遥感图像实验报告

合集下载

遥感影像镶嵌实验报告(3篇)

遥感影像镶嵌实验报告(3篇)

第1篇一、实验目的1. 理解遥感影像镶嵌的概念和意义。

2. 掌握遥感影像镶嵌的基本原理和方法。

3. 学会使用遥感图像处理软件进行影像镶嵌操作。

4. 分析影像镶嵌的效果,并探讨优化影像镶嵌的方法。

二、实验原理遥感影像镶嵌是将多幅遥感影像按照一定规则拼接成一幅大范围、连续的遥感影像,以展示更大范围的地理信息。

影像镶嵌的原理主要包括:1. 影像匹配:通过比较多幅影像之间的相似性,确定影像之间的对应关系。

2. 影像配准:根据影像匹配结果,对多幅影像进行几何校正,使其在空间上对齐。

3. 影像拼接:将配准后的影像按照一定规则拼接成一幅连续的遥感影像。

三、实验数据本实验使用的数据为我国某地区Landsat 8影像,包含全色波段和多个多光谱波段。

四、实验步骤1. 数据预处理(1)辐射定标:将原始影像的数字量转换为地物反射率或辐射亮度。

(2)大气校正:去除大气对影像的影响,提高影像质量。

(3)几何校正:纠正影像的几何畸变,使其符合实际地理坐标。

2. 影像匹配(1)选择匹配算法:本实验采用互信息匹配算法。

(2)设置匹配参数:根据影像特点,设置匹配窗口大小、匹配阈值等参数。

(3)进行匹配运算:将多幅影像进行匹配,得到匹配结果。

3. 影像配准(1)根据匹配结果,确定影像之间的对应关系。

(2)选择配准方法:本实验采用二次多项式配准方法。

(3)进行配准运算:将多幅影像进行配准,使其在空间上对齐。

4. 影像拼接(1)选择拼接方法:本实验采用线段拼接方法。

(2)设置拼接参数:根据影像特点,设置拼接线宽、重叠区域等参数。

(3)进行拼接运算:将配准后的影像进行拼接,得到一幅连续的遥感影像。

5. 结果分析(1)分析拼接效果:观察拼接后的影像,检查是否存在明显的拼接线、几何畸变等问题。

(2)优化拼接方法:根据分析结果,调整拼接参数,优化拼接效果。

五、实验结果与分析1. 拼接效果通过实验,成功将多幅Landsat 8影像拼接成一幅连续的遥感影像。

遥感图像处理实验报告

遥感图像处理实验报告

遥感图像处理实验报告《遥感图像处理实验报告》摘要:本实验利用遥感技术获取了一幅卫星图像,通过图像处理技术对图像进行了处理和分析。

实验结果表明,遥感图像处理技术在地理信息系统、环境监测、城市规划等领域具有重要的应用价值。

引言:遥感图像处理是利用遥感技术获取的图像进行数字化处理和分析,以获取有用的地理信息和环境数据的过程。

本实验旨在通过对遥感图像的处理和分析,探讨遥感图像处理技术在实际应用中的作用和意义。

实验方法:1. 获取卫星图像:选择一幅特定区域的卫星图像作为实验对象,确保图像质量和分辨率满足处理要求。

2. 图像预处理:对原始图像进行预处理,包括去噪、增强、几何校正等操作,以提高图像质量和准确性。

3. 图像分析:利用遥感图像处理软件对图像进行分类、特征提取、变化检测等分析,获取地理信息和环境数据。

4. 结果展示:将处理后的图像结果进行展示和分析,对图像处理技术的应用效果进行评估。

实验结果:经过处理和分析,得到了一幅清晰的遥感图像,并从中提取了有用的地理信息和环境数据。

通过图像分类和特征提取,可以准确地识别出不同地物类型,如建筑物、植被、水体等;通过变化检测,可以发现地表的变化情况,如城市扩张、土地利用变化等。

这些信息对于地理信息系统、环境监测、城市规划等领域具有重要的应用价值。

结论:遥感图像处理技术在地理信息系统、环境监测、城市规划等领域具有重要的应用价值,通过对遥感图像的处理和分析,可以获取丰富的地理信息和环境数据,为相关领域的决策和规划提供重要的支持。

在未来的研究中,可以进一步探讨遥感图像处理技术的改进和应用,以满足不同领域的需求。

遥感实验报告裁剪拼接(3篇)

