高等数学函数的极限与连续习题及答案
高等数学课后习题答案--第一章
《高等数学》习题参考资料第一篇 一元函数微积分第一章 极限与连续§1 函 数习 题1.确定下列初等函数的定义域:(1) 21)(2−−+=x x x x f ;(2)4)(2−=x x f ;(3) 21arcsin )(−=x x f ;(4)2)5lg()(x x x f −=;(5) 4lg )5lg()(2−−=x x x f ;(6)x x x f cos sin )(−=。
1. 【答案】(1) )},2()2,1()1,(|{:+∞∪−∪−−∞∈=x x D (2) )},2[]2,(|{:+∞∪−−∞∈=x x D (3) ]}3,1[|{:;−∈=x x D (4) )}5,0()0,(|{:∪−∞∈=x x D (5) ]}4,1[|{:∈=x x D (6)+ +∈=+∞−∞=U k k k x x D ππ452,412|:.2. 作出下列函数的图象:(1)|sin |sin )(x x x f −=;(2)|1|2)(−−=x x f ;(3)+−−=,1,1,21)(x x x x f .12,21,1||−<<−<<≤x x x 2 【答案】 (1)2(2)2 (3)3.判断下列函数的奇偶性:(1)x x x f ++−=11)(;(2)xxx f x x +−+−=11lg110110)(;(3)x x a a x f x x sin )(++=−;(4))1lg()(2x x x f ++=。
3. 【答案】 (1) 偶函数; (2) 偶函数; (3) 偶函数; (4) 奇函数 .4.证明:两个奇函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数。
4. 【答案】 设)(x f ,)(x h 是奇函数, )(x g 是偶函数,)()()(x h x f x f =,)()()(x g x f x G =, 于是)()()(x h x f x F −−=−))())(((x h x f −−=)()()(x F x h x f ==, 因此)(x F 是偶函数.)()()(x g x f x G −−=−)()(x g x f −=)(x G −=, 因此)(x G 是奇函数.5.设函数f 满足:D (f )关于原点对称,且()xc x bf x af =+1)(,其中a ,b ,c 都是常数,||||b a ≠,试证明f 是奇函数。
专升本高等数学二(函数、极限与连续)模拟试卷1(题后含答案及解析)
专升本高等数学二(函数、极限与连续)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.下列四组函数中f(x)与g(x)表示同一函数的是( )A.f(x)=tanx,g(x)=B.f(x)=lnx3,g(x)=3lnxC.f(x)=,g(x)=D.f(x)=ln(x2一1),g(x)=ln(x一1)+ln(x+1)正确答案:B解析:A、D选项中,两函数的定义域不同,C选项中,当x<0时,f(x)≠g(x),B选项中,f(x)=lnx3=3lnx=g(x),定义域均为x>0,故选B.知识模块:函数、极限与连续2.函数f(x)=是( )A.奇函数B.偶函数C.非奇非偶函数D.不能确定奇偶性正确答案:B解析:由于一1<x<1,从而定义域关于原点对称,又f(一x)==f(x),所以函数f(x)为偶函数.知识模块:函数、极限与连续3.= ( )A.B.1C.D.3正确答案:C解析:.知识模块:函数、极限与连续4.极限等于( )A.0B.1C.2D.+∞正确答案:D解析:因该极限属“”型不定式,用洛必达法则求极限.原式=(ex+e-x)=+∞.知识模块:函数、极限与连续5.当x→0时,无穷小x+sinx是比x ( )A.高阶无穷小B.低阶无穷小C.同阶但非等价无穷小D.等价无穷小正确答案:C解析:=2,故选C.知识模块:函数、极限与连续6.=6,则a的值为( )A.一1B.1C.D.2正确答案:A解析:因为x→0时分母极限为0,只有分子极限也为0,才有可能使分式极限为6,故[(1+x)(1+2x)(1+3x)+a]=1+a=0,解得a=一1,所以=6.知识模块:函数、极限与连续7.下列四种趋向中,函数y=不是无穷小的为( ) A.x→0B.x→1C.x→一1D.x→+∞正确答案:B解析:知识模块:函数、极限与连续8.设f(x)== ( )A.4B.7C.5D.不存在正确答案:A解析:知识模块:函数、极限与连续填空题9.函数y=ln(lnx)的定义域是_________.正确答案:(1,+∞)解析:y=ln(lnx),所以解得x>1,故函数的定义域为(1,+∞).知识模块:函数、极限与连续10.已知f(x)=2x2+1,则f(2x+1)= _________.正确答案:8x2+8x+3解析:用代入法得f(2x+1)=2(2x+1)2+1=8x2+8x+3.知识模块:函数、极限与连续11.=________.正确答案:解析:令.也可直接利用无穷小量代换.知识模块:函数、极限与连续12.=________.正确答案:e2解析:=e2.知识模块:函数、极限与连续13.设函数f(x)=在x=0处连续,则a=________.正确答案:3解析:因为函数f(x)在x=0处连续,则=a=f(0)=3.知识模块:函数、极限与连续14.设f(x)=在x=0处连续,则常数a与b满足的关系是________.正确答案:a=b解析:函数f(x)在x=0处连续,则有=b,即a=b.知识模块:函数、极限与连续解答题15.已知函数f(x)的定义域是[0,1],求函数f(x+4)的定义域.正确答案:因为f(x)的定义域是[0,1],所以在函数f(x+4)中,0≤x+4≤1,即一4≤x≤一3,所以f(x+4)的定义域为[一4,一3].涉及知识点:函数、极限与连续16.计算.正确答案:函数-x复合而成,利用有理化求得.故.涉及知识点:函数、极限与连续17.求.正确答案:0.∞型,先变形为,再求极限.=1.涉及知识点:函数、极限与连续18.求极限.正确答案:=1.涉及知识点:函数、极限与连续19.求极限.正确答案:原式==一15π2.涉及知识点:函数、极限与连续20.求极限.正确答案:所求极限为∞一∞型,不能直接用洛必达法则,通分变成型.涉及知识点:函数、极限与连续21.求.正确答案:涉及知识点:函数、极限与连续22.求极限.正确答案:1一,则有原式=.涉及知识点:函数、极限与连续23.若函数f(x)=在x=0处连续,求a.正确答案:由=一1.又因f(0)=a,所以当a=一1时,f(x)在x=0连续.涉及知识点:函数、极限与连续24.设f(x)=问a为何值时,f(x)在x=0连续;a 为何值时,x=0是f(x)的可去间断点.正确答案:f(0)=6,(1)若f(x)在x=0处连续,应有2a2+4=一6a=6,故a=一1;(2)若x=0是f(x)的可去间断点,则应有≠f(0),即2a2+4=一6a≠6,故a≠一1,所以a=一2时,x=0是可去间断点.涉及知识点:函数、极限与连续25.证明方程x3+x2+3x=一1至少有一个大于一1的负根.正确答案:令f(x)=x3+x2+3x+1,f(一1)=一2<0,f(0)一1>0,f(x)在(一1,0)上连续,由零点定理知,在(一1,0)内至少存在一点ξ,使得f(ξ)=0,所以方程在(一1,0)内至少有一根,即方程至少有一个大于一1的负根.涉及知识点:函数、极限与连续。
高等数学(林伟初)习题详解习题详解-第2章极限与连续
习题2-11. 观察下列数列的变化趋势,写出其极限:(1) 1n nx n =+ ;(2) 2(1)n n x =--;(3) 13(1)n n x n =+-;(4) 211n x n =-. 解:(1) 此数列为12341234,,,,,,23451n n x x x x x n =====+ 所以lim 1n n x →∞=。
(2) 12343,1,3,1,,2(1),n n x x x x x =====-- 所以原数列极限不存在。
(3) 1234111131,3,3,3,,3(1),234n n x x x x x n=-=+=-=+=+- 所以lim 3n n x →∞=。
(4) 12342111111,1,1,1,,1,4916n x x x x x n=-=-=-=-=- 所以lim 1n n x →∞=-2.下列说法是否正确:(1)收敛数列一定有界 ;(2)有界数列一定收敛;(3)无界数列一定发散;(4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。
(2) 错误 例如数列{}(-1)n 有界,但它不收敛。
(3) 正确。
(4) 错误 例如数列21(1)nn x n ⎧⎫=+-⎨⎬⎩⎭极限为1,极限大于零,但是11x =-小于零。
*3.用数列极限的精确定义证明下列极限:(1) 1(1)lim1n n n n-→∞+-=;(2) 222lim 11n n n n →∞-=++; (3) 323125lim-=-+∞→n n n证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε>即可,所以可取正整数1N ε≥.因此,0ε∀>,1N ε⎡⎤∃=⎢⎥⎣⎦,当n N >时,总有1(1)1n n n ε-+--<,所以1(1)lim 1n n n n-→∞+-=.(2) 对于任给的正数ε,当3n >时,要使222222332211111n n n n n x n n n n n n n n n ε---+-=-==<<<+++++++,只要2n ε>即可,所以可取正整数2max ,3N ε⎧⎫=⎨⎬⎩⎭.因此,0ε∀>,2max ,3N ε⎧⎫∃=⎨⎬⎩⎭,当n N >时,总有22211n n n ε--<++,所以222lim 11n n n n →∞-=++. (3) 对于任给的正数ε,要使25221762()()131333(31)313n n x n n n n ε+--=--=<=<----,只要123n ε->即可,所以可取正整数213N ε≥+.因此,0ε∀>,213N ε⎡⎤∃=+⎢⎥⎣⎦,当n N >时,总有522()133n n ε+--<-,所以323125lim-=-+∞→n n n .习题2-2 1. 利用函数图像,观察变化趋势,写出下列极限: (1) 21limx x →∞;(2) -lim xx e →∞;(3) +lim xx e-→∞;(4) +lim cot x arc x →∞;(5) lim 2x →∞;(6) 2-2lim(1)x x →+;(7) 1lim(ln 1)x x →+;(8) lim(cos 1)x x π→-解:(1) 21lim0x x →∞= ;(2) -lim 0xx e →∞=;(3) +lim 0xx e -→∞=;(4) +lim cot 0x arc x →∞=;(5) lim 22x →∞= ;(6) 2-2lim(1)5x x →+=;(7) 1lim(ln 1)1x x →+=;(8) lim(cos 1)2x x π→-=-2. 函数()f x 在点x 0处有定义,是当0x x →时()f x 有极限的( D )(A ) 必要条件 (B ) 充分条件(C ) 充要条件(D ) 无关条件解:由函数极限的定义可知,研究()f x 当0x x →的极限时,我们关心的是x 无限趋近x 0时()f x 的变化趋势,而不关心()f x 在0x x =处有无定义,大小如何。
高等数学 大一 题库
(一)函数、极限、连续一、选择题:1、 在区间(-1,0)内,由( )所给出的函数是单调上升的。
(A);1+=x y (B);2x x y -= (C)34+-=x y(D)25-=x y2、 当+∞→x 时,函数f (x )=x sin x 是( )(A )无穷大量 (B )无穷小量 (C )无界函数 (D )有界函数3、 当x →1时,31)(,11)(x x xxx f -=+-=ϕ都是无穷小,则f (x )是)(x ϕ的( ) (A )高阶无穷小 (B )低阶无穷小 (C )同阶无穷小 (D )等阶无穷小4、 x =0是函数1()arctan f x x=的( )(A )可去间断点 (B )跳跃间断点; (C )振荡间断点 (D )无穷间断点5、 下列的正确结论是( )(A ))(lim x f xx →若存在,则f (x )有界;(B )若在0x 的某邻域内,有()()(),g x f x h x ≤≤且),(lim 0x g xx →),(lim 0x h x x →都存在,则),(lim 0x f x x →也 存在;(C )若f(x)在闭区间[a , b ]上连续,且f (a ), f (b )<0则方程f (x )=0,在(a , b )内有唯一的实根;(D ) 当∞→x 时,xxx x x a sin )(,1)(==β都是无穷小,但()x α与)(x β却不能比.二、填空题:1、 若),1(3-=x f y Z 且x Z y ==1则f (x )的表达式为 ;2、 已知数列n x n 1014-=的极限是4, 对于,1011=ε满足n >N 时,总有ε<-4n x 成立的最小N 应是 ;3、 3214lim 1xx ax x b x →---+=+(b 为有限数) , 则a = , b = ; 4、 设,)(a x ax x f --=则x =a 是f (x )的第 类 间断点; 5、 ,0,;0,)(,sin )(⎩⎨⎧>+≤-==x n x x n x x g x x f 且f [g (x )]在R 上连续,则n = ;三、 计算题:1、计算下列各式极限:(1)xx x x sin 2cos 1lim 0-→; (2)x x x x -+→11ln 1lim 0; (3))11(lim 22--+→x x x (4)xx x x cos 11sinlim30-→ (5)x x x 2cos 3sin lim 0→ (6)xx xx sin cos ln lim0→2、确定常数a , b ,使函数⎪⎩⎪⎨⎧-<<∞---=<<-+=1,11,11,arccos )(2x x x b x x a x f 在x =-1处连续.四、证明:设f (x )在闭区间[a , b ]上连续,且a <f (x )<b , 证明在(a , b )内至少有一点ξ,使()f ξξ=.(二)导数与微分一、填空题:1、 设0()f x '存在,则tt x f t x f t )()(lim 000+--+→= ;2、 ,1,321,)(32⎪⎩⎪⎨⎧≤>=x x x x x f 则(1)f '= ; 3、 设xey 2sin =, 则dy = ;4、 设),0(sin >=x x x y x则=dxdy ; 5、 y =f (x )为方程x sin y + y e 0=x 确定的隐函数, 则(0)f '= .二、选择题:1、 )0(),1ln()(2>+=-a a x f x则(0)f '的值为( )(A) –ln a (B) ln a (C)a ln 21 (D) 21 2、 设曲线21x e y -=与直线1x =-相交于点P , 曲线过点P 处的切线方程为( )(A) 2x -y -2=0 (B) 2x +y +1=0 (C) 2x +y -3=0 (D) 2x -y +3=03、 设⎪⎩⎪⎨⎧>-≤=0),1(0)(2x x b x ex f ax 处处可导,则( ) (A) a =b =1 (B) a =-2, b =-1 (C) a =0, b =1 (D) a =2, b =14、 若f (x )在点x 可微,则xdyy x ∆-∆→∆0lim 的值为( )(A) 1 (B) 0 (C) -1 (D) 不确定5、设y =f (sin x ), f (x )为可导函数,则dy 的表达式为( ) (A)(sin )f x dx ' (B)(cos )f x dx ' (C)(sin )cos f x x ' (D)(sin )cos f x xdx '三、计算题:1、 设对一切实数x 有f (1+x )=2f (x ),且(0)0f '=,求(1)f '2、 若g(x)=⎪⎩⎪⎨⎧=≠0,00,1cos 2x x x x 又f (x )在x =0处可导,求))((=x x g f dx d3、 求曲线⎩⎨⎧=++=-+010)1(y te t t x y 在t =0处的切线方程4、 f (x )在x =a 处连续,),()sin()(x f a x x -=ϕ求)('a ϕ5、 设3222()x y y u x x =+⋅=+, 求.dudy 6、 设()ln f x x x =, 求()()n f x .7、计算.(三)中值定理与导数的应用一、填空题:1、 函数f (x )=arctan x 在[0 ,1]上使拉格朗日中值定理结论成立的ξ= ;2、 若01lim sin 22ax x e b x →-=则a = , b = ; 3、 设f (x )有连续导数,且(0)(0)1f f '==则)(ln )0()(sin limx f f x f x -→= ;4、 x e y xsin =的极大值为 ,极小值为 ;5、)10(11≤≤+-=x xxarctg y 的最大值为 ,最小值为 . 二、选择题:1、 如果a,b 是方程f(x)=0的两个根,函数f(x)在[a,b]上满足罗尔定理条件,那么方程f’(x)=0在(a,b)内( )(A )仅有一个根; (B )至少有一个根; (C )没有根; (D )以上结论都不对。
2020高等数学辅导讲义练习题参考答案
《高等数学辅导讲义》练习题解答第一章 函数、极限、连续 1. 【解】应选(D).由于+∞=−→xx xe x tan lim 2π,则)(x f 无界.2. 【解】应选(B). 由于x x x x sin ,1sin都在),0(+∞上连续.且01sin lim 0=→x x x ,;11sin lim =+∞→xx x 1sin lim 0=→x x x ,0sin lim =+∞→x x x .故xxx x sin ,1sin 都在),0(+∞上有界. 3. 【解】应选(D).由于)]()([t f t f t −+是奇函数,则∫−+xt t f t f t 0d )]()([是偶函数.4. 【解】应选(D).反证:否则,若n x 和n y 都有界,则n n y x 有界,与题设矛盾。
