解三角形正弦定理余弦定理三角形面积公式ppt课件

合集下载

版高中数学 第一章 解三角形 1.1.1 正弦定理(一)课件 新人教B版必修5.pptx

版高中数学 第一章 解三角形 1.1.1 正弦定理(一)课件 新人教B版必修5.pptx
12
跟踪训练1 如图,锐角△ABC的外接圆O半径为R,角A,B,C所对的 边分别为a,b,c.求证:sina A =2R. 证明
13
类型二 用正弦定理解三角形
例2 已知△ABC,根据下列条件,解三角形:a=20,A=30°,C= 45°. 解答 ∵A=30°,C=45°,∴B=180°-(A+C)=105°, 由正弦定理得 b=assiinnAB=20ssiinn3100°5°=40sin(45°+60°)=10( 6+ 2), c=assiinnAC=20sisnin3405°°=20 2, ∴B=105°,b=10( 6+ 2),c=20 2.
A.直角三角形 C.锐角三角形
√B.等腰三角形
D.钝角三角形
由sin A=sin C,知a=c,∴△ABC为等腰三角形.
1 2 3 247
3.在△ABC中,已知BC= 5 ,sin C=2sin A,则AB=_2__5___.
答案 解析
由正弦定理,得 AB=ssiinn CABC=2BC=2 5.
18
命题角度2 运算求解问题
例4
在△ABC中,A=
π 3
,BC=3,求△ABC的周长的最大值.
解答
19
反思与感悟
利用sina A=sinb B=sinc C=2R 或正弦定理的变形公式 a=ksin A,b= ksin B,c=ksin C(k>0)能够使三角形边与角的关系相互转化.
22
跟 踪 训 练 3 在 △ABC 中 , 角 A 、 B 、 C 的 对 边 分 别 是 a 、 b 、 c , 若 A∶B∶C=1∶2∶3,求a∶b∶c的值. 解答
23
当堂训练
25
1. 在△ABC中,一定成立的等式是 答案 解析

正弦定理、余弦定理及解三角形

正弦定理、余弦定理及解三角形

第15页
返回目录
结束放映
考点突破 考点四 正、余弦定理在实际问题中的应用
训练 4 (2015·湖北卷)如图,一辆汽车在一条水平的公路上向 正西行驶,到 A 处时测得公路北侧一山顶 D 在西偏北 30°的方向 上,行驶 600 m 后到达 B 处,测得此山顶在西偏北 75°的方向上, 仰角为 30°,则此山的高度 CD=________m.
∴sin B= 1-cos2B
=2 3
2×79-13×4
9
2=1027
2 .
第3页
返回目录
结束放映
考点突破 考点一 利用正、余弦定理解三角形
规律方法
(1)解三角形时,如果式子中含有角的余弦或边的二次式,要 考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则 考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有 可能用到.
=sin∠6(海AB里C)=.ACsBinC120°=2×623= 22. ∴∠ABC=45°,易知 CB 方向与正北方向垂直,
从而∠CBD=90°+30°=120°.在△BCD 中,根据正弦定理,可得 sin∠BCD=BDsinC∠D CBD=10t·1s0in31t20°=12, ∴∠BCD=30°,∠BDC=30°,∴BD=BC= 6(海里),
则有 10t= 6,t=106≈0.245 小时=14.7 分钟.
故缉私船沿北偏东 60°方向,需 14.7 分钟才能追上走私船.
第14页
返回目录
结束放映
考点突破 考点三 和三角形面积有关的问题
规律方法
解三角形应用题的两种情形: (1)实际问题经抽象概括后,已知量与未知量全部集中在一 个三角形中,可用正弦定理或余弦定理求解; (2)实际问题经抽象概括后,已知量与未知量涉及到两个或 两个以上的三角形,这时需作出这些三角形,先解够条件的三角 形,然后逐步求解其他三角形,有时需设出未知量,从几个三角 形中列出方程(组),解方程(组)得出所要求的解.

