北师大版八年级下册数学期中考试试卷及答案

合集下载

北师大版数学八年级下册《期中测试卷》及答案

北师大版数学八年级下册《期中测试卷》及答案
(1)画出平移后的三角形DEF并标出D,E,F点的坐标;
(2)求线段OA在平移过程中扫过的面积.
23.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(2)在(1)中,过点D作 ,交AB于点E,若CD=4,则BC的长为.
四、解答题(二)(本大题 3 小题,每小题 8 分,共 24 分)
21.若关于 的方程组 的解满足 ,求 的取值范围.
22.如图,在平面直角坐标系中,点A的坐标为(2,4),点B的坐标为(3,0).三角形AOB中任意一点 经平移后的对应点为 ,并且点A,O,B的对应点分别为点D,E,F.
综合上述可得
故选A.
[点睛]本题主要考查不等式的非整数解,关键在于非整数解的确定.
9.如图,函数y=kx+b(k+b<2x的解集为()
A. B. C. D.
[答案]A
[解析]
[分析]
先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当x>1时,直线y=2x都在直线y=kx+b的上方,当x<2时,直线y=kx+b在x轴上方,于是可得到不等式0<kx+b<2x的解集.
A.2.5B.3C.3.5D.4
二、填空题(每题4分,满分28分,将答案填在答题纸上)
11.等腰三角形的一个外角是60°,则它的顶角的度数是__.
12.若 ,则 _______ .
13.不等式组 ,的解集是_______.
14.如图,将 沿 方向平移 得到 ,如果 周长为 ,那么四边形 的周长为______ .

北师大八年级数学下册期中测试试卷(附含答案)

北师大八年级数学下册期中测试试卷(附含答案)

北师大八年级数学下册期中测试试卷(附含答案)(本试卷满分120分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共10小题,每小题3分,共30分) 1.下列运动形式属于旋转的是( )A .飞驰的动车B .匀速转动的摩天轮C .运动员投掷标枪D .乘坐升降电梯2.下列绿色能源图标中既是轴对称图形又是中心对称图形的是( )A B C D3.用反证法证明命题“若|a|<3,则a 2<9”时,应先假设( )A .a >3B .a≥3C .a 2≥9D .a 2>94.如图1,在等边三角形ABC 中,AB=4,D 是边BC 上一点,且∠BAD=30°,则CD 的长为( )A .1B .23C .2D .3① ②图1 图25.已知△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB ,F 为线段AC 上一点,且∠DFA =80°,则( )A.DE <DFB.DE >DFC.DE =DFD.不能确定DE ,DF 大小关系6.不等式组⎩⎨⎧+≤+-4332,1<2x x x 的解集在数轴上表示正确的是()A BC D7. 已知图2-②是由图2-①经过平移得到的,图2-②还可以看作是由图2-①经过怎样的变换得到的?现给出两种变换方式:①2次旋转;②2次轴对称.下面说法正确的是( )A .①②都不可行B .①②都可行C .只有①可行D .只有②可行8.某种商品的进价为1000元,商场将商品进价涨价35%后标价出售,后来由于该商品积压较多,商场准备进行打折销售,但要保证所获利润不低于8%,则至多可打( )A .9折B .8折C .7折D .6折 9.一次函数y =kx 和y =-x +3的图象如图3所示,则关于x 的不等式组kx <-x +3<3的解集是( ) A .1<x <3 B .0<x <2C .0<x <3D .0<x <1图3 图4 10.如图4,在△ABC 中,AB =AC ,∠A =72°,CD 是∠ACB 的平分线,点E 在AC 上,且DE ∥BC ,连接BE ,则∠DEB 的度数为( )A .20°B .25°C .27°D .30°二、填空题(本大题共6小题,每小题4分,共24分)11.若等腰三角形的一个内角为40°,则该等腰三角形的顶角是 .12.如图5,点A (2,1),将线段OA 先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A 的对应点A′的坐标是 .图5 图6 13.如图6,在△ABC 中,∠ACB =90°,AC =5 cm ,DE 垂直平分AB ,交BC 于点E .若BE =13 cm ,则EC 的长是 cm .14.若关于x 的不等式组⎩⎨⎧---3<,1<25a x x x 的无解,则a 的取值范围是 . 15.如图7,已知∠MAN =60°,点B ,E 在边AM 上,点C 在边AN 上,AB =4,AC =8,连接EC ,以点E 为圆心,CE 的长为半径画弧,交AC 于点D .若BE =6,则AD 的长为 .图7 图816.如图8,将△ABC 绕点A 逆时针旋转得到△ADE ,其中点B ,C 分别与点D ,E 对应,如果B ,D ,C 三点恰好在同一直线上,下列结论:①△ACE 是等腰三角形;②∠DAC =∠DEC ;③AD =CE ;④∠ABC =∠ACE ;⑤∠EDC =∠BAD .其中正确的是 .(填序号)三、解答题(本大题共8小题,共66分) 17.(每小题4分,共8分)解下列不等式:(1)2x+1>3(2-x ); (2)21143x x +--≤. 18.(6分)解不等式组⎪⎩⎪⎨⎧-+≥--,1>321,1)1(3x x x x 并把解集在数轴上表示出来.19.(7分)如图9,在△ABC 中,AB=AC ,∠BAC=120°,点D ,E 在BC 上,AD ⊥AC ,AE ⊥AB . 求证:△AED 为等边三角形.图920.(7分)如图10,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC 的三个顶点A (5,2),B (5,5),C (1,1)均在格点上.(1)请画出与△ABC 关于x 轴对称的△A 1B 1C 1,并写出点B 1的坐标;(2)将△ABC 绕点O 逆时针旋转90°后得到的△A 2B 2C 2,请画出△A 2B 2C 2,并写出点A 2的坐标. E BD C NMA图1021.(8分)小明和同学想利用暑假去植物园参加青少年社会实践项目,到植物园了解那里的土壤、水系、植被,以及与之依存的昆虫世界.小明在网上了解到该植物园的票价是每人10元,20人及以上按团体票,可8折优惠.(1)如果有18人去植物园,请通过计算说明,小明怎样购票更省钱?(2)小明现有500元的活动经费,且每人往返车费共3元,则至多可以去多少人?22.(8分)如图11,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE,连接AE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC的周长为14 cm,AC=6 cm,求DC的长.图1123.(10分)如图12,在△ABC中,∠ACB=90°,D是AB上一点,且BD=AD=CD,过点B作BE⊥CD,分别交AC,CD于点E,F.(1)求证:∠A=∠EBC;(2)如果AC=2BC,请猜想BE和BD的数量关系,并证明你的猜想.图1224.(12分)【问题原型】如图13-①,在等腰直角三角形ABC 中,∠ACB =90°,BC =8.将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,过点D 作△BCD 的BC 边上的高DE ,易证△ABC ≌△BDE ,从而得到△BCD 的面积为 ;【初步探究】如图13-②,在Rt △ABC 中,∠ACB =90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD .用含a 的代数式表示△BCD 的面积,并说明理由;【简单应用】如图13-③,在等腰三角形ABC 中,AB =AC ,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,求△BCD 的面积(用含a 的代数式表示).① ② ③图13参考答案三、17.(1)x >1.(2)x ≥-2. 18.解:⎪⎩⎪⎨⎧-+≥--,1>321,1)1(3x x x x 解不等式①,得x ≤1.解不等式②,得x <4.所以不等式组的解集为 x ≤1.解集在数轴上表示略.① ② 答案速览 一、1.B 2.B 3.C 4.C 5.A 6.B 7.B 8.B 9.D 10.C 二、11.40°或100° 12.(-1,3) 13.12 14.a ≤-1 15.2 16.①②④⑤19.证明:因为AB=AC ,∠BAC=120°,所以∠B=∠C=21(180°-∠BAC )=30°. 因为AD ⊥AC ,AE ⊥AB ,所以∠EAB=∠DAC=90°.所以∠AEB=90°-∠B=60°,∠ADC=90°-∠C=60°.所以∠DAE=180°-∠AEB-∠ADC=60°.所以∠ADE=∠AED=∠DAE=60°.所以△AED 为等边三角形. 20.解:(1)如图1,△A 1B 1C 1为所求作,点B 1的坐标为(5,-5).(2)如图1,△A 2B 2C 2为所求作,点A 2的坐标为(-2,5).图121.解:(1)因为10×18=180(元),10×0.8×20=160(元),所以小明购团体票更省钱;(2)设可以去m 人,依题意,得(10×0.8+3)m ≤500,解得m ≤45. 因为m 为正整数,所以m 的最大值为45.答:至多可以去45人.22.解:(1)因为AD ⊥BC ,BD =DE ,所以AD 是BE 的垂直平分线,所以AB =AE . 因为∠BAE =40°,所以∠B =∠AEB =(180°-∠BAE )=70°.所以∠C +∠EAC =∠AEB =70°.因为EF 垂直平分AC ,所以EA =EC .所以∠C =∠EAC =35°.所以∠C 的度数为35°.(2)因为△ABC 的周长为14 cm ,AC =6 cm所以AB +BC =14-6=8(cm ).所以AB +BD +DC =8.所以AE +DE +DC =8.所以EC +DE +DC =8.所以2DC =8.所以DC =4.所以DC 的长为4.23.(1)证明:因为BE ⊥CD ,所以∠BFC =90°.所以∠EBC +∠BCF =90°.因为∠ACB =∠BCF +∠ACD =90°,所以∠EBC =∠ACD .因为AD =CD ,所以∠A =∠ACD .所以∠A =∠EBC .(2)解:BE =BD .证明:如图2,过点D 作DG ⊥AC 于点G .因为DA =DC ,DG ⊥AC ,所以AC =2CG .因为AC =2BC ,所以CG =BC .因为∠DGC =90°,∠ECB =90°,所以∠DGC =∠ECB .在△DGC 和△ECB 中,∠DGC =∠ECB ,CG =BC ,∠DCG =∠EBC ,所以△DCG ≌△EBC . 所以CD =BE .因为BD =CD ,所以BE =BD .24.解:【问题原型】由作图可知所以∠BED =∠ACB =90°.因为AB 绕点B 顺时针旋转90°得到BD ,所以AB =BD ,∠ABD =90°.所以∠ABC +∠DBE =90°.因为∠A +∠ABC =90°,所以∠A =∠DBE .在△ABC 和△BDE 中,∠ACB =∠BED ,∠A =∠DBE ,AB=BD ,所以△ABC ≌△BDE . 所以BC =DE =8.所以S △BCD =21BC •DE =32. 【初步探究】△BCD 的面积为21a 2.理由: 如图3,过点D 作BC 的垂线,与CB 的延长线交于点E .所以∠BED =∠ACB =90°.因为线段AB 绕点B 顺时针旋转90°得到线段BD ,所以AB =BD ,∠ABD =90°.所以∠ABC +∠DBE =90°.因为∠A +∠ABC =90°,所以∠A =∠DBE .在△ABC 和△BDE 中,∠ACB =∠BED ,∠A =∠DBE ,AB=BD ,所以△ABC ≌△BDE . 所以BC =DE =a .所以S △BCD =21BC •DE =21a 2.图3 图4【简单应用】如图4,过点A 作AF ⊥BC 于点F ,过点D 作DE ⊥BC ,交CB 的延长线于点E . 所以∠AFB =∠E =90°,BF =21BC =21a . 所以∠F AB +∠ABF =90°.因为∠ABD =90°,所以∠ABF +∠DBE =90°.所以∠F AB =∠EBD .图2因为线段BD 是由线段AB 旋转得到的,所以AB =BD .在△AFB 和△BED 中,∠AFB =∠E ,∠F AB =∠EBD ,AB=BD ,所以△AFB ≌△BED . 所以BF =DE =21a . 所以S △BCD =21BC •DE =21•a •21a =41a 2.。

北师大版数学八年级下册《期中考试试卷》(含答案解析)

北师大版数学八年级下册《期中考试试卷》(含答案解析)
【详解】∵∠A=46°,AB=AC,
∴∠B=∠ACB= =67°.
∵∠BDC=90°,
∴∠DCB=90°-67°=23°,
故选:D.
【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理,注意掌握数形结合思想的应用.
6.如图,在 中, ,若 , 为 的垂直平分线,则 的周长为()
A. B. C. D.
老板:如果你再多买一个,就可以打八五折,花费比现在还省 元.
小明:那就多买一个吧,谢谢!
(1)结合两人的对话内容,求小明原计划购买文具袋多少个?
(2)学校决定,再次购买钢笔和签字笔共 支作为补充奖品,两次购买奖品总支出不超过 元.其中钢笔标价每支 元,签字笔标价每支 元,经过沟通,这次老板给予 折优惠,那么小明最多可购买钢笔多少支?
【详解】解:根据三角形 三边关系得
第三边的取值范围为:5-3<a<5+3
即2<a<8.
故答案为2<a<8.
【点睛】本题考查了三角形的三角关系.任意两边之和大于第三边,任意两边之差小于第三边.
14.如图,三角形 是由三角形 通过平移得到,且点 , , , 在同一条直线上,若 , ,则 的长度是__________.
【详解】根据题意得 ,
解得; ,
故答案为: .
【点睛】本题主要考查了一元一次不等式的定义,正确把握定义是解题关键.
12.关于 的不等式 的正整数解的和是________.
【答案】3
【解析】
【分析】
先求出不等式的解集,再求出正整数解即可.
【详解】解:∵12-6x≥0,
∴-6x≥-12,
∴x≤2,
∴不等式的正整数解是1,2,和为1+2=3,

北师大版八年级下册数学期中考试试题(含答案)

北师大版八年级下册数学期中考试试题(含答案)

北师大版八年级下册数学期中考试试卷一、单选题1.下列图形既是轴对称图形又是中心对称图形的是A .B .C .D .2.若a <b ,则下列结论不一定成立的是A .11a b -<-B .22a b <C .33a b ->-D .22a b <3.在三角形内部,且到三角形三边距离相等的点是A .三角形三条中线的交点B .三角形三条高线的交点C .三角形三条角平分线的交点D .三角形三边垂直平分线的交点4.不等式组2131x x +≥-⎧⎨<⎩的解集在数轴上表示正确的是A .B .C .D .5.用反证法证明命题:“已知△ABC ,AB =AC ,求证:∠B <90°.”第一步应先假设A .∠B≥90°B .∠B >90°C .∠B <90°D .AB≠AC6.在△ABC 中,若∠A ∶∠B ∶∠C =3∶1∶2,则其各角所对边长之比等于A 1∶2B .1∶2C .12D .2∶17.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE8.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是().A.B.C.D.9.不等式组32210x ax+>⎧⎨-≤⎩,有解,则a的取值范围是A.a≤3B.a<3.5C.a<4D.a≤510.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为A.4B.6C.D.8二、填空题11.不等式3x+2<8的解集是_____.12.“全等三角形的对应边相等”的逆命题是:__.13.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,则x<________.14.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B 关于原点O对称,则ab=_____.15.如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于点D、E,若∠DAE=50°,则∠BAC=____.16.若关于x ,y 的二元一次方程组3+1+33x y a x y =⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.17.安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为___________18.如图,直线y =-x +m 与y =nx +b (n≠0)的交点的横坐标为-2,有下列结论:①当x =-2时,两个函数的值相等;②b =4n ;③关于x 的不等式nx +b >0的解集为x >-4;④x >-2是关于x 的不等式-x +m >nx +b 的解集,其中正确结论的序号是____.(把所有正确结论的序号都填在横线上)三、解答题19.(1)解不等式4x 32x 1-<+,并把解集表示在数轴上.(2)解不等式组()322442x x x x +>⎧⎨--≥⎩,并写出它的整数解.20.如图,在平面直角坐标系中, ABC 的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)(1)图中线段AB 的长度为________;(2)按下列要求作图:①将 ABC 向左平移4个单位,得到 111A B C ;②将 111A B C 绕点1B 逆时针旋转90º,得到 222A B C21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.23.已知关于x,y的不等式组523414x k xx x+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩,(1)若该不等式组的解为233x≤≤,求k的值;(2)若该不等式组的解中整数只有1和2,求k的取值范围.24.甲、乙两家超市以相同的价格出售同样的商品,五一期间,为了吸引顾客,各自推出了不同的优惠方案,在甲超市累计购买商品超出了400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x元(x>400)在甲,乙两个超市所支付的费用分别为y1元,y2元.(1)写出y1,y2与x之间的关系式.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.25.如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°<α<180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC=________;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?并说明理由;参考答案1.D2.D3.C4.D5.A6.D7.C8.A9.C10.B11.x<2【解析】利用不等式的基本性质,将两边不等式同时减去2再除以3即可.【详解】解:不等式3x+2<8,移项得,3x<6,系数化为1得,x<2,故答案为:x<2.12.三边对应相等的三角形是全等三角形【详解】命题“全等三角形的对应边相等”的题设是:如果两个三角形是全等三角形,结论是:这两个三角形的对应边相等则此命题的逆命题是:三边对应相等的三角形是全等三角形故答案为:三边对应相等的三角形是全等三角形.13.1【详解】解: 由一次函数y=kx+b的图象可知,当x<1时,函数的图象在x轴上方,当y>0时,x<1.故答案为:1.14.12【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12,故答案为12.15.115°.【详解】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,∵∠DAE=50°,∴2(∠B+∠C)=130°,解得,∠B+∠C=65°,∴∠BAC=115°.故答案为115°.16.a<4【详解】解:31(1){33(2)x y ax y+=++=将(1)+(2)得444x y a+=+,则4144a ax y++==+<2∴a<4.17.8、9、10【解析】若每间住4人,则余15人无住处,设有x间宿舍,则有学生4x+15人;若每间住6人,则恰有一间不空也不满,说明人数应在1和5之间.即学生人数与(x-1)间宿舍住的人数的差,应该大于或等于1,并且小于或等于5.根据这个不等关系就可以列出不等式组.【详解】设有x间宿舍,则有学生4x+15人,∴第n间宿舍有4x+15-6(x-1)=21-2x,∵第n间宿舍不空也不满,∴1≤21-2x≤5,解得:8≤x≤10,∴宿舍的房间数量可能为8、9、10,故答案为8、9、10.18.①②③【解析】①由两直线交点的横坐标为-2,即可得出当x=-2时,两个函数的值相等,结论①正确;②由点(-4,0)在直线y=nx+b 上,可得出b=4n ,结论②正确;③当x >-4时,直线y=nx+b 在x 轴上方,由此可得出关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④观察函数图象,根据函数图象的上下位置关系可得出x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.综上所述即可得出结论.【详解】解:①∵直线y=-x+m 与y=nx+b (n≠0)的交点的横坐标为-2,∴当x=-2时,两个函数的值相等,结论①正确;②∵点(-4,0)在直线y=nx+b 上,∴-4n+b=0,∴b=4n ,结论②正确;③∵当x >-4时,直线y=nx+b 在x 轴上方,∴关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④∵当x >-2时,直线y=nx+b 在直线y=-x+m 的上方,∴x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.故答案为:①②③.19.(1)2x <,数轴见解析;(2)13x -< ,整数解为0,1,2,3【解析】(1)先求出不等式的解集,再在数轴上表示出来即可.(2)先求出每个不等式的解集,再求出不等式组的解集,即可求得整数解.【详解】解:(1)移项得,4213x x -<+,合并同类项得,24x <,系数化为1得,2x <.在数轴上表示为:(2)()322442x x x x +>⎧⎪⎨--⎪⎩①② ,解①得:1x >-,解②得:3x ,故不等式的解集为:13x -< ,整数解为0,1,2,3.20.(1;(2)①见解析,②见解析【解析】(1)根据两点间距离公式求解即可得到AB 的值;(2)①根据平移的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;②分别作出A 1,C 1的对应点A 2,C 2即可.【详解】解:(1)∵A(1,1),B(4,0)∴AB ==;(2)作图如下:21.见解析.【详解】解:如图所示,∠AOB 的平分线与线段CD 的垂直平分线的交点P 就是所求的点:22.证明见解析.【详解】试题分析:直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.试题解析:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.考点:等腰三角形的判定;平行线的性质.23.(1)k=﹣4;(2)﹣4<k≤﹣1.【详解】分析:(1)求出不等式组的解集,把问题转化为方程即可解决问题;(2)根据题意把问题转化为不等式组解决;详解:(1)523414x k xx x①②+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩由①得:53k x-≤,由②得:23 x≥∵不等式组的解集为23 3x≤≤,∴533k -=,解得k=−4(2)由题意5233k -≤<,解得4 1.k -<≤-点睛:考查一元一次不等式组的整数解,解一元一次不等式组,掌握不等式组解集的求法是解题的关键.24.(1)y 1=0.7x+120;y 2=0.8x ;(2)当x=1200时,甲乙两家超市购买一样优惠;当400<x<1200时,乙超市购买更优惠;当x>1200时,甲超市购买更优惠.理由见解析.【分析】(1)根据题意写出y 1,y 2与x 之间的关系式;(2)分y 1=y 2,y 1>y 2,y 1<y 2三种情况列出方程或不等式,解方程或不等式即可.【详解】解:(1)y 1=400+(x-400)×0.7=0.7x+120,y 2=0.8x ;(2)由y 1=y 2,即0.7x+120=0.8x ,解得x=1200,由y 1>y 2,即0.7x+120>0.8x ,解得x <1200,由y 1<y 2得,0.7x+120<0.8x ,解得x >1200,因为x >400,所以,当x=1200时,甲,乙哪个超市购买所支付的费用相同,当400<x <1200时,乙超市购买更合算,当x >1200时,甲超市购买购买更合算.25.(1)120°;(2)∠BOD+∠AOC=180°,理由略.【详解】解:(1)如图2中,∵∠BOD=60°,∠DOC=∠AOB=90°,∴∠AOD=∠BOC=30°,∴∠AOC=∠AOD+∠DOC=30°+90°=120°,故答案为120°.(2)结论:即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.理由:如图2中,若0°<α<90°,∵∠AOD=α,∴∠AOC=∠AOD+∠DOC=90°+α,∠BOD=∠DOC-∠AOD=90°-α,∴∠BOD+∠AOC=90°+α+90°-α=180°,即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.(3)结论仍然成立.理由:如图3中,∵∠AOB=∠COD=90°,又∵∠BOD+∠AOC+∠AOB+∠COD=360°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°.。