(A)的反例:L ,0,3,0,1:n x ;.,4,0,2,0:L n y (B)的反例:L ,1,3,1,1:n x ;.,4,1,2,1:L n y (C)的反例: L ,0,3,0,1:n x ;.,4,0,2,0:L n y 5. 【解】应选(A).反例见上题.6. 【解】应选(C).若}{n a 收敛,由 1+≤≤n n n a b a 及夹逼原理知}{n b ;反之若}{n b 收敛,则}{n b 上有界,由 1+≤≤n n n a b a 知}{n a 单调增且上有界,故}{n a 收敛.7.【解】选(A).若附加条件,0)(≠x ϕ则应选(D). 8.【解】选(B).)1(1)1(1lim 1)11(1sinlim )11()11(1lim11sin≠−=−+=+−+−∞→−∞→∞→ααααxxx x x x e x x xx9.【解1】选(C).20)()21ln(lim xx xf x x ++→2220)()](2)2(2[lim x x xf x x x x ++−=→ο,12)(2lim0=−+=→x x f x 则 ,3)(2lim 0=+→x x f x【解2】20)()21ln(lim x x xf x x ++→20)](2[2)21ln(lim xx xf x x x x ++−+=→ ,1)(2lim 2)21ln(lim 020=++−+=→→xx f x x x x x 又.2)2(21lim 2)21ln(lim 22020−=−=−+→→xx x x x x x 则 ,3)(2lim 0=+→x x f x 10.【解1】应选(D).直接法: 由2cos 1)(lim 0=−→x x f x 知 221)(lim20=→x x f x .即2~)(x x f n x n xx n x x x x x dt t x t t f 60sin 020sin 00sin 31lim lim d )(lim 22→→→==∫∫.0≠=a 则6=n . 【解2】 排除法:由2cos 1)(lim 0=−→xx f x 知,取2)(x x f =显然符合题设条件,此时∫∫==x x x x t t t t f 22sin 0sin 0662.31~sin 31d d )( 则(A)(B)(C)均不正确,故应选(D) 11. 【解】应选(D).若,2=a 则bx xx x g x f x x 22ln 2sin arctan lim )()(lim−=→→2ln 222ln 2limb bx x x x −=−=→,显然(B)不正确,则,1=a 且 3002sin arctan lim )()(lim x b x x x g x f x x −=→→302][sin ][arctan lim x b x x x x x −−−=→ 33302]61[]31[lim x b x x x −−−=→,131261lim 330=−=−=→b xb x x 故应选(D). 12. 【解】应选(C). k x x cx x x x g x f 3sin sin 3lim )()(lim00−=→→k x cxx x x x ]33[sin ]3sin 3[lim 0−−−=→ k x kx cx x cx x x 303304lim 6)3([)]61(3[lim →→=−−−=13. 【解】应选(D)(A))(21)](21[)](211[1222244242x x x x x x ex x οοο+−=++−++=−+ (2阶)或]1[]11[1242422−−−+=−+x x ex ex 22~24x x −2~2x −(B)221~)cos 1(tan sin tan x x x x x x −=− (3阶) (C)3sin 02sin 02)(sin 31~sin x dt t dt t xx =∫∫ (3阶)(D)25cos 1023cos 1023)cos 1(52~sin x dt t tdt xx −=∫∫−−252)21(52~x (5阶)14.【解】应选(A). 验证知2,1π±==x x 为)(x f 的无穷间断点,而1)(lim ,1)(lim 00−==−+→→x f x f x x .15.【解】应选(D).)(x f 在1,0±=x 处可能间断,验证可知1−=x 为无穷间断点.16.【解】应选(C). xx x x x f xln )1(1)(+−=在1,0,1−=x 处没定义,x x x e x x x x x f xx x xx x ln )1(1limln )1(1lim )(lim ln 111+−=+−=−→−→−→=∞=+=+−→−→11lim ln )1(ln lim 11x x x x x x x x x x x e x x x x x f xx x xx x ln )1(1limln )1(1lim )(lim ln 000+−=+−=→→→111lim ln )1(ln lim 00=+=+=→→x x x x x x x x x x x e x x x x x f xx x xx x ln )1(1limln )1(1lim )(lim ln 111+−=+−=→→→=2111lim ln )1(ln lim 11=+=+→→x x x x x x x x 故0=x 和1=x 为可去间断点. 17.【解】 应选(C). 由函数be x a x xf x+−+=122)1)(()(在),(+∞−∞上有一个可去间断点和一个跳跃间断点可知,0<b ,否则)(x f 只有一个间断点.0=x显然0=x 是)(x f 的一个间断点,而另一个间断点只能是.1=x 而.e b −=,)(lim 20ea x f x =−→ .0)(lim 0=+→x f x ee x a x xf xx x −−+=→→12211)1)((lim)(lim e e x a x x −−+=→112)1(lim )1(e a e xa xx 21212111lim )1(+−=−+=→则1=x 为可去间断点,而0≠a 时,0=x 为跳跃间断点。
高等数学下教材答案详解
题目:证明函数$f(x)=\begin{cases}x^2-1,\quad x<1\\3x+2,\quad x\geq1\end{cases}$在$x=1$处连续。
解析:要证明函数在$x=1$处连续,需要分别讨论左极限、右极限和函数值是否相等。首先计算左极限,即$$\lim_{x\to1^-}(x^2-1)=(1)^2-1=0$$。然后计算右极限,即$$\lim_{x\to1^+}(3x+2)=3(1)+2=5$$。最后计算$x=1$时的函数值,即$f(1)=3(1)+2=5$。由于左极限、右极限和函数值都相等,因此可以得出结论:函数$f(x)$在$x=1$处连续。
解析:要求函数的极值点,需要先求得函数的导数$f'(x)$。根据乘法法则和指数函数和三角函数求导法则,可以得到$f'(x)=2e^{2x}\sin x+e^{2x}\cos x$。然后,令$f'(x)=0$,解得$x=\frac{3\pi}{2}+k\pi$,其中$k$为整数。将这些解代入原函数$f(x)$,可以得到对应的极值点。
……
通过对高等数学下教材中习题的解析,我们可以更加深入地理解每个章节的内容和知识点。同时,这些答案的详细解析也有助于同学们发现自己在学习过程中的盲点和薄弱环节,从而进行有针对性的补充和提高。希望本文对同学们在学习高等数学下教材时有所帮助,让大家能够更好地掌握这门重要的学科。
总结
通过对高等数学下教材的答案进行详解,本文旨在提供同学们学习和理解教材内容的参考和指导。在学习过程中,同学们可以根据本文的解析,进一步掌握和巩固相关知识点,提升数学能力。当然,本文只是对部分习题进行了解析,同学们在学习过程中还需要充分理解教材中的其他内容,并进行适当的练习和实践。希望本文能够对同学们的学习有所帮助,让大家在高等数学下取得优秀的成绩!
高等数学第一章函数例题及答案
高等数学第一章 函数、极限、连续§1.1 函数一.求函数的定义域例1.求函数()2100ln ln ln x x x f -+=的定义域 例2.求5ln 1-+-=x x x y 的定义域例3.设()x f 的定义域为[]()0,>-a a a ,求()12-x f 的定义域 例4.设()⎩⎨⎧≤≤<≤=42 ,220 ,1x x x g 求()()()12-+=x g x g x f 的定义域,并求⎪⎭⎫ ⎝⎛23f 。
二.求函数的值域 例1.求3311-=x ey 的值域例2.求()()⎪⎩⎪⎨⎧>--≤≤---<-==2,2122,52,323x x x x x x x f y 的值域,并求它的反函数 三.求复合函数有关表达式 1.已知()x f 和()x g ,求()[]x g f 例1.已知()1-=x xx f ,求()⎥⎦⎤⎢⎣⎡-11x f f 例2.设()21x x x f +=,求()()[]()重复合n x f x f f f n =例3.设()⎩⎨⎧>≤-=2,02,42x x x x f ,求()[]x f f 2.已知()x g 和()[]x g f ,求()x f 例1.设()x e e e f x xx++=+21,求()x f例2.已知()xxxee f -=',且()01=f ,求()x f例3.设()x x fsin =,求()x f '例4.已知()x x f 2cos 3sin -=,求证()x x f 2cos 3cos += 3.已知()x f 和()[]x g f ,求()x g例.已知()()x x f +=1ln ,()[]x x g f =,求()x g 解:()[]x fx g 1-=实际上为求反函数问题()[]()[]x x g x g f =+=1ln ,()x e x g =+1 ()1-=x e x g 4.有关复合函数方程 例.设()x x f x x f 2311-=⎪⎭⎫⎝⎛-+,求()x f 四.有关四种性质例1.设()()x f x F =',则下列结论正确的是[ ](A )若()x f 为奇函数,则()x F 为偶函数。
高等数学习题详解-第2章 极限与连续(精品范文).doc
【最新整理,下载后即可编辑】习题2-11. 观察下列数列的变化趋势,写出其极限: (1) 1n n x n =+ ; (2)2(1)n n x =--;(3)13(1)nn x n=+-; (4)211n x n=-. 解:(1) 此数列为12341234,,,,,,23451n n x x x x x n =====+ 所以lim 1n n x →∞=。
(2) 12343,1,3,1,,2(1),n n x x x x x =====-- 所以原数列极限不存在。
(3)1234111131,3,3,3,,3(1),234n n x x x x x n=-=+=-=+=+-所以lim 3n n x →∞=。
(4)12342111111,1,1,1,,1,4916n x x x x x n =-=-=-=-=- 所以lim 1n n x →∞=-2.下列说法是否正确:(1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散;(4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。
(2) 错误 例如数列{}(-1)n 有界,但它不收敛。
(3) 正确。
(4) 错误 例如数列21(1)nn x n ⎧⎫=+-⎨⎬⎩⎭极限为1,极限大于零,但是11x =-小于零。
*3.用数列极限的精确定义证明下列极限:(1) 1(1)lim1n n n n-→∞+-=;(2) 222lim 11n n n n →∞-=++; (3)323125lim -=-+∞→n n n证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε>即可,所以可取正整数1N ε≥.因此,0ε∀>,1N ε⎡⎤∃=⎢⎥⎣⎦,当n N >时,总有1(1)1n n n ε-+--<,所以1(1)lim 1n n n n-→∞+-=. (2) 对于任给的正数ε,当3n >时,要使222222332211111n n n n n x n n n n n n n n nε---+-=-==<<<+++++++,只要2n ε>即可,所以可取正整数2max ,3N ε⎧⎫=⎨⎬⎩⎭.因此,0ε∀>,2max ,3N ε⎧⎫∃=⎨⎬⎩⎭,当n N >时,总有22211n n n ε--<++,所以222lim 11n n n n →∞-=++. (3)对于任给的正数ε,要使25221762()()131333(31)313n n x n n n n ε+--=--=<=<----,只要123n ε->即可,所以可取正整数213N ε≥+.因此,0ε∀>,213N ε⎡⎤∃=+⎢⎥⎣⎦,当n N >时,总有522()133n n ε+--<-,所以323125lim-=-+∞→n n n . 习题2-21. 利用函数图像,观察变化趋势,写出下列极限: (1)21lim x x →∞ ; (2) -lim x x e →∞; (3) +lim x x e -→∞; (4) +lim cot x arc x →∞; (5) lim2x →∞;(6) 2-2lim(1)x x →+; (7) 1lim(ln 1)x x →+; (8) lim(cos 1)x x π→- 解:(1)21lim 0x x →∞= ;(2) -lim0x x e →∞=;(3) +lim 0x x e -→∞=; (4) +lim cot 0x arc x →∞=; (5) lim 22x →∞= ;(6) 2-2lim(1)5x x →+=; (7) 1lim(ln 1)1x x →+=; (8) lim(cos 1)2x x π→-=- 2. 函数()f x 在点x 0处有定义,是当0x x →时()f x 有极限的( D )(A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件解:由函数极限的定义可知,研究()f x 当0x x →的极限时,我们关心的是x 无限趋近x 0时()f x 的变化趋势,而不关心()f x 在0x x =处有无定义,大小如何。
高等数学函数的极限与连续习题精选和答案
1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。
2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。
5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。
7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。
9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则 (1)()xef 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x (3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x n x n x n n x n x n n n n =⋅==∞→∞→∞→sinlim 1sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()b ax x xx --+-+∞→1lim2()()()bax x x bax x x b ax x x x +++-+++---+-=+∞→111lim 222()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→x xax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a13、=∞→x x x sin lim( 0 ),=∞→xx x 1sin lim ( 1 ), ()=-→xx x 11lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim=⋅=∞→∞→x x xx x x 111sin lim1sin lim ==∞→∞→xx x x x x()[]1)1(110)(1lim 1lim --⋅-→→=-+=-e x x xx x x k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数 ∵()()11log 1)(log 22++=+-+-=-x x x x x f aa()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域恒有()M x f ≤(M 是正数),则函数()x f 在该邻域( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。
高等数学第1章课后习题答案(科学出版社)