正弦定理和余弦定理课件PPT

正弦定理和余弦定理课件PPT
直角三角形的一个锐角的对边与斜边的比叫做这个 角的正弦.
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
A. 3
B.2
C. 5
D. 7
【解析】选D.因为a2=b2+c2-2bccosA=22+32-2×2×3×
cos 60°=7,所以a=
7.
3.在△ABC中,a=3,b=4,c= ,则此三角形的最大角为
37
.
【解析】由c>b>a知C最大,
因为cosC=
a2
所以C=120°.
b2 c2 2ab
32 42 37 234
【拓展延伸】利用平面图形的几何性质和 勾股定理证明余弦定理 ①当△ABC为锐角三角形时,如图, 作CD⊥AB,D为垂足,则CD=bsinA, DB=c-bcosA,则a2=DB2+CD2=(c-bcosA)2+(bsinA)2 =b2+c2-2bccosA,其余两个式子同理可证;
b
b 2R, a 2R. 即得 :
A
sin B
sin A
C′
a b c 2R. R为三角形外接圆的半径
sin A sin B sin C
A
C
c
b aO
B
C
B`
Ob a B A` A c

(完整版)解三角形之正弦定理与余弦定理

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形.知识点清单一. 正弦定理:1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即a b c2R( 其中R 是三角形外接圆的半径)sin A sinB sinC2. 变形:1)a b c a b csin sin sinC sin sin sinC 2)化边为角:a:b:c sin A:sin B:sinC;a sin A;b sin B a sin Ab sinBc sinC c sin C3)化边为角:a 2Rsin A, b 2Rsin B, c 2RsinC4)化角为边:sin A a;sin B b ; sin A asin B b sinC c sinC c5)化角为边:sin A a sinB b,sinC c2R2R2R3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=18o0 ,求角A,由正弦定理 a sinA; b sinB; b sin B c sin C a sin A; 求出 b 与cc sinC ②已知两边和其中—边的对角,求其他两个角及另一边。

例:已知边a,b,A,解法:由正弦定理 a sin A求出角B,由A+B+C=18o0 求出角C,再使用正 b sin B 弦定理 a sin A求出c边c sinC4. △ABC中,已知锐角A,边b,则① a bsin A 时,B 无解;② a bsin A 或 a b 时, B 有一个解;③ bsinA a b 时, B 有两个解。

如:①已知 A 60 ,a 2,b 2 3,求 B (有一个解 )②已知 A 60 ,b 2,a 2 3,求 B (有两个解 ) 注意:由正弦定理求角时,注意解的个数。

解三角形(正弦定理、余弦定理、三角形面积公式)

解三角形(正弦定理、余弦定理、三角形面积公式)

2020年9月11日11时45分
9
考点突破 考点一 余弦定理应用——2、判断三角形的形状
【训练1】(3)在△ABC中,a : b : c 3+1: 6:2, 判断三角形的形状并求三角形的最小角.
解析 由a : b : c 3+1: 6:2知,a b c
所以∠A ∠B ∠C,即∠A为最大角,∠C为最小角
【例1】(3)已知在△ABC中,a 2,b 3,c 4, 那么这个三角形的形状是______.
解析
由题意可知:c b a,
所以∠C ∠B ∠A,即∠C为最大角,
由余弦定理得:cosC= a2 b2 c2 2ab
4 9 16 1 0
2 23
4
所以∠C为钝角,即△ABC为钝角三角形。
2020年9月11日11时45分
11
余弦定理、正弦定理和三角形面积公式
➢ 夯基释疑
概要
➢ 考点突破
➢ 课堂小结
2020年9月11日11时45分
考点一 考点二
例 1 训练1 例 2 训练2
考点三
例 3 训练3
12
考点突破 考点二 正弦定理的应用——求三角形的边角
【例2】(1)在△ABC中,a=2,∠A=300,∠C =450 , 则b等于_______.
a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B c2 a2 b2 2ab cos C
cos A b2 c2 a2 2bc
cos B a2 c2 b2 2ac
cos C a2 b2 c2 2ab
2020年9月11日11时45分
S 1 ab sin C 2
S 1 bc sin A 2
S 1 ac sin B 2