北师大版数学八年级下册《期中测试题》及答案

北师大版数学八年级下册《期中测试题》及答案
(4)根据汽车出发1小时后行驶60km,摩托车1小时后行驶40km,加上20km,则两车行驶的距离相等,此时距B地40千米;故正确;
故正确的有3个,
故选B.
二、填空题(本大题7小题,每小题4分,共28分)
11.若二次根式 有意义,则 的取值范围是_____.
[答案]a≥2
[解析]
[分析]
根据二次根式有意义的条件列出不等式并求解即可.
根据两组对角分别相等的四边形是平行四边形进行判断即可.
[详解]由两组对角分别相等的四边形是平行四边形易知,
要使四边形ABCD是平行四边形需满足∠A=∠C,∠B=∠D,
因此∠A与∠C,∠B与∠D所占的份数分别相等
故选C.
4.若k<0,在直角坐标系中,函数y=﹣kx+k的图象大致是()
A. B. C. D.
A.5cmB.4.8cmC.4.6cmD.4cm
[答案]A
[解析]
[分析]
作AR⊥BC于R,AS⊥CD于S边形ABCD是菱形,再根据根据勾股定理求出AB即可.
[详解]解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.
由题意知:AD∥BC,AB∥CD,
5.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣x+b上,则y1,y2,y3的值的大小关系是()
A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y2>y1>y3
[答案]A
[解析]
[分析]
先根据直线y=﹣x+b判断出函数图象,y随x的增加而减少,再根据各点横坐标的大小进行判断即可.
A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y2>y1>y3
6.如图,函数 和 图象相交于A(m,3),则不等式 的解集为()

北师大版初中数学八年级下册期中测试卷(含解析)

北师大版初中数学八年级下册期中测试卷(含解析)

北师大版初中数学八年级下册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:100分学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。

第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。

第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。

答案写在试卷上均无效,不予记分。

第I卷(选择题)一、选择题(本大题共12小题,共36分)1.如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S△ABC=7,DE=2,AB=4,则AC的长是()A. 6B. 5C. 4D. 32.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为()A. 8B. 11C. 16D. 17AB的长为半径画圆3.如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于12弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为()A.8B. 10C. 11D. 134.若a <b ,则下列变形正确的是()A. a−1>b−1B. a4>b4C. −3a>−3bD. 1a>1b5.不等式组{3(x+1)>x−1x+72≥2x−1的非负整数解的个数是()A. 3B. 4C. 5D. 66.如图,直线y=kx+b(k≠0)经过点(−1,3),则不等式kx+b≥3的解集为()A. x>−1B. x<−1C. x≥3D. x≥−17.下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A. 4个B. 3个C. 2个D. 1个8.以下四个图案中,既是轴对称图形又是中心对称图形的有()A. 4个B. 3个C. 2个D. 1个9.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分的面积为()A. 42B. 48C. 84D. 9610.现规定一种新运算,a※b=ab+a−b,其中a、b为常数,若(2※3)+(m※1)=6,则不等式3x−22<−m的解集是()B. x<0C. x>1D. x<2A. x<−4311.符号[x]为不超过x的最大整数,如[2.8]=2,[−3.8]=−4.对于任意实数x,下列式子中错误的是()A. [x]≤xB. 0≤x−[x]<1C. [x−1]=[x]−1D. [x+y]=[x]+[y]12.有不足30个苹果分给若干个小朋友,若每个小朋友分3个,则剩2个苹果;若每个小朋友分4个,则有一个小朋友没分到苹果,且最后一个分到苹果的小朋友分得的苹果数不足3个.已知小朋友人数是偶数个,那么苹果的个数是()A. 25B. 26C. 28D. 29第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.若关于x的不等式组{2x+1>3,a−x>1的解集为1<x<3,则a的值为(1).14.如图,长方形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E,F,连接CE,则CE的长为________.15.不等式组{2x+1≤35≥3−x的解集为______.16.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为______.三、计算题(本大题共8小题,共52分)17.在△ABC中,AD平分∠BAC,E是BC上一点,BE=CD,EF//AD交AB于F.交CA的延长线于P,CH//AB交AD的延长线于H.解答以下问题.(1)求证:△APF是等腰三角形;(2)试在图中找出一对全等的三角形并给予证明;(3)试猜想AB与PC的大小有什么关系?并证明你的猜想.18.如图,在△ABC中,∠C=90°,∠A=30°,AB=4cm,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为t s.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?19.如图,∠1=∠2,CE⊥AB于E,CF⊥AD交AD的延长线于F,且BC=DC.(1)BE与DF是否相等?请说明理由;(2)若DF=1cm,AD=3cm,则AB的长为______cm.20. 解不等式组{−1−x ≤0,①x+12−1<x3,②并写出它的正整数解.21. 我市在创建全国文明城市过程中,决定购买A ,B 两种树苗对某路段道路进行绿化改造,已知购买A 种树苗8棵,B 种树苗3棵,需要950元;若购买A 种树苗5棵,B 种树苗6棵,则需要800元.(1)求A ,B 两种树苗每棵各多少元?(2)考虑到绿化效果和资金周转,购进A 种树苗不能少于52棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案? (3)某包工队承包种植任务,若种好一棵A 种树苗可获工钱30元,种好一棵B 种树苗可获工钱20元,在第(2)问的购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?22. 岳阳市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的利润各为多少万元;(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?23.如图,含有30°的直角三角板△ABC,∠BAC=90°,∠C=30°,将△ABC绕着点A逆时针旋转,得到△AMN,使得点B落在BC边上的点M处,过点N的直线//BC,求∠1的度数.24.如图,在正方形ABCD中,AB=6,用一块含45°的三角板,把45°角的顶点放在D点,将三角板绕着点D旋转,使这个45°角的两边与线段AB、BC分别相交于点E、F.(1)由几个不同的位置,分别测量AE、EF、FC的长,从中你能发现AE、EF、FC的数量之间具有怎样的关系?并证明你所得到的结论;(2)设AE=x,CF=y,求y与x之间的函数解析式,并写出自变量的取值范围.答案和解析1.【答案】D【解析】【分析】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法,要注意掌握应用.由AD是△ABC的平分线推出DF=DE,结合三角形面积公式求出答案.【解答】解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F,∴DF=DE=2.又∵S△ABC=S△ABD+S△ACD,AB=4,∴7=12×4×2+12×AC×2,∴AC=3.故选D.2.【答案】B【解析】【分析】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为11.【解答】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.3.【答案】A【解析】【分析】本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.利用基本作图得到MN垂直平分AB,利用线段垂直平分线的定义得到DA=DB,然后利用等线段代换得到△BDC的周长=AC+BC.【解答】解:由作法得MN垂直平分AB,∴DA=DB,∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=8.故选:A.4.【答案】C【解析】【分析】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.根据不等式的性质逐个判断即可.【解答】解:A、∵a<b,∴a−1<b−1,故本选项不符合题意;B、∵a<b,∴a4<b4,故本选项不符合题意;C、∵a<b,∴−3a>−3b,故本选项符合题意;D、若a<b,则1a >1b不一定成立,比如a=−2,b=2,但−12<12,故本选项不符合题意;故选:C.5.【答案】B【解析】解:{3(x+1)>x−1①x+72≥2x−1②,解①得:x>−2,解②得x≤3,则不等式组的解集为−2<x≤3.故非负整数解为0,1,2,3,共4个故选:B.先求出不等式组的解集,在取值范围内可以找到整数解.本题考查不等式组的解法及整数解的确定.解不等式组应遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.6.【答案】D【解析】解:观察图象知:当x≥−1时,kx+b≥3,故选:D.结合函数的图象利用数形结合的方法确定不等式的解集即可.本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.7.【答案】A【解析】【分析】本题考查了旋转和轴对称的性质.①旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心;②轴对称图形的对应线段、对应角相等.图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;轴对称是指如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,就是轴对称,据此解答即可.【解答】解:图形1可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形2可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形3可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形4可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合.故既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有4个.故选:A.8.【答案】B【解析】【分析】本题考查了轴对称图形和中心对称图形,掌握好中心对称图形与轴对称图形的概念是解题的关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:图1是轴对称图形不是中心对称图形;图2、3、4既是轴对称图形,又是中心对称图形.故选B.9.【答案】B【解析】由题意可知,BE=6,DE=AB=10,∴OE=DE−DO=10−4=6,∵△ABC≌△DEF,∴S△ABC=S△DEF,∴S△ABC−S△COE=S△DEF−S△COE,∴S四边形ODFC =S梯形ABEO=12(AB+OE)⋅BE=12×(10+6)×6=48.故选B.10.【答案】B【解析】【分析】本题考查了新定义及解一元一次不等式:先去分母和括号,再移项、合并,然后把未知数的系数化为1得到不等式的解集.也考查了阅读理解能力.先根据新定义得到2×3+2−3+m ×1+m −1=6,解得m =1,则不等式化为3x−22<−1,然后通过去分母、移项可得到不等式的解集.【解答】解:∵(2※3)+(m※1)=6,a※b =ab +a −b ,∴2×3+2−3+m ×1+m −1=6,∴m =1,∴3x−22<−1,去分母得3x −2<−2,移项并合并得3x <0,系数化为1得x <0.故选B .11.【答案】D12.【答案】B【解析】【分析】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.设小朋友的人数为x 人,则苹果的个数为(3x +2)个,根据“若每个小朋友分4个,则有一个小朋友没分到苹果,且最后一个分到苹果的小朋友分得的苹果数不足3个”,即可得出关于x 的一元一次不等式组,解之即可得出x 的取值范围,结合x 为偶数即可得出x 的值,再将其代入(3x +2)中即可求出结论.【解答】解:设小朋友的人数为x 人,则苹果的个数为(3x +2)个,依题意,得:{3x +2>4(x −2)3x +2<4(x −2)+3, 解得:7<x <10.又∵x 为偶数,∴x =8,∴3x +2=26.故选B .13.【答案】414.【答案】136【解析】【分析】本题考查的是线段垂直平分线的性质.关键是要设所求的量为未知数利用勾股定理求解.本题首先利用线段垂直平分线的性质推出△AOE≌△COE,再利用勾股定理即可求解.【解答】解:EF垂直且平分AC,故AE=EC,AO=CO.所以△AOE≌△COE.设CE为x.则DE=AD−x,CD=AB=2.根据勾股定理可得x2=(3−x)2+22,.解得CE=136故答案为13.615.【答案】−2≤x≤1【解析】解:解不等式2x+1≤3,得:x≤1,解不等式5≥3−x,得:x≥−2,则不等式组的解集为−2≤x≤1,故答案为:−2≤x≤1.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.【答案】x<−1【解析】【分析】观察函数图象可知,当x<−1时,函数y=k2x图象都在函数y=k1x+b的图象上方,从而可得到关于x的不等式k2x>k1x+b的解集.【解答】解:由图知,当x<−1时,k2x>k1x+b所以不等式k2x>k1x+b的解集为x<−1.故答案为x<−1.17.【答案】证明:(1)∵EF//AD,∴∠P=∠DAC,∠PFA=∠DAF,∵AD平分∠BAC,∴∠DAC=∠DAF,∴∠P=∠PFA,∴AP=AF,∴△APF是等腰三角形.(2)△DCH≌△BEF.证明:∵AB//CH,∴∠BAD=∠H(两直线平行,内错角相等),∠B=∠DCH(两直线平行,内错角相等),又∵EF//AD(已知),∴∠BFE=∠BAD;∴∠BFE=∠H,在△DCH和△EBF中,{∠BFE=∠H ∠B=∠HCD BE=CD,∴△DCH≌△EBF(AAS).(3)AB=PC,理由:∵AD平分∠BAC, ∴∠BAD=∠HAC,∵AB//CH,∴∠BAH=∠H,∴∠HAC=∠H,∴AC=CH,∴△BEF≌△CDH,∴BF=CH,∴AC=BF,∵△APF为等腰三角形,∴AP=AF,∴AC+AP=BF+AF,即AB=PC.【解析】(1)由平行线EF//AD,可得同位角、内错角相等,即∠P=∠DAC,∠PFA=∠DAF,进而再由平分线的性质以及角之间的转化,即可得出结论;(2)可由两角夹一边求解△DCH≌△BEF;(3)在(2)的基础上可得出线段之间的关系,通过等量代换即可.本题主要考查了平行线的性质以及全等三角形的判定及性质和等腰三角形的判定问题,能够熟练掌握并运用.18.【答案】解:在△ABC中,∵∠C=90°,∠A=30°,∴∠B=60°.∵4÷2=2,∴0≤t≤2,BP=4−2t,BQ=t.(1)当BP=BQ时,△PBQ为等边三角形.即4−2t=t.∴t=4.3当t=4时,△PBQ为等边三角形;3(2)若△PBQ为直角三角形,①当∠BQP=90°时,BP=2BQ,即4−2t=2t,∴t=1.②当∠BPQ=90°时,BQ=2BP,即t=2(4−2t),∴t=8.5即当t =85或t =1时,△PBQ 为直角三角形.【解析】用含t 的代数式表示出BP 、BQ .(1)由于∠B =60°,当BP =BQ 时,可得到关于t 的一次方程,求解即得结论;(2)分两种情况进行讨论:当∠BOP =90°时,当∠BPQ =90°时.利用直角三角形中,含30°角的边间关系,得到关于t 的一次方程,求解得结论.本题考查了含30°角的直角三角形、等边三角形以及分类讨论的思想方法,利用“直角三角形中,30°角所对的边等于斜边的一半”及“有一个角是60°的等腰三角形是等边三角形”,得到关于t 的一次方程是解决本题的关键.19.【答案】5【解析】解:(1)BE =DF ,证明:∵∠1=∠2,CE ⊥AB 于E ,CF ⊥AD 于F ,∴CE =CF =90°.在Rt △CEB 和Rt △CFD 中,{BC =DC,CE =CF.∴Rt △CEB≌Rt △CFD(HL).∴BE =DF .(2)在△AFC 与△AEC 中{∠1=∠2∠F =∠CEB AC =AC,∴△AFC≌△AEC(AAS),∴AE =AF =3+1=4,DF =BE =1,∴AB =5.故答案为:5.(1)首先利用角平分线的性质求出CF =CE ,再根据斜边直角边证明Rt △CEB≌Rt △CFD ,推的BE =DF ;(2)利用(AAS)证明△AFC≌△AEC ,推AE =AF =3+1=4,DF =BE =1,最后求出AB 长.本题考查了全等三角形的判定与性质、角平分线的性质,熟练掌握全等三角形的判定方法与性质,角平分线的性质应用是解题关键.20.【答案】解:−1≤x <3.不等式组的正整数解是1,2.【解析】略21.【答案】解:(1)设A 种树苗每棵x 元,B 种树苗每棵y 元,根据题意,得:{8x +3y =9505x +6y =800, 解得:{x =100y =50, 答:A 种树苗每棵100元,B 种树苗每棵50元;(2)设购进A 种树苗m 棵,则购进B 种树苗(100−m)棵,根据题意,得:{m ≥52100−m ≥0100m +50(100−m)≤7650,解得:52≤m ≤53,所以购买的方案有:1、购进A 种树苗52棵,B 种树苗48棵;2、购进A 种树苗53棵,B 种树苗47棵;(3)方案一的费用为52×30+48×20=2520元,方案二的费用为53×30+47×20=2530元,所以购进A 种树苗52棵,B 种树苗48棵所付工钱最少,最少工钱为2520元.【解析】(1)设A 种树苗每棵x 元,B 种树苗每棵y 元,根据“购买A 种树苗8棵,B 种树苗3棵,需要950元;若购买A 种树苗5棵,B 种树苗6棵,则需要800元”列二元一次方程组求解可得;(2)设购进A 种树苗m 棵,则购进B 种树苗(100−m)棵,根据“A 种树苗不能少于52棵,且用于购买这两种树苗的资金不能超过7650元”列不等式组求解可得;(3)根据(2)中所得方案,分别计算得出费用即可.本题主要考查一元一次不等式组、二元一次方程组的应用,解题的关键是仔细审题,找到题目蕴含的相等或不等关系得出方程组、不等式组.22.【答案】解:(1)设去年餐饮利润x 万元,住宿利润y 万元,依题意得:{x +y =20×80%x =2y +1, 解得:{x =11y =5, 答:去年餐饮利润11万元,住宿利润5万元;(2)设今年土特产利润m 万元,依题意得:16+16×(1+10%)+m −20−11≥10,解之得,m ≥7.4,答:今年土特产销售至少有7.4万元的利润.【解析】(1)设去年餐饮利润为x 万元,住宿利润为y 万元,根据题意列出方程组,求出方程组的解即可得到结果;(2)设今年土特产的利润为m 万元,根据题意列出不等式,求出不等式的解集即可得到结果.此题考查了一元一次不等式的应用,以及二元一次方程组的应用,弄清题中的不等及相等关系是解本题的关键.23.【答案】解:∵△BAC 中,∠BAC =90°,∠C =30°,∴∠B =90°−30°=60°,∵△ABC 绕着点A 逆时针旋转,得到△AMN ,∴AB =AM ,∴△ABM 是等边三角形,∴∠AMB =60°,∵∠AMN =60°,∴∠CMN =180°−60°−60°=60°,∵l//BC ,∴∠1+∠ANM =∠NMC ,∵∠ANM =∠C =30°,∴∠1+30°=60°,∴∠1=30°.【解析】首先根据直角的性质求出∠B=60°,利用旋转的性质求出△ABM是等边三角形,进而求出∠NMC=60°,再利用平行线的性质得到∠1+∠ANM=∠NMC,结合∠ANM=∠C=30°,即可求出∠1的度数.本题主要考查了旋转的性质的知识,解答本题的关键是求出∠NMC=60°,利用平行线的性质即可解题,此题难度不大.24.【答案】解:(1)EF=AE+FC.理由:如图所示:延长BC至E′,使CE′=AE,连接DE′,∵AD=CD,AE=CE′,∠A=∠DCE′=90°,∴△ADE≌△CDE′,∴DE=DE′,∠ADE=∠CDE′,∠FDE′=∠FDC+∠CDE′=∠FDC+∠ADE=90°−∠EDF=45°,∴△DEF≌△DE′F,∴EF=E′F=CE′+FC=AE+FC;(2)如图所示,已知AE=x,CF=y,则BE=6−x,BF=6−y,由(1)可知EF=x+y,在Rt△BEF中,由勾股定理,得BE2+BF2=EF2,即(6−x)2+(6−y)2=(x+y)2,(0≤x≤6).解得:y=36−6xx+6【解析】(1)延长BC至E′,使CE′=AE,连接DE′,利用旋转法证明△ADE≌△CDE′,根据已知证明∠FDE′=∠EDF=45°,可证△DEF≌△DE′F,再根据全等三角形的性质可得EF=AE+FC;(2)由(1)的结论,将条件集中在Rt△BEF中,由勾股定理建立x、y的函数关系式.本题考查了旋转法在证题中的运用,勾股定理在建立函数关系式中的运用.关键是通过旋转,将条件相对集中.。