第一章 函数、极限、连续习题1-11.求下列函数的自然定义域:(1)321x y x=+-(2) 1arctany x=+(3) 1arccosx y -=;(4) 313 , 1x y x ⎧≠⎪=⎨⎪=⎩. 解:(1)解不等式组23010x x +≥⎧⎨-≠⎩得函数定义域为[3,1)(1,1)(1,)---+∞U U ; (2)解不等式组230x x ⎧-≥⎨≠⎩得函数定义域为[U ;(3)解不等式组2111560x x x -⎧-≤≤⎪⎨⎪-->⎩得函数定义域为[4,2)(3,6]--U ; (4)函数定义域为(,1]-∞.2.已知函数()f x 定义域为[0,1],求(cos ),()() (0)f f x f x c f x c c ++->的定义域.解:函数f要有意义,必须01≤≤,因此f 的定义域为[0,1];同理得函数(cos )f x 定义域为[2π-,2π]22k k ππ+;函数()()f x c f x c ++-要有意义,必须0101x c x c ≤+≤⎧⎨≤-≤⎩,因此,(1)若12c <,定义域为:[],1c c -;(2)若12c =,定义域为:1{}2;(3)若12c >,定义域为:∅. 3.设21()1,||x a f x x x a ⎛⎫-=- ⎪-⎝⎭0,a >求函数值(2),(1)f a f .解:因为21()1||x a f x x x a ⎛⎫-=- ⎪-⎝⎭,所以 21(2)104a f a a a ⎛⎫=-= ⎪⎝⎭,22 ,>1,11(1)10 ,0<<111a a f a a ⎛⎫⎧-=-= ⎪⎨ ⎪-⎩⎝⎭. 4. 证明下列不等式:(1) 对任何x R ∈有 |1||2|1x x -+-≥; (2) 对任何n Z +∈有 111(1)(1)1n n n n++>++;(3) 对任何n Z +∈及实数1a >有 111na a n--≤.证明:(1)由三角不等式得|1||2||1(2)|1x x x x -+-≥---= (2)要证111(1)(1)1n n n n++>++,即要证111n +>+= 111(1)(1)(1)11111n n n n n +++++++<=+++L 得证。
高等数学:函数 、极限与连续习题含答案
1第一章函数、极限与连续一、选择题1.函数)(x f 的定义域为[]10,,则函数51()51(-++x f x f 的定义域是().A.⎥⎦⎤⎢⎣⎡-54,51B.⎥⎦⎤⎢⎣⎡56,51C.⎦⎤⎢⎣⎡54,51D.[]1,02.已知函数()62+x f 的定义域为[)4,3-,则函数)(x f 的定义域是().A.[)4,3-B.[)14,0C.[]14,0D.⎪⎭⎫⎢⎣⎡--1,293.函数211ln ++-=x xy 的定义域是().A.1≠x B.2-≥x C.2-≥x 且1≠x D.[)1,2-4.下列函数)(x f 与)(x g 是相同函数的是().A.11)(+⋅-=x x x f ,1)(2-=x x g B.2)(π=x f ,x x x g arccos arcsin )(+=C.x x x f 22tan sec )(-=,1)(=x g D.1)(=x f ,x x x g 22cos sin )(+=5.下列函数)(x f 与)(x g 是相同函数的是().A.x x g x x f lg 2)(,lg )(2==B.2)(,)(x x g x x f ==C.33341)(,)(-=-=x x x g x x x f D.xx x g x f 22tan sec )(,1)(-==6.若1)1(2-=-x x f ,则)(x f =().A.2)1(+x x B.2)1(-x x C.)2(+x x D.)1(2-x x 7.设xx f cos 2)(=,xx g sin 21)(⎪⎭⎫⎝⎛=,在区间⎪⎭⎫ ⎝⎛20π,内成立().A.)(x f 是增函数,)(x g 是减函数B.)(x f 是减函数,)(x g 是增函数C.)(x f 和)(x g 都是减函数D.)(x f 和)(x g 都是增函数28.函数)1lg()1lg(22x x x x y -++++=().A.是奇函数B.是偶函数C.是非奇非偶函数D.既是偶函数,也是奇函数9.下列函数中()是奇函数.A.1cos sin +-=x x y B.2xx a a y -+=C.2211x x y +-=D.)1)(1(+-=x x x y 10.函数x x x f sin )(2=的图形().A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线x y =对称11.下列函数中,()是奇函数.A.2ln(1)x +B.)x C.sin x x D.x xe e-+12.若()f x 是奇函数,且对任意实数x ,有(2)()f x f x +=,则必有(1)f =().A.1-B.0C.1D.213.偶函数的定义域一定是().A.包含原点的区间B.关于原点对称 C.),(+∞-∞D.以上三种说法都不对14.若)(x f 是奇函数,)(x ϕ是偶函数,且)]([x f ϕ有意义,则)]([x f ϕ是().A.偶函数B.奇函数C.非奇非偶函数D.奇函数或偶函数15.函数xx f 1sin )(=是其定义域内的什么函数().A.周期函数B.单调函数C.有界函数D.无界函数16.若()f x 在(,)-∞+∞内单调增加,()x ϕ是单调减少,则[()]f x ϕ在(,)-∞+∞内().A.单调增加B.单调减少C.不是单调函数D.无法判定单调性17.函数xxe e y -+=的图形对称于直线().A.y x=B.y x=-C.0x =D.0y =318.下列函数中周期为π的是().A.xy 2sin =B.xy 4cos = C.xy πsin 1+= D.()2cos -=x y 19.下列函数是周期函数的是().A.)sin()(2x x f =B.xx f 1cos)(=C.xx f πcos )(=D.xx f 1sin)(=20.设1cos )(-=x x f 的定义域和周期分别为().A.πππ2,,22=∈+=T Z k k x B.ππ2,,2=∈=T Z k k x C.ππ=∈=T Z k k x ,,D.πππ=∈+=T Z k k x ,,221.下列结论不正确的是().A.基本初等函数在其定义域内是连续的B.基本初等函数在其定义区间内是连续的C.初等函数在其定义域内是连续的D.初等函数在其定义区间内是连续的22.下列说法正确的是().A.无穷小的和仍为无穷小B.无穷大的和仍为无穷大C.有界函数与无穷大的乘积仍为无穷大D.收敛数列必有界23.下列说法不正确的是().A.两个无穷小的积仍为无穷小B.两个无穷小的商仍为无穷小C.有界函数与无穷小的乘积仍为无穷小D.在同一变化过程中,无穷大的倒数为无穷小24.若无穷小量α与β是等价的无穷小,则αβ-是()无穷小.A.与β同阶不等价的B.与β等价的C.比β低阶的D.比β高阶的25.当0→x 时,4x x +是32x x +的().A.高阶无穷小B.低阶无穷小C.同阶无穷小D.等价无穷小26.当0→x 时,x x sin 2-是x 的().A.高阶无穷小B.低阶无穷小C.同阶无穷小但不等价D.等价无穷小27.设232)(-+=xxx f ,则当0=x 时,有().4A.)(x f 与x 是等价无穷小B.)(x f 是x 同阶但非等价无穷小C.)(x f 是比x 高阶的无穷小D.)(x f 是比x 低阶的无穷小28.设x x f -=1)(,31)(x x g -=,则当1→x 时().A.)(x f 是比)(x g 高阶的无穷小B.)(x f 是比)(x g 低阶的无穷小C.)(x f 与)(x g 是同阶但不等价的无穷小D.)(x f 与)(x g 是等价无穷小29.当0→x 时,与x 不是等价无穷小量的是().A.2sin xx -B.xx 2sin -C.3tan x x -D.xx -sin 30.当0→x 时,下列函数为无穷小量的是().A.x x sin B.xx sin 2+C.)1ln(1x x+D.12-x 31.当0→x 时,是无穷大量的有().A.xx 1sin 1B.xx sin C.2xD.xx 21-32.当0→x 时,下列函数不是无穷小量的是().A.x x x x tan cos 2-B.21sin xx C.x x x sin 3+D.xx )1ln(2+33.下列等式正确的是().A.1sin lim=∞→x xx B.11sinlim =∞→xx C.11sinlim =∞→xx x D.11sin lim=∞→xx x 34.设函数()f x 在闭区间[1,1]-上连续,则下列说法正确的是().A.1lim ()x f x →+必存在B.1lim ()x f x →必存在C.1lim ()x f x →-必存在D.1lim ()x f x →-必存在35.=→xx 102lim ().A.0B.∞+C.∞D.不存在36.下列各式中正确的是().A.0cos lim0=→xxx B.1cos lim0=→xxx C.0cos lim=∞→xxx D.1cos lim=∞→xxx537.若(sin )3cos 2f x x =-,则(cos )f x =().A.3sin 2x+B.32sin 2x-C.3cos 2x+D.3cos 2x -38.设21()arcsin 3lim ()1x x f x f x x x→∞=++,则lim ()x f x →∞等于().A.2B.21C.2-D.21-39.设x xx f )31()2(-=-,则=∞→)(lim x f x ().A.1e-B.2e-C.3e-D.3e40.极限lim sinx x xπ→∞=().A.1B.πC.2eD.不存在41.当0x →时,1xe 的极限是().A.0B.+∞C.-∞D.不存在42.当5x →时,5()5x f x x -=-的极限是().A.0B.∞C.1D.不存在43.设x x x f 21)(-=,则=→)(lim 0x f x ().A.1B.不存在C.2eD.2e-44.若0→x 时,kx x x ~2sin sin 2-,则=k ().A.1B.2C.3D.445.若52lim22=-++→x bax x x ,则().A.1=a ,6=b B.1-=a ,6-=b C.1=a ,6-=b D.1-=a ,6=b 46.=+-∞→x x xx arctan 1lim ().A.2πB.2π-C.1D.不存在647.=+→xx x )1ln(lim0().A.1-B.1C.∞D.不存在但非∞48.已知22lim 222=--++→x x bax x x ,则b a ,的值是().A.8,2-==b a B.b a ,2=为任意值C.2,8=-=b a D.b a ,均为任意值49.=-+-+++∞→11)2(3)2(3lim n n nn n ().A.31B.31-C.∞D.050.xx x x 1011lim ⎪⎭⎫⎝⎛+-→的值等于().A.2eB.2e-C.1D.∞51.设xx g x3e 1)(2-=,当0≠x 时,)()(x g x f =,若)(x f 在0=x 处连续,则)0(f 的值是().A.0B.32-C.1D.3152.设函数⎪⎪⎩⎪⎪⎨⎧<+=>-=0,1sin 0,10,1e )(2x a x x x x x x f x 在点0=x 处连续,则常数=a ().A.1-B.1C.2-D.253.若)(x f 在点0x 点连续,则=+→)2(sin lim 00h x f h ().A.)2(sin 0h x f +B.)(sin 0x f C.)(sin 0x f D.不存在54.函数⎪⎩⎪⎨⎧=≠--=0,210,cos 1)(42x x x x xx f 的间断点有().7A.3个B.1个C.0个D.2个55.设0=x 是⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<+=0,1sin 0,00,11)(1x x x x x ex f x 的().A.跳跃间断点B.可去间断点C.第二类间断点D.连续点56.11)(11+-=xxe e xf ,则0=x 是)(x f 的().A.可去间断点B.跳跃间断点C.第二类间断点D.连续点二、填空题57.函数xxx f -+=11ln21)(的定义域是_________.58.函数2ln arcsin +=x xy 的定义域为_________.59.函数xx y 1arctan3+-=的定义域是_________.60.设)(x f 的定义域[]1,0=D ,则)(sin x f 的定义域_________.61.若函数()f x 的定义域为[1,0]-,则函数(cos )f x 的定义域为_________.62.若函数()f x 的定义域为[0,1],则函数(arctan 2)f x 的定义域为_________.63.设2(1)32f x x x +=-+,则f =_________.64.函数nn x a y 12)(-=的反函数是_________.65.函数)0(≠-++=bc ad dcx bax y 的反函数是_________.66.函数x y 3sin 2=⎪⎭⎫ ⎝⎛≤≤-66ππx 的反函数是_________.867.函数3arccos2xy =的反函数是_________.68.______28153lim 233=+-++∞→n n n n n n .69._______43867lim 22=+-+∞→n n n n .70.⎪⎭⎫⎝⎛++++∞→n n 21...41211lim =_________.71.2)1(...321limnn n -++++∞→=_________.72.35)3)(2)(1(limn n n n n +++∞→=_________.73._______lim 2210=+→x x x e.74._______1lim432=-+++∞→nn n n n n .75._______43...21lim 2=++++∞→nn nn .76._______1!!sin lim=+∞→n n n .77.=⎪⎭⎫⎝⎛++++++∞→πππn n n n n n 222...221lim _________.78.设012lim 2=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x x ,则=a _________,=b _________.79._______4421lim 22=⎪⎭⎫ ⎝⎛---→x x x .80._______2)2sin(lim22=---→x x x x .81._______63sin lim=∞→xxx .982.m n x x x )(sin )sin(lim 0→(m n ,为正整数,且m n >)=.83._______1cos 1lim 20=--→x e x x .84._______4tan 8arcsin lim0=→xxx .85._______81221lim 32=⎪⎭⎫ ⎝⎛---→x x x .86.xxx x 30sin sin tan lim-→=.87.)1(lim 2x x x x -++∞→=.88.)1sin 1)(11(tan sin lim32-+-+-→x x xx x =.89.若2)1sin(1lim 21=--+→x ax x x ,则_________=a .90.若0x →时函数tan sin x x -与nmx 是等价无穷小,则=m ,n =.91.当∞→x 时,函数)(x f 与21x是等价无穷小,则_______)(3lim 2=∞→x f x x .92.当0→x 时,函数112-+ax 与x 2sin 是等价无穷小,则_______=a .93.当∞→x 时,函数)(x f 与x4是等价无穷小,则_______)(2lim =∞→x xf x .94.若1x →时,2(1)1mx x --是比1x -高阶的无穷小,则m 的取值范围是.95.11232lim +∞→⎪⎭⎫⎝⎛++x x x x =_________.96.40)21(lim -→=-e x x kx ,则_________=k .1097.nn n x x f ⎪⎭⎫⎝⎛+=∞→sin 1lim )(,则=')(x f .98.4lim e a x a x xx =⎪⎭⎫ ⎝⎛+-+∞→,则_______=a .99._______1lim 23=⎪⎭⎫ ⎝⎛++∞→x x x x .100.如果201cos ()3lim ()x xf x f x x→-=+,则0lim ()x f x →=.101.设函数⎪⎩⎪⎨⎧≥<<+≤+=1,10,0,2)(2x bx x a x x x x f 在),(+∞-∞内连续,则___________,==b a .102.)(lim 2)sin 21()(031x f x x f x x→++=,求()=x f .103.如果201cos ()3lim ()x xf x f x x→-=+,则0lim ()x f x →=.104.设2211xx x x f +=⎪⎭⎫ ⎝⎛-,则=)(x f .105.函数⎪⎩⎪⎨⎧=≠+=010,1sin 1)(x x xx x f 的连续区间是.106.若函数()⎪⎩⎪⎨⎧>+≤+=0,21ln 0,)(12x x x x a x f x 在0=x 处连续,则=a .107.极限02sin 3lim[sin]x x x x x→+=.108.极限3sin 2lim[sin ]x xx x x→∞+=.109.若⎪⎩⎪⎨⎧=≠-+=-0,0,316sin )(3x a x x e x x f ax 在0=x 连续,则_______=a .110.函数⎪⎩⎪⎨⎧><<-±===2,420,42,0,2)(2x x x x x x f 的间断点有_________个.111.函数653)(2+--=x x x x f 的第二类间断点是_________.112.函数)5)(32(86)(22-----=x x x x x x f 的间断点是.113.设⎪⎩⎪⎨⎧≤+>=,0,,0,1sin )(2x x a x x x x f 要使)(x f 在),(+∞-∞内连续,则=a .114.设⎪⎩⎪⎨⎧<+=>+=0,20,0,)(2x b x x a x e x x f 在点0=x 处连续,则=a ,=b .115.设⎪⎩⎪⎨⎧≤>=0,0,3sin )(x x x x x x f ,则点0=x 是)(x f 的第类间断点.116.设⎪⎩⎪⎨⎧≤<-+>=-,01),1ln(,0,)(11x x x e x f x 则点0=x 是)(x f 的第类间断点;点1=x 是)(x f 的第类间断点.117.