高考数学一轮复习正弦定理余弦定理及解三角形课件理

高考数学一轮复习正弦定理余弦定理及解三角形课件理

基础诊断 考点突破
课堂总结
解 (1)由题意可知 c=8-(a+b)=72.
由余弦定理得 cos C=a2+2ba2b-c2=22+2×5222×-52722
=-15.
(2)由 sin Acos2B2+sin Bcos2A2=2sin C 可得:
sin
1+cos A· 2
B+sin
1+cos B· 2
a2+b2-c2 2ab
基础诊断 考点突破
课堂总结
2.S△ABC=12absin C=12bcsin A=12acsin B=a4bRc=12(a+b+c)·r(r 是 三角形内切圆的半径),并可由此计算 R,r.
基础诊断 考点突破
课堂总结
• 3.实际问题中的常用角
• (1)仰角和俯角
• 在同一铅垂平面内的水平视线和目标视线
1-2419=2
7 7.
而∠AEB=23π-α,所以
cos∠AEB=cos23π-α=cos23πcos α+sin23πsin α
=-12cos
α+
3 2 sin
α
=-12·2 7 7+
3 21 2 ·7

7 14 .
基础诊断 考点突破
课堂总结

Rt△EAB
中,cos∠AEB=EBAE=B2E,故
课堂总结
5.(人教 A 必修 5P10B2 改编)在△ABC 中,acos A=bcos B, 则这个三角形的形状为________. 解析 由正弦定理,得 sin Acos A=sin Bcos B, 即 sin 2A=sin 2B,所以 2A=2B 或 2A=π-2B, 即 A=B 或 A+B=2π, 所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形

第3章 第6节正弦定理和余弦定理

第3章 第6节正弦定理和余弦定理

2.(1)(2012· 陕西高考,9)在△ABC 中,角 A,B,C 所 对边的长分别为 a,b,c,若 a2+b2=2c2,则 cos C 的最小 值为( 3 A. 2 1 C.2 ) 2 B. 2 1 D.-2
(2)(2012· 北京高考,11)在△ABC 中,若 a=2,b+c=7, 1 cos B=-4,则 b=________.
22+ 6+ 22-2 22 2 = =2, 2×2× 6+ 2 ∴B=45° ,C=180° -A-B=180° -30° -45° =105° .
第四章 第二单元
北师数学
第三章
三函数、三角恒等变换、解三角形
(3)cos 15° =cos(45° -30° ) 6+ 2 =cos 45° cos 30° +sin 45° sin 30° = 4 . ∵c2=a2+b2-2abcos C 6+ 2 =(2 2) +(2 3) -2×2 2×2 3× 4
第四章 第二单元
北师数学
第三章
三角函数、三角恒等变换、解三角形
a2+c2-b2 解析:∵由余弦定理可知 2ac =cos
2 2 2
B,
3 ∴(a +c -b )tan B= 3ac 可化为 cos B· tan B= 2 . ∴sin 3 π 2π B= 2 .又∵B 为△ABC 的内角,∴B=3或 3 .
在△ABC 中,设 a、b、c 分别是角 A、B、C 的对 边,试根据以下已知条件解三角形. (1)a=2 3,b= 6,A=45° ; (2)a=2,b=2 2,c= 6+ 2; (3)a=2 2,b=2 3,C=15° .
第四章 第二单元
北师数学
第三章
三角函数、三角恒等变换、解三角形