遥感实验报告裁剪拼接(3篇)

第1篇一、实验目的本次实验旨在学习遥感影像处理中的裁剪与拼接技术,通过对遥感影像进行裁剪和拼接,提高遥感数据的可用性和分析效率。

二、实验背景遥感技术是获取地球表面信息的重要手段,广泛应用于资源调查、环境监测、灾害评估等领域。

遥感影像经过处理和提取后,才能为实际应用提供有价值的信息。

裁剪与拼接是遥感影像处理中的基本操作,通过对影像进行裁剪和拼接,可以去除无关信息,提高影像的可用性。

三、实验材料1. 遥感影像数据:包括多景遥感影像,如Landsat、Sentinel-2等;2. 裁剪与拼接软件:如ENVI、ArcGIS等;3. 实验环境:计算机、遥感数据处理软件等。

四、实验步骤1. 数据准备(1)选择遥感影像数据,确保影像质量良好、覆盖范围完整;(2)对遥感影像进行预处理,包括辐射校正、大气校正等,提高影像质量。

2. 裁剪操作(1)确定裁剪范围:根据实验需求,选择合适的裁剪范围,如行政区域、研究区域等;(2)使用裁剪工具对遥感影像进行裁剪,生成新的影像。

3. 拼接操作(1)选择拼接方式:根据实际情况,选择合适的拼接方式,如同名像元拼接、重叠区域拼接等;(2)使用拼接工具对遥感影像进行拼接,生成新的影像。

4. 质量评估(1)检查拼接后的影像是否完整,是否存在缝隙、错位等问题;(2)分析拼接区域的地物特征,确保拼接效果良好。

五、实验结果与分析1. 裁剪结果经过裁剪操作,生成了新的遥感影像,去除了无关信息,提高了影像的可用性。

2. 拼接结果经过拼接操作,生成了新的遥感影像,拼接区域地物特征良好,拼接效果满意。

3. 质量评估(1)拼接后的影像完整,无缝隙、错位等问题;(2)拼接区域地物特征良好,拼接效果满意。

六、实验结论通过本次实验,掌握了遥感影像的裁剪与拼接技术,提高了遥感数据的可用性和分析效率。

在实际应用中,可根据具体需求选择合适的裁剪与拼接方法,为遥感数据处理提供有力支持。

七、实验心得1. 裁剪与拼接是遥感影像处理中的基本操作,对于提高遥感数据的可用性具有重要意义;2. 在实际操作中,应根据具体需求选择合适的裁剪与拼接方法,确保拼接效果良好;3. 学习遥感影像处理技术,有助于提高遥感数据的分析和应用水平。

遥感图像处理实验报告

遥感图像处理实验报告

遥感图像处理实验报告遥感图像处理实验报告引言:遥感图像处理是一门应用广泛的技术,它通过获取、分析和解释地球表面的图像数据,为地质勘探、环境监测、农业发展等领域提供了重要的支持。