若函数=)(x ϕ,则函数)(x f 为奇函数这里⎪⎪⎩⎪⎪⎨⎧<=>++=0, )( 0, 0 0 ),1ln()(2x x x x x x x f ϕ118.⎩⎨⎧<-≥=00 )(22x x x x x f ,则)(x f 是(奇/偶)函数.119.⎩⎨⎧>+≤-=0 10 1)(x x x x x f ,则)(x f 是(奇/偶)函数.三、计算题120.设函数1)1(2++=x x x f 0>x ,求)(x f .121.设函数2211xx x x f +=⎪⎭⎫ ⎝⎛+,求)(x f .122.设xx f -=11)(,求))((x f f .123.设23)1(2+-=+x x x f ,求)(x f .124.已知x x g xx f -==1)(,1)(,求))((x g f .125.设x x x f 2)1(2-=-,求)1(+x f .126.求函数321)(2-+=x x x f 的连续区间.127.设函数)(x f 的定义域为)0,1(-,求函数)1(2-x f 的定义域.128.设x xx f +=12arccos )(,求其定义域.129.设)(x f 的定义域为[]1,0,求)(cos x f 的定义域.130.已知⎩⎨⎧≤<≤≤=+21,210,)1(2x x x x x ϕ,求)(x ϕ.131.设⎩⎨⎧<+≥+=0,40,12)(2x x x x x f ,求)1(-x f .132.判断函数x x x f 32(32()(-++=的奇偶性.133.判断11-+=x x a a x y 的奇偶性.134.设)21121)(()(-+=x x f x F ,已知)(x f 为奇函数,判断)(x F 的奇偶性.135.求函数x x y 44sin cos -=的周期.136.求函数2cos sin x x y +=的周期.137.求函数x y 3sin 2=)66(ππ<<-x 的反函数.138.求函数)1ln(2-+=x x y 的反函数.139.xx x 3113sin lim +-∞→.140.633lim 6--+→x x x .141.2203)1ln(lim x x x +→.142.x xx 4cos 12sin 1lim 4-+→π.143.2321lim 4--+→x x x .144.123lim 221-+-→x x x x .145.25273lim 33+-++∞→x x x x x .146.)cos 3(11lim 32x x x x +++∞→.147.2021cos lim x x x -→.148.2021lim x ex x -→.149.3222......21lim nn n +++∞→.150.)3(lim 2x x x x -++∞→.151.xx x ln 1lim 21-→.152.20cos 1lim x x x -→.153.38231lim x x x +---→.154.⎪⎪⎭⎫ ⎝⎛+-++⨯+⨯∞→)12)(12(1...531311lim n n n .155.n n 11lim +∞→.156.114sin lim 0-+→x xx .157.)(lim 22x x x x x --++∞→.158.156223lim 22+-++∞→n n n n n .159.nx mxx sin sin lim 0→.160.⎪⎭⎫ ⎝⎛-→x x x x ln ln 1lim 1.161.145lim 1---→x xx x .162.⎪⎪⎭⎫ ⎝⎛--→11lim 31x x x .163.xx x --→πππ1cos )(lim .164.20cos 1lim x mx x -→.165.11sinlim -+∞→x x x x x .166.)15(lim 323x x x x -+-∞→.167.)cos 1(cos 1lim 0x x x x --+→.168.28lim 38--→x x x .169.n n n 31...9131121...41211lim ++++++++∞→.170.xx x x x 6sin 4cos lim ++∞→.171.)1(lim 2x x x x -+∞→.172.⎪⎪⎭⎫⎝⎛-+→114sin lim 0x x x .173.174lim 22++→x x x .174.2220)1()41ln(lim x x e x -+→.175.115)2(5)2(lim ++∞→+-+-n n nn n .176.xx e 1011lim +→.177.若123lim 22=-+-→x ax x x ,求a .178.已知01lim 2=⎪⎪⎭⎫ ⎝⎛--+∞→b ax x x x ,其中a ,b 是常数,求a ,b .179.已知),0()1(lim 2017∞≠≠=--∞→A n n n k k n ,求k 的值.180.计算⎪⎭⎫ ⎝⎛+++++++++∞→n n n n n n n n n 2222211lim .181.已知5312)(22+++-=bx x ax x f ,当∞→x 时,求a 和b 的值使)(x f 为无穷小量.182.当0→x ,比较函数22)(-+=x x e x f 与x 是否为同阶无穷小.183.已知82lim 3=⎪⎭⎫ ⎝⎛-+∞→x x a x a x ,求a .184.()xx x sec 32cos 1lim +→π.185.11212lim +∞→⎪⎭⎫⎝⎛-+x x x x .186.26311lim -∞→⎪⎭⎫ ⎝⎛+x x x 187.xx x x 311lim ⎪⎭⎫ ⎝⎛+-∞→.188.21232lim +∞→⎪⎭⎫ ⎝⎛++x x x x .189.xx x tan 2)(sin lim π→.190.已知⎪⎪⎩⎪⎪⎨⎧<=>+=0,sin 10,0,1sin )(x x x x p x q x x x f 在点0=x 处极限存在,求p 和q 的值.191.求函数⎪⎩⎪⎨⎧=≠--=0,210,cos 1)(42x x x x xx f 的间断点的个数.192.判断函数111)(--=x x ex f 的间断点及其类型.193.判断函数xx x f 1cos)(=的间断点及其类型.194.设)(x f 在点0=x 处连续,且⎪⎩⎪⎨⎧=≠-=0,0,cos 1)(2x a x x x x f ,求a .195.求函数xxy sin =的间断点及类型.196.求函数)1()(22--=x x xx x f 的间断点.197.证明方程019323=+--x x x 至少有一个小于1的正根.198.判断函数122+=x y 的单调性.199.已知⎪⎪⎪⎩⎪⎪⎪⎨⎧<⎪⎭⎫ ⎝⎛-=>+--=0,110,0,1)1(2sin )(2x x x b x a e e x f x x x 在点0=x 处连续,求a 和b 的值.200.设函数⎩⎨⎧≥+<=0,0,)(x x a x e x f x 在),(+∞-∞内连续,求a .201.设⎪⎪⎩⎪⎪⎨⎧<≤---+=>+=01,110,00,)1ln()(x x xx x x x x x f ,判断其间断点及类型.202.设xe xf x 1)(-=,判断其间断点及类型.203.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0)(,11x x x e x f x ,判断)(x f 的间断点及其类型.204.求曲线65222+-=x x x y 的渐近线.205.求xex f -+=1111)(的间断点并判断其类型.206.设⎪⎪⎪⎩⎪⎪⎪⎨⎧>++=<=0,)21ln(0,0,sin 1sin )(2x a xx x b x x x x x f ,求b a ,的值使其在),(+∞-∞内连续.207.设⎪⎪⎩⎪⎪⎨⎧≤<=<<-=-21,1,210,1ln )(1x e x x x xx f x ,(1)求)(x f 的定义域(2)判断间断点1=x 的类型,如何改变定义使)(x f 在这点连续?208.判断函数x x y ln +=在区间),0(+∞内的单调性.第一章函数、极限与连续1..54,51:15101510⎥⎦⎤⎢⎣⎡⇒⎪⎪⎩⎪⎪⎨⎧≤-≤≤+≤D x x 选C2.43<≤-x ,826<≤-x ,14620<+≤x 。
(完整版)高等数学函数的极限与连续习题精选及答案
1、函数与函数相同.()12++=x x x f ()113--=x x x g 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴与函数关系相同,但定义域不同,所以与()12++=x x x f ()113--=x x x g ()x f 是不同的函数。
()x g 2、如果(为一个常数),则为无穷大.()M x f >M ()x f 错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在. 错误 如:数列是有界数列,但极限不存在()nn x 1-=4、,.a a n n =∞→lim a a n n =∞→lim 错误 如:数列,,但不存在。
()nn a 1-=1)1(lim =-∞→nn n n )1(lim -∞→5、如果,则(当时,为无穷小).()A x f x =∞→lim ()α+=A x f ∞→x α正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果~,则.αβ()α=β-αo 正确 ∵,是1lim=αβ∴,即是的高阶无穷小量。
01lim lim =⎪⎭⎫⎝⎛-=-αβαβαβα-α7、当时,与是同阶无穷小.0→x x cos 1-2x 正确 ∵ 2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 .01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x 错误 ∵不存在,∴不可利用两个函数乘积求极限的法则计算。
xx 1sin lim 0→9、 .e x xx =⎪⎭⎫⎝⎛+→11lim 0错误 ∵ex xx =⎪⎭⎫⎝⎛+∞→11lim 10、点是函数的无穷间断点.0=x xxy =错误 ,=-→x x x 00lim1lim 00-=--→x x x =+→x x x 00lim 1lim 00=+→xx x ∴点是函数的第一类间断点.0=x xxy =11、函数必在闭区间内取得最大值、最小值.()x f x1=[]b a ,错误 ∵根据连续函数在闭区间上的性质,在处不连续()x f x1=0=x ∴函数在闭区间内不一定取得最大值、最小值()x f x1=[]b a ,二、填空题:1、设的定义域是,则()x f y =()1,0(1)的定义域是( );()xef (,0)-∞ (2)的定义域是( );()x f 2sin 1-,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭(3)的定义域是( ).()x f lg (1,10)答案:(1)∵ 10<<xe(2)∵ 1sin 102<-<x (3)∵1lg 0<<x 2、函数的定义域是( ).()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f (]4,2-3、设,,则( ).()2sin x x f =()12+=ϕx x ()[]=ϕx f ()221sin +x 4、=( ).nxn n sinlim ∞→x ∵x x n n x n n x n x n n n n =⋅==∞→∞→∞→sinlim sin limsin lim 5、设,则( 2 ),( 0 ).()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩()10lim x f x →--=()=+→x f x 01lim ∵,()1010lim lim (1)2x x f x x →--→--=-=()()01lim lim 0101=-=+→+→x x f x x 6、设,如果在处连续,则( ).()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ()x f 0=x =a 21∵,如果在处连续,则21cos 1lim 20=-→x x x ()x f 0=x ()a f x x x ===-→021cos 1lim 207、设是初等函数定义区间内的点,则( ).0x ()x f ()=→x f x x 0lim ()0x f ∵初等函数在定义区间内连续,∴()x f ()=→x f x x 0lim ()0x f 8、函数当( 1 )时为无穷大,当( )时为无穷小.()211-=x y x →x →∞ ∵,()∞=-→2111limx x ()11lim2=-∞→x x 9、若,则( 1 ),( ).()01lim2=--+-+∞→b ax x xx =a =b 21-∵()bax x xx --+-+∞→1lim2()()()bax x x bax x x b ax x x x +++-+++---+-=+∞→111lim222()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令,∴,012=-a 1a =±上式化简为∴()22112lim lim lim1x x x bab x a →+∞→+∞→+∞--+==+,,1a =021=+ab 12b =-10、函数的间断点是( ).()x x f 111+=1,0-==x x 11、的连续区间是( ).()34222+--+=x x x x x f ()()()+∞∞-,3,3,1,1,12、若,则( 2 ).2sin 2lim =+∞→x xax x =a ∴()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x 2=a13、( 0 ),( 1 ),=∞→x x x sin lim=∞→xx x 1sin lim ( ),( ).()=-→xx x 11lim 1-e =⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ke ∵0sin 1lim sin lim=⋅=∞→∞→x x x x x x 111sinlim 1sinlim ==∞→∞→xx x x x x()[]1)1(101)(1lim 1lim ---→→=-+=-e x x xx xx k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim 14、(不存在 ),( 0)lim sin(arctan )x x →∞=lim sin(arc cot )x x →+∞=三、选择填空:1、如果,则数列是( b )a x n n =∞→lim n x a.单调递增数列 b .有界数列 c .发散数列2、函数是( a )()()1log 2++=x x x f a a .奇函数 b .偶函数 c .非奇非偶函数∵()()11log 1)(log 22++=+-+-=-x x x x x f aa ()()x f x x a -=++-=1log 23、当时,是的( c )0→x 1-xe x a .高阶无穷小 b .低阶无穷小 c .等价无穷小4、如果函数在点的某个邻域内恒有(是正数),则函数在该邻域内( c ()x f 0x ()M x f ≤M ()x f )a .极限存在b .连续c .有界5、函数在( c )条件下趋于.()x f x-=11∞+a . b . c .1→x 01+→x 01-→x 6、设函数,则( c )()x f xxsin =()=→x f x 0lim a .1 b .-1 c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x 1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:不存在。
高等数学练习册及答案
高等数学练习册及答案### 高等数学练习册及答案#### 第一章:极限与连续练习题1:计算下列极限:1. \(\lim_{x \to 0} \frac{\sin x}{x}\)2. \(\lim_{x \to \infty} \frac{\sin x}{x}\)3. \(\lim_{x \to 1} (x^2 - 1)\)答案:1. 根据洛必达法则,我们首先对分子分母同时求导,得到 \(\lim_{x \to 0} \frac{\cos x}{1} = 1\)。
2. 由于 \(\sin x\) 的周期为 \(2\pi\),当 \(x\) 趋向无穷大时,\(\frac{\sin x}{x}\) 趋向于0。
3. 直接代入 \(x = 1\),得到 \(\lim_{x \to 1} (x^2 - 1) = 0\)。
练习题2:判断函数 \(f(x) = \frac{x^2 - 1}{x - 1}\) 在 \(x =1\) 处是否连续。
答案:函数 \(f(x)\) 在 \(x = 1\) 处的极限为2,但 \(f(1)\) 未定义,因此 \(f(x)\) 在 \(x = 1\) 处不连续。
#### 第二章:导数与微分练习题1:求下列函数的导数:1. \(f(x) = x^3 - 2x\)2. \(g(x) = \sin x + e^x\)答案:1. \(f'(x) = 3x^2 - 2\)2. \(g'(x) = \cos x + e^x\)练习题2:利用导数求函数 \(h(x) = x^2\) 在 \(x = 2\) 处的切线方程。
答案:首先求 \(h'(x) = 2x\),然后计算 \(h'(2) = 4\),切点坐标为\((2, 4)\)。
切线方程为 \(y - 4 = 4(x - 2)\),简化得 \(y = 4x - 4\)。