§2 三角形中的几何计算

§2  三角形中的几何计算

(10 分) (12 分)
栏目,c 间的关系,再利用余弦定理,是本题关键.
栏目 导引
第二章 解三角形
判断(正确的打“√”,错误的打“×”) (1)三角形的面积公式适用于所有的三角形.( √ ) (2)已知三角形两边及其夹角不能求出其面积.( × ) (3)已知三角形的两内角及一边不能求出它的面积.( × )
栏目 导引
第二章 解三角形
在△ABC 中,若 a=7,b=3,c=8,则△ABC 的面积等于
栏目 导引
第二章 解三角形
(2)由 S△ABC=12acsin B= 3,得 ac=4. 又 b2=a2+c2+ac=(a+c)2-ac=16. 所以 a+c=2 5,所以△ABC 的周长为 4+2 5.
栏目 导引
第二章 解三角形
解三角形综合问题的策略 (1)三角形中的综合应用问题常常把正弦定理、余弦定理、三角 形面积公式、三角恒等变形等知识联系在一起,要注意选择合 适的方法、知识进行求解. (2)解三角形常与向量、三角函数及三角恒等变形等知识综合考 查,解答此类题目,首先要正确应用所学知识“翻译”题目条 件,然后要根据题目条件和要求选择正弦或余弦定理求解.
2.在△ABC 中,A,B,C 是三角形的三内角, a,b,c 是三内角对应的三边,已知 b2+c2-a2=bc.若 a= 13, 且△ABC 的面积为 3 3,求 b+c 的值. 解:cos A=b2+2cb2c-a2=2bbcc=12, 又 A 为三角形内角, 所以 A=π3.
栏目 导引
第二章 解三角形

1-2

5
52=

55,sin
A=sin(B+∠ACB)
=sin Bcos ∠ACB+cos Bsin ∠ACB

正弦定理和余弦定理-PPT课件

正弦定理和余弦定理-PPT课件

22
类型一
正弦定理和余弦定理的应用
解题准备:
1.正弦定理和余弦定理揭示的都是三角形的边角关系,根据题 目的实际情况,我们可以选择其中一种使用,也可以综合起 来运用.
2.在求角时,能用余弦定理的尽量用余弦定理,因为用正弦定 理虽然运算量较小,但容易产生增解或漏解.
23
3.综合运用正、余弦定理解三角形问题时,要注意以下关系式
32
∵0<A<π,0<B<π,∴sin2A=sin2B
∴2A=2B或2A=π-2B,即A=B或A+B= .
2
∴△ABC是等腰三角形或直角三角形.
33
解法二:同解法一可得2a2cosAsinB=2b2cosBsinA,
由正、余弦定理得
a2b•
b2
c2
a
2
=b2a•
a2 c2 b2
2bc
2ac
1 2 3 2 1 3.
2
2
(2)当|BC|=4时,S△=
1 2
|AB|·|BC|·sinB
1 2 3 4 1 2 3.
2
2
∴△ABC的面积为 2 3 或 3.
27
[反思感悟]本题主要考查正弦定理、三角形面积公式及分类 讨论的数学思想,同时也考查了三角函数的运算能力及推 理能力.
28
40
设云高CM x m,则CE x h,
DE x h, AE x h .
tan
又AE x h , x h x h
tan tan tan
解得x tan tan gh hgsin( ) m.
tan tan
sin( )
41
[反思感悟]在测量高度时,要理解仰角、俯角的概念.仰角和俯 角都是在同一铅垂面内,视线与水平线的夹角,当视线在水 平线之上时,称为仰角;当视线在水平线之下时,称为俯角.