本实验旨在探索遥感图像处理的基本方法和技术,以及其在实际应用中的价值和意义。

一、图像预处理图像预处理是遥感图像处理的第一步,它主要包括图像的去噪、增强和几何校正等操作。

在本实验中,我们使用了一张卫星图像作为样本,首先对图像进行了去噪处理,采用了中值滤波算法,有效地去除了图像中的椒盐噪声。

接着,我们对图像进行了增强处理,采用了直方图均衡化算法,使得图像的对比度得到了显著提高。

最后,我们进行了几何校正,通过对图像进行旋转和缩放,使得图像的几何形状与实际地理位置相符合。

二、图像分类图像分类是遥感图像处理的关键步骤之一,它通过对图像中的像素进行分类,将其划分为不同的地物类型。

在本实验中,我们使用了监督分类方法,首先选择了一些具有代表性的样本像素,然后通过训练分类器,将这些样本像素与不同的地物类型进行关联。

接着,我们对整个图像进行分类,将图像中的每个像素都划分为相应的地物类型。

最后,我们对分类结果进行了验证,通过与实地调查结果进行对比,验证了分类的准确性和可靠性。

三、图像融合图像融合是遥感图像处理的一项重要技术,它可以将多个不同波段或分辨率的图像融合成一幅高质量的图像。

在本实验中,我们选择了两幅具有不同波段的卫星图像,通过波段归一化和加权平均的方法,将这两幅图像融合在一起。

融合后的图像不仅保留了原始图像的颜色信息,还具有更高的空间分辨率和光谱分辨率,可以提供更全面和准确的地物信息。

四、图像变化检测图像变化检测是遥感图像处理的一项关键任务,它可以通过对多幅图像进行比较,检测出地表发生的变化情况。

在本实验中,我们选择了两幅具有不同时间的卫星图像,通过差异图像法和指数变化检测法,对这两幅图像进行了变化检测。

通过对比差异图像和变化指数图,我们可以清晰地看到地表发生的变化,如城市扩张、植被变化等,为城市规划和环境监测提供了重要的参考依据。

遥感图像融合实验报告

遥感图像融合实验报告

遥感图像融合实验报告遥感图像融合实验报告一、引言遥感图像融合是指将多个不同传感器获得的遥感图像融合为一幅综合图像的过程。

通过融合不同传感器获取的图像,可以获得更全面、更准确的地物信息。

本实验旨在探究遥感图像融合的原理和方法,并通过实验验证其效果。

二、实验目的1. 了解遥感图像融合的原理和意义;2. 掌握常用的遥感图像融合方法;3. 进行实验验证,比较不同融合方法的效果。

三、实验步骤1. 数据准备:选择两个不同传感器获取的遥感图像,如光学图像和雷达图像;2. 图像预处理:对两幅图像进行预处理,包括辐射校正、几何校正等;3. 图像配准:通过图像配准算法将两幅图像对齐,使其具有相同的空间参考系;4. 图像融合:选择合适的融合方法,如基于像素级的融合方法或基于特征级的融合方法,对两幅图像进行融合;5. 结果评价:通过定量和定性的评价指标,对融合结果进行评估。