北师大版八年级下册数学期中考试试题含答案

北师大版八年级下册数学期中考试试题含答案

北师大版八年级下册数学期中考试试卷一、选择题(共12小题,每小题3分,满分36分)1.若a>b,则下列不等式成立的是()A.a﹣2<b﹣2 B.﹣3a>﹣3b C.﹣a<﹣b D.2.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为()A.(﹣1,0)B.(﹣1,﹣1) C.(﹣2,0)D.(﹣2,﹣1)3.把不等式x+1≥0的解集在数轴上表示出来,则正确的是()A.B.C.D.4.下列从左边到右边的变形,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+x﹣5=x(x+1)﹣5C.x2+1=x(x+)D.x2+4x+4=(x+2)25.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A. B. C.D.6.△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB的长为()cmA.6 B.8 C. D.57.把多项式(m+1)(m﹣1)+(m+1)提取公因式m+1后,余下的部分是()A.m+1 B.m﹣1 C.m D.2 m+18.如图,在△ABC中,∠ABC=∠C,AB=8,AB的垂直平分线DE交AB于点D,交AC于点E,△BEC的周长为13,则BC=()A.5 B.6 C.7 D.89.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC长是()A.7 B.6 C.5 D.410.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2 B.a<2 C.a>4 D.a<411.如图,正方形OABC的两边OA.OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)12.如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1 B.x≥3 C.x≤﹣1 D.x≤3二、填空题(本题共8道小题,每题2分,共16分)13.多项式x2﹣1与多项式x2﹣2x+1的公因式是________14.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为______15.如图,点P为等边△ABC内一点,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=2,那么PP′=____________.16.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则AD的长为_________.17.已知关于x的不等式x﹣a<0的只有三个正整数解,那么a的取值范围是______18.如图,在△ABC中,点D.E分别在AB.AC 边上,AB=AC,BE=BC,AE =DE=DB,那么∠A=_______度.19.在RtABC中,∠C=90°,AC=BC=(如图),若将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,联结C′B,则C′B的长为________.20.已知△ABC中,BC=6,AB.AC的垂直平分线分别交边BC于点M、N,若MN=2,则△AMN的周长是_______三.解答题(本题共7道小题,第21题5分,第22题10分,第23题6分,第24题6分,第25题6分,第26题6分,第27题9分,共48分)21.解不等式,并将解集在数轴上表示出来.22.因式分解(1)ax2﹣4ay2(2)x3﹣8x2+16x23.在平面直角坐标系中,△ABC的位置如图所示(小方格是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)画出△A2B2C2,使得△ABC和△A2B2C2关于原点O中心对称.24.如图,Rt△ABC,∠B=90°,AD平分∠BAC,交BC于点D,DF⊥AC于F.线段AB上一点E,且DE=DC.证明:BE=CF.25.阅读理解题:(1)原理:对于任意两个实数A.b,若ab>0,则a和b同号,即:若ab<0,则a和b异号,即:(2)分析:对不等式(x+1)(x﹣2)>0来说,把(x+1)和(x﹣2)看成两个数a和b,所以按照上述原理可知:(Ⅰ)或(Ⅱ)所以不等式(x+1)(x﹣2)>0的求解就转化求解不等式组(I)和(Ⅱ).(3)应用:解不等式x2﹣x﹣12>026.某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)60 45租金(元/辆)550 450(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?27.几何探究题(1)发现:在平面内,若BC=a,AC=b,其中a>b.当点A在线段BC上时(如图1),线段AB的长取得最小值,最小值为_________;当点A在线段BC延长线上时(如图2),线段AB的长取得最大值,最大值为______-.(2)应用:点A为线段BC外一动点,如图3,分别以AB.AC为边,作等边△ABD和等边△ACE,连接CD.BE.①证明:CD=BE;②若BC=3,AC=1,则线段CD长度的最大值为________.(3)拓展:如图4,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.若a>b,则下列不等式成立的是()A.a﹣2<b﹣2 B.﹣3a>﹣3b C.﹣a<﹣b D.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A.a>b两边都﹣2可得a﹣2<b﹣2,错误;B.a>b两边都乘以﹣3可得﹣3a<﹣3b,错误;C.a>b两边都乘以﹣1可得﹣a<﹣b,正确;D.a>b两边都除以2可得>,错误;故选:C.【点评】此题主要考查了不等式的基本性质.注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.2.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为()A.(﹣1,0)B.(﹣1,﹣1) C.(﹣2,0)D.(﹣2,﹣1)【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点B 的坐标为(1﹣2,3﹣4),进而可得答案.【解答】解:将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为(1﹣2,3﹣4),即(﹣1,﹣1),故选:B.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.3.把不等式x+1≥0的解集在数轴上表示出来,则正确的是()A.B.C.D.【分析】先求出不等式的解集,在数轴上表示出来即可.【解答】解:移项得,x≥﹣1,故此不等式的解集为:x≥﹣1,在数轴上表示为:.故选:B.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.4.下列从左边到右边的变形,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+x﹣5=x(x+1)﹣5C.x2+1=x(x+)D.x2+4x+4=(x+2)2【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【解答】解:A和B都不是积的形式,应排除;C中,结果中的因式都应是整式,应排除.D.x2+4x+4=(x+2)2,正确.故选:D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.5.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A. B.C.D.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A.是中心对称图形,故本选项正确;B.不是中心对称图形,故本选项错误;C.不是中心对称图形,故本选项错误;D.不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.6.△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB的长为()cmA.6 B.8 C. D.5【分析】利用三角形的内角和和角的比求出三边的比,再由最小边BC=4cm,即可求出最长边AB的长.【解答】解:设∠A=x,则∠B=2x,∠C=3x,由三角形内角和定理得∠A+∠B+∠C=x+2x+3x=180°解得x=30°即∠A=30°,∠C=3×30°=90°此三角形为直角三角形故AB=2BC=2×4=8cm故选:B.【点评】本题很简单,考查的是直角三角形的性质,即在直角三角形中30°的角所对的边等于斜边的一半.7.把多项式(m+1)(m﹣1)+(m+1)提取公因式m+1后,余下的部分是()A.m+1 B.m﹣1 C.m D.2 m+1【分析】直接提取公因式(m+1)进而合并同类项得出即可.【解答】解:(m+1)(m﹣1)+(m+1)=(m+1)(m﹣1+1)=m(m+1).故选:C.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.8.如图,在△ABC中,∠ABC=∠C,AB=8,AB的垂直平分线DE交AB于点D,交AC于点E,△BEC的周长为13,则BC=()A.5 B.6 C.7 D.8【分析】根据等腰三角形的性质求出AC,根据线段垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵∠ABC=∠C,AB=8,∴AC=AB=8,∵DE是AB的垂直平分线,∴EA=EB,由题意得,BC+BE+CE=13,∴BC+EA+EC=13,即BC+AC=13,∴BC=5,故选:A.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC长是()A.7 B.6 C.5 D.4【分析】先求出△ABD的面积,再得出△ADC的面积,最后根据角平分线上的点到角的两边的距离相等可得AC边上的高,从而得解.【解答】解:∵DE=3,AB=6,∴△ABD的面积为,∵S△ABC=15,∴△ADC的面积=15﹣9=6,∵AD平分∠BAC,DE⊥AB于E,∴AC边上的高=DE=3,∴AC=6×2÷3=4,故选:D.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.10.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2 B.a<2 C.a>4 D.a<4【分析】将方程组中两方程相加,表示出x+y,代入x+y<2中,即可求出a的范围.【解答】解:,①+②得:4x+4y=a+4,即x+y=,∵x+y=<2,∴a<4.故选:D.【点评】此题考查了解二元一次方程组,以及解一元一次不等式,表示出x+y是解本题的关键.11.如图,正方形OABC的两边OA.OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.【点评】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.12.如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1 B.x≥3 C.x≤﹣1 D.x≤3【分析】函数y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),求不等式﹣x+2≥ax+b的解集,就是看函数在什么范围内y=﹣x+2的图象对应的点在函数y=ax+b的图象上面.【解答】解:从图象得到,当x≤3时,y=﹣x+2的图象对应的点在函数y =ax+b的图象上面,∴不等式﹣x+2≥ax+b的解集为x≤3.故选:D.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.二、填空题(本题共8道小题,每题2分,共16分)13.多项式x2﹣1与多项式x2﹣2x+1的公因式是x﹣1 .【分析】分别利用公式法分解因式,进而得出公因式.【解答】解:∵x2﹣1=(x+1)(x﹣1)、x2﹣2x+1=(x﹣1)2,∴多项式x2﹣1与多项式x2﹣2x+1的公因式是x﹣1,故答案为:x﹣1.【点评】此题主要考查了公因式,正确分解因式是解题关键.14.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为 2 .【分析】过P作PE垂直与OB,由∠AOP=∠BOP,PD垂直于OA,利用角平分线定理得到PE=PD,由PC与OA平行,根据两直线平行得到一对内错角相等,又OP为角平分线得到一对角相等,等量代换可得∠COP=∠CPO,又∠ECP为三角形COP的外角,利用三角形外角的性质求出∠ECP=30°,在直角三角形ECP中,由30°角所对的直角边等于斜边的一半,由斜边PC的长求出PE的长,即为PD的长.【解答】解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC∥OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO=30°,在直角三角形CEP中,∠ECP=30°,PC=4,∴PE=PC=2,则PD=PE=2.故答案为:2.【点评】此题考查了含30°角直角三角形的性质,角平分线定理,平行线的性质,以及三角形的外角性质,熟练掌握性质及定理是解本题的关键.同时注意辅助线的作法.15.如图,点P为等边△ABC内一点,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=2,那么PP′= 2 .【分析】根据等边三角形的性质得出∠BAC=60°,根据旋转的性质得出AP =AP′,∠BAC=∠PAP′=60°,根据等边三角形的判定得出△APP′是等边三角形,根据等边三角形的性质得出即可.【解答】解:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴旋转角的度数为60°,即∠PAP′=∠BAC=60°,根据旋转得出AP=AP′,∴△APP′是等边三角形,∴PP′=AP,∵AP=2,∴PP′=2,故答案为:2.【点评】本题考查了等边三角形的性质和判定,旋转的性质等知识点,能求出△APP′是等边三角形是解此题的关键.16.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则AD的长为12 .【分析】根据等腰三角形的性质可得AD⊥BC,再根据在直角三角形中,斜边上的中线等于斜边的一半可得DE的长,再利用勾股定理得出答案.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=.∵△CDE的周长为24,∴CD=9,∴AD===12.故答案为:12.【点评】此题主要考查了等腰三角形的性质以及直角三角形的性质、勾股定理,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.17.已知关于x的不等式x﹣a<0的只有三个正整数解,那么a的取值范围是3<a≤4 .【分析】先求出不等式的解集,根据已知得出关于a的不等式组,即可得出答案.【解答】解:由x﹣a<0得x<a,∵不等式只有三个正整数解,∴3<a≤4,故答案为:3<a≤4.【点评】本题考查了一元一次不等式组的整数解的应用,能得出关于a的不等式组是解此题的关键.18.如图,在△ABC中,点D.E分别在AB.AC 边上,AB=AC,BE=BC,AE =DE=DB,那么∠A=45 度.【分析】设∠A=x,则∠DBE=∠DEB=x,根据题意推出∠ABC=∠C=∠BEC=x,列出方程即可解决问题.【解答】解:∵AE=ED=BD,∴∠A=∠ADE,∠DBE=∠DEB,设∠A=x,则∠DBE=∠DEB=x,∵∠BEC=∠A+∠ABE,BE=BC,∴∠C=∠BEC=x,∵AB=AC,∴∠ABC=∠C=x,∵∠A+∠ABC+∠C=180°,∴x+x+x=180°,∴x=45°故答案为45.【点评】本题考查等腰三角形的性质,解题的关键是灵活应用等腰三角形的性质,重合利用参数解决问题,属于中考常考题型.19.在RtABC中,∠C=90°,AC=BC=(如图),若将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,联结C′B,则C′B的长为﹣1 .【分析】连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD ⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD.C′D,然后根据BC′=BD﹣C′D计算即可得解.【解答】解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB=2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故答案为﹣1.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.20.已知△ABC中,BC=6,AB.AC的垂直平分线分别交边BC于点M、N,若MN=2,则△AMN的周长是6或10 .【分析】由直线PM为线段AB的垂直平分线,根据线段垂直平分线定理:线段垂直平分线上的点到线段两端点的距离相等可得AM=BM,同理可得AN =NC,然后表示出三角形AMN的三边之和,等量代换可得其周长等于BC的长,由BC的长即可得到三角形AMN的周长.【解答】解:图1,∵直线MP为线段AB的垂直平分线,∴MA=MB,又直线NQ为线段AC的垂直平分线,∴NA=NC,∴△AMN的周长l=AM+MN+AN=BM+MN+NC=BC,又BC=6,则△AMN的周长为6,如图2,△AMN的周长l=AM+MN+AN=BM+MN+NC=BC+2MN,又BC=6,则△AMN的周长为10,故答案为:6或10【点评】此题考查了线段垂直平分线定理的运用,利用了转化的思想,熟练掌握线段垂直平分线定理是解本题的关键.三.解答题(本题共7道小题,第21题5分,第22题10分,第23题6分,第24题6分,第25题6分,第26题6分,第27题9分,共48分)21.解不等式,并将解集在数轴上表示出来.【分析】根据一元一次不等式的解法即可求出答案.【解答】解:去分母,得2(2x﹣1)+(5x﹣1)≤6,去括号,得4x﹣2+5x﹣1≤6,移项、合并同类项,得9x≤9,x系数化成1,得x≤1.在数轴上表示不等式的解集如图所示.【点评】本题考查一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.22.因式分解(1)ax2﹣4ay2(2)x3﹣8x2+16x【分析】(1)先提公因式a,再利用平方差公式分解可得;(2)先提取公因式x,再利用完全平方公式分解可得.【解答】解:(1)ax2﹣4ay2=a(x2﹣4y2)=a(x+2y)(x﹣2y);(2)x3﹣8x2+16x=x(x2﹣8x+16)=x(x﹣4)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.23.在平面直角坐标系中,△ABC的位置如图所示(小方格是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)画出△A2B2C2,使得△ABC和△A2B2C2关于原点O中心对称.【分析】(1)利用点平移的坐标变换规律写出A1.B1.C1的坐标,然后描点即可得到△A1B1C1;(2)利用关于原点对称的点的坐标特征写出A2.B2.C2的坐标,然后描点即可得到△A2B2C2.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移.24.如图,Rt△ABC,∠B=90°,AD平分∠BAC,交BC于点D,DF⊥AC于F.线段AB上一点E,且DE=DC.证明:BE=CF.【分析】根据角平分线的性质得出BD=DF,利用HL证明Rt△BED与Rt△DFC全等,利用全等三角形的性质证明即可.【解答】证明:∵∠B=90°,AD平分∠BAC,DF⊥AC于F,∴BD=DF,在Rt△BED与Rt△DFC中,∴Rt△BED≌Rt△DFC(HL),∴BE=CF.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,熟记性质并构造出全等三角形是解题的关键.25.阅读理解题:(1)原理:对于任意两个实数A.b,若ab>0,则a和b同号,即:若ab<0,则a和b异号,即:(2)分析:对不等式(x+1)(x﹣2)>0来说,把(x+1)和(x﹣2)看成两个数a和b,所以按照上述原理可知:(Ⅰ)或(Ⅱ)所以不等式(x+1)(x﹣2)>0的求解就转化求解不等式组(I)和(Ⅱ).(3)应用:解不等式x2﹣x﹣12>0【分析】由x2﹣x﹣12>0知(x+3)(x﹣4)>0,根据题意得出①或②,再分别求解可得.【解答】解:∵x2﹣x﹣12>0,∴(x+3)(x﹣4)>0,则①或②,解不等式组①,得:x>4,解不等式组②,得:x<﹣3,所以原不等式得解集为x<﹣3或x>4.【点评】本题主要考查解一元一次不等式组,解题的关键是根据有理数乘法的符号法则列出关于x的一元一次不等式组.26.某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)60 45租金(元/辆)550 450(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?【分析】(1)根据表格可以求出y(元)与x(辆)之间的函数表达式;(2)由表格中的数据可以得到甲乙两辆车的载客量应至少为380人,从而可以列出相应的不等式得到x的值,因为x为整数,从而可以解答本题.【解答】解:(1)由题意,得y=550x+450(7﹣x),化简,得y=100x+3150,即y(元)与x(辆)之间的函数表达式是y=100x+3150;(2)由题意,得60x+45(7﹣x)≥380,解得,x≥.∵y=100x+3150,∴k=100>0,∴x=5时,租车费用最少,最少为:y=100×5+3150=3650(元),即当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3650元.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.27.几何探究题(1)发现:在平面内,若BC=a,AC=b,其中a>b.当点A在线段BC上时(如图1),线段AB的长取得最小值,最小值为a ﹣b ;当点A在线段BC延长线上时(如图2),线段AB的长取得最大值,最大值为a+b .(2)应用:点A为线段BC外一动点,如图3,分别以AB.AC为边,作等边△ABD和等边△ACE,连接CD.BE.①证明:CD=BE;②若BC=3,AC=1,则线段CD长度的最大值为 4 .(3)拓展:如图4,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.【分析】(1)根据点A位于线段BC上时,线段AB的长取得最小值,根据点A位于BC的延长线上时,线段AB的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段CD长的最大值=线段BE的最大值,根据(1)中的结论即可得到结果;(3)将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.【解答】解:(1)∵当点A在线段BC上时,线段AB的长取得最小值,最小值为BC﹣AC,∵BC=a,AC=b,∴BC﹣AC=a﹣b,当点A在线段BC延长线上时,线段AB的长取得最大值,最大值为BC+AC,∵BC=a,AC=b,∴BC+AC=a+b,故答案为:a﹣b,a+b;(2)①∵△ABD和△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠DAC=∠BAE,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS),∴CD=BE;②∵线段CD的最大值=线段BE长的最大值,由(1)知,当线段BE的长取得最大值时,点E在BC的延长线上,∴最大值为BC+CE=BC+AC=4;故答案为:4;(3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2 +3;如图2,过P作PE⊥x轴于E,连接BE,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).如图3中,根据对称性可知,当点P在第四象限时,P(2﹣,﹣)时,也满足条件.综上述,满足条件的点P坐标(2﹣,)或(2﹣,﹣),AM的最大值为2+3.【点评】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键北师大版八年级下册数学期中考试试卷一、选择题(共12小题,每小题3分,满分36分)1.若a>b,则下列不等式成立的是()A.a﹣2<b﹣2 B.﹣3a>﹣3b C.﹣a<﹣b D.2.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为()A.(﹣1,0)B.(﹣1,﹣1) C.(﹣2,0)D.(﹣2,﹣1)3.把不等式x+1≥0的解集在数轴上表示出来,则正确的是()A.B.C.D.4.下列从左边到右边的变形,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+x﹣5=x(x+1)﹣5C.x2+1=x(x+)D.x2+4x+4=(x+2)25.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A. B. C.D.6.△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB的长为()cmA.6 B.8 C. D.57.把多项式(m+1)(m﹣1)+(m+1)提取公因式m+1后,余下的部分是()A.m+1 B.m﹣1 C.m D.2 m+18.如图,在△ABC中,∠ABC=∠C,AB=8,AB的垂直平分线DE交AB于点D,交AC于点E,△BEC的周长为13,则BC=()A.5 B.6 C.7 D.89.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC长是()A.7 B.6 C.5 D.410.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2 B.a<2 C.a>4 D.a<411.如图,正方形OABC的两边OA.OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)12.如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1 B.x≥3 C.x≤﹣1 D.x≤3二、填空题(本题共8道小题,每题2分,共16分)13.多项式x2﹣1与多项式x2﹣2x+1的公因式是________14.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为______15.如图,点P为等边△ABC内一点,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=2,那么PP′=____________.16.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则AD的长为_________.17.已知关于x的不等式x﹣a<0的只有三个正整数解,那么a的取值范围是______18.如图,在△ABC中,点D.E分别在AB.AC 边上,AB=AC,BE=BC,AE =DE=DB,那么∠A=_______度.19.在RtABC中,∠C=90°,AC=BC=(如图),若将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,联结C′B,则C′B的长为________.20.已知△ABC中,BC=6,AB.AC的垂直平分线分别交边BC于点M、N,若MN=2,则△AMN的周长是_______三.解答题(本题共7道小题,第21题5分,第22题10分,第23题6分,第24题6分,第25题6分,第26题6分,第27题9分,共48分)21.解不等式,并将解集在数轴上表示出来.22.因式分解(1)ax2﹣4ay2(2)x3﹣8x2+16x23.在平面直角坐标系中,△ABC的位置如图所示(小方格是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)画出△A2B2C2,使得△ABC和△A2B2C2关于原点O中心对称.24.如图,Rt△ABC,∠B=90°,AD平分∠BAC,交BC于点D,DF⊥AC于F.线段AB上一点E,且DE=DC.证明:BE=CF.25.阅读理解题:(1)原理:对于任意两个实数A.b,若ab>0,则a和b同号,即:若ab<0,则a和b异号,即:(2)分析:对不等式(x+1)(x﹣2)>0来说,把(x+1)和(x﹣2)看成两个数a和b,所以按照上述原理可知:(Ⅰ)或(Ⅱ)所以不等式(x+1)(x﹣2)>0的求解就转化求解不等式组(I)和(Ⅱ).(3)应用:解不等式x2﹣x﹣12>026.某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)60 45租金(元/辆)550 450(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?27.几何探究题(1)发现:在平面内,若BC=a,AC=b,其中a>b.当点A在线段BC上时(如图1),线段AB的长取得最小值,最小值为_________;当点A在线段BC延长线上时(如图2),线段AB的长取得最大值,最大值为______-.(2)应用:点A为线段BC外一动点,如图3,分别以AB.AC为边,作等边△ABD和等边△ACE,连接CD.BE.①证明:CD=BE;②若BC=3,AC=1,则线段CD长度的最大值为________.(3)拓展:如图4,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.考试中答题策略和几个答题窍门对于中学生来说,最终都要参加升学考试,而考试的遗憾莫过于实有的水平未能充分发挥出来,致使十几年的辛劳毁于两小时的“经验”不足。