高中数学解三角形ppt课件

高中数学解三角形ppt课件

证明几何定理
如勾股定理、正弦定理、余弦定理等 ,可以通过面积公式进行证明
计算三角形的内角和
利用面积公式和三角形内角和定理, 可以求出三角形的内角和
面积公式在物理问题中的应用
1 2
计算物体的受力面积
在物理学中,经常需要计算物体在某个方向上的 投影面积或受力面积,可以通过面积公式进行计 算
计算物体的体积和表面积
02 余弦定理
在任意三角形中,任何一边的平方等于其他两边 平方的和减去这两边与它们夹角的余弦的积的两 倍。
03 三角形的面积公式
S=1/2absinC,其中a、b为两边长,C为两边夹 角。
02
正弦定理及其应用
正弦定理的推导与证明
推导过程
通过三角形的外接圆和正弦函数的定义,推导出正弦定理的表达式。
一些几何性质。
最值问题
通过解三角形的方法,可以求解一 些与三角形相关的最值问题,如最 大面积、最小周长等。
存在性问题
在数学竞赛中,有时需要判断满足 某些条件的三角形是否存在,这可 以通过解三角形的方法来实现。
THANKS
感谢观看

对于一些规则或不规则的物体,可以通过计算其 各个面的面积,进而求出物体的体积和表面积
3
解决光学问题
在光学中,经常需要计算光线通过某个形状的面 积或光斑的大小,可以通过面积公式进行求解
05
解三角形综合应用举例
解直角三角形问题举例
已知两边求角度
通过正弦、余弦定理求解 直角三角形中的角度。
三角形的面积
解决三角形中的边长问题
利用正弦定理求出三角形中的未知边长。
正弦定理在物理问题中的应用
解决力学问题
在力学中,正弦定理可用于解决 涉及三角形的问题,如力的合成 与分解等。

解三角形PPT课件

解三角形PPT课件
第13页/共40页
解 法 三: a2 b2 c2 2bccos A
(1) 2
2
2 2
32 c2 22
3 c cos45
c2 2 6c 4 0.解 得c 6 2 ABC有 两 解
(2) 112 222 c2 2 22 c cos30
c2 22 3c 363 0. 解 得c 11 3 ABC有 一 解
A. 0 a 4 3
B. a 6
C. a 4 3或a 6 D. 0 a 4 3或a 6
点评:可通过正弦定理或几何作图很容易 看出三角形有一个解的情况有两种。这些 有些同学容易出现误区,直接令关于C的一 元二次方程有一解,很容易少考虑a>b的情 况,以后做题时要注意。
第15页/共40页
2 sin15 sin45
6 2
2
第19页/共40页
方 法 二用 余 弦 定 理
b2 a2 c2 2accosB 2 3 c2 2 3 cos45 即c2 6c 1 0 解 之 , 得c 6 2
2
点评:此类问题求解需要主要解的个数的讨论,比 较上述两种解法,解法二比较简便。
2
2
cos A B sinC ;
2
2
tan A B cotC
2
2
(5)在ABC中,tanA tanB tanC tanA tanB tanC
第4页/共40页
(6)ABC 中,A、B、C成等差数列的充要条件
是B=60
(7) ABC为正三角形的充要条件是A、B、C成等差数 列,a、b、c成等比数列.
(3) 182 202 c2 2 20 c cos150 c2 20 3c 76 0. 解 得c 10 3 4 11 10 3 4 11 0 ABC无 解

(完整版)解三角形之正弦定理与余弦定理

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形知识点清单一.正弦定理:1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即a b c2R(其中R是三角形外接圆的半径)sin A sin B si2.变形:1) a b c a b csin sin si nC sin sin si nC2)化边为角:a :b: c sin A: sin B :s in C -a si nA.b sin B a sin AJb sin Bc sin C c sin C '3)化边为角:a 2Rsin A, b 2Rsi nB, c 2Rs inC4)化角为边:sin A a ;J sin B b ; si nA aJ7sin B b sin C c sin C c5)化角为边:sin A a sin B b si nC c2R‘2R'2R3.利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角; 例:已知角B,C,a,解法:由A+B+C=18°0,求角A,由正弦定理-Sn) - Sn^; b sin B c sin C a sin A;求出b与cc sin C②已知两边和其中一边的对角,求其他两个角及另一边。

