正半轴,则m与n的取值范围应为( )A.32m>,13n>-B.m>3,n>-3C.32m<,13n<-D.32m<,13n>-7.八年级某班的部分同学去植树,若每人平均植树7棵,则还剩9棵;若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,则下列能准确求出同学人数与植树总棵数的是( ) A.7x+9-9(x-1)>0 B.7x+9-9(x-1)<8C.()()7991079918x xx x+-->⎧⎪⎨+--<⎪⎩,D.()()7991079918x xx x+--≥⎧⎪⎨+--≤⎪⎩,8.关于x的不等式组210x ax<-⎧⎨+>⎩,只有4个整数解,则a的取值范围是( )A .5≤a ≤6B .5≤a<6C .5<a ≤6D .5<a<6 二、填空题(每题3分,共18分)9.不等式3(x+2)≥4+2x 的负整数解为__________10.若点P(x -2,3+x)在第二象限,则x 的取值范围是__________.11.弟弟上午八点钟出发步行去郊游,速度为每小时4千米;哥哥上午十点钟 从同一地点骑自行车去追弟弟.如果哥哥要在上午十点四十分之前追上 弟弟,那么哥哥的速度至少是__________.12.函数y=kx+b 的图象如图所示,则方程kx+b=0的解为________,不等式 kx+b>0的解集为_________,不等式kx+b -3>0的解集为________. 13.若不等式(m -2)x>2的解集是22x m <-,则m 的取值范围是________. 14.如果关于x 的不等式组5191x x x m +>+⎧⎨>+⎩,的解集是x>2,那么m 的取值范围是________.三、解答题(共58分)15.(每题6分,共12分)解下面的不等式(组),并把解集在数轴上表示出来:(1)2152146x x -+-≥-; (2)()33514622.33x x x x +>-⎧⎪⎨--≥⎪⎩,16.(8分)若不等式组()231132x x x +<⎧⎪⎨>-⎪⎩,的整数解是关于x 的方程2x -4=ax 的根,求a 的值.17.(10分)已知关于x 、y 的二元一次方程组225234x y m x y m +=-⎧⎨-=-⎩,的解x 为正数,y 为负数,求m 的取值范围.18.(8分)一群猴子结伴去偷桃,在分桃时;如果每只猴子分3个,那么还剩59个;如果每只猴子分5个,那么有一只猴子分得的桃不足5个,你能求出有多少只猴子,多少个桃吗?19.(10分)如图是一艘轮船和一艘快艇沿相同路线从甲港出发行驶到乙港的过程中路程y随时间x变化的图象.根据图象解答下列问题:(1)在轮船和快艇中,哪一艘的速度较快?(2)当时间x在什么范围内时,快艇在轮船的后面?当时间x在什么范围内时,快艇在轮船的前面?(3)快艇出发多长时间后赶上轮船?20.(10分)某批发商计划将一批海产品由A地运往B地.汽车货运公司和铁路货运公司均开办海产品运输业务.已知运输路程为120千米,汽车和火车的速度分别为60千米运输工具运输费单价/(元/吨·千米)冷藏费单价/(元/吨·小时)过路费/元装卸及管理费/元汽车 2 5 200 0火车 1.8 5 0 1600注:“元/吨·千米”表示每吨货物每千米的运费;“元/吨·小时”表示每吨货物每小时的冷藏费.(1)设该批发商待运的海产品有x(吨),汽车货运公司和铁路货运公司所要收取的费用分别为y1(元)和y2(元),试求y1、y2与x之间的函数关系式.(2)若该批发商待运的海产品不少于30吨,为节省运费,他应选择哪个货运公司承担运输业务?参考答案一、1.B 2.B 3.C 4.C 5.B 6.D 7.C 8.C二、9.x=-2,-1 10.-3<x<2 11.16千米/时12.x=1 x<1 x<0 13.m<2 14.m<1三、15.(1)54x 数轴略(2)2≤x<4 数轴略16.a=4 17.m<-1 18.30只猴,149个桃;31只猴,152个桃19.(1)快艇(2)4小时内轮船在前;4小时后快艇在前(3)2小时20.(1)y1=250x+200、y2=222x+1 600 (2)50吨以下选汽车,50吨以上选火车,50吨时费用相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章《一元一次不等式》单元测试题
一、选择题:(本题共10小题,每小题3分,共30分)
1. a 的3倍与3的和不大于1,用不等式表示正确的是…………………………( )
A .331a +<; B.331a +≤;C.331a -≥;ﻩD.331a +≥;
2.下列不等式中,是一元一次不等式的有…………………………………………………( ) ①370x ->;②23x y +>;③22221x x x ->-;④317x +<; A

1

; B. 2个 ; C.3个; D. 4个;
3. 如果y x >,则下列变形中正确的是………………………………………………( )
A.y x 2121->- ; B . y x 2
121< ; C.y x 53>; D. 33->-y x ; 4. (2012•崇左)不等式541x x ->-的最大整数解是……………………………( )
A.-2;ﻩB .-1;
C.0; D.1; 5. 不等式组31
x x <⎧⎨≥⎩的解集在数轴上表示为…………………………………………( )
6.如果不等式()11b x b +<+的解集是1x >,那么b 必须满足………………………( )
A .1b <-; B.1b ≤-; C .1b >-; D.1b ≥-;
7. (2014春•富顺县校级期末)如果22x x -=-,那么x 的取值范围是…………( )
A . x≤2;
B . x≥2;
C . x<2;ﻩ
D . x>2;
8.已知⎩⎨⎧+=+=+1
2242k y x k y x 且01<-<x y ,则k 的取值范围是…………………………( )
A. 211-
<<-k ; B. 210<<k ; C . 121<<k ; D . 10<<k ;
9.若不等式组0122
x a x x +≥⎧⎨->-⎩有解,则a 的取值范围是………………………………( )
A. 1a >-; B. 1a ≥-; C. 1a ≤ ; D. 1a < ;
10. (2014•路桥区模拟)某商店以单价260元购进一件商品,出售时标价398元,由于销售不好,商店准备降价出售,但要保证利润率不低于10%,那么最多可降价………( ) A. B. C. D.
A. 111元;ﻩ
B. 112元;ﻩC. 113元; D.ﻩ114元;
二、填空题:(本题共8小题,每小题3分,共24分)
11.用不等式表示“7与m 的3倍的和不是正数”就是 . 12.不等式3
1221-≥+x x 的非负整数解的和是 . 13.不等式组⎪⎩⎪⎨⎧->--≥-311312x x 的整数解是 .
14.(2014春•麦积区校级期末)关于x 的不等式21x a -≤-的解集如图所示,则a 的值是 .
15.(2014春•大石桥市期末)若a >b ,且c 为有理数,则2ac 2bc .
16.若不等式组⎩
⎨⎧>-<-2313b x a x 的解集为11<<-x ,那么a b += . 17.(2015•温州校级模拟)已知关于x 的不等式组
只有3个整数解,则实数a 的取值范围是 .
18. (2014•兰山区一模)如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的x 的值为 .
三、解答题:(本题共10大题,满分76分)
19.(本题满分16分)解下列不等式,并把第(1)、(3)两题的解集在数轴上表示出来. (1
)()()9213+≥-x x ; (2)2
15321x x +>--

(3)311442x x x x -≥+⎧⎨+<-⎩; (4)()5232135122
x x x x -<-⎧⎪⎨-≥-⎪⎩ 第14题图
第18题图。

相关文档
最新文档