北师大版八年级下册数学期中考试试题及答案

北师大版八年级下册数学期中考试试题及答案

北师大版八年级下册数学期中考试试卷一、单选题1.下列四个图形中,即是轴对称图形又是中心对称图形的有( )A .B .C .D . 2.若a b <,c 为非零常数,则下列不等式中不一定成立的是( )A .a c b c -<-B .22ac bc <C .2211a bc c ->-++D .2222a cbc +<+ 3.下列条件中,不能判定两个直角三角形全等的是( )A .两条直角边对应相等B .斜边和一个锐角对应相等C .斜边和一条直角边对应相等D .一条直角边和一个锐角分别相等 4.如图表示下列四个不等式组中其中一个的解集,这个不等式组是( )A .23x x ≥⎧⎨>-⎩ B .23x x ≤⎧⎨<-⎩ C .23x x ≤⎧⎨>-⎩ D .23x x <⎧⎨≥-⎩5.如图,在ABC ∆中,AB AC =,BD BC =,AD DE BE ==,那么A ∠的度数等于( )A .22.5︒B .35︒C .45︒D .55︒ 6.已知关于x 的不等式210x m -+≥的最小整数解为3,则实数m 的取值范围是( )A .57m <≤B .57m <<C .57m ≤≤D .57m ≤< 7.如图,ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,已知BCE ∆的周长为10,2AB BC -=,则BC 的值为( )A .6B .4C .7D .88.学校组织八年级100名学生搬桌椅.若规定一人一次搬两把椅子,两人一次搬一张桌子,每人只搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A .30B .35C .40D .459.如图,在平面直角坐标系xOy 中,直线y 经过点A ,作AB x ⊥轴于点B ,将ABO ∆绕点B 逆时针旋转60︒得到CBD ∆.若点B 的坐标为(1,0),30A ∠=︒,则点C 的坐标为( )A .12⎛- ⎝⎭B .⎛- ⎝⎭C .21⎛⎫ ⎪ ⎪⎝⎭D .1⎛⎫ ⎪ ⎪⎝⎭10.如图,在平面直角坐标系xOy 中,已知5,03A ⎛⎫ ⎪⎝⎭,(0,4)B ,将ABO ∆绕点A 顺指针旋转到11AB C ∆的位置,点B 、O 分别落在点1B 、1C 处,点1B 在x 轴上,再将11AB C ∆绕点1B 顺时针旋转到112A B C ∆的位置,点2C 在x 轴上,将112A B C ∆绕点2C 顺时针旋转到222A B C ∆的位置,点2A 在x 轴上,依次进行下去…,则点2019B 的横坐标为( )A .10090B .10096C .0D .4二、填空题11.若规定[]a 表示不超过a 的最大整数,例[]4.34=,[]2.13-=-,若[]M a a =-,则M 的取值范围________12.如图,BD 平分ABC ∠,DE AB ⊥于点E ,6AB =,8BC =,若14ABC S ∆=,则DE =________.13.已知直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式210k x k x b ≤<+的解集为___________14.如图,边长为6的正方形ABCD 绕点C 按顺时针方向旋转30后得到正方形EFCG ,EF 交AD 于点H ,则DH =____________.15.如图,长方形ABCO 在平面直角坐标系中,8AB =,3OA =,D 为OC 的中点,点P 为线段AB 上一动点,当ADP ∆为等腰三角形时,P 点的坐标为____________16.如图,△ABC中,AD为角平分线,若△B=△C=60°,AB=6,则CD的长度为_____.17.如图,将直角三角形ABC沿AB方向平移AD长的距离得到直角三角形DEF,已知BE=5,EF=8,CG=3.则图中阴影部分面积_____.三、解答题18.解不等式(组):(1)21131 2105x x+-->-;(2)23(2)4 423133x xx x--≥⎧⎪⎨+>-⎪⎩.19.解不等式532122x x++-<,并把它的解集在数轴上表示出来.20.ABC ∆在平面直角坐标系中的位置如图所示,先将ABC ∆向右平移3个单位,再向下平移1个单位到111A B C ∆,111A B C ∆和222A B C ∆关于x 轴对称.(1)画出111A B C ∆和222A B C ∆;(2)在x 轴上确定一点P ,使1BP A P +的值最小,试求出点P 的坐标.21.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:△ABC 和点D 、E ,求作:在△ABC 内部确定一点P ,使点P 到△ABC 的两边距离相等,并且PD =PE .22.如图,△ABC 中,AB =BC ,BE △AC 于点E ,AD △BC 于点D ,△BAD =45°,AD 与BE 交于点F ,连接CF .(1)求证:BF =2AE ;(2)若CD AD 的长.23.甲、乙两座仓库分别有农用车12辆和6辆.现在需要调往A 县10辆,需要调往B 县8辆,已知从甲仓库调运一辆农用车到A 县和B 县的运费分别为40元和80元;从乙仓库调运一辆农用车到A 县和B 县的运费分别为30元和50元.(1)设乙仓库调往A 县农用车x 辆,求总运费y 关于x 的函数关系式;(2)若要求总运费不超过900元,问共有几种调运方案?试列举出来.(3)求出总运费最低的调运方案,最低运费是多少元?24.如图,等边ABC ∆的边长为10cm ,点D 从点C 出发沿CA 向点A 运动,点E 从点B 出发沿AB 的延长线BF 向右运动,已知点D ,E 都以1cm/s 的速度同时开始运动,运动过程中DE 与BC 相交于点P ,点D 运动到点A 后两点同时停止运动.(1)当ADE ∆是直角三角形时,求D ,E 两点运动的时间;(2)求证:在运动过程中,点P 始终是线段DE 的中点.25.如图,在ABC 中,AD 平分BAC ∠,点D 是BC 的中点,DE AB ⊥于点E DF AC ⊥,于点F .求证:ABC 是等腰三角形.参考答案1.D2.D3.D4.C5.C6.A7.B8.C9.A10.B11.01M ≤<【解析】根据题意列出不等式组,解不等式组即可.【详解】解:由题意可知[]1a a a -<≤△[]1a a a -≤-<-△[]01a a ≤-<,即01M ≤<故答案为:01M ≤<.【点睛】本题考查了解一元一次不等式组,根据题意得出不等式组是解题的关键.12.2【解析】过点D 作DP △BC ,根据角平分线的性质可求DE =DP ,然后设DE =DP =x ,结合三角形面积公式列方程求解即可.【详解】解:过点D 作DP △BC△BD 平分ABC ∠,DE AB ⊥,DP △BC△DE =DP设DE =DP =x△ABC ABD BDC SS S =+ △111422AB DE BC DP ⨯+⨯= 11681422x x ⨯+⨯= 解得:x =2故答案为:2.13.10-<≤x【解析】根据两直线的交点,及直线和坐标轴的交点结合一次函数图像增减性分析不等式的解集.【详解】解:由图像可知,两直线交点坐标为(-1,3),正比例函数2y k x =经过原点且y 随x 增大而减小△当10-<≤x 时,210k x k x b ≤<+故答案为:10-<≤x .14.【解析】过点F 作FI △BC 于点I ,延长线IF 交AD 于J ,根据含30°直角三角形的性质可求出FI 、FJ 和JH 的长度,从而求出HD 的长度.【详解】解:过点F 作FI △BC 于点BC ,延长线AD 交AD 于J ,由题意可知:CF =BC =6,△FCB =30°,△FI =3,CI =△JI =CD =6,△JF =JI -FI =6-3=3,△△HFC =90°,△△JFH +△IFC =△IFC +△FCB =90°,△△JFH =△FCB =30°,设JH =x ,则HF =2x ,△由勾股定理可知:(2x )2=x 2+32,△x△DH =DJ -JH =故答案为:15.25,38⎛⎫ ⎪⎝⎭,(5,3)或(8,3) 【解析】由题意利用矩形性质和勾股定理求得AD 的长,然后分AD =PD =5时,AD =AP =5时,AP =AD 时三种情况,设P 点坐标为(x ,3),结合矩形性质和勾股定理求得P 点坐标【详解】解: 由题意可知:AB =OC =8,AO =BC =3△D 为OC 中点△OD =CD =4△在Rt △AOD 中,5=AD当AD =PD =5时,△ADP 是等腰三角形又因为点P 在线段AB 上,△设P 点坐标为(x ,3),则222(4)35x -+=解得:x =0(不合题意,舍去)或x =8△此时P (8,3)当AD =AP =5时,△ADP 是等腰三角形过点P 作PE △OC ,则四边形AOEP 是矩形△此时P 点坐标为(5,3)当AP=PD时,△ADP是等腰三角形设P(x,3),过点P作PE△OC,则DE=4-x,AP=PD=x,PE=3△在Rt△PED中,222(4)3x x-+=解得:258 x=△此时P点坐标为(258,3)综上所述,点P的坐标为2538⎛⎫⎪⎝⎭,,(53),或(83),.故答案为:2538⎛⎫⎪⎝⎭,,(53),或(83),.16.3【解析】先由△B=△C=60°及三角形的内角和,得出△BAC=60°,从而△ABC为等边三角形,再由等边三角形的“三线合一”性质,得出BD=CD,而已知AB=6,则可得答案.【详解】解△△B =△C =60°△△BAC =180°﹣60°﹣60°=60°△△ABC 为等边三角形△AB =6△BC =AB =6△AD 为角平分线△BD =CD△CD =3故答案为3.17.652【解析】根据平移的性质可得DEF △ABC ,DEF ABC S S =,则阴影部分的面积=梯形BEFG 的面积,再根据梯形的面积公式即可得到答案.【详解】解:△Rt ABC 沿AB 的方向平移AD 距离得DEF ,△DEF ABC ≌,△EF =BC =8,DEF ABC SS =, △ABC DBG DEF DBGS S S S -=-, △S 四边形ACGD =S 梯形BEFG ,△CG =3,△BG =BC ﹣CG =8﹣3=5,△S 梯形BEFG =()()1165585.222BG EF BE +•=+⨯= 故答案为:652. 【点睛】本题考查的是平移的性质,解题的关键是掌握平移过程中的不变的量.18.(1)x >-613;(2)-1<x ≤2. 【解析】(1)先去分母,再移项,系数化为1,即可得到答案.(2)先分别计算着两个不等式,再求不等式组的解.【详解】(1)211312105x x +-->-去分母得到105132x x +-+>-移项得到103251x x +>--+化简得到136x >-系数化为1得x >-613.(2)23(2)4x x --≥去括号得到2364x x -+≥移项得2346x x -≥-化简,系数化为1得2x ≥,423133x x +>-去分母得到4932x x +>-移项得到4239x x +>-化简,系数化为1得1x >-故答案为:-1<x ≤2【点睛】本题考查解不等式(组),解题的关键是掌握解不等式的基本步骤.19.x >12,数轴表示见解析【解析】先去分母,然后通过移项、合并同类项,化未知数系数为1进行计算.【详解】解:去分母,得x +5-2<3x +2,移项,得x -3x <2+2-5,合并同类项,得-2x <-1,化系数为1,得x >12,表示在数轴上为:【点睛】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.20.(1)详见解析;(2)3,05P ⎛⎫- ⎪⎝⎭【解析】【分析】(1)△ABC 向右平移3个单位,再向下平移1个单位到△A 1B 1C 1,△A 1B 1C 1和△A 2B 2C 2关于x 轴对称,据此作图即可;(2)依据轴对称的性质,连接BA 2,交x 轴于点P ,此时BP +A 1P 的值最小,依据直线BA 2的解析式,即可得到点P 的坐标.【详解】解:(1)如图所示,△A 1B 1C 1和△A 2B 2C 2即为所求;(2)如图所示,连接BA 2,交x 轴于点P ,则点P 即为所求;设直线BA 2的解析式为y kx b =+,由B (-3,2),A 2(3,-3)可得,3233k b k b -+=⎧⎨+=-⎩,解得5612 kb⎧=-⎪⎪⎨⎪=-⎪⎩△直线BA2的解析式为y=5162x=--当y=0时,510 62x--=解得35 x=-△35P⎛⎫-⎪⎝⎭,【点睛】本题主要考查了利用平移以及轴对称变换进行作图以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.21.画图见解析.【解析】【分析】分别作出DE的垂直平分线及△ABC的平分线,两条直线的交点即为P点的位置.【详解】解:如图所示,点P为所求.【点睛】本题考查了作图﹣复杂作图,涉及的是角平分线及线段垂直平分线的作法,需同学们熟练掌握.22.(1)见解析(2)【解析】【详解】(1)先判定出△ABD 是等腰直角三角形,根据等腰直角三角形的性质可得AD =BD ,再根据同角的余角相等求出△CAD =△CBE ,然后利用“角边角”证明△ADC 和△BDF 全等,根据全等三角形对应边相等可得BF =AC ,再根据等腰三角形三线合一的性质可得AC =2AF ,从而得证.(2)根据全等三角形对应边相等可得DF =CD ,然后利用勾股定理列式求出CF ,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF =CF ,然后根据AD =AF +DF 代入数据即可得解.解:(1)证明:△AD △BC ,△BAD =45°,△△ABD 是等腰直角三角形.△AD =BD .△BE △AC ,AD △BC ,△△CAD +△ACD =90°,△CBE +△ACD =90°.△△CAD =△CBE .在△ADC 和△BDF 中,△CAD =△CBF ,AD =BD ,△ADC =△BDF =90°,△△ADC △△BDF (ASA ).△BF =AC .△AB =BC ,BE △AC ,△AC =2AE .△BF =2AE .(2)△△ADC △△BDF ,△DF =CD在Rt △CDF 中,CF 2=.△BE △AC ,AE =EC ,△AF =CF =2.△AD =AF +DF23.(1)20860y x =+(06)x ≤≤;(2)3种;方案一:甲调往A :10辆;乙往A :0辆;甲调往B :2辆;乙调往B :6辆; 方案二:甲调往A :9辆;乙往A :1辆;甲调往B :3辆;乙调往B :5辆;方案三:甲调往A :8辆;乙往A :2辆;甲调往B :4辆;乙调往B :4辆;(3)方案一的总运费最少为860元.【解析】【分析】(1)若乙仓库调往A 县农用车x 辆,那么乙仓库调往B 县农用车、甲给A 县调农用车、以及甲县给B 县调车数量都可表示出来,然后依据各自运费,把总运费表示即可; (2)若要求总运费不超过900元,则可根据(1)列不等式确定x 的取值,从而求解; (3)在(2)的基础上,结合一次函数的性质求出最低运费即可.【详解】解:(1)乙仓库调往A 县农用车x 辆,则调往B 县农用车()6x -辆.(6)x ≤A 县需10辆车,故甲给A 县调10x -辆,给B 县调车(2)x +辆△40(10)80(2)3050(6)y x x x x =-++++-化简得20860y x =+(06)x ≤≤(2)总运费不超过900,即900y ≤代入(1)结果得20860900x +≤解得2x ≤又因为x 为非负整数△012x =,,即如下三种方案方案一:甲调往A :10辆;乙往A :0辆;甲调往B :2辆;乙调往B :6辆. 方案二:甲调往A :9辆;乙往A :1辆;甲调往B :3辆;乙调往B :5辆.方案三:甲调往A :8辆;乙往A :2辆;甲调往B :4辆;乙调往B :4辆.(3)总运费20860y x =+,其中06x ≤≤△200k =>△y 随x 的增大而增大△当x 取最小时,运费y 最小代入0x =得200860860y =⨯+=△方案为(2)中方案1:甲往A :10辆;乙往A :0辆;甲往B :2辆;乙往B :6辆.总运费最少为860元.【点睛】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景-建立模型-解释、应用和拓展”的数学学习模式.24.(1)103秒;(2)证明见解析 【解析】【分析】(1)经过分析当△ADE 是直角三角形时,只有△ADE=90°的情况,此时△AED=30°.用运动时间t 表示出AD 和AE ,根据30度直角三角形的性质构造关于t 的方程即可求解; (2)过D 点作DK△AB 交BC 于点K ,证明△DKP△△EBP 即可说明点P 始终是线段DE 的中点.【详解】解:(1)ADE ∆中,60A ∠=︒,60AED ABC ∠≤∠=︒所以若ADE ∆是直角三角形,只能90ADE ∠=︒Rt ADE ∆中,60A ∠=︒得,△AED=30°△2AE AD =设D 点运动时间为t ,则E 点运动时间也为t .△10AD t =-,10AE t =+△102(10)t t +=-,解得103t = 所以当ADE ∆是直角三角形时,D ,E 两点运动时间为103秒. (2)过点D 作//DK AB 交BC 于点K△等边三角形ABC ∆中.60A ∠=︒,60C ∠=°且//DK AB△60C CDK CKD ∠=∠=∠=︒△CDK ∆为等边三角形△CD DK CK ==,120DKB ADK CBE ∠=︒=∠=∠设D ,E 运动时间为t 秒,则CD BE t ==在DKP ∆与EBP ∆中DPK EPB DKP EBP DK BE ∠=∠⎧⎪∠=∠⎨⎪=⎩△()DKP EBP AAS ∆∆≌△PD PE =△P 始终为DE 的中点【点睛】本题主要考查了等边三角形,含30°角的直角三角形的性质,全等三角形的判定和性质,用运动时间t 正确表示出对应线段长度是解题的关键.25.见解析【解析】【分析】由条件可得出DE=DF ,可证明BDE △CDF ,可得出B C ∠=∠,再由等腰三角形的判定可得出结论.【详解】证明:AD 平分,BAC ∠ ,,DE AB DF AC,DE DF ∴=在Rt BDE ∆与Rt CDF ∆中BD CD DE DF =⎧⎨=⎩, Rt BDE Rt CDF ∴∆~∆B C ∴∠=∠,ADC ∴∆为等腰三角形.【点睛】考查等腰三角形的判定, 角平分线的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.。

八年级数学下册期中考试卷及答案(北师大版)

八年级数学下册期中考试卷及答案(北师大版)

八年级数学下册期中考试卷及答案(北师大版)(满分:150分;考试时间:120分钟)一、单选题(共10题;共40分)1.(4分)下列各式中,能用平方差公式分解因式的是( )A .x 2+y 2B .x 2-y 2C .–x 2-y 2D .x-y 22.(4分)下列图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个3.(4分)如图,三条公路两两相交,现计划修建一个油库,要求油库到这三条公路的距离相等,那么选择油库的位置有( )处.A .1B .2C .3D .44.(4分)若x+a <y+a ,ax >ay ,则( )A .x >y ,a >0B .x >y ,a <0C .x <y ,a >0D .x <y ,a <05.(4分)若把分式2x yxy+ 中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍 B .不变C .缩小为原来的110D .缩小为原来的11006.(4分)如图,在▱ABCD 中,用直尺和圆规作▱BAD 的平分线AG 交BC 于点E .若BF=6,AB=5,则AE 的长为( )A .4B .6C .8D .107.(4分) 如图,函数 2y x =和 5y ax =+ 的图象交于点 (),3A m ,则不等式 25x ax <+ 的解集是 ( )A .32x <B .3x <C .32x >D .3x >8.(4分)如图,边长为5的等边三角形ABC 中,M 是高 CH 所在直线上的一个动点,连接MB ,将线段 BM 绕点B 逆时针旋转 60︒ 得到 BN ,连接 HN .则在点M 运动过程中,线段 HN 长度的最小值是( )A .54B .1C .2D .529.(4分)任何一个正整数 n 都可以进行这样的分解: n s t =⨯ ( s 、 t 是正整数,且s t ),如果 p q ⨯ 在 n 的所有这种分解中两因数之差的绝对值最小,我们就称 p q ⨯ 是 n 的最佳分解,并规定: ()pF n q=.例如18可以分解成 118⨯ , 29⨯ , 36⨯ 这三种,这时就有 31(18)62F == ,给出下列关于 ()F n 的说法: ①1(2)2F =;②1(48)3F = ;③()21n F n n n +=+ ;④若 n 是一个完全平方数,则 ()1F n = ,其中正确说法的个数是( )A .4B .3C .2D .110.(4分)如图,在▱ABCD 中,▱DAB 的平分线交CD 于点E ,交BC 的延长线于点G ,▱ABC 的平分线交CD 于点F ,交AD 的延长线于点H ,AG 与BH 交于点O ,连接BE ,下列结论错误的是( )A .BO=OHB .DF=CEC .DH=CGD .AB=AE二、填空题(共5题;共20分)11.(4分)函数 23y x =- 的自变量 x 的取值范围是 . 12.(4分)运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是 .13.(4分)一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n°后(0<n <180 ),如果EF▱AB ,那么n 的值是 .14.(4分)如图,函数y =2x 和y =ax+4的图象相交于点A (n ,2),则不等式2x≥ax+4的解集为 .15.(4分)如图,A、B、C、D、E、F、G都在▱O的边上,OA=AB=BC=CD=DE=EF=FG,若▱EFG=30°,则▱O=.三、计算题(共1题;共12分)16.(12分)解下列不等式(1)(6分)4x-2+1132 55xx x>++ --(2)(6分)762 23xx->+四、解答题(共6题;共78分)17.(10分)大学生小李自主创业,春节期间购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型1012B型1523A型文具?18.(10分)如图,有一个长方形,通过不同方法计算图形的面积,验证了一个多项式的因式分解,请写出这个式子.19.(12分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元。

北师大版数学八年级下册《期中测试卷》含答案

北师大版数学八年级下册《期中测试卷》含答案
二.填空题
9.若点(﹣1,﹣3a+1)在第二象限,则a的取值范围是______.
[答案]a
[解析]
[分析]
根据点的位置得出不等式,求出不等式的解集即可.
A. B. C. D.
3.等腰三角形有一个角 90°,则另两个角分别是( )
A.30°,60°B.45°,45°C.45°,90°D.20°,70°
4.等腰三角形的两边长是6cm和3cm,那么它的周长是
A 9cmB. 12 cmC. 12 cm或15 cmD. 15 cm
5.如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是()
A. B. C. D.
[答案]D
[解析]
[分析]
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
[详解]A.是中心对称图形,不是轴对称图形,选项不符合题意;
B.是轴对称图形,不是中心对称图形,选项不符合题意;
C.不是中心对称图形,也不是轴对称图形,选项不符合题意;
16.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2016的纵坐标为_____.
21.如图所示,在边长为1个单位的正方形网格中建立平面直角坐标系,△ABC的顶点均在格点上.
(1)△A1B1C1与△ABC关于y轴对称,画出△A1B1C1

北师大版数学八年级下册《期中考试卷》及答案

北师大版数学八年级下册《期中考试卷》及答案
① 是 的平分线;
②若 ,则 ;
③ ;
④点 在 的垂直平分线上.
A.1个B.2个C.3个D.4个
[答案]C
[解析]
[分析]
连接PM,PN,证明∆APN≅∆APM,即可判断①;由 , ,得:∠BAC=60°,结合 是 的平分线,得∠BAD=∠ABD,即可判断②;过点D作DH⊥AB,由 ,得: ,结合CD=HD,即可判断③;根据垂直平分线性质定理的逆定理,即可判断④.
D、平行四边形的对角线互相平分,故本选项的说法正确,不符合题意;
故选:B.
[点睛]本题考查平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.
6.如图,在△ABC中,DE是AC的垂直平分线,AB=6cm,且△ABD的周长为16cm,则BC的长为()
A.8cmB.10cmC.14cmD.22cm
[答案]B
答案与解析
一、选择题(本大题共12小题,每小题4分,满分48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.若x>y,则下列式子中正确的是( )
A.x﹣2>y﹣2B.x+2<y+2C.﹣2x>﹣2yD.
[答案]A
[解析]
[分析]
利用不等式的基本性质判断即可.
[详解]A、由x>y可得:x−2>y−2,正确;
三、解答题
19.分解因式:
20.若关于 的二元一次方程组 的解满足 ,求出满足条件的 的所有正整数数值.
21.如图,在正方形网格中, 的三个顶点都在格点上,点 的坐标分别为
(1)画出 关于原点 对称的
(2)平移 ,使点 移动到点 ,画出平移后的 ,并写出点 的坐标;
(3) 与 成中心对称,写出其对称中心 坐标.