例:已知边a,b,A,解法:由正弦定理旦血求出角B,由A+B+C=180求出角C,再使用正b sin B弦定理旦泄求出c边c sin C4. △ ABC中,已知锐角A,边b,贝U①a bsin A时,B无解;②a bsinA或a b时,B有一个解;③ bsin A a b 时,B 有两个解。

如:①已知A 60 ,a 2,b2, 3 ,求B (有一个解) ②已知A 60 ,b 2,a23,求B (有两个解)注意:由正弦定理求角时,注意解的个数。

正弦定理和余弦定理课件PPT

正弦定理和余弦定理课件PPT

在钝角三角形 ABC 中,a=1,b=2,c=t,且 C 是最大角,则 t 的取值范围是________.
[错解] ∵△ABC 是钝角三角形且 C 是最大角,∴C>90°, ∴cosC<0,∴cosC=a2+2ba2b-c2<0, ∴a2+b2-c2<0,即 1+4-t2<0. ∴t2>5.又 t>0,∴t> 5, 即 t 的取值范围为( 5,+∞).
sin A
3
y 4sin x 4sin( 2 x) 2 3 3
4 3 sin(x ) 2 3, 6
A ,0 B x 2 .
3
3
故 x ( , 5),sin(x ) (1 ,1],
6 66
62
∴y的取值范围为 (4 3,6 3].
正、余弦定理的综合应用 【名师指津】正、余弦定理的综合应用
(2)由于 a:b:c=1: 3:2, 可设 a=x,b= 3x,c=2x. 由余弦定理的推论,得 cosA=b2+2cb2c-a2 =32x×2+43xx2×-2xx2= 23,故 A=30°. 同理可求得 cosB=12,cosC=0,所以 B=60°,C=90°.
已知三角形的三边长分别为 x2+x+1,x2-1 和 2x+ 1(x>1),求这个三角形的最大角.
∵∠ADC=45°,DC=2x, ∴在△ADC 中,根据余弦定理,得 AC2=AD2+DC2-2AD×DC×cos45°, AC2=4x2-4x+2, 又 AC= 2AB, ∴AC2=2AB2, 即 x2-4x-1=0,解得 x=2± 5. ∵x>0,∴x=2+ 5,即 BD=2+ 5.
名师辨误做答
第一章
解三角形
第一章
1.1 正弦定理和余弦定理

解三角形(正弦定理余弦定理三角形面积公式)课件

解三角形(正弦定理余弦定理三角形面积公式)课件
反射定律
当光线遇到平面镜时,会产生反射现象。通过解三角形的方法可以计算入射角和反射角的关系,从而解释反射现 象。
建筑学中的角度计算
确定建筑物的角度
在建筑设计中,需要计算建筑物与水平面之间的角度,以确保建筑物的稳定性。利用解三角形的方法 可以计算出建筑物所需的倾斜角度。
测量建筑物的高度
通过观测建筑物与水平面之间的角度,利用解三角形的方法可以计算出建筑物的高度。
将三角形的三边长度转化为面积的表 达式,便于计算。
面积公式的应用
01
解决实际问题
利用三角形面积公式解决实际 问题,如土地测量、建筑规划
等。
02
数学竞赛解题
在数学竞赛中,三角形面积公 式是解决几何问题的重要工具
之一。
03
数学建模
在数学建模中,三角形面积公 式可以用于描述和解决现实生 活中的问题,如最优分割等。
详细描述
其中一种常见的证明方法是利用三角形的外接圆性质,通过相似三角形和勾股定 理进行推导。此外,还可以利用三角函数的加法定理、三角形的面积公式等其他 方法进行证明。掌握多种证明方法有助于加深对正弦定理的理解和应用。
02
余弦定理
定义与性质
总结词
余弦定理是三角形中一个重要的 定理,它描述了三角形各边与其 所对的角之间的关系。
应用场景
01
总结词
02
详细描述
正弦定理在解决三角形问题时非常有用,特别是在已知两边及夹角、 已知两角及夹边等情况下求解第三边。
通过正弦定理,我们可以解决各种与三角形相关的问题,如计算三角 形的面积、判断三角形的形状、解决几何作图问题等。它是三角函数 和几何学中非常重要的定理之一。
证明方法
总结词