四、实验结果与分析经过实验,我们得到了融合后的遥感图像。

通过对比融合前后的图像,可以发现融合后的图像在空间分辨率和光谱信息上都有所提高。

融合后的图像能够更清晰地显示地物的边缘和细节,且具有更丰富的颜色信息。

在融合方法的选择上,我们尝试了基于像素级的融合方法和基于特征级的融合方法。

基于像素级的融合方法将两幅图像的像素直接进行融合,得到的结果更加保真,但可能会导致信息的混淆。

而基于特征级的融合方法则通过提取图像的特征信息,再进行融合,可以更好地保留地物的特征,但可能会引入一定的误差。

通过对比不同融合方法的结果,我们可以发现不同方法在不同场景下的效果差异。

在某些场景下,基于像素级的融合方法可能会产生较好的效果,而在其他场景下,基于特征级的融合方法可能更适用。

因此,在实际应用中,需要根据具体场景和需求选择合适的融合方法。

五、实验总结通过本次实验,我们深入了解了遥感图像融合的原理和方法,并进行了实验验证。

遥感图像融合可以提高图像的空间分辨率和光谱信息,使得地物信息更全面、更准确。

遥感图像融合实验报告

遥感图像融合实验报告

遥感图像融合实验报告遥感图像融合实验报告一、引言遥感技术在现代科学研究和应用中发挥着重要的作用。

遥感图像融合是将多个遥感图像的信息融合为一个综合图像的过程,可以提供更全面、更准确的地理信息。

本实验旨在通过遥感图像融合技术,对不同分辨率的遥感图像进行融合,以获得更高质量的图像。

二、实验方法1. 数据收集我们使用了两个不同分辨率的遥感图像,一个是高分辨率的卫星图像,另一个是低分辨率的无人机图像。

这两个图像分别代表了不同的空间分辨率。

为了保证数据的准确性,我们选择了同一地区的图像进行比较。

2. 图像预处理在进行图像融合之前,需要对图像进行预处理,以提高融合效果。

我们首先对两个图像进行边缘增强处理,以增强图像的边缘信息。

然后,对图像进行直方图均衡化,使图像的灰度分布更均匀。

最后,对图像进行尺度匹配,以确保两个图像的尺度一致。

3. 图像融合算法本实验使用了一种基于小波变换的图像融合算法。

该算法通过将两个图像的低频部分和高频部分进行融合,得到一个综合图像。

具体步骤如下:a. 对两个图像进行小波变换,得到它们的低频部分和高频部分。

b. 对两个图像的低频部分进行加权平均,得到融合后的低频部分。

c. 对两个图像的高频部分进行加权平均,得到融合后的高频部分。

d. 将融合后的低频部分和高频部分进行逆小波变换,得到最终的融合图像。

4. 实验结果分析通过对融合后的图像进行视觉和定量分析,我们可以评估融合效果。

视觉分析可以通过观察图像的细节和边缘来判断融合效果的好坏。

定量分析可以通过计算图像的信息熵、互信息和均方误差等指标来评估融合效果。

三、实验结果与讨论经过实验,我们得到了融合后的图像。

通过对比原始图像和融合图像,我们可以看到融合后的图像在细节和边缘方面有明显的提升。

融合后的图像更清晰、更丰富,能够提供更多有用的地理信息。

在定量分析方面,我们计算了融合图像的信息熵、互信息和均方误差。

结果显示,融合图像的信息熵和互信息较高,均方误差较低,说明融合效果较好。

遥感图像目视实验报告

遥感图像目视实验报告

遥感图像目视实验报告实验背景遥感图像是利用航空或卫星等远距离方式获取地面信息的一种方法。

遥感图像可以提供大范围的地表覆盖信息,对于地理环境、自然资源调查和灾害评估等领域具有重要的应用价值。

目视解译是遥感图像处理的基础工作,通过观察和分析图像中的各种特征进行信息提取。

实验目的本实验旨在通过目视解译遥感图像,熟悉遥感图像的特征和解译方法,培养实际应用遥感技术的能力。

实验步骤步骤一:选择合适的遥感图像从实验室提供的遥感图像库中选择一张图像进行目视解译。

根据实验要求和研究领域,可以选择不同时间和地点的图像。

步骤二:观察和分析图像特征使用图像处理软件加载选择的遥感图像,并对其进行放大、缩小、平移等操作。

观察和分析图像中的地物特征,如土地覆盖类型、建筑物、道路等,并记录下观察结果。

步骤三:目视解译图像中的地物根据图像特征的观察和分析结果,将图像中的地物进行解译。

根据实际情况,可以使用不同的解译方法,如目视比例测量、边缘识别、光谱分析等。

步骤四:结果展示和分析将解译的结果和观察的图像特征进行对比和分析,评估解译的准确度和可靠性。

如果需要,可以绘制解译结果的统计数据、表格和图表,进一步展示和说明解译结果。

实验结果经过对选定遥感图像的观察和解译,得到了以下结果:1. 土地覆盖类型:图像中出现了大片的绿色区域,分布比较均匀,判断为农田;同时还有一些波状的蓝色区域,可能是河流。

2. 建筑物:在图像的中心位置,可以看到一些明显的矩形区域,判断为城市建筑物。

3. 道路:图像中还有一些线状的特征,长度较长且呈直线分布,判断为公路。

结果分析根据目视解译的结果和实验观察,可以得出以下分析结论:1. 图像中的土地覆盖类型主要是农田和河流,这符合该地区的地理特点和土地利用情况。

2. 图像中的建筑物主要集中在城市地区,说明该地区存在城市化现象,并且城市建设较为发达。

3. 公路的存在表明该地区的交通基础设施相对完善。

实验总结通过本次遥感图像目视实验,我接触了真实的遥感数据,学习了目视解译的方法和技巧。

遥感图像配准实验报告

遥感图像配准实验报告
[实验数据处理及成果]
用SPOT校正TM数据,附操作过程截图和校正后TM影像图片
[体会及建议]
通过本次试验熟悉在ENVI中对影像进行地理校正,添加地理坐标,以及如何使用ENVI进行影像到影像的配准和影像到地图的校正。在实验过程中移动光标,查看坐标值,要小心谨慎注意地图坐标和经纬度之间的关系。以免出现错误。
(2)通过计算机操作与地理知识的结合增强对地理学科的兴趣,为以后继续从事相关工作奠定基础。
(3)树立地理学思想,理解并掌握地理学科的学习、实践的方法。
二、实验内容
遥感图像的几何校正,IHS融合方法。
三、实验准备
(1)IHS融合: IHS融合法是比较常用的一种融合方法。其基本原理是首先将空间分辨率
较低的三个多光谱影像变换到IHS彩色空间,得到明度(I),色别(H)和饱和度(S)三个分量;然后将高空间分辨率影像进行对比度拉伸,达到与I分量具有相同的均值和方差;再将处理后的高空间分辨率影像替换I分量,作IHS逆变换后就得到融合后的影像。
篇三:遥感实验报告
实验报告(实验一)
[实验名称]ENVI窗口的基本作
[实验目的与内容]
实验目的
熟悉ENVI软件的窗口操作方法,掌握影像信息、像元信息浏览方法,影像上距离和面积量算方法。实验内容
1、熟悉遥感图像处理软件ENVI的窗口基本操作。2、查看影像信息和像元信息。3、距离测量与面积测量。
[实验数据处理及成果]
遥感图像配准实验报告
篇一:遥感图像处理实验报告
《遥感数字图像处理》
实习报告
学院:环境与资源学院
班级:地理1002
学号:周颖智
姓名:20101171
西南科技大学环境与资源学院遥感实习…………………......2