北师大版数学八年级下册《期中检测题》附答案

北师大版数学八年级下册《期中检测题》附答案
A. B. C. D.
10.关于 的方程 的解为正整数,且关于 的不等式组 有解且最多有 个整数解,则满足条件的所有整数 的值为_______.
二、填空题(本大题共6个小题,每小题4分,共24分)
11.使分式 的值为0,这时x=_____.
12.已知 ,则 的值为___________.
13.已知a,b是一个等腰三角形的两边长,且满足a2+b2-6a-8b+25=0,则这个等腰三角形的周长为______________.
2
4
6
……
经历同样的过程画函数 和 的图象如下图所示,观察发现:三个函数的图象都是由两条射线组成的轴对称图形:三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.
请直接写出 与 的交点坐标和函数 的对称轴;
在所给的平面直角坐标系内画出函数 的图象(不列表),并写出函数 的一条性质;
6.已知关于x的方程x2﹣x+m=0的一个根是3,则另一个根是()
A. ﹣6B.6C. ﹣2D.2
[答案]C
[解析]
[分析]
由于已知方程的二次项系数和一次项系数,所以要求方程的另一根,可利用一元二次方程的两根之和与系数的关系.
[详解]解:设a是方程x2﹣5x+k=0的另一个根,
则a+3=1,
即a=﹣2.
北 师 大 版 数 学 八年 级下学 期
期中测 试 卷
学校________班级________姓名________成绩________
一、选择题:(每小题3分,共计30分)
1.式子 中,分式有()
A.1个B.2个C.3个D.4个
2.下列因式分解正确的是()

北师大版八年级数学下册期中考试试卷及答案

北师大版八年级数学下册期中考试试卷及答案

八年级数学下册期中考试试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第三章《图形的平移和旋转》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。

在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为()A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)2.如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A. AC=DEB. BC=EFC. ∠AEF=∠DD. AB⊥DF3.下列四个判断:其中正确的有()①若ac2>bc2,则a>b;②若a>b,则a|c|>b|c|;<1;③若a>b,则ba④若a>0,则b−a<b,A. 1个B. 2个C. 3个D. 3个4.下列式子中,是不等式的有()①2x=7;②3x+4y;③−3<2;④2a−3≥0;⑤x>1;⑥a−b>1.A. 5个B. 4个C. 3个D. 1个5.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中等边三角形是()A. ①②③B. ①②④C. ①③④D. ①②③④6.在△ABC中,已知a,b,c分别是∠A,∠B,∠C的对边,则下列条件中,不能判定△ABC是等腰三角形的是()A. a=3,b=3,c=4B. a∶b∶c=2∶3∶4C. ∠B=50°,∠C=80°D. ∠A∶∠B∶∠C=1∶1∶27.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90∘,得到△A′B′C′,则点A的对应点A′的坐标是()A. (0,4)B. (2,−2)C. (3,−2)D. (−1,4)8.下列剪纸图形中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个9.若关于x的不等式组{2−x2>2x−43,−3x>−2x−a的解集是x<2,则a的取值范围是()A. a≥2B. a<−2C. a>2D. a≤210.不等式4x+1>x+7的解集在数轴上表示正确的是()A. B.C. D.11.如图,点P是∠AOB的平分线上一点,PC⊥OA于点C,PD⊥OB于点D,连接CD交OP于点E,下列结论不一定正确的是()A. PC=PDB. OC=ODC. OP垂直平分CDD. OE=CD12.如图,已知点P到AE,AD,BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是()A. ④B. ②③C. ①②③D. ①②③④13.如图,线段OA=2,OP=1,将线段OP绕点O任意旋转时,线段AP的长度也随之改变,则下列结论:①AP的最小值是1,最大值是4;②当AP=2时,△APO是等腰三角形;③当AP=1时,△APO是等腰三角形;④当AP=√3时,△APO是直角三角形;⑤当AP=√5时,△APO是直角三角形.其中正确的是()A. ①④⑤B. ②③⑤C. ②④⑤D. ③④⑤14.五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为()A. 11B. 12C. 13D. 1415.如图,已知P(3,2),B(−2,0),点Q从P点出发,先移动到y轴上的点M处,再沿垂直于y轴的方向向左移动1个单位至点N处,最后移动到点B处停止,当点Q 移动的路径最短时(即三条线段PM、MN、NB长度之和最小),点M的坐标为()A. (0,12)B. (0,23)C. (0,43)D. (0,45)卷Ⅱ二、填空题(本大题共5小题,共25.0分) 16. 如图,将△ABC 绕点C 顺时针旋转至△DEC ,使点D 落在BC 的延长线上,已知∠A =27°,∠B =40°,则∠ACE =________°.17. 由不等式a >b 得到am <bm ,则m 应满足的条件是 . 18. 在Rt △ABC 中,∠C =90°,∠B =40°,则∠A 的度数是 .19. 若关于x 的不等式(a +1)x >a +1的解集为x >1,则a 的取值范围是 .20. 图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是 .三、解答题(本大题共7小题,共80.0分) 21. (8分)(1)计算:(−3)2−√4+(12)0;(2)解不等式组:{x −2<32x +1>7.22. (8分)如图,已知△ABC ,∠C =90°,AC <BC ,D 为BC 上一点,且到A ,B 两点距离相等. (1)用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹); (2)连结AD ,若∠B =40°,求∠CAD 的度数.23.(12分)如图1,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建一横一竖,宽度均为b米的通道.(1)通道的面积共有多少平方米?(2)剩余草坪的面积是多少平方米?(3)若修两横一竖,宽度均为b米的通道(如图2),已知a=2b,剩余草坪的面积是216平方米,求通道的宽度是多少米?24.(10分)如图,△ABC中,AB=AC=2,∠ACB=30∘,将△ABC沿边AC所在的直线折叠,点B落在点E处,再将△ACE沿射线CA的方向平移,得到△A′C′E′,连接A′B,若A′B=2√3.求:(1)BC的长;(2)平移的距离.25.(12分)王老师所在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球.他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买.三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次65700第二次37710第三次78693(1)王老师是第_____________次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买多少个篮球?26.(14分)如图,∠AOB=60°,OC平分∠AOB,C为角平分线上一点,过点C作CD⊥OC,垂足为C,交OB于点D,CE//OA交OB于点E.判断△CED的形状,并说明理由.27.(16分)如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C顺时针旋转90°至CE,连接AE.(1)求证:△BCD≌△ACE;(2)如图2,连接ED,若CD=2√2,AE=1,求AB的长;(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.答案1.C2.D3.B4.B5.D6.B7.D8.B9.A10.A11.D12.D13.C14.D15.A16.4617.m<018.50°19.a>−120.方块521.(1)解:原式=9−2+1=8.(2)解:{x−2<3 ①2x+1>7 ②,由①得,x<5;由②得,x>3.∴不等式组的解为3<x<5.22.解:(1)如图,点D为所作;(2)△ABC中,∵∠C=90°,∠B=40°,∴∠BAC=50°,∵AD=BD,∴∠B=∠BAD=40°,∴∠CAD=∠BAC−∠BAD=10°.23.解:(1)S通道=b(2a+3b)+b(4a+3b)−b2 =2ab+3b2+4ab+3b2−b2=(6ab+5b2)(平方米).答:通道的面积共有(6ab+5b2)平方米;=(4a+3b)(2a+3b)−(6ab+5b2)(2)S草坪=8a2+6ab+12ab+9b2−(2ab+3b2+4ab+3b2−b2)=8a2+18ab+9b2−6ab−5b2=(8a2+12ab+4b2)(平方米).答:剩余草坪的面积是(8a2+12ab+4b2)平方米;=(4a+3b)(2a+3b)−[2b(2a+3b)+b(4a+3b)−2b2] (3)S草坪=8a2+18ab+9b2−(4ab+6b2+4ab+3b2−2b2)=8a2+18ab+9b2−8ab−7b2=8a2+10ab+2b2, ∵a=2b,∴32b2+20b2+2b2=54b2=216,∴b2=4,∴b=2(米).答:通道的宽度是2米.24.解:(1)作AD⊥BC于D,在Rt△ADC中,AC=2,∠ACB=30∘,AC=1,∴AD=12∴DC=√AC2−AD2=√22−12=√3,∵AB=AC,∠ADC=90∘,∴BC=2DC=2√3.(2)∵A′B=BC=2√3,∠ACB=30∘,∴∠2=∠ACB=30∘,∴∠1+∠3=180∘−30∘−30∘=120∘,∵AB=AC,∠ACB=30∘,∴∠1=∠ACB=30∘,∴∠3=90∘.在Rt△ABA′中,∠2=30∘,AB=2,∴AA′=4.即平移的距离是4.25.解:(1)三(2)足球的标价为50元,篮球的标价为80元.(3)最多可以购买38个篮球.26.解:△CED是等边三角形,理由如下:∵OC平分∠AOB,∠AOB=60°,∴∠AOC=∠COE=30°.∵CE//OA,∴∠AOB=∠CED=60°.∵CD⊥OC,∴∠OCD=90°.∴∠EDC=60°.∴△CED是等边三角形.27.解:(1)由旋转可得EC=DC,∠ECD=90°=∠ACB,∴∠BCD=∠ACE,又∵AC=BC,∴△BCD≌△ACE(SAS);(2)由(1)可知AE=BD=1,∠CAE=∠B=45°=∠CAB,∴∠EAD=90°,∴DE=√(2√2)2+(2√2)2=4,∴AD=√42−12=√15.∴AB=AD+BD=√15+1;(3)如图,过C作CG⊥AB于G,则AG=12AB,∵∠ACB=90°,AC=BC,∴CG=12AB,即CGAB=12,∵点F为AD的中点,∴FA=12AD,∴FG=AG−AF=12AB−12AD=12(AB−AD)=12BD,由(1)可得:BD=AE,∴FG=12AE,即FGAE=12,∴CGAB =FGAE,又∵∠CGF=∠BAE=90°,∴△CGF∽△BAE,∴∠FCG=∠ABE,∵∠FCG+∠CFG=90°,∴∠ABE+∠CFG=90°,∴CF⊥BE.。

北师大版数学八年级下册《期中考试试题》含答案

北师大版数学八年级下册《期中考试试题》含答案

北 师 大 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10个小题,每小题3分,共30分) 1.如果0a b,那么在下列结论中正确的是( )A .1a bB .1abC .1a bD .1a b2.下列图形中是中心对称图形的是( )A .B .C .D .3.等腰三角形一腰上的高与另一腰的夹角为40,则其顶角为( ) A .50B .130C .50或130D .55或1304.如图,A ,B ,C 表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在( )A .AC ,BC 两边高线的交点处B .AC ,BC 两边中线的交点处 C .AC ,BC 两边垂直平分线的交点处D .A ,B 两内角平分线的交点处5.将不等式组13x x 的解集在数轴上表示出来,应是( ) A . B . C .D .6.ABC 三个顶点的坐标分别为(2,1)A ,(4,3)B ,(0,2)C ,将ABC 平移到了△A B C ,其中(1,3)A ,则C 点的坐标为( ) A .(3,6)B .(2,1)C .(3,4)D .(2,5)7若点(1,1)P k 在第四象限,则k 的取值范围为( )A .1kB .12kC .12kD .112k8如图,在ABC 中,ABC 和ACB 的平分线交于点O ,过O 点作//EF BC ,交AB 于E ,交AC 于F ,若3BE ,2CF,则线段EF 的长为( )A .5B .6C .7D .89如图1,ABC 和ADE 都是等腰直角三角形,C 和ADE 都是直角,点C 在AE 上,ABC 绕着A 点经过逆时针旋转后能够与ADE 重合得到图1,再将图1作为“基本图形”绕着A 点经过逆时针连续旋转得到图2.两次旋转的角度分别为( )A .45,90B .90,45C .60,30D .30,6010.不等式组1235a x ax 的解集是32xa ,则a 的取值范围是( )A .1aB .3aC .1a 或3aD .13a二、填空题(本题共7个小题,每小题4分,共28分) 11.已知0a b c,a b c ,则ca的取值范围是 . 12.如图,把ABC 绕着点A 顺时针方向旋转角度(090),得到△AB C ,若B ,C ,C 三点在同一条直线上,46B CB,则的度数是 .13.一次函数223yx 的图象如图所示,当33x时,y 的取值范围是 .14.如图,在ABC 中,90B ,60A ,5BC ,将ABC 沿直角边BC 所在的直线向右平移2个单位长度,到达DEF ,AC 与DE 交于点G ,则EG 的长为 .15.如图,已知30AOB ,点P 在边OA 上,14OP ,点E ,F 在边OB 上,PE PF ,6EF .若点D 是边OB上一动点,则45PDE时,DF 的长为 .16.在一次智力测验中有20道选择题,评分标准为:对1题给5分,错1题扣2分,不答题不给分也不扣分,张强有1道题末答,问他至少答对 道题,总分才不会低于70分. 17.已知不等式2123x a xb的解集为11x ,求(1)(1)a b 的值为 .三.解答题(一)(本题共3个小题,每小题6分,共18分) 18.解下列不等式(组),并把它们的解集在数轴上表示出来: (1)34122x x ; (2)475(1)2132x x xx19.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为(5,1)A ,(2,2)B ,(1,4)C ,请按下列要求画图:(1)将ABC 先向右平移4个单位长度、再向下平移1个单位长度,得到△111A B C ,画出△111A B C ; (2)画出与ABC 关于原点O 成中心对称的△222A B C ,并直接写出点2A 的坐标.20.如图,在ABC 中,AB AC ,AB 的垂直平分线分别交AB ,AC 于点D ,E .(1)若40A ,求EBC 的度数;(2)若5AD,EBC 的周长为16,求ABC 的周长.四.解答题(二)(本题共3个小题,每小题8分,共24分)21.某服装店同时购进甲、乙两种款式的运动服共300套,进价和售价如表中所示,设购进甲款运动服x 套(x 为正整数),该服装店售完全部甲、乙两款运动服获得的总利润为y 元. (1)求y 与x 的函数关系式;(2)该服装店计划投入2万元购进这两款运动服,则至少购进多少套甲款运动服?若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是多少元?a,且最多购进240套甲款运动服, (3)在(2)的条件下,若服装店购进甲款运动服的进价降低a元(其中2040)若服装店保持这两款运动服的售价不变,请你设计出使该服装店获得最大销售利润的购进方案.22.如图,点D是ABC中BAC的平分线和边BC的垂直平分线DE的交点,DG AB于点G,DH AC交AC的延长线于点H,(1)D点到B、C两点的距离相等吗?为什么?(2)D点到BAC两边的距离相等吗?为什么?(3)探求BG和CH之间的大小关系,并证明你的结论.23.如图,在ABC=,延长BC至E使BE BA∆中,AC BC⊥,AC BC⊥于点D,BD与AC交=,过点B作BD AE于点F,连接EF.(1)求证:ACE BCF∆≅∆.(2)求证:2=.BF AD(3)若CE求AC的长.五.解答题(三)(本题共2个小题,每小题10分,共20分)24.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.(1)求证:BHE DGF;(2)若6BC cm,求线段FG的长.AB cm,825.如图,在等边ABC中,BAC的平分线交y轴于点D,C点的坐标为(0,6)(1)如图1,求点D坐标.(2)如图2,E为x轴上任意一点,以CE为边,在第一象限内作等边CEF,FB的延长线交y轴于点G,求OG的长.(3)如图3,在(1)条件下,当一个含60角的三角板绕B点旋转时,下列两个结论中:①DN DM;②DN DM其中有且只有一个是定值,请你判断哪一个结论成立并证明成立的结论.答案与解析一、选择题(本题共10个小题,每小题3分,共30分) 1.如果0a b ,那么在下列结论中正确的是( )A .1a bB .1abC .1a bD .1a b[解析]A 、取12a ,13b ,516a b ,故本选项错误,B 、取2a,1b ,21ab ,故本选项错误,C 、取2a ,1b ,21a b ,故本选项错误,D 、取2a,1b,21a b,故本选项正确.故选:D .2.下列图形中是中心对称图形的是( )A .B .C .D .[解析]A 、不是中心对称图形,是轴对称图形,故本选项错误; B 、不是中心对称图形,是轴对称图形,故本选项错误;C 、是中心对称图形,还是轴对称图形,故本选项正确;D 、不是中心对称图形,是轴对称图形,故本选项错误.故选:C .3.等腰三角形一腰上的高与另一腰的夹角为40,则其顶角为( ) A .50B .130C .50或130D .55或130[解析]①如图1,等腰三角形为锐角三角形, BDAC ,40ABD,50A ,即顶角的度数为50.②如图2,等腰三角形为钝角三角形, BDAC ,40DBA,50BAD , 130BAC,即顶角的度数为130. 故选:C .4.如图,A ,B ,C 表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在( )A .AC ,BC 两边高线的交点处B .AC ,BC 两边中线的交点处 C .AC ,BC 两边垂直平分线的交点处D .A ,B 两内角平分线的交点处[解析]A ,B ,C 表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在AC ,BC 两边垂直平分线的交点处. 故选:C . 5.将不等式组13x x 的解集在数轴上表示出来,应是( ) A . B . C .D .[解析]不等式组13x x 的解集为:13x , 故选:A .6.ABC 三个顶点的坐标分别为(2,1)A ,(4,3)B ,(0,2)C ,将ABC 平移到了△A B C ,其中(1,3)A ,则C 点的坐标为( ) A .(3,6) B .(2,1)C .(3,4)D .(2,5)[解析]ABC 三个顶点的坐标分别为(2,1)A ,将ABC 平移到了△A B C ,其中(1,3)A ,横坐标减3,纵坐标加2,(0,2)C ,对应点坐标为:(3,4).故选:C .7.若点(1,1)P k 在第四象限,则k 的取值范围为( ) A .1kB .12kC .12kD .112k[解析]根据题意,得:10k ,解得:1k,故选:A .8.如图,在ABC 中,ABC 和ACB 的平分线交于点O ,过O 点作//EF BC ,交AB 于E ,交AC 于F ,若3BE ,2CF,则线段EF 的长为( )A .5B .6C .7D .8[解析]BO 、CO 是ABC 、ACB 的角平分线,OBEOBC ,OCF BCO ,又//EF BC , OBC BOE ,BCO COF , OBEBOE ,COFOCF ,BE OE ,CF OF , 325EFOE OFBE CF,故选:A .9.如图1,ABC 和ADE 都是等腰直角三角形,C 和ADE 都是直角,点C 在AE 上,ABC 绕着A 点经过逆时针旋转后能够与ADE 重合得到图1,再将图1作为“基本图形”绕着A 点经过逆时针连续旋转得到图2.两次旋转的角度分别为( )A .45,90B .90,45C .60,30D .30,60 [解析]根据图1可知, ABC 和ADE 是等腰直角三角形,45CAB ,即ABC 绕点A 逆时针旋转45可到ADE ;如右图, ABC 和ADE 是等腰直角三角形,45DAE CAB ,90FAB DAE CAB ,即图1可以逆时针连续旋转90得到图2.故选:A .10.不等式组1235a x a x 的解集是32x a ,则a 的取值范围是() A .1a B .3a C .1a 或3aD .13a[解析]根据题意可知13a 且25a所以3a又因为32x a即23a所以1a所以13a故选:D .二.填空题(本题共7个小题,每小题4分,共28分)11.已知0a b c,a b c ,则c a 的取值范围是 122c a . [解析]0a b c , 0a ,0c①ba c ,且0a ,0c ab c a c a ,即2a c ②解得2c a , 将b a c 代入b c ,得a c c ,即2a c ③ 解得12c a , 122c a . 故答案为:122ca . 12.如图,把ABC 绕着点A 顺时针方向旋转角度(090),得到△AB C ,若B ,C ,C 三点在同一条直线上,46B CB ,则的度数是 46 .[解析]由题意可得:AC AC ,C ACB , ACC C , 把ABC 绕着点A 顺时针方向旋转,得到△AB C ,点C 刚好落在边B C 上, B CBACB C CAC ,46B CB CAC . 故答案为:46.13.一次函数223y x 的图象如图所示,当33x 时,y 的取值范围是 04y .[解析]当3x时,2243y x ; 当3x 时,2203yx . 当33x 时,y 的取值范围是04y . 故答案为:04y . 14.如图,在ABC 中,90B ,60A ,5BC ,将ABC 沿直角边BC 所在的直线向右平移2个单位长度,到达DEF ,AC 与DE 交于点G ,则EG[解析]由平移得:2BE,90DEF B , 5BC , 523CE ,60A ,30ACB ,2CG EG ,设EG x ,则2CG x , 由勾股定理得:2223(2)x x , 3x或3(舍),3EG ,15.如图,已知30AOB,点P 在边OA 上,14OP ,点E ,F 在边OB 上,PE PF ,6EF .若点D 是边OB上一动点,则45PDE 时,DF 的长为 4或10 .[解析]如图,过点P作PH OB于点H,PE PF,13EH FH EF,2OP,AOB,14301PH OP,72当点D运动到点F右侧时,PDE,45DPH,45PH DH,7DF DH FH;734当点D运动到点F左侧时,D F D H FH.7310所以DF的长为4或10.故答案为4或10.16.在一次智力测验中有20道选择题,评分标准为:对1题给5分,错1题扣2分,不答题不给分也不扣分,张强有1道题末答,问他至少答对16道题,总分才不会低于70分.[解析]设张强答对x道题,x x根据题意可得52(201)70解得:3 157 x因为x是整数,所以x所取最小值为16,故答案是:16.17.已知不等式2123x ax b的解集为11x,求(1)(1)a b的值为6.[解析]由2123x ax b得1232axxb.11x,112a,321b,解得1a,2b,(1)(1)(11)(21)6a b,故答案为6.三.解答题(一)(本题共3个小题,每小题6分,共18分) 18.解下列不等式(组),并把它们的解集在数轴上表示出来:(1)34122xx;(2)475(1)2132x xx x[解析](1)去分母:2341x x ,移项,合并:22x,1x,在数轴上表示为(2)47512132x xx x①②解①得:2x;解②得:2x;不等式组的解集为22x,数轴上表示为.19.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为(5,1)A ,(2,2)B ,(1,4)C ,请按下列要求画图:(1)将ABC 先向右平移4个单位长度、再向下平移1个单位长度,得到△111A B C ,画出△111A B C ;(2)画出与ABC 关于原点O 成中心对称的△222A B C ,并直接写出点2A 的坐标.[解析](1)如图所示,△111A B C 即为所求.(2)如图所示,△222A B C 即为所求,点2A 的坐标为(5,1).20.如图,在ABC 中,AB AC ,AB 的垂直平分线分别交AB ,AC 于点D ,E . (1)若40A,求EBC 的度数; (2)若5AD ,EBC 的周长为16,求ABC 的周长.[解析](1)AB AC,40A,70ABC C,DE是AB的垂直平分线,EA EB,EBA A,40EBC;30(2)DE是AB的垂直平分线,DA BD,EB AE,5EB BC EC EA BC EC AC BC,EBC的周长16AB BC AC.则ABC的周长26四、解答题(二)(本题共3个小题,每小题8分,共24分)21.某服装店同时购进甲、乙两种款式的运动服共300套,进价和售价如表中所示,设购进甲款运动服x套(x 为正整数),该服装店售完全部甲、乙两款运动服获得的总利润为y元.(1)求y与x的函数关系式;(2)该服装店计划投入2万元购进这两款运动服,则至少购进多少套甲款运动服?若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是多少元?a,且最多购进240套甲款运动服, (3)在(2)的条件下,若服装店购进甲款运动服的进价降低a元(其中2040)若服装店保持这两款运动服的售价不变,请你设计出使该服装店获得最大销售利润的购进方案.y x x x;[解析](1)根据题意得(10060)(15080)(300)3021000y x.即3021000(2)由题意得,6080(300)20000x x ,解得200x ,至少要购进甲款运动服200套.又3021000y x ,300, y 随x 的增大而减小,当200x时,y 有最大值, 302002100015000y 最大,若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是15000元.(3)由题意得,(10060)(15080)(300)ya x x ,其中200240x , 化简得,(30)21000ya x , 2040a ,则:①当2030a 时,300a ,y 随x 的增大而减小, 当200x 时,y 有最大值,则服装店应购进甲款运动服200套、乙款运动服100套,获利最大. ②当30a 时,300a ,21000y ,则服装店应购进甲款运动服的数量应满足100120x ,且x 为整数时, 服装店获利最大.③当3040a 时,300a ,y 随x 的增大而增大,200240x ,当240x 时,y 有最大利润,则服装店应购进甲款运动服240套、乙款运动服60套,获利最大. 22.如图,点D 是ABC 中BAC 的平分线和边BC 的垂直平分线DE 的交点,DG AB 于点G ,DH AC 交AC 的延长线于点H , (1)D 点到B 、C 两点的距离相等吗?为什么?(2)D 点到BAC 两边的距离相等吗?为什么?(3)探求BG 和CH 之间的大小关系,并证明你的结论.[解析](1)相等.D是线段BC垂直平分线上的一点,D点到B、C两点的距离相等;(2)相等.点D在BAC的角平分线上,D点到BAC两边的距离相等;(3)BG CH.连接BD、CD,D是线段BC垂直平分线上的点,BD DC,D是BAC平分线上的点,DG AB,DH ACDG DH,Rt BDG Rt CDH,BG CH.23.如图,在ABC=,延长BC至E使BE BA∆中,AC BC⊥,AC BC⊥于点D,BD与AC交=,过点B作BD AE于点F,连接EF.(1)求证:ACE BCF∆≅∆.(2)求证:2=.BF AD(3)若CE求AC的长.[解析]证明:(1)AC BC⊥,BD AE⊥∴∠=∠=︒90FCB BDA∠+∠=︒DAF AFD90∠+∠=︒,90CBF CFB∠=∠CFB AFDACE BCF∠=∠=︒=,90∴∠=∠,且AC BCCBF CAE∴∆≅∆ACE BCF ASA()(2)ACE BCF∆≅∆∴=AE BF=,BD AE⊥BE BA∴=,AD ED即2=AE AD2∴=.BF AD(3)ACE BCF∆≅∆∴=CF CE∴在Rt CEF∆中,2EF=,=,⊥,AD EDBD AE∴==,2AF FE∴=+=AC AF CF2五、解答题(三)(本题共2个小题,每小题10分,共20分)24.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.(1)求证:BHE DGF ; (2)若6AB cm ,8BC cm ,求线段FG 的长.[解析](1)证明:四边形ABCD 是矩形, AB CD ,90A C ,ABD BDC , BEH 是BAH 翻折而成,ABH EBH ,90A HEB ,AB BE , DGF 是DGC 翻折而成,FDG CDG ,90C DFG ,CD DF , 12DBH ABD ,12BDG BDC , DBH BDG , BEH 与DFG 中,HEB DFG ,BE DF ,DBH BDG , BEHDFG ,(2)解:四边形ABCD 是矩形,6AB cm ,8BC cm , 6ABCD cm ,8AD BC cm , 22228610BD BC CD , 由(1)知,FDCD ,CG FG , 1064BF cm ,设FG x ,则8BGx , 在Rt BGF 中,222BG BF FG ,即222(8)4x x ,解得3x ,即3FG cm .25.如图,在等边ABC 中,BAC 的平分线交y 轴于点D ,C 点的坐标为(0,6)(1)如图1,求点D坐标.(2)如图2,E为x轴上任意一点,以CE为边,在第一象限内作等边CEF,FB的延长线交y轴于点G,求OG的长.(3)如图3,在(1)条件下,当一个含60角的三角板绕B点旋转时,下列两个结论中:①DN DM;②DN DM其中有且只有一个是定值,请你判断哪一个结论成立并证明成立的结论.[解析](1)如图1,ABC为等边三角形,而OC AB,OA OB,30ACO,60BAC,在Rt ACO中,3362333AO OC,AD为OAC的平分线,30OAD,3323233OD OD,D点坐标为(0,2);(2)如图2,作FG BC于G,FH x轴于H,EFC为等边三角形,FC FE,60FCE CFE,OBC,60120CBE,FCB BEF,180FEH BEF,而180FCG FEH,在FCG和FEH中,FGC FHEFCG FEH,FC FEFCG FEH AAS,()FG FH,BF平分CBE,1FBE CBE,602OBG,60OB OA,2333236OG OB;(3)①正确.理由如下:在DN上截取DP DM,连接MP、DB,如图3,DO垂直平分AB,DA DB OD,24DAO,3060ADO,MDP,60而DM DP,DMP为等边三角形,DM MP,60DPM,120MPN,MDN,60MBN,60点M、D、B、N四点共圆,MND MBD,在MNP和MBD中,MNP MBDMPN MDB,MP MDMNP MBD AAS,()PN BD,4DN DP,4DN DM4。