#### 第三章:积分学练习题1:计算下列不定积分:1. \(\int x^2 dx\)2. \(\int \frac{1}{x} dx\)答案:1. \(\int x^2 dx = \frac{x^3}{3} + C\)2. \(\int \frac{1}{x} dx = \ln |x| + C\)练习题2:计算定积分 \(\int_{0}^{1} x^2 dx\)。
高等数学教材习题答案
高等数学教材习题答案第一章:函数与极限1. 习题一答案:1)a) f(-3) = -2b) f(2) = 4c) f(0) = 12)a) g(-1) = -1b) g(0) = 0c) g(2) = 93) f(g(1)) = f(1) = 32. 习题二答案:a) 导数不存在的点:x = -1, 1, 2b) 间断点:x = 0, 1c) f(x)在(-∞, -1) ∪ (-1, 0) ∪ (0,1) ∪ (1, 2) ∪ (2, +∞)上连续3. 习题三答案:a) 极限存在,为1b) 极限存在,为2c) 极限不存在第二章:导数与微分1. 习题一答案:a) f'(x) = 3x^2 + 4x + 5b) f'(x) = 4x^3 + 2x^2 - 8xc) f'(x) = -cos(x)2. 习题二答案:a) f'(x) = -2sin(2x)b) f'(x) = -4x^-5 + 3x^-4c) f'(x) = -5e^(-5x)3. 习题三答案:a) f'(x) = 2x + 1b) f'(x) = 4x^3 + 3x^2 - 2xc) f'(x) = 2cos(x)第三章:微分中值定理与导数应用1. 习题一答案:a) -∞ < x < -1 或者 -1 < x < 1 或者 x > 1b) -∞ < x < 0 或者 x > 0c) -∞ < x < 1 或者 x > 12. 习题二答案:a) 在c = 2的时候,函数在区间[-1, 1]上满足罗尔定理的条件b) 在c = -1的时候,函数在区间[-2, 2]上满足罗尔定理的条件c) 在c = 1的时候,函数在区间[-5, 5]上满足罗尔定理的条件3. 习题三答案:a) 在x = 2附近存在驻点b) 在x = -1附近存在极小值点c) 在x = 0附近存在极大值点第四章:不定积分1. 习题一答案:a) F(x) = x^3 + 4x^2 + 3x + 1 + Cb) F(x) = 4x^3 + 3x^2 + 2x + 1 + Cc) F(x) = -3x + cos(x) + C2. 习题二答案:a) F(x) = -cos(2x) + Cb) F(x) = -6x^-4 + x^-3 + 2x + Cc) F(x) = e^(-5x) + C3. 习题三答案:a) F(x) = x^2 + x + 1 + Cb) F(x) = x^4 + x^3 - x^2 + Cc) F(x) = 2sin(x) + C注意:以上只是题目习题的答案示例,实际上数学题目答案有多种可能性,需要根据具体问题进行求解验证。
成人高考《高等数学一》章节练习题答案及解析
成人高考《高等数学一》章节练习题答案及解析- 1 -2021 年专升本数学一习题第一章极限、连续1.已知f(x) = � 3x + 2,x ≥0x 2 −1,x < 0。
求f(0)=2. limx→∞sinxx=3. limx→2 (x −2)sin1x−2=4. limx→0xln(3x+1)=5. limx→0sin4xx=6. limx→∞�1 +5x �x =7. limx→0tan2x2x=8. limx→0 (1 −x)1x =9. limx→0 (1 + x)−1x =10. limx→∞�1 +1x �x+2 =11. limx→0x ⋅tanx= 12. limx→0sinxsin2x =13. limx→0ln (2x+1)sin3x14. limx→1x−1x 2 −1=15. limx→4x−4√x+5−3=- 2 -- 2 -16. limx→∞2x 3 +3x 2 +5 7x 3 +4x 2 −1 = 17.设f(x) = �x −1,x < 0 0,x = 0x + 1,x > 0,求limx→0f(x)18. limx→2x 2 +x−6x 2 −4=19. limx→0x−sinxx 2 +x=20.设函数f(x) = �√x3,x < 0,x 2 + 1,x ≥0, 则在点x=0 处是否连续。
21.函数f(x) =x 2 +1x−3的间断点是()。
22.设函数f(x) = �e x,x < 0x + a,x ≥0 在x=0 处连续,则a=()第二章一元函数微分学1.已知f ′(2) = 2,求limΔx→0f(2−3Δx)−f(2)Δx=2.已知f ′(4) = 1,求limΔx→0f(4+2Δx)−f(4)Δx=3x + lnx在点(1,0)处切线斜率K。
4lnx在点(1,0)处的切线方程和法线方程。
5x 2 上的一点,使该点处的切线与直线y = 2x + 2平行。
高等数学复习题(含答案)
高等数学复习题与答案解析一、 一元函数微积分概要 (一)函数、极限与连续1.求下列函数的定义域: (1) y =216x -+x sin ln ,(2) y =)12arcsin(312-+-xx .解 (1) 由所给函数知,要使函数y 有定义,必须满足两种情况,偶次根式的被开方式大于等于零或对数函数符号内的式子为正,可建立不等式组,并求出联立不等式组的解.即⎩⎨⎧>≥-,0sin ,0162x x 推得⎩⎨⎧⋅⋅⋅±±=+<<≤≤-2,1,0π)12(π244n n x n x 这两个不等式的公共解为 π4-<≤-x 与π0<<x所以函数的定义域为)π,4[-- )π,0(.(2) 由所给函数知,要使函数有定义,必须分母不为零且偶次根式的被开方式非负;反正弦函数符号内的式子绝对值小于等于1.可建立不等式组,并求出联立不等式组的解.即⎪⎪⎩⎪⎪⎨⎧<->-≠-,112,03,032xx x 推得⎩⎨⎧≤≤<<-,40,33x x 即 30<≤x , 因此,所给函数的定义域为 )3,0[.2.设)(x f 的定义域为)1,0(,求)(tan x f 的定义域. 解:令x u tan =, 则)(u f 的定义域为)1,0(∈u∴)1,0(tan ∈x , ∴x ∈(k π, k π+4π), k ∈Z ,∴ )(tan x f 的定义域为 x ∈(k π, k π+4π), k ∈Z .3.设)(x f =x-11,求)]([x f f ,{})]([x f f f .解:)]([x f f =)(11x f -=x--1111=x 11- (x ≠1,0),{})]([x f f f =)]([11x f f -=)11(11x--= x (x ≠0,1).4.求下列极限:(1)123lim 21-+-→x x x x , (2)652134lim 2434-++-∞→x x x x x ,解:原式=1)1)(2(lim 1---→x x x x 解: 原式=424652134limxx x x x -++-∞→ =)2(lim 1-→x x =2.(抓大头)= 1-.(恒等变换之后“能代就代”)(3)xx x -+-→222lim 2, (4)330sin tan lim x x x →,解:原式=)22)(2()22)(22(lim2++-+++-→x x x x x 解:0→x 时33~tan x x ,=221lim2++→x x 33~sin x x ,=41. (恒等变换之后“能代就代”) ∴原式=330lim x x x →=1lim 0→x =1.(等价)(5))100sin (lim +∞→x x x , (6) 2121lim()11x x x→--- ,解:原式=100lim sin lim∞→∞→+x x x x解: 原式=2211212(1)lim()lim 111x x x x x x→→-+-=--- =0 + 100= 100 (无穷小的性质) 11(1)11limlim (1)(1)12x x x x x x →→-===-++.(7)215lim+-+∞→x x x .解 : 原式=52115lim=+-+∞→xx x .(抓大头) (8)11lim 21-+→x x x .解:因为0)1(lim 1=-→x x 而0)1(lim 21≠+→x x ,求该式的极限需用无穷小与无穷大关系定理解决.因为011lim 21=+-→x x x ,所以当1→x 时,112+-x x 是无穷小量,因而它的倒数是无穷大量,即 ∞=-+→11lim21x x x . (9)limx解:不能直接运用极限运算法则,因为当x →+∞时分子,极限不存在,但sin x 是有界函数,即sin 1x ≤而 0111lim1lim33=+=++∞→+∞→x x xx x x ,因此当+∞→x 时,31xx +为无穷小量.根据有界函数与无穷小乘积仍为无穷小定理,即得l i 0x =. (10)203cos cos limxxx x -→ . 解:分子先用和差化积公式变形,然后再用重要极限公式求极限原式=202sin sin 2limx x x x →=441)22sin 4(lim sin lim 0=⨯=⋅⋅∞→→x x x x x x .(也可用洛必达法则) (11)xx x)11(lim 2-∞→.解一 原式=10])11[(lim )11(lim )11()11(lim --∞→→∞→-⋅+=-+x x x x x x x xx x x =1ee 1=-,解二 原式=)1()(2])11[(lim 2x x x x--∞→-=1e 0=. (12)30tan sin limx x xx→-. 解 :x x x x 30sin sin tan lim -→=xx x x x cos )cos 1(sin lim 30-→ =2202sin 2limx x x → =21 ( 222~2sin ,0⎪⎭⎫⎝⎛→x x x ) .(等价替换) 5.求下列极限(1)201cot limxx x x -→ (2))e e ln()3ln(cos lim 33--+→x x x x (3))]1ln(11[lim 20x x x x +-→ (4))ln (lim 0x x n x ⋅+→ (5) xxx cos 1lim++∞→解 :(1)由于0→x 时,1tan cot →=x x x x ,故原极限为0型,用洛必达法则 所以 xx xx x x x x x x sin sin cos lim 1cot lim 2020-=-→→30sin cos limx xx x x -=→ (分母等价无穷小代换)01sin lim 3x x x→-=31-=.(2) 此极限为∞∞,可直接应用洛必达法则 所以 )e e ln()3ln(cos lim 33--+→x x x x =)e e ln()3ln(lim cos lim 333--⋅++→→x x x x x x x e lim 3cos e133+→⋅⋅=3cos = . (3) 所求极限为∞-∞型 ,不能直接用洛必达法则,通分后可变成00或∞∞型.)]1ln(11[lim 20x x x x +-→xx xx x x x 2111lim )1ln(lim 020+-=+-=→→ 21)1(21lim )1(211lim00=+=+-+=→→x x x x x x .(4)所求极限为∞⋅0型,得nx nx xx x x 10ln lim ln lim -→→++=⋅ (∞∞型) =1111lim --→-+n x x nx =.01lim lim 0110=-=-++→+→nxn xnx x nx (5)此极限为 ∞∞型,用洛必达法则,得 1sin 1limcos lim xx x x x x -=++∞→+∞→不存在,因此洛必达法则失效! 但 101c o s 1lim 11cos 11lim cos lim =+=+=+=++∞→+∞→+∞→x xxx x x x x x x . 6.求下列函数的极限:(1)42lim 22--→x x x , (2)()⎪⎩⎪⎨⎧++=,1,1sin 2xa x x x f ,0,0><x x 当a 为何值时,)(x f 在0=x 的极限存在. 解: (1)41)2)(2(2lim 42lim 222-=+--=----→→x x x x x x x ,41)2)(2(2lim 42lim 222=+--=--++→→x x x x x x x ,因为左极限不等于右极限,所以极限不存在.(2)由于函数在分段点0=x 处,两边的表达式不同,因此一般要考虑在分段点0=x 处的左极限与右极限.于是,有a a x x a x x x f x x x x =+=+=----→→→→000lim )1sin (lim )1sin(lim )(lim ,1)1(lim )(lim 2=+=++→→x x f x x ,为使)(lim 0x f x →存在,必须有)(lim 0x f x +→=)(lim 0x f x -→,因此 ,当a =1 时, )(lim 0x f x →存在且 )(lim 0x f x →=1.7.讨论函数 ⎪⎩⎪⎨⎧=,1sin ,)(x x xx f0>≤x x , 在点0=x 处的连续性.解:由于函数在分段点0=x 处两边的表达式不同,因此,一般要考虑在分段点0=x 处的左极限与右极限. 因而有01sinlim )(lim ,0lim )(lim 0====++--→→→→xx x f x x f x x x x , 而,0)0(=f 即0)0()(lim )(lim 00===+-→→f x f x f x x ,由函数在一点连续的充要条件知)(x f 在0=x 处连续.8. 求函数xx x x f )1(1)(2--=的间断点,并判断其类型:解:由初等函数在其定义区间上连续知)(x f 的间断点为1,0==x x .21lim)(lim 11=+=→→xx x f x x 而)(x f 在1=x 处无定义,故1=x 为其可去间断点.又∞=+=→x x x f x 1lim )(0 ∴0=x 为)(x f 的无穷间断点.综上得1=x 为)(x f 的可去间断点, 0=x 为)(x f 的无穷间断点.(二)一元函数微分学1.判断:(1)若曲线y =)(x f 处处有切线,则y =)(x f 必处处可导. 答:命题错误. 如:x y 22=处处有切线,但在0=x 处不可导. (2)若A ax a f x f ax =--→)()(lim(A 为常数),试判断下列命题是否正确.①)(x f 在点a x = 处可导, ②)(x f 在点a x = 处连续, ③)()(a f x f -= )()(a x o a x A -+-. 答:命题①、②、③全正确.(3)若)(x f ,)(x g 在点0x 处都不可导,则)()(x g x f +点0x 处也一定不可导. 答:命题不成立.如:)(x f =⎩⎨⎧>≤,0,,0,0x x x )(x g =⎩⎨⎧>≤,0,0,0,x x x)(x f ,)(x g 在x = 0 处均不可导,但其和函数)(x f +)(x g = x 在x = 0 处可导.(4)若)(x f 在点0x 处可导,)(x g 在点0x 处不可导,则)(x f +)(x g 在点0x 处一定不可导. 答:命题成立.原因:若)(x f +)(x g 在0x 处可导,由)(x f 在0x 处点可导知)(x g =[)(x f +)(x g ])(x f -在0x 点处也可导,矛盾.(5))('0x f 与)]'([0x f 有区别. 答:命题成立.因为)('0x f 表示0)(x x x f =在处的导数; )]'([0x f 表示对0)(x x x f =在处的函数值求导,且结果为0.(6)设)(x f y =在点0x 的某邻域有定义,且-∆+)(0x x f )(0x f =2)(x b x a ∆+∆,其中b a ,为常数,下列命题哪个正确?①()x f 在点0x 处可导,且()a x f ='0,②()x f 在点0x 处可微,且()x a x f x x d |d 0==, ③()()x a x f x x f ∆+≈∆+00 ( ||x ∆很小时). 答:①、②、③三个命题全正确.2.已知x x cos )'(sin =,利用导数定义求极限xx x 1)2πsin(lim 0-+→.解:xx x 1)2πsin(lim 0-+→=xx x 2sin)2πsin(lim0π-+→ =2π|)'(sin =x x = 2πcos=0. 3.求 ()⎩⎨⎧+=,,xx x f 1ln )(0<≥x x ,的导数.解: 当0>x 时,xx f +='11)( , 当0<x 时,1)(='x f ,当0=x 时,xf x f x f x f f x x )0()(lim 0)0()(lim)0(00-=--='→→,所以 10lim )0(0=-='-→-xx f x , 1e ln )1ln(lim 0)1ln(lim )0(100==+=-+='++→→+x x x x xx f ,因此 1)0(='f ,于是 ⎪⎩⎪⎨⎧+=',1,11)(xx f.0,0≤>x x4.设))((),1ln()(x f f y x x f =+=,求dxdy 解:)]1ln(1ln[))((x x f f y ++==,)]'1ln(1[)1ln(11d d x x x y ++⋅++=∴)1)](1ln(1[1x x +++=.5.已知arctanxy=求y ''. 解:两端对x 求导,得)(1)()(1122222'++='⋅+y x y x y xyx ,222222222221yx y y x yx yy x y y x y +'⋅+⋅+='-⋅+,整理得 x y y x y -='+)( ,故 xy xy y +-=', 上式两端再对x 求导,得=2)(22x y yy x +-', 将 xy xy y +-='代入上式,得 2)(22x y yxy xy x y +-+-⋅=''322)(2222y x xy y x xy +---=322)()(2x y y x ++-=. 6.