遥感原理实验报告2遥感图像处理

遥感原理实验报告2遥感图像处理

《遥感原理》实验报告实验名称:遥感图像处理专业:地理信息科学学号:姓名:指导老师:1、实验目的(1)了解彩色的基本特性和相互关系;掌握三原色及其互补色,掌握加色法;(2)学习掌握图像直方图变化与图像亮度变化的关系;掌握图像线性拉伸的方法和过程;(3)理解遥感图像彩色合成的基本原理;掌握选用不同的合成方案产生不同的合成效果的方法,从而达到突出不同目标地物的目的;(4)了解空间滤波的操作过程和空间滤波对图像产生的效果;(5)了解并掌握K-L变换的过程和方法;进一步理解K-L变换产生的处理效果和处理意义;(6)了解和掌握缨帽变换的过程和处理效果;(7)了解和掌握彩色空间变换的过程和方法。

2、实验材料Photoshop CS6、ENVI5.1、CAI软件和光盘文件3、实验内容与过程3.1 遥感图像的光学合成原理彩色的基本特性:明度、色调和饱和度为彩色的基本特性。

明度是指色彩的明亮程度,是人眼对光源或物体明亮程度地感觉,彩色光亮度越高,人眼感觉就越明亮,即有较高的明度。

明度的高低取决于光源光强及物体表面对光的反射率。

色调是色彩彼此相互区分的特性,色调取决于光源的光谱组成和物体表面的光谱反射特性。

饱和度是色彩纯洁性,取决于物体表面反射光谱的选择性程度,反射性光谱越窄,即光谱的选择性越强,彩色的饱和度就越高。

明度、色调和饱和度三者的关系可以用颜色立体来表述。

非彩色,即黑白色只用明度描述,不使用色调、饱和度。

红橙黄绿青蓝紫各种颜色组成彩图。

在遥感上,彩色图比非彩色图较易识别地物。

白色、黑色和各种灰色组成黑白图象,当物体对可见光的各个波长的反射无选择性时,表现为黑色或灰色。

3.2 遥感图像的线性拉伸打开ENVI>点击菜单栏的“Custom Stretch”按钮>选择”Linear”等进行线性拉伸;或者直接在菜单栏上选择“Linear”“Linear2%”“Linear5%”原图:线性拉伸后:Linear:Linear 1%:当拉伸效果为1%时,显示效果得到了很大改善。

遥感图像处理实验报告_2

遥感图像处理实验报告_2

遥感图像处理实验报告班级 11资环姓名学号实验专题实验室 F楼机房成绩评定教师签字专题一: DEM图像进行彩色制图 (2)(叙述制图过程并把自己处理结果加载到本文档里)专题二: TM与SPOT数据融合 (3)(叙述该过程并处理结果加载到本文档里。

注意用两种方法融合的过程)专题三: 航片的配准与镶嵌 (4)(叙述该过程并处理结果加载到本文档)专题四: 切取某研究区域的操作 (5)(具体要求:卫星影象叠加, 选择其中三波段彩色合成, 采用ROI切取研究区)专题五: 地图制图的方法 (6)(主要是快速制图。

并任选一样例加载制图后结果)专题六: 使用ENVI进行三维曲面的浏览与飞行 (7)(叙述该过程并处理结果加载到本文档里)专题七: 监督分类试验(任选一种监督分类方法, 并叙述 (8)(其过程将其结果加载到本档里)。

实验专题: 专题一: DEM图像进行彩色制图1.加载一幅DEM的灰度图像, 使用系统默认的IDL颜色表来调整屏幕的颜色表。

2.给生成的彩色图像添加图名、格网、比例尺、灰度条、等高线及数值等信息。

3、调整位置, 保存图像。

结果如下图1、实验专题: 专题二: TM与SPOT数据融合2、主图象窗口选择Transform > Image Sharpening > HSV, 从一个打开的彩色图像中选择三个波段进行变换。