北师大版八年级下册期中考试数学试卷含答案(共3套)

北师大版八年级下册期中考试数学试卷含答案(共3套)

北师大版八年级数学下册期中考试试卷(时间:120分钟 满分:150分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题框内)1.下列图形中,既是中心对称图形,又是轴对称图形的是( )2.老师在黑板上写了下列式子:①x -1≥1;②-2<0;③x ≠3;④x +2;⑤x -12y =0;⑥x +2y ≤0.你认为其中是不等式的有( )A.2个B.3个C.4个D.5个 3.如图,过等边△ABC 的顶点A 作射线,若∠1=20°,则∠2的度数是( )A.80°B.100°C.60°D.40°4.在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )A.(-1,1)B.(-1,-2)C.(-1,2)D.(1,2) 5.已知a <3,则下列四个不等式中,不正确的是( )A.a -2<3-2B.a +2<3+2C.2a <2×3D.-2a <-6 6.如图,△ABC 由△A′B′C′绕点O 旋转180°而得到,则下列结论不成立的是( )A.点A 与点A ′是对应点B.BO =B ′OC.∠ACB =∠C ′A ′B ′D.AB =A ′B ′ 7.如图,已知AC =AD ,∠ACB =∠ADB =90°,则全等三角形共有( )A.1对B.2对C.3对D.4对8.如图,在△ABC 中,BC =6厘米,AB 的垂直平分线交AB 边于点D ,交AC 边于点E ,△BCE 的周长等于18厘米,则AC 的长等于( )A.6厘米B.8厘米C.10厘米D.12厘米9.在Rt △ABC 中,CD 是斜边AB 上的高,∠B =30°,AD =2 cm ,则AB 的长度是( ) A.8 cm B.4 cm C.2 cm D.16 cm 10.已知点P(2a -1,1-a)在第一象限,则a 的取值范围在数轴上表示正确的是( )11.如图,在△ABC 中,AB =AC ,∠A =30°,以点B 为圆心,BC 的长为半径画圆弧,交AC 于点D ,连接BD ,则∠ABD =( )A.30°B.45°C.60°D.90°12.不等式组⎩⎪⎨⎪⎧2x +1>-3,-x +3≥0的整数解有( )A.3个B.5个C.7个D.无数个13.一次函数y =3x +b 和y =ax -3的图象如图所示,其交点为P(-2,-5),则不等式3x +b >ax -3的解集在数轴上表示正确的是( )A. B. C. D.14.将一副三角板按如图1的位置摆放,将△DEF 绕点A(F)逆时针旋转60°后,得到如图2,测得CG =62,则AC 长是( )A.6+2 3B.9C.10D.6+6 215.如图,在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC =5,BD =4.则下列结论错误的是( )A.AE ∥BCB.∠ADE =∠BDCC.△BDE 是等边三角形D.△ADE 的周长是9二、填空题(本大题共5个小题,每小题5分,共25分) 16.已知等腰△ABC 中,AB =AC ,∠B =60°,则∠A = .17.如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,若∠CAB =50°,∠ABC =100°,则∠CBE 的度数为 .18.如图,在△ABC 中,B 是AC 上一点,AD =BD =BC ,若∠C =25°,则∠ADB = .19.如图,MN ∥PQ ,AB ⊥PQ ,点A ,D ,B ,C 分别在直线MN 与PQ 上,点E 在AB 上,AD +BC =7,AD =EB ,DE =EC ,则AB = .20.对于整数a ,b ,c ,d ,符号⎪⎪⎪⎪⎪⎪a c b d 表示运算ad -bc ,例如⎪⎪⎪⎪⎪⎪2345=2×5-3×4=10-12=-2,若x ,y 均为整数,且满足1<⎪⎪⎪⎪⎪⎪1 x y4<3 ,则x +y 的值是 .三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(本题8分)解不等式组:⎩⎪⎨⎪⎧x +6≤3x +4,①1+2x 3>x -1.②22.(本题8分)在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A(0,0),B(3,3),C(4,1). (1)画出△ABC 及△ABC 绕点A 逆时针旋转90°后得到的△AB 1C 1; (2)分别写出B 1和C 1的坐标.23.(本题10分)已知不等式5x -2<6x +1的最小正整数解是方程3x -32ax =6的解,求a 的值.24.(本题12分)如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC =BD. (1)求证:BC =AD ;(2)求证:△OAB 是等腰三角形.25.(本题12分)在平面直角坐标系中,△ABC 的三个顶点坐标为A(-3,4),B(-4,2),C(-2,1),且△A 1B 1C 1与△ABC 关于原点O 成中心对称. (1)画出△A 1B 1C 1,并写出A 1的坐标; (2)P(a ,b)是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点P′(a +3,b +1),请画出平移后的△A 2B 2C 2.26.(本题14分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14 400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15 600元,你认为至少要派多少名工人去生产乙种产品才合适?27.(本题16分)如图1,在Rt△ABC中,AB=BC,AC=2,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),点C在DE上,点B在DF上.(1)求重叠部分△BCD的面积;(2)如图2,将直角三角板DEF绕D点按顺时针方向旋转30度,DE交BC于点M,DF交AB于点N.①请说明:DM=DN;②在此条件下重叠部分的面积会发生变化吗?若发生变化,请求出重叠部分的面积;若不发生变化,请说明理由;(3)如图3,将直角三角板DEF绕D点按顺时针方向旋转α度(0<α<90),DE交BC于点M,DF交AB于点N,则DM=DN的结论仍成立吗?重叠部分的面积会变吗?(请直接写出结论,不需要说明理由)参考答案一、选择题(本大题共15个小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题框内)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 选项CCBADCCDACBBCAB1.下列图形中,既是中心对称图形,又是轴对称图形的是(C )2.老师在黑板上写了下列式子:①x -1≥1;②-2<0;③x ≠3;④x +2;⑤x -12y =0;⑥x +2y ≤0.你认为其中是不等式的有(C )A.2个B.3个C.4个D.5个 3.如图,过等边△ABC 的顶点A 作射线,若∠1=20°,则∠2的度数是(B )A.80°B.100°C.60°D.40°4.在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是(A )A.(-1,1)B.(-1,-2)C.(-1,2)D.(1,2) 5.已知a <3,则下列四个不等式中,不正确的是(D )A.a -2<3-2B.a +2<3+2C.2a <2×3D.-2a <-6 6.如图,△ABC 由△A′B′C′绕点O 旋转180°而得到,则下列结论不成立的是(C )A.点A 与点A ′是对应点B.BO =B ′OC.∠ACB =∠C ′A ′B ′D.AB =A ′B ′ 7.如图,已知AC =AD ,∠ACB =∠ADB =90°,则全等三角形共有(C )A.1对B.2对C.3对D.4对8.如图,在△ABC 中,BC =6厘米,AB 的垂直平分线交AB 边于点D ,交AC 边于点E ,△BCE 的周长等于18厘米,则AC 的长等于(D )A.6厘米B.8厘米C.10厘米D.12厘米 9.在Rt △ABC 中,CD 是斜边AB 上的高,∠B =30°,AD =2 cm ,则AB 的长度是(A ) A.8 cm B.4 cm C.2 cm D.16 cm 10.已知点P(2a -1,1-a)在第一象限,则a 的取值范围在数轴上表示正确的是(C )11.如图,在△ABC 中,AB =AC ,∠A =30°,以点B 为圆心,BC 的长为半径画圆弧,交AC 于点D ,连接BD ,则∠ABD =(B )A.30°B.45°C.60°D.90°12.不等式组⎩⎪⎨⎪⎧2x +1>-3,-x +3≥0的整数解有(B )A.3个B.5个C.7个D.无数个13.一次函数y =3x +b 和y =ax -3的图象如图所示,其交点为P(-2,-5),则不等式3x +b >ax -3的解集在数轴上表示正确的是(C )A. B. C. D.14.将一副三角板按如图1的位置摆放,将△DEF 绕点A(F)逆时针旋转60°后,得到如图2,测得CG =62,则AC 长是(A )A.6+2 3B.9C.10D.6+6 215.如图,在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC =5,BD =4.则下列结论错误的是(B )A.AE ∥BCB.∠ADE =∠BDCC.△BDE 是等边三角形D.△ADE 的周长是9二、填空题(本大题共5个小题,每小题5分,共25分) 16.已知等腰△ABC 中,AB =AC ,∠B =60°,则∠A =60__°.17.如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,若∠CAB =50°,∠ABC =100°,则∠CBE 的度数为30__°.18.如图,在△ABC 中,B 是AC 上一点,AD =BD =BC ,若∠C =25°,则∠ADB =80__°.19.如图,MN ∥PQ ,AB ⊥PQ ,点A ,D ,B ,C 分别在直线MN 与PQ 上,点E 在AB 上,AD +BC =7,AD =EB ,DE =EC ,则AB =7.20.对于整数a ,b ,c ,d ,符号⎪⎪⎪⎪⎪⎪a c b d 表示运算ad -bc ,例如⎪⎪⎪⎪⎪⎪2345=2×5-3×4=10-12=-2,若x ,y 均为整数,且满足1<⎪⎪⎪⎪⎪⎪1 x y4<3 ,则x +y 的值是±3.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(本题8分)解不等式组:⎩⎪⎨⎪⎧x +6≤3x +4,①1+2x 3>x -1.②解:解不等式①,得x ≥1.解不等式②,得x <4.因此,原不等式组的解集为1≤x <4.22.(本题8分)如图,一辆汽车在笔直的公路AB 上由A 向B 行驶,M ,N 分别是位于公路AB 两侧的村庄,当汽车行驶到哪个位置时,与村庄M ,N 的距离相等?(尺规作图,保留作图痕迹,不用写作法)解:如图,点C 即为所求.23.(本题10分)已知不等式5x -2<6x +1的最小正整数解是方程3x -32ax =6的解,求a 的值.解:解不等式,得x >-3,其最小正整数解为x =1. 把x =1代入方程3x -32ax =6,得3-32a =6,所以a =-2.24.(本题12分)如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC =BD. (1)求证:BC =AD ;(2)求证:△OAB 是等腰三角形.证明:(1)∵AC ⊥BC ,BD ⊥AD , ∴∠D =∠C =90 °.在Rt △ACB 和Rt △BDA 中,⎩⎪⎨⎪⎧AB =BA ,AC =BD , ∴Rt △ACB ≌Rt △BDA (HL ). ∴BC =AD.(2)∵△ACB ≌△BDA , ∴∠CAB =∠DBA.∴OA =OB ,即△OAB 是等腰三角形.25.(本题12分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt △ABC 的三个顶点坐标为A(-2,2),B(0,5),C(0,2).(1)将△ABC 以点C 为旋转中心旋转180°,得到△A 1B 1C ,请画出△A 1B 1C 的图形;(2)平移△ABC ,使点A 的对应点A 2的坐标为(-2,-6),请画出平移后对应的△A 2B 2C 2的图形; (3)若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,请直接写出旋转中心的坐标.解:(1)如图,△A 1B 1C 即为所求. (2)如图,△A 2B 2C 2即为所求. (3)旋转中心坐标为(0,-2).26.(本题14分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x 名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14 400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15 600元,你认为至少要派多少名工人去生产乙种产品才合适? 解:(1)根据题意,得y =12x ×100+10(10-x )×180,即y =-600x +18 000. (2)当y =14 400时,有14 400=-600x +18 000,解得x =6. 答:要派6名工人去生产甲种产品.(3)根据题意,得y ≥15 600,即-600x +18 000≥15 600,解得x ≤4,则10-x ≥6. 答:至少要派6名工人去生产乙种产品才合适.27.(本题16分)如图1,在Rt △ABC 中,AB =BC ,AC =2,把一块含30°角的三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为DE ,长直角边为DF),点C 在DE 上,点B 在DF 上. (1)求重叠部分△BCD 的面积;(2)如图2,将直角三角板DEF 绕D 点按顺时针方向旋转30度,DE 交BC 于点M ,DF 交AB 于点N. ①请说明:DM =DN ;②在此条件下重叠部分的面积会发生变化吗?若发生变化,请求出重叠部分的面积;若不发生变化,请说明理由;(3)如图3,将直角三角板DEF 绕D 点按顺时针方向旋转α度(0<α<90),DE 交BC 于点M ,DF 交AB 于点N ,则DM =DN 的结论仍成立吗?重叠部分的面积会变吗?(请直接写出结论,不需要说明理由)解:(1)∵AB =BC ,AC =2,D 是AC 的中点,∠ABC =90 °, ∴∠BCD =∠A =∠CBD =45 °,BD ⊥AC. ∴CD =BD =12AC =1.∴S △BCD =12CD·BD =12×1×1=12.(2)①连接BD ,∵AB =BC ,D 是AC 的中点,∠ABC =90 °,∴∠C =∠A =∠CBD =∠ABD =45 °.∴BD =CD ,∠C =∠NBD =45 °.又∵∠CDM =∠BDN ,∴△CDM ≌△BDN (ASA ).∴DM =DN.②由①知△CDM ≌△BDN ,∴S 四边形BNDM =S △BCD =12,即此条件下重叠部分的面积不变为12. (3)DM =DN 的结论仍成立,面积不会变.北师大版八年级(下册)期中考试数学试卷一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共30分)1.(3分)若二次根式有意义,则x 的取值范围为( ) A .x ≥2 B .x ≠2 C .x >2 D .x ≥02.(3分)下列变形中,正确的是( )A .(2)2=2×3=6 B . =﹣ C . = D . =3.(3分)发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,25.其中能作为直角三角形的三边长的有( )A .1组B .2组C .3组D .4组4.(3分)如图,花园住宅小区有一块长方形绿化带,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”.他们仅仅少走了( )步路(假设2步为1米),却踩伤了花草.A .6步B .5步C .4步D .2步5.(3分)如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是( )A.AB∥CD,AD∥BC B.OA=OC,OB=OD C.AD=BC,AB∥CD D.AB=CD,AD=BC6.(3分)平行四边形的一边长为10cm,那么这个平行四边形的两条对角线长可以是()A.4cm和6cm B.6cm和8cm C.20cm和30cm D.8cm和12cm7.(3分)如图将四个全等的矩形分别等分成四个全等的小矩形,其中阴影部分面积相等的是()A.只有①和②相等 B.只有③和④相等C.只有①和④相等 D.①和②,③和④分别相等8.(3分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.(3分)如图,正方形ABCD的对角线交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等.无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的()A.B.C.D.10.(3分)矩形ABCD中,E,F,M为AB,BC,CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为()A.5 B.C.6 D.二、填空题(共6个小题,每小题3分,共18分)11.(3分)若最简二次根式与﹣2能合并为一个二次根式,则x=.12.(3分)如图所示,菱形ABCD中,对角线AC,B D相交于点O,H为AD边中点,菱形ABCD 的周长为24,则OH的长等于.13.(3分)如图所示,在高为3m,斜坡长为5m的楼梯表面铺地毯,至少需要地毯米.14.(3分)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是.15.(3分)平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为.16.(3分)在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.三、解答题(共8个小题,共72分)17.(10分)计算:(1)()﹣(﹣)(2)(2﹣3)÷.18.(8分)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.19.(8分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图 中画一条线段MN,使MN=;(2)在图 中画一个三边长均为无理数,且各边都不相等的直角△DEF.20.(8分)已知a,b,c满足|a﹣2|++(c﹣)2=0,求:(1)a,b,c的值.(2)试问以a,b,c为边能否构成直角三角形?21.(8分)如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,B C′交AD于点E,AD=8,AB=6,求AE的长.22.(8分)如图,在平行四边形ABCD中,AC,BD相交于点O,点E,F在AC上,且OE=OF.(1)求证:BE=DF;(2)线段OE满足什么条件时,四边形BEDF为矩形(不必证明).23.(8分)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON 方向以72千米/时的速度行驶时,A处受噪音影响的时间为多少?24.(14分)在平行四边形ABCD中,∠BAD的平分线交直线BC于E,交直线DC于F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),讨论线段DG与BD的数量关系.参考答案一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共30分)1.(3分)若二次根式有意义,则x的取值范围为()A.x≥2 B.x≠2 C.x>2 D.x≥0【解答】解:由题意得:x﹣2≥0,解得:x≥2,故选:A.2.(3分)下列变形中,正确的是()A.(2)2=2×3=6 B.=﹣C.=D.=【解答】解;A、(2)2=12,故A错误;B、=,故B错误;C、=5,故C错误;D、=,故D正确;故选:D.3.(3分)发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,25.其中能作为直角三角形的三边长的有()A.1组 B.2组 C.3组 D.4组【解答】解:①∵82+152=172,∴能组成直角三角形;②∵52+122=132,∴能组成直角三角形;③122+152≠202,∴不能组成直角三角形;④72+242=252,∴能组成直角三角形.故选C.4.(3分)如图,花园住宅小区有一块长方形绿化带,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”.他们仅仅少走了()步路(假设2步为1米),却踩伤了花草.A.6步 B.5步 C.4步 D.2步【解答】解:在直角△ABC中,AB2=AC2+BC2AB===5m.则少走的距离是AC+BC﹣AB=3+4﹣5=2m=4步.故选C.5.(3分)如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BC B.OA=OC,OB=OD C.AD=BC,AB∥CD D.AB=CD,AD=BC【解答】解:A、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、根据对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.6.(3分)平行四边形的一边长为10cm,那么这个平行四边形的两条对角线长可以是()A.4cm和6cm B.6cm和8cm C.20cm和30cm D.8cm和12cm【解答】解:A、∵2+3<10,不能够成三角形,故此选项错误;B、4+3<10,不能够成三角形,故此选项错误;C、10+10>15,能构成三角形,故此选项正确;D、4+6=10,不能够成三角形,故此选项错误;故选:C.7.(3分)如图将四个全等的矩形分别等分成四个全等的小矩形,其中阴影部分面积相等的是()A.只有①和②相等 B.只有③和④相等C.只有①和④相等 D.①和②,③和④分别相等【解答】解:小矩形的长为a,宽为b,则①中的阴影部分为两个底边长为a,高为b的三角形,∴S=×a•b×2=ab;②中的阴影部分为一个底边长为a,高为2b的三角形,∴S=×a•2b=ab;③中的阴影部分为一个底边长为a,高为b的三角形,∴S=×a•b=ab;④中的阴影部分为一个底边长为a,高为b的三角形,∴S=×a•b=ab.∴①和②,③和④分别相等.故选D.8.(3分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°【解答】解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.9.(3分)如图,正方形ABCD的对角线交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等.无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的()A.B.C.D.【解答】解:(1)当正方形绕点OA1B1C1O绕点O转动到其边OA1,OC1分别于正方形ABCD的两条对角线重合这一特殊位置时,S正方形ABCD,显然S两个正方形重叠部分=(2)当正方形绕点OA1B1C1O绕点O转动到如图位置时.∵四边形ABCD为正方形,∴∠OAB=∠OBF=45°,OA=OBBO⊥AC,即∠AOE+∠EOB=90°,又∵四边形A′B′C′O为正方形,∴∠A′OC′=90°,即∠BOF+∠EOB=90°,∴∠AOE=∠BOF,在△AOE和△BOF中,∴△AOE≌△BOF(ASA),∵S 两个正方形重叠部分=S △BOE +S △BOF ,又S △AOE =S △BOF ,∴S 两个正方形重叠部分=S △ABO =S 正方形ABCD .综上所知,无论正方形A 1B 1C 1O 绕点O 怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的.故选C .10.(3分)矩形ABCD 中,E ,F ,M 为AB ,BC ,CD 边上的点,且AB=6,BC=7,AE=3,DM=2,EF ⊥FM ,则EM 的长为( )A .5B .C .6D .【解答】解:过E 作EG ⊥CD 于G ,∵四边形ABCD 是矩形,∴∠A=∠D=90°,又∵EG ⊥CD ,∴∠EGD=90°,∴四边形AEGD 是矩形,∴AE=DG ,EG=AD ,∴EG=AD=BC=7,MG=DG ﹣DM=3﹣2=1,∵EF ⊥FM ,∴△EFM 为直角三角形,∴在Rt △EGM 中,EM====5.故选B .二、填空题(共6个小题,每小题3分,共18分)11.(3分)若最简二次根式与﹣2能合并为一个二次根式,则x= 1 .【解答】解:由最简二次根式与﹣2能合并为一个二次根式,得x+1=2x.解得x=1,故答案为:1.12.(3分)如图所示,菱形ABCD中,对角线AC,BD相交于点O,H为AD边中点,菱形ABCD 的周长为24,则OH的长等于3.【解答】解:∵菱形ABCD的周长等于24,∴AD==6,在Rt△AOD中,OH为斜边上的中线,∴OH=AD=3.故答案为:3.13.(3分)如图所示,在高为3m,斜坡长为5m的楼梯表面铺地毯,至少需要地毯7米.【解答】解:由勾股定理得:楼梯的水平宽度==4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(m).故答案为:7.14.(3分)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是﹣.【解答】解:∵OB==,∴OA=OB=,∵点A在数轴上原点的左边,∴点A表示的数是﹣,故答案为:﹣.15.(3分)平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为14cm或16cm.【解答】解:如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当AB=BE=2cm,CE=3cm时,则周长为14cm;②当AB=BE=3cm时,CE=2cm,则周长为16cm.故答案为:14cm或16cm.16.(3分)在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=4.【解答】解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.三、解答题(共8个小题,共72分)17.(10分)计算:(1)()﹣(﹣)(2)(2﹣3)÷.【解答】解:(1)原式=4﹣﹣+=;(2)原式=(8﹣9)÷=﹣÷=.18.(8分)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【解答】解:(1)周长=++==,(2)当x=20时,周长=,(或当x=时,周长=等)19.(8分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图 中画一条线段MN,使MN=;(2)在图 中画一个三边长均为无理数,且各边都不相等的直角△DEF.【解答】解:如图所示:20.(8分)已知a,b,c满足|a﹣2|++(c﹣)2=0,求:(1)a,b,c的值.(2)试问以a,b,c为边能否构成直角三角形?【解答】解:(1))∵|a﹣2|++(c﹣)2=0,∴a﹣2=0,b﹣3=0,c﹣=0,∴a=2,b=3,c=;(2)∵32+()2=(2)2,即b2+c2=a2,∴以a,b,c为边能构成直角三角形.21.(8分)如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=6,求AE的长.【解答】解:∵△BDC′是由△BDC折叠得到,∴∠DBC=∠DBE,∵AD∥BC,∴∠DBC=∠BDE,∴∠DBE=∠BDE,∴BE=DE设AE=x,则DE=AD﹣AE=8﹣x,BE=8﹣x,在Rt△ABE中,∵AE2+AB2=BE2,∴x2+62=(8﹣x)2,解得x=,即AE的长为.22.(8分)如图,在平行四边形ABCD中,AC,BD相交于点O,点E,F在AC上,且OE=OF.(1)求证:BE=D F;(2)线段OE满足什么条件时,四边形BEDF为矩形(不必证明).【解答】(1)证明:连接BE、DF,∵四边形ABCD是平行四边形,∴DO=BO,∵OE=OF,∴四边形DEBF是平行四边形,∴DF=BE;(2)解:当OE=DO时,四边形BEDF为矩形.23.(8分)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON 方向以72千米/时的速度行驶时,A处受噪音影响的时间为多少?【解答】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.答:A处受噪音影响的时间为16秒.24.(14分)在平行四边形ABCD中,∠BAD的平分线交直线BC于E,交直线DC于F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),讨论线段DG与BD的数量关系.【解答】(1)证明:如图1,∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠F,∴∠CEF=∠F.∴CE=CF.(2)解:如图2,连接GC、BG,∵四边形ABCD为平行四边形,∠ABC=90°,∴四边形ABCD为矩形,∵AF平分∠BAD,∴∠DAF=∠BAF=45°,∵∠DCB=90°,DF∥AB,∴∠DFA=45°,∠ECF=90°∴△ECF为等腰直角三角形,∵G为EF中点,∴EG=CG=FG,CG⊥EF,∵△ABE为等腰直角三角形,AB=DC,∴BE=DC,∵∠CEF=∠GCF=45°,∴∠BEG=∠DCG=135°在△BEG与△DCG中,,∴△BEG≌△DCG(SAS),∴BG=DG,∵CG⊥EF,∴∠DGC+∠DGA=90°,又∵∠DGC=∠BGA,∴∠BGE+∠DGE=90°,∴△DGB为等腰直角三角形,∴BD=DG.北师大版八年级下学期期中考试试卷数 学一、填空题(每小题3分,共36分)1.“x 的2倍与3的差不小于0”,用不等式表示为______________2.当x_____________时,分式21+-x x 有意义。