求y = 323)4()3)(2)(1(⎥⎦⎤⎢⎣⎡+⋅+++x x x x x 的导数x yd d 解:两边取对数:y ln =)]4ln(ln 3)3ln()2ln()1[ln(32+--+++++x x x x x , 两边关于x 求导:]413312111[32'1+--+++++=⋅x x x x x y y , ∴)413312111(32d d +--+++++=x x x x x y x y . 7.设xx x f e )(=,求)('x f .解:令xx y e =, 两边取对数得:x y xln e ln =, 两边关于x 求导数得:即 )e ln e ('e xx x y xxx+=. 8.设,sin ),(2x u u f y ==求x y d d 和22d d xy.解:xy d d =2cos 2)(x x u f ⋅⋅', 22d d xy =)sin 4cos 2)(()(cos 4)(222222x x x u f x x u f -'+⋅''. 9.x x y e 4+=, 求y)4(.解:xx y e 43+=', xx y e 122+='',xx y e 24+=''', x y e 24)4(+=.10.设cos sin x t t y t=-⎧⎨=⎩,, 求 22d d x y . 解:d (sin )cos d 1sin (cos )y t tx tt t '=='+- , 222sin (1sin )cos 11(1sin )1sin (1sin )t t t t t t -+--=⋅=+++. 11.求曲线⎩⎨⎧==,,3t y t x 在点(1,1)处切线的斜率. 解:由题意知:⎩⎨⎧==,1,13t t 1=⇒t ,∴33)()(d d 12131==''====t t t t t t xy ,∴曲线在点(1,1)处切线的斜率为312. 求函数xx y tan ln e=的微分.解一 用微分的定义x x f y d )(d '=求微分, 有x x xx d )2sin 21(e tan ln +=. 解二 利用一阶微分形式不变性和微分运算法则求微分,得x xxx d )2sin 21(e tan ln +=. 13.试证当1≠x 时,x xe e >.证明:令x x f xe e )(-=,易见()f x 在),(+∞-∞内连续,且0)1(=f e e )(-='xx f .当1<x 时,e e )(-='xx f 0<可知()f x 为]1,(-∞上的严格单调减少函数,即 当1>x 时,e e )(-='x x f 0>,可知()f x 为),1[+∞上的严格单调增加函数, 即()(1)0f x f >=.故对任意 ,1≠x 有()0,f x >即 .0e e >-x xx xe e >.14.求函数344x x y -=的单调性与极值. 解:函数的定义域为),(+∞-∞.)3(3223-=-='x x x x y , 令 ,0='y 驻点 3,021==x x 列表由上表知,单调减区间为)3,(-∞,单调增区间为),3(+∞,极小值 4)3(-=y 求函数的极值也可以用二阶导数来判别,此例中0,6302=''-=''=x y x x y 不能确定0=x 处是否取极值,,093>=''=x y 得427)3(-=y 是极小值. 15.求3)(x x f =+23x 在闭区间[]5,5-上的极大值与极小值,最大值与最小值. 解:x x x f 63)(2+=', 令0)(='x f , 得2,021-==x x ,66)(+=''x x f , 06)0(>=''f , 06)2(<-=-''f ,∴)(x f 的极大值为=-)2(f 4,极小值为0)0(=f . ∵50)5(-=-f , 200)5(=f .∴ 比较)5(),0(),2(),5(f f f f --的大小可知:)(x f 最大值为200, 最小值为50-.16.求曲线32310510x x y ++=的凹凸区间与拐点. 解:函数的定义域为()+∞∞-,,21010x x y +=', x y 2010+='',令0=''y , 得21-=x , 用21-=x 把()+∞∞-,分成)21,(--∞,),21(+∞-两部分. 当∈x )21,(--∞时,0<''y , 当∈x ),21(+∞-时,0>''y , ∴曲线的凹区间为),,21(+∞-凸区间为),21,(--∞ 拐点为)665,21(-.17.求函数)1ln(2x y +=的凹向及拐点. 解:函数的定义域 ),(+∞-∞,,122x x y +=' 222222)1()1(2)1(22)1(2x x x x x x y +-=+⋅-+='', 令 ,0=''y 得1±=y , 列表知,上凹区间(1,1)-,下凹区由此可(,1)(1,)-∞-+∞,曲线的间拐点是)2ln ,1(±.的渐近线.18.求下列曲线的渐近线(1)xxy ln = ,(2)1222-+-=x x x y ,(3)()()213--+=x x x y .解 (1)所给函数的定义域为),0(+∞.由于 011lim ln lim ==+∞→+∞→x x xx x ,可知 0=y 为 所给曲线xxy ln =的水平渐近线.由于 -∞=+→xxx ln lim 0,可知 0=x 为曲线xxy ln =的铅直渐近线.(2) 所给函数的定义域)1,(-∞,),1(∞+.由于 -∞=-+-=--→→122lim )(lim 211x x x x f x x , +∞=-+-=++→→122lim )(lim 211x x x x f x x , 可知 1=x 为所给曲线的铅直渐近线(在1=x 的两侧()f x 的趋向不同).又 a x x x x x x f x x ==-+-=∞→∞→1)1(22lim )(lim2, []b x x x x x x x ax x f x x x =-=-+-=--+-=-∞→∞→∞→112lim ])1(22[lim )(lim 2, 所以 1-=x y 是曲线的一条斜渐近线.(3)()()∞=--+→213lim1x x x x , 故1=x 为曲线的铅直渐近线,()()∞=--+→213lim2x x x x , 故2=x 为曲线的铅直渐近线,()()2133lim lim 0121211x x x x x x x x x →∞→∞++==--⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭, 故0=y 为曲线的水平渐近线,∴ 曲线的渐近线为:2,1,0===x x y .19.求解下列各题:(1)设某产品的总成本函数和总收入函数分别为x x C 23)(+=, 15)(+=x xx R , 其中x 为该产品的销售量,求该产品的边际成本、边际收入和边际利润.解:边际成本C M =x x C 1)('=边际收入R M =2)1(5)('+=x x R边际利润xx M M q L C R 1)1(5)('2-+=-=. (2)设p 为某产品的价格,x 为产品的需求量,且有801.0=+x p , 问p 为何值时,需求弹性大或需求弹性小.解:由801.0=+x p 得10d d -=px, 所以需求价格弹性80)10(1.080-=-⨯-=p p p p Ep Ex , 故当80-p p < 1-, 即40<p <80时, 需求弹性大; 当1-<80-p p<0, 即0<p <40时,需求弹性小.(三)一元函数积分学1. 在不定积分的性质x x f k x x kf d )(d )(⎰=⎰中,为何要求0≠k ?答:因为0=k 时,C x x x kf =⎰=⎰d 0d )((任意常数),而不是0. 2. 思考下列问题:(1) 若C x x x f x++=⎰sin 2d )(,则)(x f 为何? 答:x x x f x f xcos 2ln 2)d )(()(+='⎰=. (2) 若)(x f 的一个原函数为3x ,问)(x f 为何?答:233)()(x x x f ='=(3)若)(x f 的一个原函数的x cos ,则dx x f )('⎰为何?答:C x C x f x x f x x x f +-=+='⎰-='=sin )(d )(,sin )(cos )(. 3. 计算下列积分:(1))sin d(sin 5x x ⎰, (2)x x d cos 3⎰, (3)⎰+x xx x d )sin (,(4)x xe xd 2⎰, (5)⎰-21d xx x , (6)⎰-41d xx x ,(7)⎰x xx d 2ln , (8)x x d )32(2+⎰, (9)⎰-⋅dx x x 211arcsin 1, (10)⎰+x x x d arctan )1(12, (11)⎰+22d x x, (12)⎰-24d x x . 解:(1)C xx x +=⎰6sin )sin d(sin 65. (2)x x x x x d cos )sin 1(d cos 23-⎰=⎰ =)sin d()sin 1(2x x -⎰ =)sin d(sin )sin d(2x x x ⎰-⎰=C xx +-3sin sin 3. (3)x x x x x xx x d sin 2d d )sin (⎰+⎰=+⎰=C x x +-cos 222. (4)C x x x x x x +=⎰=⎰222e 21)(d e 21d e 2. (5)C x x x x x x+--=--⎰-=--⎰2221221)1(d )1(21d 1.(6)C x x x x xx +=-=-⎰⎰22224arcsin 21)(1)(d 211d .(7(8)C x x x x x ++=++⎰=+⎰322)32(6)32(d )32(2d )32(.(9)C x x x x x x +==-⋅⎰⎰|arcsin |ln )arcsin d(arcsin 1d 11arcsin 12. (10)C x x x x x x +==+⎰⎰|arctan |ln )arctan d(arctan 1d arctan )1(12.(11)C x x x x x x x +=+=+=+⎰⎰⎰22arctan 22)2(d )2(1121)2(1d 212d 222. (12)⎰2-4d x x =⎰2)2(-12d x x=)2(d )2(-112x x⎰=C x+2arcsin . 4. 计算下列不定积分:(1)⎰++x xd 111,(2)x x d 162-⎰,(3)⎰+232)4(d x x ,(4)⎰-x xx d 122.解:(1) 令t x =+1, 则 =x 12-t , t t x d 2d =,于是原式=⎰+t t t d 12=⎰+-+t t t d 1112=]1d d [2⎰⎰+-t tt =C t t ++-1ln 22=C x x +++-+11ln 212. (2)令)2π2π(sin 4<<-=t t x ,则t x cos 4162=-,t t x d cos 4d =, 于是 t t t t t x x d )2cos 1(8d cos 4cos 4d 162+⎰=⋅⎰=-⎰ =C t t ++2sin 48.由右图所示的直角三角形,得81641642cos sin 22sin 22x x x x t t t -=-⋅⋅==,故 C xx x dx x +-+⋅=-⎰2164arcsin81622. (2)令)2π2π(tan 2<<-=t t x ,则t t x t x d sec 2d ,sec 8)4(23232==+,于是C t t t t t tx x +==⋅=+⎰⎰⎰2sin d 2cos d sec 2sec 41)4(d 23232. 由右图所示的直角三角形,得24sin xx t +=故C xx x x ++=+⎰223242)4(d .(4) 设 t x sin = ,t x cos 12=-,t t x d cos d = , 于是原式=⎰t t tt d cos cos sin 2=⎰t t d sin 2=⎰-t t d 22cos 1 =21⎰⎰-)2(d 2cos 41d t t t ==+-C t t 2sin 4121C t t t +-cos sin 2121=C x x x +--212arcsin 21.5.计算下列积分:(1)⎰x x d 2ln , (2)⎰x x d 2arctan , (3) ⎰x x xd e 4,(4)⎰x x xd 4sine 5, (5) ⎰x x x d 100sin , (6) ⎰x x x d 2arctan .解:(1))2ln d(2ln d 2ln x x x x x x ⎰-=⎰=x xx x x d 222ln ⋅⎰- =C x x x +-2ln .(2)⎰x x d 2arctan =)d(arctan22arctan x x x x ⎰- =x x x x x d )2(122arctan 2+⋅⎰- =⎰+-2241)(d 2arctan x x x x=)41(d 411412arctan 22x xx x ++-⎰ =C x x x ++-)41ln(412arctan 2.(3)x x x x x x x xx d e 41e 41de 41d e 4444⎰-==⎰⎰=C x xx +-44e 161e 41. (4)5555e 1e e sin 4d sin 4d()e sin 4d(sin 4)555x xxx x x x x x ⎰=⎰=-⎰ =x x x x xd 4cose 544sin e5155⎰-1=5e d 4cos 544sin e 5155xx x x ⎰-=⎥⎦⎤⎢⎣⎡--⎰)4cos d(5e 4cos 5e 544sin e 51555x x x xx x=x x x x x x xd 4sine 25164cos e 2544sin e 51555⎰--, 移项合并,得C x x x x xx+-=⎰)4cos 44sin 5(e 411d 4sin e55. (5)⎰---=-⎰=⎰x xx x x x x x x d )100100cos (100100cos )100100cos (d d 100sin=C xx x +-100100cos 10000100sin .(6)⎰x x x d 2arctan =⎰)2d(2arctan 2x x=⎰-)2(arctan d 22arctan 222x x x x =x x x x x d )2(1222arctan 2222⎰+⋅- =x x x x d )4111(412arctan 222⎰+-- =C x x x x ++-2arctan 8142arctan 22. 6.计算 (1)x xxd e )1(2⎰+ , (2) 3s e c d x x ⎰.解:(1) 选 12+=x u ,=v d x e x d , =v xe , x x u d 2d =, 于是原式 )1(2+=x x e ⎰-x 2xe x d ,对于⎰x x e x d 再使用分部积分法,选x u =, =v d x e x d , 则 x u d d =,=v xe ,从而⎰x xex d =x x e ⎰-x x d e =x x e C x +-e .原式=x e =+--)e e (21C x x x )12(2++x x C x+e (12C C =), 为了简便起见,所设 x u =,=v xe 等过程不必写出来,其解题步骤如下:⎰x xedx =⎰x d x e =x C x x x x x x +-=-⎰e e d e e .(2)3sec d x x ⎰=)(tan d sec x x ⎰=x x tan sec ⎰-)(sec d tan x x=x x tan sec ⎰-x x x d sec tan 2=sec tan x x -x x x d sec )1(sec 2-⎰=sec tan x x -⎰x x d sec 3+⎰x x d sec=sec tan x x -⎰x x d sec 3+x x tan sec ln +, 式中出现了“循环”,即再出现了⎰x x d sec 3移至左端,整理得3sec d x x ⎰=21[x x tan sec +x x tan sec ln +]+C . 7. 利用定积分的估值公式,估计定积分⎰-+-1134)524(x x x d 的值.解:先求524)(34+-=x x x f 在[]1,1-上的最值,由0616)(23=-='x x x f , 得0=x 或83=x . 比较 7)1(,102427)83(,5)0(,11)1(=-===-f f f f 的大小,知 11,102427max min =-=f f , 由定积分的估值公式,得[])1(1d )524()]1(1[max 1134min --⋅≤+-≤--⋅⎰-f x x x f ,即 22d )524(512271134≤+-≤-⎰-x x x .8. 求函数21)(x x f -=在闭区间[-1,1]上的平均值.解:平均值⎰-=⋅⋅=---=11224π21π21d 1)1(11x x μ. 9. 若⎰=2d sin )(2x xt t x f ,则)(x f '=?解:)(x f '=242222sin sin 2sin )sin()(x x x x x x -=-'.10.已知 ⎰+=t t xxx F d 1sin )(2 , 求 )(x F '.解:)(x F '=)2(12x x +-+x x cos sin 1⋅+=++-212x x x x cos sin 1⋅+.11. 求极限x tt x x πcos 1d πsin lim11+⎰→.解:此极限是“0”型未定型,由洛必达法则,得xtt x x πcos 1d πsin lim11+⎰→=)πcos 1()d πsin (lim11'+'⎰→x t t xx =π1)π1(lim πsin ππsin lim11-=-=-→→x x x x12.计算下列定积分(1)⎰-20d |1|x x , (2)⎰-122d ||x x x , (3)⎰π20d |sin |x x .