高中数学 第二章 解三角形 2.1 正弦定理与余弦定理 2.1.1 正弦定理课件 北师大版必修5

高中数学 第二章 解三角形 2.1 正弦定理与余弦定理 2.1.1 正弦定理课件 北师大版必修5
∴本题有一解.
∵sin B=
sin

=
10sin60 °
5 6
=
2
2
, ∴ = 45°,
∴A=180°-(B+C)=75°.
∴a=
sin
sin
=
10sin75 °
sin45 °
=
10×
6+ 2
4
2
2
= 5( 3 + 1).
题型一
题型二
题型三
题型四
题型二
判断三角形的形状
【例 2】 在△ABC 中,若 lg a-lg c=lg sin B=-lg 2, 且为锐角,
sin
∴C=60°或 C=120°.

当 C=60°时,A=90°,
1
∴S△ABC = ·AC·sin A=2 3.
2
当 C=120°时,A=30°,
1
∴S△ABC = ·AC·sin A= 3.
2
故三角形的面积是 2 3或 3.
=
3
2
.
1
2
3
4
5
1在△ABC中,若b=2asin B,则A的值是(
BC=
.
解析:c=AB=3,B=75°,C=60°,则 A=45°.


由正弦定理,得
=
,
所以 a=BC=
答案: 6
sin
sin
sin
3sin45 °
sin
sin60 °
=
= 6.
π
【做一做 3-2】 在△ABC 中,若 a=3,b= 3, = ,
3
.
则的大小为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