3、对原DEM图像进行拉伸处理。

3.将HSV图像重新转换为RGB图像。

分别对应H-R,S-G,拉伸图像-B。

4.加载最终图像, 并保存结果。

结果如图所示:1、实验专题: 专题三: 航片的配准与镶嵌2、加载两幅图像, 其中一幅作为base image, 一幅作为warp image。

3、在主菜单Registration里的Select GCP(Ground Control Points)来选择地面控制点, 并调整误差。

4、执行图像—地图配准。

5、图像镶嵌。

执行Map> Mosaicking > Pixel Based。

遥感图像增强实验报告

遥感图像增强实验报告

遥感图像增强实验报告引言遥感技术在地球科学和环境科学领域有着广泛的应用,其中图像增强是遥感图像处理的重要环节之一。

图像增强旨在改善遥感图像的视觉效果,使得图像的细节更加清晰、对比度更加鲜明,以便更好地进行地表特征的识别和分析。

在本次实验中,我们将探讨常用的图像增强方法,并且使用实际遥感图像进行增强实验。

实验目的1. 了解遥感图像增强的基本概念和方法。

2. 掌握常见的图像增强方法的实施过程。

3. 分析和比较不同图像增强方法的效果,选择最适合的增强方法。

实验步骤1. 数据准备:选择一张遥感图像作为实验数据,确保图像分辨率适中、含有一定的地表特征。

2. 灰度拉伸:使用灰度拉伸方法增强图像的对比度。

首先计算图像的最小灰度值(Min)和最大灰度值(Max),然后通过线性变换将灰度值映射到0-255的范围内。

3. 直方图均衡化:利用直方图均衡化方法增强图像的细节。

首先计算图像的灰度直方图,然后按照直方图均衡化的公式对每个灰度值进行调整。

4. 自适应直方图均衡化:对比直方图均衡化方法,自适应直方图均衡化能够避免对整个图像进行均衡化,而是通过使用局部领域内的信息来进行均衡化。

5. 对比度增强:使用对比度增强方法增强图像的对比度。

可以通过调整图像的亮度、对比度和饱和度来实现。

6. 结果分析:根据实验结果分析不同图像增强方法的效果,选择最佳的增强方法。

实验结果与分析经过实验,我们得到了经过不同图像增强方法处理后的图像。

通过对比实验前后的图像,我们可以得出以下结论:1. 灰度拉伸方法能够有效增强图像的对比度,使得图像的亮度范围更广,细节更加清晰。

2. 直方图均衡化方法能够增强图像的细节,特别是在暗部和亮部细节的表现上有显著提升。

3. 自适应直方图均衡化方法相比于普通直方图均衡化方法在处理具有大范围对比度差异的遥感图像时效果更好,避免了过度增强和信息损失。

4. 对比度增强方法可以通过调整图像的亮度、对比度和饱和度来增强图像的视觉效果,但对于某些场景可能会导致图像过度增强或过度饱和。

遥感影像处理实验报告(3篇)

遥感影像处理实验报告(3篇)