北师大版数学八年级下册期中考试试题及答案

北师大版数学八年级下册期中考试试题及答案

北师大版数学八年级下册期中考试试卷A 卷一、选择题(每小题3分,共30分)1.已知,<b a 下列不等式中不正确的是A.22b a < B.11--b a < C.b a --< D.33++b a <2.下列图形中,既是轴对称图形又是中心对称图形的是3.下列各式由左边到右边的变形中,是因式分解的是A.()y x xy xy y x +=+22B.()44442+-=+-x x x x C.⎪⎪⎭⎫ ⎝⎛+=+y y y 111 D.()()23212+-=--x x x x 4.如图,一次函数m x y +-=21与62+=ax y 的图象相交于点P(-2,3),则关于x 的不等式62+-ax x m <的解集为A.2->x B.2-<x C.3<x D.3>x 5.在△ABC 中,已知AB=AC ,且一内角为100°,则这个等腰三角形底角的度数为A.100°B.50°C.40°D.30°6.如图所示,线段AC 的垂直平分线交线段AB 于点D ,∠A=50°,则∠BDC=A.50°B.100°C.120°D.130°7.下列整式中能直接运用完全平方公式分解因式的为A.12-xB.122++x xC.232++x xD.22y x +8.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是A.55°B.60°C.65°D.70°9.在平面直角坐标系中,点P(-3,-5)关于原点对称的点的坐标是A.(3,-5)B.(-3,-5)C.(3,5)D.(-3,5)10.已知不等式组⎩⎨⎧-3<<x m x 的解集是,<3-x 则m 的取值范围是A.3->m B.3-≥m C.3-<m D.3-≤m 二、填空题(每小题4分,共16分)11.不等式213-+-<x 的解集为____________.12.分解因式:=++222ay axy ax ______________.13.如图,点A 、B 的坐标分别为(1,2)、(4,0),将△AOB 沿x 轴向右平移,得到△CDE ,已知DB=1,则点C 的坐标为___________.14.如图,等边△ABC 中,AD=BD ,过点D 作DF ⊥AC 于点F ,过点F 作FE ⊥BC 于点E ,若AF=6,则线段BE 的长为_______.三、解答题(15题每小题6分,16题6分,17、18题每题8分,19、20题每题10分,共54分)15.(1)分解因式:()()y x n y x m 22422+-+(2)解不等式组:(),>⎪⎩⎪⎨⎧-+≥--1312423x x x x 并把它的解集在数轴上表示出来.16.如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的,△111C B A 并写出点1A 的坐标;(2)画出△ABC 绕原点O 旋转180°后得到的,△222C B A 并写出点2A 的坐标.17.在关y x 、的方程组⎩⎨⎧=+-=+2212y x m y x 中,若未知数y x 、满足0>y x +,求m 的取值范围,并在数轴上表示出来。

北师大版八年级下册数学期中考试试题及答案

北师大版八年级下册数学期中考试试题及答案

北师大版八年级下册数学期中考试试题及答案北师大版八年级下册数学期中考试试卷一、单选题1.等腰三角形一个角为50°,则它的底角的度数为()A。

50°B。

50°或80°C。

50°或65°D。

65°2.下列命题的逆命题是真命题的是()A。

如果a>b,则a+b>cB。

直角都相等C。

两直线平行,同位角相等D。

若a=b,则|a|=|b|3.某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是()A。

x>9B。

x≥9C。

x<9D。

x≤94.下列图形中,既是轴对称图形又是中心对称图形的是()A。

B。

C。

D。

5.如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是()A。

把△ABC绕点C逆时针方向旋转90°,再向下平移2格B。

把△ABC绕点C顺时针方向旋转90°,再向下平移5格C。

把△ABC向下平移4格,再绕点C逆时针方向旋转180°D。

把△ABC向下平移5格,再绕点C顺时针方向旋转180°6.如图,数轴上表示的是两个不等式的解集,由它们组成的不等式组的解集为()A。

-1<x≤1B。

-1<x<1C。

x>-1D。

x≤17.不等式-2x+6>的正整数解有()A。

无数个B。

0个C。

1个D。

2个8.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排()A。

4辆B。

5辆C。

6辆D。

7辆9.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,AB的垂直平分线交BC于点D,连接AD,则△ACD的周长是()A。

7B。

8C。

9D。

1010.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A。

北师大版八年级第二学期期中数学试卷及答案

北师大版八年级第二学期期中数学试卷及答案

北师大版八年级第二学期期中数学试卷及答案一、选择题1.(3分)下列各式中是二次根式的是()A.B.C.D.(x<0)2.(3分)已知一个平行四边形两邻边的长分别为4和7,那么它的周长为()A.11B.18C.22D.283.(3分)下列各组数中,不能构成直角三角形的是()A.3,4,5B.6,8,10C.5,12,13D.7,5,104.(3分)若二次根式在实数范围内有意义,则a的取值范围是()A.a>1B.a≥1C.a=1D.a≤15.(3分)下列计算中正确的是()A.+=B.﹣=C.2+=2D.+=46.(3分)如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8B.9C.D.107.(3分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.(3分)如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG 是正方形.若DE=2cm,则AC的长为()A.cm B.4cm C.cm D.cm9.(3分)如图所示,▱OMNP的顶点P坐标是(2,3),顶点M坐标的是(4,0),则顶点N坐标是()A.(7,4)B.(6,4)C.(7,3)D.(6,3)10.(3分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)化简:=.12.(4分)命题“两直线平行,同位角相等.”的逆命题是.13.(4分)已知菱形ABCD的两条对角线AC=6cm,BD=8cm,则菱形的面积为cm2.14.(4分)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为.(结果保留根号)15.(4分)计算(2﹣2)2的结果是.16.(4分)如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为.17.(4分)如图,正方形ABCD的边长为5,E是AB上一点,且BE:AE=1:4,若P是对角线AC上一动点,则PB+PE的最小值是.(结果保留根号)三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:﹣+﹣.19.(6分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.20.(6分)如图所示,△ABC中,∠B=45°,∠C=30°,AB=求:AC的长.四、解答题(二)(本大题3小题,每小题8分,共24分).21.(8分)化简求值:÷•,其中a=﹣2.22.(8分)如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:(1)四边形OCED是菱形.(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.23.(8分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了500m到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?25.(10分)如图,Rt△ABC中,∠B=90°,AC=30cm,∠C=30°,点D从点C出发沿CA方向以2cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以1cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,把正确答案填写在下列表格内.1.(3分)下列各式中是二次根式的是()A.B.C.D.(x<0)解:A、的根指数为3,不是二次根式;B、的被开方数﹣1<0,无意义;C、的根指数为2,且被开方数2>0,是二次根式;D、的被开方数x<0,无意义;故选:C.2.(3分)已知一个平行四边形两邻边的长分别为4和7,那么它的周长为()A.11B.18C.22D.28解:∵平行四边形的对边相等,∴平行四边形的周长=2(4+7)=22.故选:C.3.(3分)下列各组数中,不能构成直角三角形的是()A.3,4,5B.6,8,10C.5,12,13D.7,5,10解:A、32+42=52,故是直角三角形,故此选项不符合题意;B、62+82=102,故是直角三角形,故此选项不符合题意;C、52+122=132,故是直角三角形,故此选项不符合题意;D、72+52≠102,故不是直角三角形,故此选项符合题意;故选:D.4.(3分)若二次根式在实数范围内有意义,则a的取值范围是()A.a>1B.a≥1C.a=1D.a≤1解:由题意得:a﹣1≥0,解得:a≥1,故选:B.5.(3分)下列计算中正确的是()A.+=B.﹣=C.2+=2D.+=4解:A、和不是同类二次根式,不能合并,故本选项错误;B、和不是同类二次根式,不能合并,故本选项错误;C、2和不是同类二次根式,不能合并,故本选项错误;D、+=2+2=4,计算正确,故本选项正确.故选:D.6.(3分)如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8B.9C.D.10解:∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,则由面积公式知,S△ABC=AB•AC=BC•AD,∴AD=.故选:C.7.(3分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.8.(3分)如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为()A.cm B.4cm C.cm D.cm解:∵点D、E分别是边AB、AC的中点,∴DE=BC,∵DE=2cm,∴BC=4cm,∵AB=AC,四边形DEFG是正方形.∴△BDG≌△CEF,∴BG=CF=1,∴EC=,∴AC=2cm.故选:D.9.(3分)如图所示,▱OMNP的顶点P坐标是(2,3),顶点M坐标的是(4,0),则顶点N坐标是()A.(7,4)B.(6,4)C.(7,3)D.(6,3)解:过P作PE⊥OM,过点N作NF⊥OM,∵顶点P的坐标是(2,3),∴OE=2,PE=3,∵四边形ABCD是平行四边形,∴OE=MF=2,∵4+2=6,∴点N的坐标为(6,3).故选:D.10.(3分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选:B.二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)化简:=.解:==,故填.12.(4分)命题“两直线平行,同位角相等.”的逆命题是同位角相等,两直线平行.解:∵原命题的条件为:两直线平行,结论为:同位角相等.∴其逆命题为:同位角相等,两直线平行.故答案为:同位角相等,两直线平行.13.(4分)已知菱形ABCD的两条对角线AC=6cm,BD=8cm,则菱形的面积为24cm2.解:∵菱形ABCD的两条对角线AC=6cm,BD=8cm,∴菱形的面积为:AC•BD=6×8=24(cm2).故答案为:24.14.(4分)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为.(结果保留根号)解:∵+|b﹣6|=0,∴a﹣7=0,b﹣6=0,解得a=7,b=6,∴该直角三角形的斜边长为=.故答案为:.15.(4分)计算(2﹣2)2的结果是24﹣8.解:(2﹣2)2=20﹣8+4=24﹣8,故答案为:24﹣8.16.(4分)如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为7.解:∵ABCD是正方形∴AB=AD,∠ABC=∠BAD=90°∵∠ABC+∠ABF=∠BAD+∠DAE∴∠ABF=∠DAE在△AFB和△AED中∠ABF=∠DAE,∠AFB=∠AED,AB=AD∴△AFB≌△AED∴AF=DE=4,BF=AE=3∴EF=AF+AE=4+3=7.故答案为:7.17.(4分)如图,正方形ABCD的边长为5,E是AB上一点,且BE:AE=1:4,若P是对角线AC上一动点,则PB+PE的最小值是.(结果保留根号)解:连接BD,则点D即为点B关于AC的对称点,连接DE交AC于点P,由对称的性质可得,PB=PD,故PE+PB=DE,由两点之间线段最短可知,DE即为PE+PB的最小值,∵AB=AD=5,BE:AE=1:4∴BE=1,AE=4,在Rt△ADE中,DE===.故答案为:.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:﹣+﹣.解:原式===.19.(6分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【解答】证明:连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.20.(6分)如图所示,△ABC中,∠B=45°,∠C=30°,AB=求:AC的长.解:过A点作AD⊥BC于D点;在直角三角形ABD中,∠B=45°,AB=,∴AD=AB•sin∠B=1,在直角三角形ADC中,∠C=30°,∴AC=2AD=2.四、解答题(二)(本大题3小题,每小题8分,共24分).21.(8分)化简求值:÷•,其中a=﹣2.解:原式=••=,当a=﹣2时,原式==.22.(8分)如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:(1)四边形OCED是菱形.(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.解:(1)证明:∵DE∥OC,CE∥OD,∵四边形OCED是平行四边形.∴OC=DE,OD=CE∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴CE=OC=BO=DE.∴四边形OCED是菱形;(2)如图,连接OE.在Rt△ADC中,AD=4,CD=3由勾股定理得,AC=5∴OC=2.5∴C菱形OCED=4OC=4×2.5=10,在菱形OCED中,OE⊥CD,又∵OE⊥CD,∴OE∥AD.∵DE∥AC,OE∥AD,∴四边形AOED是平行四边形,∴OE=AD=4.∴S菱形OCED=.23.(8分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了500m到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?解:(1)过B点作BE∥AD,如图,∴∠DAB=∠ABE=60°.∵30°+∠CBA+∠ABE=180°,∴∠CBA=90°.即△ABC为直角三角形.由已知可得:BC=500 m,AB=500m,由勾股定理可得:AC2=BC2+AB2,所以AC==1 000(m);(2)在Rt△ABC中,∵BC=500 m,AC=1 000 m,∴∠CAB=30°,∵∠DAB=60°,∴∠DAC=30°.即点C在点A的北偏东30°的方向.25.(10分)如图,Rt△ABC中,∠B=90°,AC=30cm,∠C=30°,点D从点C出发沿CA方向以2cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以1cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【解答】(1)证明:∵Rt△ABC中,∠C=30°.∵CD=2t,AE=t,又∵在Rt△CDF中,∠C=30°,∴DF=CD=t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即30﹣2t=t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时,△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=2t,∴DF=t=AE,∴AD=2t,∴2t+2t=30,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=90°﹣30°=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=30﹣2t,AE=DF=CD=t,∴30﹣2t=t,解得t=12.当∠DFE=90°时,点E和点F都和点B重合,不能构成三角形,所以,此种情况不存在;综上所述,当t=时,△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF =90°).。