解:(1)⎰-20d |1|x x =⎰-10d )1(x x +⎰-21d )1(x x=212122)1(2)1(-+--x x =2121+=1. (2)⎰-122d ||x x x =⎰--023d )(x x +⎰13d x x=10402444x x +--=4+41741=. (3)⎰π20d |sin |x x =⎰πd sin x x +⎰-π2πd )sin (x x=π2ππ0cos )cos (x x +-=2+2=4.13.计算下列定积分(1)⎰--2π2π3d cos cos x x x ,(2)⎰--112d 1x x .解:(1)x x x x x x d sin )(cos 2d cos cos 212π2π2π03⎰⎰-=-=34cos 34)cos d()(cos 22π0232π021=-=-⎰x x x .(2)⎰⎰⎰---=-=-112π2π2π2π222d )(cos )sin d()(sin 1d 1t t t t x x=2=+=+=⎰⎰2π02π02π02)2sin 21(d 22cos 12d )(cos t t t t t t 2π.14.计算 (1)⎰+-4d 11x xx, (2)⎰4π4d tan sec x x x .解:(1)利用换元积分法,注意在换元时必须同时换限.令 x t =,x 2t = ,t t x d 2d = ,当0=x 时,0=t ,当4=x 时,2=t ,于是⎰+-4d 11x xx=⎰+-20d 211t t t t =⎰+--20d ]1424[t t t(2)⎰4π04d tan sec x x x =⎰4π03)(sec d sec x x43411sec 414π04=-==x .15. 计算下列定积分:(1)x x x d e )15(405⎰+, (2)x x d )12ln(e21⎰+,(3)x x x d πcos e 10π⎰, (4)x x x x x d )e 3(133⎰++.解:(1)x x xd e )15(405⎰+=5e d )15(540x x ⎰+=⎰+-+10515)15(d 5e )15(5e x x xx =5155e 5e51e 6=--x .(2)x x d )12ln(e21⎰+=()())12ln d(12ln e21e21+-+⎰x x x x()1e 23ln 231e 4ln )21e 2(+--++=. (3) x x x d πcos e 10π⎰=ππsin d e 10πx x ⎰ =0x x x d πsin e 10π⎰-=)ππcos d(e 1πxx --⎰ =-+-)1e (π1πx x x d πcos e 10π⎰移项合并得x x x d πcos e 10π⎰)1e (π21π+-=.(4)x x x xxd )e 3(1033⎰++)e 313ln 34(d 3104xx x x ++=⎰ =4514e 923ln 23ln 3)e 913ln 320(e 313ln 3413213253++-=++-++x x x 16.计算(1)⎰1d arctan x x , (2)x x x d ln 2e e1⎰.解:(1)⎰1d arctan x x =10arctan x x⎰+-102d 1x x x=102)1ln(214πx +- =2ln 214-π .(2) 由于在[1,e1]上0ln ≤x ;在[2e ,1]上0ln ≥x ,所以x x x d ln 2e e1⎰=x x x d )ln (1e1⎰-+x x x d ln 2e 1⎰=)2(d ln 21e1x x ⎰-+)2d(ln 2e 12x x ⎰=[-x x ln 22+42x ]1e 1+[x x ln 22-42x ]2e 1=41-(412e 1+212e 1)+(4e -414e +41) =21-432e 1+434e .17.判别下列广义积分的敛散性,如果收敛计算其值 . (1)⎰∞++022d )1(x x x, (2)⎰∞+02d 1x x , (3)x xd e 1100⎰∞+-, (4)⎰∞++02100d x x . 解:(1) 因为积分区间为无穷区间,所以原式=+∞→b lim ⎰+bx x x 022d )1(=+∞→b lim ⎰++b x x 0222)1()1(d 21=bb x 02])1(21[lim +-+∞→ =]21)1(21[lim 2++-+∞→b b =21,故所给广义积分收敛,且其值为21. (2)⎰∞+02d 1xx =+∞=-=-+∞→→+∞+x x x x x 1lim 1lim )1(00, ∴⎰∞+02d 1x x发散. (3)x xd e 1100⎰∞+-=1001001100e 1001)100e (0100e --+∞-=--=-x .(4)⎰∞++02100d x x=20π10arctan 1010=+∞x . 18.求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积.解:如图,由⎪⎩⎪⎨⎧-==,)2(,22x y x y 得两曲线交点(1,1). 解一 取x 为积分变量,]2,0[∈x , 所求面积323)2(3d )2(d 213103212102=-+=-+=⎰⎰x xx x x x A . 解二 取y 为积分变量,y 的变化区间为[0,1],32)d y -y -2(1==⎰y A . 显然,解法二优于解法一.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 19. 求下列曲线所围成的图形的面积:抛物线22xy =与直线42=-y x . 解:先画图,如图所示,并由方程⎪⎩⎪⎨⎧=-=4222y x x y ,求出交点为(2,1-),(8,2). 解一 取y 为积分变量,y 的变化区间为[1-,2], 在区间[1-,2]上任取一子区间[y ,y +y d ], 则面积微元 A d =y y y d )242(2-+, 则所求面积为A =⎰--+212d )242(y y y = (32324y y y -+)21-=9.解二 取x 为积分变量,x 的变化区间 为[0,8],由图知,若在此区间上任取子区间, 需分成[0,2],[2,8]两部分完成.在区间[0,2]上任取一子区间[x ,x +x d ], 则面积微元 A d 1=x xd ]22[, 在区间[2,8]上任取一子区间[x ,x +x d ], 则面积微元 A d 2=[)4(212--x x ]x d , 于是得A =A 1+A 2A =⎰2d 22x x+A x xx d )222(82+-⎰=23322x 20+[23322x 224x x -+]82=9 .显然,解法一优于解法二.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 20.用定积分求由0,1,0,12===+=x x y x y 所围平面图形绕x 轴旋转一周所得旋转体的体积. 解:如右图,所求体积y=135)325(πx x x ++=π1528. 二、 微分方程1. 验证xx C C x C y --+=e e 21为微分方程0'2''=++y y y 的解,并说明是该方程的通解. 证明: xx C C x C y --+=e e 21,x x C x C C C y ----=∴e e )('121, x x C x C C C y --+-=e e )2(''112,于是0'2''=++C C C y y y ,故C y 是0'2''=++y y y 的解.x x -e 与x -e 线性无关,∴0'2''=++y y y 中的1C 与2C 相互独立,即C y 中含有与方程0'2''=++y y y 阶数相同(个数均为2)的独立任意常数,故C y 是该方程的通解. 2. 用分离变量法求解下列微分方程:(1)22d d y x x y =, (2)21d d x y x y -=, (3)y x x x y )1(d d 2++=,且e )0(=y . 解:(1)分离变量得x x yy d d 22=,(0≠y ) 两边积分得⎰⎰=x x y yd d 122 , 求积分得 3313Cx y +=-, 从而通解为Cx y +-=33及验证0=y 也是方程的解.(特别注意,此解不能并入通解)(2)分离变量得21d d xx y y -=,(0≠y )两边积分得⎰⎰-=x x y y d 11d 12,求积分得 1arcsin ||ln C x y +=, 即 )e (e ee 11arcsin arcsin C x xCC C y ±==±=,从而通解为 xC y arcsin e =,验证0=y 也是方程的解.(3)分离变量得x x x yyd )1(d 2++=,(0≠y ) 两边积分得⎰⎰++=x x x y y d )1(d 12求积分得 13232||ln C x x x y +++=, 即 )e (eee 1332232132C x x x C C C y x x x ±==±=++++,从而通解为3232ex x x C y ++=,验证0=y 也是方程的解.由e )0(=y ,得e =C , 故特解为32132e x x x y +++=.3.求解下列一阶线性微分方程(1)x b ay y sin '=+(其中b a ,为常数), (2)21d d y x x y +=. 解:(1)因a x P =)(, x b x Q s i n )(=, 故通解为)]cos sin (e 1[e 2x x a a b C axax -++=-. (2)方程变形为2d d y x yx=-, 这是x 关于y 的一阶线性微分方程,其中2)(,1)(y y Q y P =-=,通解为:)22(e 2++-=y y C y .以上是用一阶线性微分方程的通解公式求解,要熟练掌握常数变易法! 4.求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y的特解.解:这是可以分离变量的微分方程,将方程分离变量,有x x y y y d 11d 12-=-,两边积分,得=-⎰y y yd 12⎰-x x d 11,求积分得121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=-, 1222e )1(1C x y -=-,222)1(e 11-±=-x y C ,记 0e12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数). 代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .5.求微分方程(1)xy yy +=',(2) x xy y x cos e 22=-'的通解.(1)解一 原方程可化为1d d +=xyx yx y ,令 x yu =, 则 1d d +=+u u x u x u ,即 x x u u u d d 12-=+ ,两边取积分 ⎰⎰-=+x x u u u d 1d )11(2, 积分得C x u u ln ln ln 1-=-,将xy u =代入原方程,整理得原方程的通解为 yx C y e = (C 为任意常数).解二 原方程可化为11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程 01d d =-x yy x ,得其通解为 y C x =. 设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C yy C =, 所以原方程的通解为 1ln C y y x=,即yx C ye = (C 为任意常数).(2)解一 原方程对应的齐次方程02d d =-xy x y 分离变量,得xy xy2d d =,x x y y d 2d =, 两边积分,得x x y y ⎰⎰=d 2d ,C x y +=2ln , )e ln(ln e ln ln 22x x C C y =+=,2e x C y =,用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22=',x x C cos )(=',C x x x x C +==⎰sin d cos )(,故原方程的通解为 )(sin e 2C x y x += (C 为任意常数). 解二 这里x x P 2)(-=,x x Q x cos e)(2=代入通解的公式得=)d ecos e(e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数).6.求微分方程 123='+''y x y x 的通解.解:方程中不显含未知函数y ,令P y =',x P y d d ='',代入原方程,得 1d d 23=+P x xP x , 311d d xP x x P =+,这是关于未知函数)(x P 的一阶线性微分方程,代入常数变易法的通解公式,所以 =)(x P 1d 13d 1d e 1(eC x xxx xx +⎰⎰⎰-) =1ln 3ln d e 1(e C x x x x+⎰-)=13d 1(1C x x xx +⋅⎰)=11(1C x x +-)=x C x 121+-, 由此x y d d =x Cx 121+-,⎰+-=x x C xy d )1(12=21ln 1C x C x ++, 因此,原方程的通解为 y =21ln 1C x C x++ (21,C C 为任意常数). 7.求微分方程 )1()(22-''='y y y 满足初始条件21==x y ,11-='=x y 的特解.解:方程不显含x ,令 P y =',y P Py d d ='',则方程可化为 )1(d d 22-=y yP PP , 当 0≠P 时y y P P d 12d -=,于是 21)1(-=y C P . 根据 21==x y,11-='=x y ,知12-='=y y 代入上式,得 11-=C ,从而得到x y yd )1(d 2-=-,积分得211C x y +=-,再由21==x y ,求得 02=C ,于是当0≠P 时,原方程满足所给初始条件的特解为x y =-11, 当0=P 时,得C y =(常数),显然这个解也满足方程,这个解可包含在解x y =-11中. 故原方程满足所给初始条件的特解为x y =-11,即 xy 11+=. 8.求方程0)'(''2=-y yy 的通解.解:方程不显含自变量x , 令)('y p y =原方程可变为0d d 2=-⋅⋅p ypp y , 即0=p 或p ypy=d d , 由0'==p y 得C y =.由p y p y=d d 分离变量,得yy p p d d =, 两边积分得⎰⎰=y yp p d d ,求积分得 1ln ln ln C y p +=, 即y C p 1=, 解y C y 1'= 得xC C y 1e 2=,因C y =包含于xC C y 1e2=中, 故原方程通解为 xC C y 1e2=.9.写出下列微分方程的通解:(1)0'2''=+-y y y , (2)08'=+y y . 解:(1)特征方程0122=+-r r , 特征根121==r r , 通解为xx C C y e )(21+=.(2)特征方程08=+r , 特征根8-=r , 通解为xC y 81e-=.10.求下列微分方程满足所给初始条件的特解:(1)xy y y 3e6'2''-=-+, 1)0(',1)0(==y y ,(2) x y y sin 2''=+,1)0(',1)0(==y y . 解:(1)先解06'2''=-+y y y ,其特征方程为0622=-+r r , 特征根为711+-=r , 712--=r ,故通解 xxC C y )71(2)71(1e e --+-+=.因x3e-中3-=λ不是特征方程的根,且1)(=x P m , 故设原方程特解xp A y 3e-=,代入原方程化简,得31-=A ,从而原方程通解为x x C C y )71(2)71(1e e --+-+=x 3e 31--.由0)0(=y ,得03121=-+C C , 由0)0('=y ,得11)71()71(21=++-+-C C ,解得42771+=C , 42772-=C , 故所求特解x xxp y 3)71()71(e 31e 4277e 4277---+---++=. (2)先解02=+''y y ,其特征方程为022=+r ,特征根为i 2,i 221-==r r ,故通解x C x C y C 2sin 2cos 21+=.设原方程特解x b x a y s i n c o s *+=,代入原方程,化简得1,0==b a ,故原方程通解x x C x C y sin 2sin 2cos 21++=,由00)0(1==C y 得,由1)0(='y ,得02=C ,故所求特解为x y sin =.11. 求微分方程 xx y y e 4=-''满足初始条件00==x y,10='=x y 的特解.解:对应齐次方程的特征方程为 012=-r ,特征根 12,1±=r .故对应齐次微分方程的通解为 xx c C C y -+=e e 21.因为1=λ是特征方程的单根,所以设特解为 xP b x b x y e )(10+=,代入原方程得 x x b b b 4422010=++,比较同类项系数得 10=b ,11-=b ,从而原方程的特解为 xP x x y e )1(-=, 故原方程的通解为 =y xxC C -+ee 21x x x e )1(-+,由初始条件 0=x 时,0='=y y ,得 ⎩⎨⎧=-=+,2,02121C C C C从而11=C ,12-=C .因此满足初始条件的特解为 =y xx--ee x x x e )1(-+.12.求微分方程 x y y y x2sin e 842=+'-''的通解.解:对应的齐次微分方程的特征方程 0842=+-r r ,特征根 i 222,1±=r .于是所对应的齐次微分方程通解为)2sin 2cos (e 212x C x C y x c +=.为了求原方程x y y y x2sin e842=+'-''的一个特解,先求x y y y )i 22(e 84+=+'-''(*)的特解.由于i 22+=λ是特征方程的单根,且1)(=x P m 是零次多项式。