第1篇一、实验背景与目的随着遥感技术的不断发展,遥感影像已成为获取地球表面信息的重要手段。

遥感影像处理是对遥感影像进行一系列技术操作,以提高影像质量、提取有用信息的过程。

本实验旨在通过实践操作,让学生掌握遥感影像处理的基本原理和常用方法,提高学生对遥感影像数据的应用能力。

二、实验内容与步骤本次实验主要包括以下内容:1. 数据准备:获取实验所需的遥感影像数据,包括光学影像、红外影像等。

2. 影像预处理:对原始遥感影像进行辐射校正、几何校正、图像增强等处理。

3. 影像分割:对预处理后的影像进行分割,提取感兴趣的目标区域。

4. 影像分类:对分割后的影像进行分类,识别不同的地物类型。

5. 结果分析:对分类结果进行分析,评估分类精度。

三、实验步骤1. 数据准备- 获取实验所需的遥感影像数据,包括光学影像、红外影像等。

- 确保影像数据具有较好的质量和分辨率。

2. 影像预处理- 辐射校正:对原始遥感影像进行辐射校正,消除大气、传感器等因素对影像辐射强度的影响。

- 几何校正:对原始遥感影像进行几何校正,消除地形起伏、地球曲率等因素对影像几何形状的影响。

- 图像增强:对预处理后的影像进行图像增强,提高影像对比度、清晰度等。

3. 影像分割- 选择合适的分割方法,如基于阈值分割、基于区域生长分割、基于边缘检测分割等。

- 对预处理后的影像进行分割,提取感兴趣的目标区域。

4. 影像分类- 选择合适的分类方法,如监督分类、非监督分类等。

- 对分割后的影像进行分类,识别不同的地物类型。

5. 结果分析- 对分类结果进行分析,评估分类精度。

- 分析分类结果中存在的问题,并提出改进措施。

四、实验结果与分析1. 影像预处理结果- 经过辐射校正、几何校正和图像增强处理后,遥感影像的质量得到显著提高,对比度、清晰度等指标明显改善。

2. 影像分割结果- 根据实验所采用的分割方法,成功提取了感兴趣的目标区域,分割效果较好。

3. 影像分类结果- 通过选择合适的分类方法,对分割后的影像进行分类,成功识别了不同的地物类型。

遥感图像校正实验报告

遥感图像校正实验报告

遥感图像校正实验报告1. 引言遥感图像是通过卫星、飞机等遥感平台获取的地球表面的图像信息,具有广泛的应用价值。

然而,由于地球表面的复杂性和遥感平台的特点,遥感图像中可能存在各种影响因素,如大气、地形、光照等。

为了准确地利用遥感图像进行地物分类、资源监测等应用,需要对遥感图像进行校正。

本实验旨在探索并应用遥感图像校正方法,提高遥感图像的质量和准确度。

2. 实验目标本实验的主要目标是:- 理解遥感图像校正的原理和流程;- 掌握遥感图像校正的常用方法;- 运用所学的遥感图像校正方法,对实验数据进行校正,并评估校正效果。