北师大版八年级下册数学期中考试试题带答案

北师大版八年级下册数学期中考试试题带答案

北师大版八年级下册数学期中考试试卷一、单选题1.观察下列4个平面图案,其中是中心对称图形的有()A .1个B .2个C .3个D .4个2.下列各式由左边到右边的变形中,是因式分解的为()A .()()2236a a a a +-=--B .()2a ab a ab -=-C .()22121x x x x --=--D .()2222a ab b a b -+=-3.不等式2x ﹣6>0的解集在数轴上表示正确的是()A .B .C .D .4.等腰三角形的一边长为3cm ,周长为19cm ,则该三角形的腰长为()A .3cmB .8cmC .3cm 或8cmD .以上答案均不对5.已知0a b -<,则下列不等式一定成立的是()A .11a b -<-B .a b-<-C .a b >D .330a b ->6.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A 'OB ',若∠AOB=15°,则∠AOB '的度数是()A .25°B .30°C .35°D .40°7.如图,在Rt ABC △中,90B ∠=︒,AC 的垂直平分线MN 与AB 交于D 点,10BCD ∠=︒,则A ∠的度数是()A .25︒B .30°C .35︒D .40︒8.已知:2x y +=,则2211122x xy y ++-的值是()A .3B .2C .1D .1-9.ABC 中,90C ∠=︒,8AB =,30B ∠=︒,点P 是BC 边上的动点,则AP 长不可能是()A .3B .4C .5D .610.一次函数y kx b =+的图象如图所示,当3y <时,x 的取值范围是()A .2x >B .0x <C .0x >D .2x <二、填空题11.因式分解226x x -=________.12.若三角形三边长之比为32,则这个三角形中的最大角的度数是________.13.如图,将ABC 沿直线BC 方向平移3个单位得到DEF ,若5BC =,则BF =____.14.如图,ABC 中,4AB AC ==,15B ∠=︒,则三角形ABC 的面积为________.15.在Rt ABC △中,90A ∠=︒,3AB =,4AC =,ABC ∠,ACB ∠的平分线交于P 点,PE BC ⊥于E 点,则PE 的长是________.16.如图,在平面直角坐标系中,点A ,B 的坐标分别是()20-,,()6,0,现在同时将点A ,B 分别向上平移2个单位长度,再向右平移2个单位长度,得到A ,B 的对应点C ,D .连接AC ,BD ,CD .在x 轴上有一点E ,满足DEC 的面积是DEB 面积的2倍,则点E 的坐标是________.三、解答题17.解不等式:153x x -≤-.18.解不等式组:()21511,325131.x x x x -+⎧-≤⎪⎨⎪-<+⎩再将解集在数轴上表示出来.19.ABC 在平面直角坐标系xoy 中的位置如图所示.(1)作ABC 关于点O 成中心对称的111A B C △;(2)将111A B C △向右平移5个单位,作出平移后的222A B C △;(3)直接写出222A B C △各顶点坐标.20.如图,在△ABC 中,∠C=90°,∠B=30°,AD 平分∠BAC ,交BC 于点D .求AD 的长.21.已知关于x ,y 的方程组23,22.x y m x y m +=-⎧⎨+=⎩的解满足0x y -<,求m 的取值范围.22.如图,在ABE △中,105A ∠=︒,AE 的垂直平分线MN 交BE 于点C ,且AB BC BE +=.求:B Ð的度数.23.某车工计划在15天内加工438个零件,前3天每天加工24个,此后,该车工平均每天至少加工多少个零件,才能在规定时间内完成任务?24.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元.(1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.25.在等腰直角三角形ABC 中,90ACB ∠=︒,AC BC =,直线l 过点C 且与AB 平行.点D 在直线l 上(不与点C 重合),作射线DA .将射线DA 绕点D 顺时针旋转90︒,与直线BC 交于点E .(1)如图1,若点E 在BC 的延长线上,请直接写出线段AD ,DE 之间的数量关系;(2)依题意补全图2,并证明此时(1)中的结论仍然成立;(3)若3AC =,CD =CE 的长.参考答案1.B【分析】根据中心对称图形的概念,即绕着对称中心旋转180度后与原图重合逐一判定即可.【详解】解:第一个绕着一点旋转180度后不与原图重合,故第一个不是中心对称图形,不符合题意;第二个绕着一点旋转180度后与原图重合,故第二个是中心对称图形,符合题意;第三个绕着一点旋转180度后与原图重合,故第三个是中心对称图形,符合题意;第四个绕着一点旋转180度后不与原图重合,故第四个不是中心对称图形,不符合题意;所以中心对称图形的有2个.故选:B .2.D【分析】根据因式分解的定义:把一个多项式分解为两个或多个整式积的形式,进行判断即可得到答案.【详解】解:A 、()()2236a a a a +-=--这是因式分解的逆过程,故此选项错误;B 、()2a a b a ab -=-这是因式分解的逆过程,故此选项错误;C 、()22121x x x x --=--这不是因式分解,故此选项错误;D 、()2222a ab b a b -+=-这是因式分解,故此选项正确.故选:D3.A【详解】2x-6>0,移项得:2x >6,把x 的系数化为1:x >3,故选A .4.B【解析】①当3cm 是底时,则腰长是(19-3)÷2=8(cm ),此时能够组成三角形;②当3cm 是腰时,则底是19-3×2=13(cm ),此时3+3<13,不能组成三角形,这种情况不存在.故选:B .5.A【解析】【分析】根据不等式的性质进行逐一判断即可得到答案.【详解】解:A 、0a b -<,则a b <即可得到11a b -<-,故此选项符合题意;B 、0a b -<,a b ->-,故此选项不符合题意;C 、0a b -<,则a b <,故此选项不符合题意;D 、0a b -<,则a b <,33a b <,故此选项不符合题意;故选A.【点睛】本题主要考查了不等式的性质,解题的关键在于能够熟练掌握不等式的性质.6.B【解析】【详解】解:∵将△AOB 绕点O 按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA-∠A′OB′=45°-15°=30°,故选B .7.D【解析】【分析】根据垂直平分线的性质结合直角三角形两锐角互余解题即可.【详解】解:∵AC 的垂直平分线MN 与AB 交于D 点,∴∠A=∠ACD ,∵∠BCD=10°,∠B=90°,∴∠A+∠ACD+∠BCD=90°,∴∠A=40°,故选:D .【点睛】此题考查垂直平分线的性质和直角三角形两个锐角的关系,理解题意解题即可.8.C【解析】【分析】利用完全平方公式化简,然后将2x y +=代入计算即可得出结果.【详解】解:2212x y 1xy+2+-1()2212x xy y =+2+-1()212x y =+-1当2x y +=时,原式212112=⨯-=故选:C【点睛】本题主要考查了完全平方公式的应用和化简求值,解题的关键是能熟练运用完全平方公式.9.A【解析】【分析】利用垂线段最短分析AP 最小不能小于AC ;利用直角三角形的性质得AP 最大不能大于AB .【详解】解:∵△ABC 中,∠C=90°,AB=8,∠B=30°,∴AC=12AB =4,∴AP 的长不能大于8,根据垂线段最短,可知AP 的长不可能小于4;故选A .【点睛】本题主要考查了垂线段最短和的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AC=4.10.C【解析】【分析】观察函数图象得到函数值小于3所对应的自变量的范围为0x >.【详解】观察函数图象,0x >时,函数值小于3,当0x >时,3y <.故选C .【点睛】本题考查了一次函数的图象,能利用数形结合求出x 的取值范围是解答此题的关键.11.()23x x -【解析】【分析】首先找出公因式2x ,进而分解因式得出即可.【详解】解:2262(3)x x x x -=-.故答案为:()23x x -.【点睛】本题主要考查了提取公因式法分解因式,解题的关键是正确提取公因式.12.90︒##90度【解析】【分析】直接利用勾股定理的逆定理得出三角形的形状进而得出答案.【详解】解:∵三角形三边长之比为2,,2x可设三边长分别为x∵x2∴此三角形是直角三角形,∴这个三角形中最大角的度数是90°.故答案为:90°.【点睛】此题主要考查了勾股定理的逆定理,正确把握直角三角的判定方法是解题关键.13.8【解析】【分析】根据△ABC沿直线BC方向平移3个单位得到△DEF,即可得到BD=3,BC=DF=5,从而即可求得BF的长.【详解】解:∵△ABC沿直线BC方向平移3个单位得到△DEF∴BD=3,BC=DF=5∴BF=BD+DF=8故答案为:8.【点睛】本题主要考查了平移的性质,解题的关键在于能够熟练掌握平移的性质.14.4【解析】【分析】过C作CD⊥AB交BA的延长线于D,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CAD的度数,然后根据30°角所对的直角边等于斜边的一半求解即可.【详解】解:过C作CD⊥AB交BA的延长线于D,∵AB=AC=4,∠B=15°,∴∠B=∠ACB=15°,∴∠CAD=∠B+∠ACB=15°+15°=30°,又∵AC=4,CD⊥AB,∴CD=12AC=12×4=2,∴S△ABC =12AB·CD=12×4×2=4,故答案为:4.【点睛】本题考查了等腰三角形的性质,30°角所对的直角边等于斜边的一半的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握性质是解题的关键.15.1【解析】【分析】连接AP,作PF⊥AB于F,PG⊥AC于G,根据角平分线的性质得到PE=PF=PG,根据三角形的面积公式计算即可.【详解】解:连接AP,作PF⊥AB于F,PG⊥AC于G,∵∠A=90°,AB=3,AC=4,∴BC=5,∵BP 、CP 是∠ABC 和∠ACB 的平分线,∴PE =PF =PG ,∴12×BC×PE +12×AB×PF +12×AC×PG =12×AB×AC ,解得,PE =1.故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16.()2,0或()10,0##()10,0或()2,0【解析】【分析】设点E 的坐标为(x ,0),根据△DEC 的面积是△DEB 面积的2倍和三角形面积公式得到118226222x ⨯⨯=⨯⨯-⨯,解得x=2或x=10,然后写出点E 的坐标.【详解】解:设点E 的坐标为(x ,0),∵△DEC 的面积是△DEB 面积的2倍,∴118226222x ⨯⨯=⨯⨯-⨯,解得x=2或x=10,∴点E 的坐标为(2,0)和(10,0).【点睛】本题考查了坐标与图形性质:利用点的坐标得到线段的长和线段与坐标轴的关系.也考查了平行线的性质和分类讨论的思想.17.4x ≤【解析】【分析】根据不等式的性质即可进行求解.【详解】解:去分母,得()135x x -≤-,去括号,得1153x x -≤-,移项,合并同类项,416x ≤,系数化为1,得4x ≤.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.18.12x -≤<,画图见解析【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:()21511,325131.x x x x -+⎧-≤⎪⎨⎪-<+⎩①②解不等式①,得1x ≥-.解不等式②,得2x <.所以不等式组的解集是12x -≤<.在数轴上可表示为:【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(1)见解析;(2)见解析;(3)()27,3A -,()26,1B -,()25,2C -【解析】【分析】(1)根据旋转的性质即可作出△ABC 关于点O 成中心对称的图形△A 1B 1C 1;(2)根据平移的性质即可将△A 1B 1C 1向右平移5个单位,可得平移后的△A 2B 2C 2;(3)根据所作图形即可写出各顶点的坐标.【详解】解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)由图可知,222A B C △各顶点坐标分别为()27,3A -,()26,1B -,()25,2C -.【点睛】本题考查了作图﹣旋转变换,平移变换,解决本题的关键是掌握旋转和平移的性质.20.AD 的长为4.【解析】【分析】根据含30°的直角三角形三边的关系求得AC 的长,因为AD 平分∠BAC 得到∠DAC=30°,再根据含30°的直角三角形三边的关系以及勾股定理即可求解.【详解】解:在Rt △ABC 中,∠B=30°,3∴AC=123BAC=60°,又∵AD 平分∠BAC ,∴∠DAC=12∠BAC=30°,在Rt △ACD 中,∠DAC=30°,3DC=12AD ,∵222CD AC AD +=,即(2221232AD AD ⎛⎫+= ⎪⎝⎭,解得:AD=4(负值舍去).答:AD 的长为4.【点睛】本题考查了角平分线性质,勾股定理,含30度角的直角三角形性质等知识点,正确的识别图形是解题的关键.21.3m >-【解析】【分析】根据题目中的方程组可以求得x-y 的值,从而可以求得m 的取值范围.【详解】解:2322x y m x y m +=-⎧⎨+=⎩①②①-②得:3x y m -=--0x y -< 30m ∴--<解得:3m >-【点睛】本题考查解一元一次不等式、解二元一次方程组,解答本题的关键是明确题意,求出m 的取值范围.22.50︒【解析】【分析】首先连接AC ,由AE 的垂直平分线MN 交BE 于点C ,可得AC =EC ,又由AB +BC =BE ,易证得AB =AC ,然后由等腰三角形的性质与三角形内角和定理,求得∠BAE =∠BAC +∠CAE =180°-4∠E +∠E =105°,继而求得答案.【详解】解:连接AC ,MN 是AE 的垂直平分线,AC EC ∴=,CAE E ∴∠=∠,AB BC BE += ,BC EC BE +=,AB EC AC ∴==,B ACB ∴∠=∠,2ACB CAE E E ∠=∠+∠=∠ ,2B E ∴∠=∠,1801804BAC B ACB E ∴∠=︒-∠-∠=︒-∠,BAE BAC CAE∠=∠+∠ 1804105E E ∴︒-∠+∠=︒,解得:25E ∠=︒,250B E ∴∠=∠=︒.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,解题关键是注意掌握辅助线的作法和数形结合思想的应用.23.31个【解析】【分析】根据题意列不等式求解即可.【详解】解:设平均每天加工x 个零件,才能在规定的时间内完成任务,依题意得32412438x ⨯+≥解之得,30.5x ≥因x 为正整数,所以31x =答:平均每天至少加工31个零件,才能在规定的时间内完成任务.【点睛】此题考查不等式的实际应用,理解题意找准等量关系列式即可,难度一般.24.(1)1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)见解析【解析】【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到费用与购买A 型号节能灯的关系式,然后根据一次函数的性质即可解答本题.【详解】解:(1)设1只A 型节能灯的售价是x 元,1只B 型节能灯的售价是y 元,35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩,答:1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)设购买A 型号的节能灯a 只,则购买B 型号的节能灯200a -()只,费用为w 元,5720021400w a a a +--+=()=,3200a a ≤- (),150a ∴≤,∴当150a =时,w 取得最小值,此时110020050w a =,﹣=,答:当购买A 型号节能灯150只,B 型号节能灯50只时最省钱.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.25.(1)DA DE =;(2)见解析;(3)1或7【解析】【分析】(1)过点D 作DM ⊥直线l 交CA 的延长线于点M ,根据平行线的性质结合等腰直角三角形的性质可得出∠AMD =45°=∠ECD ,CD =MD .再通过角的计算得出∠EDC =∠ADM ,由此即可证出△ADM ≌△EDC ,从而得出DA =DE ;(2)过点D 直线l 的垂线,交AC 于点F ,通过角的计算以及等腰直角三角形的性质即可证得△CDE ≌△FDA ,由此即可得出结论DA =DE ;(3)分两种情况考虑:①点D 在点C 的右侧时,如同(1)过点A 作AN ⊥DM 于点N ,通过解直角三角形即可求出AM 的长度,根据全等三角形的性质即可得出结论;②当点D 在C 点的右侧时,过点A 作AN ⊥DM 于点N ,结合(1)(2)的结论以及等腰直角三角形的性质即可求出线段CN 和NE 的长度,二者相加即可得出结论.【详解】解:(1)过点D 作DM ⊥直线l 交CA 的延长线于点M ,如图1所示.∵△ABC 为等腰直角三角形,∠ACB =90°,AC =BC∴∠ABC =∠BAC =45°∵直线l //AB∴∠ECD =∠ABC =45°,∠ACD =∠BAC =45°∵DM ⊥直线l∴∠CDM =90°∴∠AMD =45°=∠ECD ,CD =MD∵∠EDC +∠CDA =90°,∠CDA +∠ADM =90°∴∠EDC =∠ADM在△ADM 和△EDC 中,有EDC ADMCD MD ECD AMD∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADM ≌△EDC (ASA )∴DA =DE .(2)证明:过点D 作直线l 的垂线,交AC 于点F ,如图2所示.ABC 中,90BCA ∠=︒,AC BC =45CAB B ∴∠=∠=︒直线//l AB45DCF CAB ∴∠=∠=︒FD ⊥ 直线l45DCF DFC ∴∠=∠=︒CD FD∴=180135DFA DFC ∠=︒-∠=︒ ,135DCE DCA BCA ∠=∠+∠=︒DCE DFA∴∠=∠90CDE EDF ∠+∠=︒ ,90EDF FDA ∠+∠=︒CDE FDA∴∠=∠在CDE △和FDA △中,有DCE DFACD FD CDE FDA ∠=∠⎧⎪=⎨⎪∠=∠⎩()CDE FDA ASA ∴≌△△DE DA ∴=.(3)2CD =分两种情况:①当点D 在C 点的右侧时,延长BA 交DM 于,N 则AN ⊥DM ,如图3所示.∵△ADM ≌△EDC∴DM =DC =22CE =AM ∴△CDM 是等腰直角三角形,∠M=45°∵AC =3,过C 点作CH ⊥AB 直线//l AB∴CH ⊥CD∵△ABC 是等腰直角三角形∴∠CAB=45°∴△ACH 是等腰直角三角形∵AN ⊥DM ,CH ⊥AB ,CH ⊥CD ∴四边形CHND 是矩形∴DN =CH=2AC =2∴NM =DM−DN =2∵∠M=45°∴△ANM 是等腰直角三角形∴AM =CE NM =1;②当点D 在C 点的左侧时,过点A 作AA '⊥直线l 于点A ',过点D 作DN ⊥直线l 交CB 的延长线与点N ,过点E 作EM ⊥DM 于点M ,如图4所示.∵90A DA ADM '∠+∠=︒,∠ADM +∠MDE =90°∴A DA MDE'∠=∠在A DA ' 和△MDE 中,有21A D MD A DA MDE AD ED '=⎧⎪∠'=∠⎨⎪=⎩∴()A DA MDE SAS '≅ ∴AA EM'=∵45CAA '∠=︒,AC =3∴△ACA’是等腰直角三角形∴∠DCE=180°-∠BCA-ACA '∠=45°∴AA '=22AC =∵∠DCN =45°,CD =∴CN =4∵∠NEM =45°,EM =AA '∵∠NEM=∠DCE=45°∴△EMN 是等腰直角三角形∴EM =MN∴NE=3∴CE =CN +NE =4+3=7综上可知:CE 的长为1或7.【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定及性质以及解直角三角形,解题的关键是:(1)证出△ADM ≌△EDC ;(2)证出△CDE ≌△FDA ;(3)分点D 在点C 的左、右两侧考虑.本题属于难题,(1)(2)难度不大,解决第三小问时,用到前两问的结论,分点D 在点C 的左、右两侧考虑,在解决该问时,巧妙地利用等腰直角三角形的性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⎩⎨⎧<<-ax x 312北师大版八年级下册数学期中试卷及答案一、选择题(每小题3分,计33分)1.把23x x m +-分解因式得23(1)(2)x x m x x +-=++,则m 的值是( )A .2B .3C .—2D .—3 2.下列因式分解正确的是( )A .()222b a b a -=-B .()22224y x y x +=+C .()()a a a 21212822-+=-D .()()y x y x y x 44422-+=-3.如果分式2||55x x x-+的值为0,那么x 的值是( ) A .0 B .5 C .-5 D .±5 4.若不等式组的解集是x<2,则a 的取值范围是( )A.2<aB.2≤aC.2≥aD.无法确定5.如果把分式yx x25-中的 x,y 都扩大7倍,那么分式的值( )。

A 、扩大7倍B 、扩大14倍C 、扩大21倍D 、不变 6.关x 的分式方程15=-x m,下列说法正确的是( ) A .m <一5时,方程的解为负数 B .方程的解是x=m +5 C .m >一5时,方科的解是正数 D .无法确定 7.把多项式m 2(a-2)+m(2-a)分解因式等于 ( )A .(a-2)(m 2+m)B .(a-2)(m 2-m)C .m(a-2)(m-1)D .m(a-2)(m+1)8.如果不等式组 的解集是x>3,则m 的取值范围是( )A. m≥3B. m≤3C. m=3D. m <39.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤.价格为每斤y 元.后来他以每斤2yx +元的价格卖完后,结果发现自己赔了钱,其原因是( ) A .x <yB .x >yC .x ≤yD .x ≥y841x x x m10.在盒子里放有三张分别写有整式a +1、a +2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ). A .61B .31 C .32 D .43 11.关x 的不等式组()⎪⎩⎪⎨⎧+>++-<a x x x x 4231332有四个整数解,则a 的取值范同是( )A .25411-≤<-a B .25411-<≤-a C .25411-≤≤-a D .25411-<<-a二、填空题(每小题3分,总计21分)12.一项工程,A 单独做m 小时完成。

A ,B 合作20小时完成,则B 单独做需 小时完成。

13.在比例尺为1:2000的地图上测得AB 两地间的图上距离为5cm ,则AB 两地间的实际距离为_____________m 。

14.把多项式2mx 2-4mxy +2my 2分解因式的结果是 . 15.若1612++kx x 是一个完全平方式,则k = 16.若关于x 的分式方程3232-=--x m x x 无解,则m 的值为___________ 17.当a= 时,关于x 的方程23ax a x +-=54的解是x=1. 18.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是 ; 三、解答题19.分解因式和利用分解因式计算. (6分)(1)()22241a a -+ (2)2010200820092⨯-第18题图20.化简和化简求值(20分)(1)⎪⎭⎫ ⎝⎛+-÷⎪⎭⎫ ⎝⎛---21121422m m m m(2)a a a a a a a 133969222++-÷++-(3)先化简,再求值,x x x x x x x x x 416441222222+-÷⎪⎭⎫ ⎝⎛+----+其中22+=x (6分)(4)先化简,再求值:222344322+-++÷+++a a a a a a a ,其中22-=a (6分)21.解分式方程和一次不等式组(10分)(1)013522=--+xx x x (2)解不等式组: ()⎪⎩⎪⎨⎧----<-----≤--235211713x xx x22.为了支援四川人民抗震救灾,某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成.(10分)(1)按此计划,该公司平均每天应生产帐篷__________顶;(2)生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?23.某工厂计划为震区生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3.(10分)(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.24.某机械销售公司在四月份只售出甲、乙、丙三种型号的产品若干台,每种型号的产品不少于8台,这个月支出包括这批产品进货款64万元和其它各项支出(含人员工资和杂项开支)3.8万元。

这三种产品的进价和售价如下表所示,人员工资1y (万元)与总销售量x (台)的函数图像如图所示,杂项支出2y (万元)与总销售量x (台)的关系式为:20.0050.3y x =+,求此机械销售公司四月份销售甲、乙、丙三种产品总利润的最大值?(利润=售价-进价-其它各项开支)。

此时三种产品各销售了多少台?型号甲 乙 丙 进价(万元/台) 0.9 1.2 1.1 售价(万元/台)1.21.61.3参考答案一、选择题二、填空题 12.2020-m m 13.100 14.Q<R<P<S 15.21± 16.3± 17.x<一2 18.x=4三、解答题19.(1)解:原式=( a 2+1—2a )(a 2+1+2a )=(a 一1)2(a+1)2………………4分 (2)解:原式=2009 2一(2009—1)(2009+1) =2009 2一(2009 2—1)=2009 2—20092+1=1 20.(1)解:原式:()()()2122222+-+÷-++-m m m m m m =()()1112222+=++⋅-+-m m m m m m (2)解:原式=()()()()0111333332=+-=+-+⋅+-+-aa a a a a a a a(3)解:原式=()()()()()4442242222+-+÷⎥⎦⎤⎢⎣⎡-----x x x x x x x x x x x =()()()()444242-++⋅--x x x x x x x =()221-x 当22+=x 时原式=()2122212=-+ (4)解:原式=()()2232232+-++⋅++a a a a a a =22222+-=+-+a a a a a 当22-=a 时原式=242222222-=+---=()()2212221222242-=-=⨯⨯- 21.(1)解:方程两边同乘以()()13-+x x x ,得()()0315=+--x x解这个方程,得2=x检验:把x=2代入最简公分母,得2×5×1=10≠0 ∴原方程这个解是x=2(2)解:解不等式①,得x ≥一2; 解不等式②,得x<21-, 在同一条数轴上表示不等式①②的解集如图所以不等式组的解集为一2≤x<21- 22.解:(1)2000(2)设该公司原计划安排x 名工人生产帐篷, 则由题意得:()()()5022102000220000%2512000+--⨯-=+x x ∴()503165+=x x∴解这个方程,得x =750.经检验,x =750是所列方程的根,且符合题意. 答:该公司原计划安排750名工人生产帐篷.23.解:(1)设生产A 型桌椅x 套,则生产B 型桌椅(500一x )套,由题意得()()⎩⎨⎧≥-⨯+≤-⨯+1250500323025007.05.0x x x x 解得240≤x ≤250因为x 是整数,所以有11种生产方案(2)y =(100+2)x +(120+4)×(500一x )=-22x +62000∵-22<0,y 随x 的增大而减少. ∴当x=250时,y 有最小值.∴当生产A 型桌椅250套、B 型桌椅250套时,总费用最少.y=-22×50十62000=56500(元)此时min(3)有剩余木料最多还可以解决8名同学的桌椅问题.。

相关文档
最新文档