知识回顾:
( 2) 由 a2b2c2bc可 得 , 已知三角
b2c2a2=bc 则 cosAb2c2a2bc1
2bc 2bc 2
函数值求角的 步骤:
1、定象限 2、找锐角
因 为 0 0 ∠ A 1 8 0 0所 以 ∠ A = 1 2 0 0 3、写形式
2020/1/2
解析 ( 2 ) co sA A C 22 A A C B 2 A B B C 24 2 + ( 2 ( 3 + 1 ) 3 2 + 1 ) 2 23
因 为 0 0 ∠ A 1 8 0 0 所 以 ∠ A = 3 0 0
B C 2 A B 2 A C 2 2 + ( 3 + 1 ) 2 4 2
三角函数的应用——解三角形
授课人:张凤喜 授课班级:13级1班 授课时间:15年12月1日
余弦定理、正弦定理和三角形面积公式
夯基释疑
概要
考点突破
课堂小结
2020/1/2
考点一 考点二
例 1 训练1 例 2 训练2
考点三
例 3 训练3
2
夯基释疑
熟记公式是本节的基本要求。
a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B c2 a2 b2 2ab cos C
32 52 235(3) 52 5
所以BC=2 13
2020/1/2
5
考点突破 考点一 余弦定理应用——1、求三角形的边角
【 例 1】 ( 1) 在 △ ABC中 , sinA=4, 且 A为 钝 角 , AB=3, 5
AC=5, 则 BC等 于 _______.
( 2) 在 △ ABC中 , a2b2c2bc, 则 ∠ A等 于 ______.
【 例 1 】 ( 3 ) 已 知 在 △ A B C 中 , a 2 , b 3 , c 4 , 那 么 这 个 三 角 形 的 形 状 是 _ _ _ _ _ _ .
解析
由 题 意 可 知 : cba , 所 以 ∠ C ∠ B ∠ A , 即 ∠ C 为 最 大 角 ,
由 余 弦 定 理 得 : cosC =a2b2c2 2ab
491610 223 4
所 以 ∠ C 为 钝 角 , 即 △ A B C 为 钝 角 三 角 形 。
2020弦定理应用——2、判断三角形的形状
【 训 练 1 】 ( 3 ) 在 △ A B C 中 , a :b :c3 + 1 :6 : 2 , 判 断 三 角 形 的 形 状 并 求 三 角 形 的 最 小 角 .
即△ABC为锐角三角形.
cosC=a2b2c2 ( 3+1)264 2
2ab
2( 3+1) 6 2
因 为 ∠ C是 三 角 形 的 内 角 , 所 以 ∠ C=450
2020/1/2
10
考点突破 考点一 余弦定理的应用
规律方法
1、运用余弦定理解决两边及其夹角和已知三边求三角 的题目,是春季高考重点考查的知识点,而熟记公式是 解题的关键。 2、(1)判断三角形的形状时,要依据大边对大角求出 最大角的余弦值;
cos A b 2 c2 a 2 2bc
cos B a 2 c2 b 2 2ac
cos C a 2 b 2 c2 2ab
S 1 a b s in C 2
S 1 b c s in A 2
S 1 a c s in B 2
a b c 2R sinA sinB sinC
6
考点突破 考点一 余弦定理应用——1、求三角形的边角
【 训 练 1 】 ( 1 ) 在 △ A B C 中 , a = 5 , b = 6 , ∠ C = 1 2 0 0 , 则 c = _ _ _ _ _ _ _ _ _ _ .
解析
( 1 ) 由 c 2 = a 2 b 2 2 a b c o s C 可 得
2020/1/2
3
余弦定理、正弦定理和三角形面积公式
夯基释疑
概要
考点突破
课堂小结
2020/1/2
考点一 考点二
例 1 训练1 例 2 训练2
考点三
例 3 训练3
4
考点突破 考点一 余弦定理应用——1、求三角形的边角
【 例 1】 ( 1) 在 △ ABC中 , sinA=4, 且 A为 钝 角 , AB=3, 5
(2)根据大角的余弦值的正负判断大角是锐角还是 钝角。如果余弦值是正值,最大角为锐角,则三角形是 锐角三角形;如果余弦值是负值,最大角为钝角,则三 角形是钝角三角形;如果余弦值是0,最大角为直角, 则三角形是直角三角形。
c 2 = 5 2 + 6 2 2 5 6 c o s 1 2 0 0 2 5 3 6 2 5 6 c o s (1 8 0 0 6 0 0 )
61256(1) 2
91
2020/1/2
7
考点突破 考点一 余弦定理应用——1、求三角形的边角
【 训 练 1 】 ( 2 ) 在 △ A B C 中 , A B =3 + 1 , A C = 2 , B C =2 , 求 三 角 形 的 三 个 内 角 .
AC=5, 则 BC等 于 _______.
( 2) 在 △ ABC中 , a2b2c2bc, 则 ∠ A等 于 ______.

( 1 ) 因 为 sinA =4, 且 A 为 钝 角 , 5
所 以 cosA 1(4)2 3,
5
5
则BC2=AB2 AC2 2AB ACcosA
c o sB


2 B C A B 2 2 ( 3 + 1 ) 2
因 为 0 0 ∠ A 1 8 0 0 所 以 ∠ A = 4 5 0
所 以 ∠ C = 1 8 0 0 3 0 0 4 5 0 = 1 0 5 0
2020/1/2
8
考点突破 考点一 余弦定理应用——2、判断三角形的形状
解析 由 a :b :c 3 + 1 : 6 : 2 知 , a b c
所 以 ∠ A ∠ B ∠ C , 即 ∠ A 为 最 大 角 , ∠ C 为 最 小 角
由余弦定理得:cosA=b2 c2 a2 64( 3+1)2
2bc
2 62
3 30,所以∠A为锐角, 26
相关文档
最新文档