(完整版)《高等数学一》极限与连续历年试题模拟试题课后习题(汇总)(含答案解析)
第二章极限与连续[单选题]1、若x0时,函数f(x)为x2的高阶无穷小量,则=()A、0B、C、1D、∞【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】本题考察高阶无穷小.根据高阶无穷小的定义,有.[单选题]2、与都存在是函数在点处有极限的().A、必要条件B、充分条件C、充要条件D、无关条件【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】时,极限存在的充分必要条件为左、右极限都存在并且相等,所以若函数在点处有极限,则必有与都存在.但二者都存在,不一定相等,所以不一定有极限.[单选题]3、().A、B、1C、D、0【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]4、如果则().A、0B、1C、2D、5【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】根据重要极限,[单选题]5、().A、0B、∞C、2D、-2【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】分子分母同除以,即[单选题]6、().A、0B、∞C、2D、-2【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]7、设,则().A、B、2C、D、0【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]8、当时,与等价的无穷小量是(). A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】由于故与等价,推广,当时,[单选题]9、时,与等价的无穷小量是(). A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】由于,故与等价,推广,当时,[单选题]10、函数的间断点是().A、x=6、x=-1B、x=0、x=6C、x=0、x=6、x=-1D、x=-1、x=0【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】由于, 所以的间断点是x=0,x=6,x=-1.[单选题]11、设,则是的().A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】,即的左右极限存在且相等,但极限值不等于函数值,故为可去型间断点.[单选题]12、计算().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】[单选题]13、计算().A、B、C、D、1【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]14、().A、1B、﹣1C、2D、﹣2【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]15、下列各式中正确的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】A,当时,极限为,错误;B,,错误;C,,错误,D正确. [单选题]16、函数的间断点个数为().A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】在x=0和x=1处,无定义,故间断点为2个. [单选题]17、下列变量在的变化过程中为无穷小量的是()A、B、C、D、arctan x【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】,.[单选题]18、()A、0B、1C、不存在,但不是∞D、∞【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]19、函数,则x=0是f(x)的( )A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】故为可去间断点.[单选题]20、().A、-1B、2C、1D、0【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】为有界函数,故原式=.[单选题]21、().A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]22、下列极限存在的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】当x趋近于0时,为有界函数,故极限存在. [单选题]23、下列变量在的变化过程中为无穷小量的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】,,,不存在,[单选题]24、极限=()A、0B、2/3C、3/2D、9/2【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]25、函数f(x)=的所有间断点是()A、x=0B、x=1C、x=0,x=-1D、x=0,x=1【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】 x=1时,分母为0,无意义。
高等数学课后习题答案--第七章
11、证明:函数 u ( x, t ) =
1 2a πt
e
−
( x −b ) 2 4 a 2t
满足热传导方程
∂u ∂ 2u = a2 2 。 ∂t ∂x
【解】
− ∂u ( x, t ) 1 =− e ∂t 8a 3 πt 5
( x −b ) 2 4 a 2t
(− x 2 + 2bx + 2a 2 t − b 2 )
x ⎧ ⎪u = e cos y, (1) ⎨ x ⎪ ⎩v = e sin y;
⎛ e x cos y − e x sin y ⎞ ⎟ 【答案】 (1) J = ⎜ ⎜ e x sin y e x cos y ⎟ ; ⎝ ⎠
⎧u = ln x 2 + y 2 , ⎪ (2) ⎨ y ⎪v = arctan . x ⎩ x y ⎞ ⎛ ⎜ 2 ⎟ 2 2 x +y x + y2 ⎟ ⎜ . (2) J = y x ⎟ ⎜ − ⎜ x2 + y2 x2 + y 2 ⎟ ⎝ ⎠
(1) u = sin(ax − by ); (2) u = e ax cos bx; (3) u = ye xy ; (4) u = x ln y . 【答案】 (1) a 2 sin( −ax + by ) , − ab sin(− ax + by ) , b 2 sin(− ax + by ) ; (2) a 2e ax cos(by ) , − abe ax sin(by ) , − b 2e ax cos(by ) ; (3) y 3e xy , ( xy 2 + 2 y )e xy , ( x 2 y + 2 x)e xy ;
高等数学第一章函数与极限试题及答案
高等数学第一章函数与极限试题一.选择题1.设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (A ) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C ) F(x)是周期函数⇔f(x)是周期函数. (D ) F(x)是单调函数⇔f(x)是单调函数 2.设函数,11)(1-=-x x e x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点(C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点.3.设f (x)=xx 1-,x ≠0,1,则f [)(1x f ]= ( )A ) 1-xB ) x-11C ) X1 D ) x4.下列各式正确的是 ( )A ) lim 0+→x )x1 +1(x=1B ) lim 0+→x )x1 +1(x=eC ) lim ∞→x )x1 1-(x=-e D ) lim ∞→x )x1 +1(x-=e5.已知9)(lim =-+∞→xx ax a x ,则=a ( )。
A.1; B.∞; C.3ln ; D.3ln 2。
6.极限:=+-∞→xx x x )11(lim ( ) A.1; B.∞; C.2-e ; D.2e7.极限:∞→x lim 332x x +=( ) A.1; B.∞; C.0; D.2. 8.极限:xx x 11lim 0-+→=( )A.0; B.∞; C 21; D.2.9. 极限:)(lim 2x x x x -+∞+→=( )A.0; B.∞; C.2; D. 21. 10.极限: xx x x 2sin sin tan lim 30-→=( )A.0; B.∞; C. 161; D.16.()()x x x x f 25lg 12-+-+=二. 填空题 11.极限12sinlim 2+∞→x xx x = . 12. lim 0→x xarctanx=_______________.13. 若)(x f y =在点0x 连续,则)]()([lim 0→-0x f x f x x =_______________; 14. =→x x x x 5sin lim0___________; 15. =-∞→n n n)21(lim _________________;16. 若函数23122+--=x x x y ,则它的间断点是___________________17. 绝对值函数 ==x x f )(⎪⎩⎪⎨⎧<-=>.0,;0,0;0,x x x x x x 其定义域是 ,值域是18. 符号函数 ==x x f sgn )(⎪⎩⎪⎨⎧<-=>.0,1;0,0;0,1x x x其定义域是 ,值域是三个点的集合19. 无穷小量是20. 函数)(x f y =在点x0 连续,要求函数y f (x) 满足的三个条件是三. 计算题21.求).111(lim 0xe x x x --+-→ 22.设f(e 1-x )=3x-2,求f(x)(其中x>0); 23.求lim 2 x →(3-x)25--x x ; 24.求lim ∞→ x (11-+x x )x ; 25.求lim 0 x →)3(2tan sin 22x x x x + 26. 已知9)(lim =-+∞→xx ax a x ,求a 的值; 27. 计算极限n n n n 1)321(lim ++∞→28.求它的定义域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()xg 是不同的函数。
2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。
5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。
7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。
9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则 (1)()xef 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x (3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x n x n x n n x n x n n n n =⋅==∞→∞→∞→sinlim 1sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()b ax x xx --+-+∞→1lim2()()()bax x x bax x x b ax x x x +++-+++---+-=+∞→111lim 222()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→x xax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a13、=∞→x x x sin lim( 0 ),=∞→xx x 1sin lim ( 1 ), ()=-→xx x 11lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim=⋅=∞→∞→x x xx x x 111sin lim1sin lim ==∞→∞→xx x x x x()[]1)1(110)(1lim 1lim --⋅-→→=-+=-e x x xx x x k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数 ∵()()11log 1)(log 22++=+-+-=-x x x x x f aa()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。
7、如果函数()x f 当0x x →时极限存在,则函数()x f 在0x 点( c ) a .有定义 b .无定义 c .不一定有定义∵()x f 当0x x →时极限存在与否与函数在该点有无定义没有关系。
8、数列1,1,21,2,31,3,…,n1,n ,…当∞→n 时为( c ) a .无穷大 b .无穷小 c .发散但不是无穷大9、函数()x f 在0x 点有极限是函数()x f 在0x 点连续的( b )a .充分条件b .必要条件c .充分必要条件 10、点0=x 是函数1arctanx的( b ) a .连续点 b .第一类间断点 c .第二类间断点 ∵001lim arctan2x x π→-=- 001lim arctan 2x x π→+=根据左右极限存在的点为第一类间断点。
11、点0=x 是函数x1sin的( c ) a .连续点 b .第一类间断点 c .第二类间断点 四、计算下列极限:1、()nn nn 31lim -+∞→ 解()31))1(3131(lim 31lim =-⋅+=-+∞→∞→n n n n n nn2、0tan 3limsin 2x xx→解 0tan 3lim sin 2x x x →2323lim 0==→x x x (∵x x 2sin ,0→~2,tan3x x ~x 3) 3、⎪⎭⎫ ⎝⎛+--+∞→x x x x x lim()xx x x x +--+∞→lim()()xx x x xx x x x x x x x ++-++-+--=+∞→limxx x x xx ++--=+∞→2lim111111lim2-=++--=+∞→xx x4、()n n n nn --++∞→221lim解()()()nn n n nn n nnn n nn n n nn n -+++-+++--++=--++∞→∞→22222222111lim1lim11111112lim 112lim222=-++++=-++++=∞→∞→nn n n n n n n n n n 5、xx x x x sin lim 2300+++→21sin 11lim sin 1lim sin lim 00002300=++=++=+++→+→+→xx x x x x xx x x xx x x 6、11sin lim2-+→x x x x)22211limlimx x x x x x →→→⋅+⋅+==)lim12x→=+=7、11lim0--→xxx()()()11lim111lim11lim=+=-+-=--→→→xxxxxxxxx8、1lim1--→xxxx()111lim1lim11=--=--→→xxxxxxxx9、3tan sinlimxx xx→-()23330001sin1costan sin112lim lim limcos cos2 x x xx xx xx xx x x x x →→→⋅⋅--==⋅= (∵210,1cos2x x x→-:,sinx:)10、xxx2cos1lim0--→解()21221lim2cos1lim2-==--→-→xxxxxx(∵xx cos1,0-→~221x)11、1lim1xxxx→∞-⎛⎫⎪+⎝⎭解121111lim lim111xxxx xx exx e ex-→∞→∞⎛⎫-⎪-⎛⎫⎝⎭===⎪+⎝⎭⎛⎫+⎪⎝⎭12、⎪⎭⎫⎝⎛+∞→xxx11lnlim解 ⎪⎭⎫⎝⎛+∞→x x x 11ln lim 111lim ln 11ln lim =⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=∞→∞→xx x x x x13、xx xx x cos cos lim+-∞→解 cos 1cos lim lim 1cos cos 1x x x x x x x x x x→∞→∞--==++14、⎪⎭⎫⎝⎛---→1112lim 21x x x解 2211121111lim lim lim 11112x x x x x x x x →→→-⎛⎫-==-=- ⎪---+⎝⎭ 15、x 解lim lim 1x x →∞→∞==16、x x x cos 1sin lim 00-+→ 解000000sin sin lim lim lim x x x x x x →+→+→+===17、()⎪⎪⎭⎫ ⎝⎛+++⋅+⋅∞→11321211lim n n n Λ 解 ()⎪⎪⎭⎫ ⎝⎛+++⋅+⋅∞→11321211lim n n n Λ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=∞→1113121211lim n n n Λ1111lim =⎪⎭⎫ ⎝⎛+-=∞→n n。