3. 实验步骤3.1 数据准备本实验使用的遥感图像数据是卫星传感器获得的多光谱图像,包含了红、绿和蓝三个波段的数据。

数据提供了RAW格式的图像文件,需要进行预处理和格式转换,以便进行后续的遥感图像校正实验。

3.2 大气校正大气是遥感图像中主要的影响因素之一,大气校正是遥感图像校正中的重要步骤。

本实验采用了大气校正模型,通过计算大气透射率和反射率,对图像进行校正。

3.3 辐射校正辐射校正是遥感图像校正的另一个重要步骤,其目的是消除图像中的辐射差异,使得不同波段的图像能够进行有效的比较和分析。

本实验使用了辐射校正模型,通过计算辐射矫正系数,将原始图像转换为辐射校正后的图像。

3.4 几何校正几何校正是遥感图像校正的最后一步,其目标是消除图像中的几何形变,使得图像中的特征能够准确地对应地面的实际位置。

本实验使用了几何校正模型,通过对图像进行平移、旋转和缩放等操作,实现图像的几何校正。

4. 实验结果和讨论经过上述的步骤,我们成功地对实验数据进行了遥感图像校正。

校正后的图像显示出更好的质量和准确度,可以更好地用于地物分类和资源监测等应用。

然而,值得注意的是,遥感图像校正是一个复杂的过程,涉及到多个影响因素和数学模型。

在实际应用中,应根据具体需求和数据特点,选择合适的校正方法和参数,以达到最佳的校正效果。

遥感图像处理实验报告

遥感图像处理实验报告

遥感图像处理实验报告遥感图像处理实验报告引言遥感技术作为一种获取地球表面信息的重要手段,已经在农业、环境、城市规划等领域得到广泛应用。

本实验旨在通过遥感图像处理,探索图像处理算法的应用效果,并分析其在实际应用中的潜力。

一、图像预处理图像预处理是遥感图像处理的第一步,其目的是消除图像中的噪声、增强图像的对比度和清晰度。

在本实验中,我们使用了直方图均衡化和中值滤波两种常见的图像预处理方法。

直方图均衡化是一种通过调整图像像素的灰度分布来增强图像对比度的方法。

通过对图像的灰度级进行重新分配,使得图像的灰度分布更加均匀,从而使得图像的细节更加清晰。

实验结果显示,直方图均衡化对于遥感图像的对比度增强效果显著。

中值滤波是一种常见的图像去噪方法,其原理是通过计算像素点周围邻域的中值来替代该像素点的值,从而消除图像中的噪声。

在本实验中,我们使用了3x3的中值滤波器对遥感图像进行滤波处理。

实验结果表明,中值滤波能够有效地去除图像中的椒盐噪声和高斯噪声,使得图像更加清晰。

二、图像分类图像分类是遥感图像处理的核心任务之一,其目的是将遥感图像中的像素点按照其特征分类到不同的类别中。

在本实验中,我们使用了支持向量机(SVM)算法进行图像分类。

支持向量机是一种常用的机器学习算法,其通过构建一个最优超平面来实现分类。

在图像分类中,我们将遥感图像中的每个像素点看作一个数据样本,其特征由像素的灰度值和纹理信息组成。

通过对训练样本进行学习,支持向量机能够建立一个分类模型,从而对测试样本进行分类。

实验结果显示,支持向量机在遥感图像分类中表现出较高的准确性和鲁棒性。

通过调整支持向量机的参数,我们可以得到不同的分类结果。

此外,支持向量机还能够处理高维数据和非线性分类问题,使其在遥感图像处理中具有广泛的应用前景。

三、图像变换图像变换是遥感图像处理中的重要环节,其目的是将图像从一个空间域转换到另一个空间域,从而提取图像中的特征信息。

在本实验中,我们使用了小波变换和主成分分析两种常见的图像变换方法。

遥感课程实验报告

遥感课程实验报告

实验名称:遥感图像处理与分析实验时间:2023年4月10日实验地点:遥感实验室一、实验目的1. 掌握遥感图像的获取、处理和分析方法。

2. 学习遥感图像处理软件的使用。

3. 培养学生运用遥感技术解决实际问题的能力。

二、实验原理遥感技术是利用航空、航天等手段,获取地球表面信息的一种技术。

遥感图像处理与分析是遥感技术的重要组成部分,主要包括图像预处理、图像增强、图像分类、图像融合等。

本实验以遥感图像处理与分析为主要内容,通过实验掌握遥感图像处理的基本方法。

三、实验内容1. 遥感图像获取:获取一幅遥感图像,了解遥感图像的基本特征。

2. 遥感图像预处理:对遥感图像进行辐射校正、几何校正、大气校正等预处理操作。

3. 遥感图像增强:对遥感图像进行对比度增强、亮度增强、滤波等操作。

4. 遥感图像分类:采用监督分类和非监督分类方法对遥感图像进行分类。

5. 遥感图像融合:将多源遥感图像进行融合,提高图像质量。

四、实验步骤1. 实验准备:准备遥感图像处理软件、遥感图像数据等。

2. 遥感图像获取:从遥感图像数据库中获取一幅遥感图像。

3. 遥感图像预处理:a. 辐射校正:利用遥感图像的辐射校正公式,对遥感图像进行辐射校正。

b. 几何校正:利用遥感图像的几何校正公式,对遥感图像进行几何校正。

c. 大气校正:利用遥感图像的大气校正模型,对遥感图像进行大气校正。

4. 遥感图像增强:a. 对比度增强:采用直方图均衡化方法对遥感图像进行对比度增强。

b. 亮度增强:采用线性变换方法对遥感图像进行亮度增强。

c. 滤波:采用中值滤波、高斯滤波等方法对遥感图像进行滤波。

5. 遥感图像分类:a. 监督分类:选择训练样本,建立分类模型,对遥感图像进行分类。

b. 非监督分类:采用ISODATA、K-means等方法对遥感图像进行非监督分类。

6. 遥感图像融合:a. 选择合适的融合方法,如主成分分析(PCA)、小波变换等。

b. 对多源遥感图像进行融合,得到融合图像。

遥感图像处理实习报告

遥感图像处理实习报告

遥感图像处理实习报告在当今科技飞速发展的时代,遥感技术作为获取地球表面信息的重要手段,已经在众多领域得到了广泛应用。

为了更深入地了解和掌握遥感图像处理的技术和方法,我参加了本次遥感图像处理实习。

通过这次实习,我不仅学到了专业知识,还提高了实践操作能力,对遥感技术有了更全面的认识。

一、实习目的本次实习的主要目的是让我们熟悉遥感图像处理的基本流程和方法,掌握常用的遥感图像处理软件,学会对遥感图像进行几何校正、辐射校正、图像增强、图像分类等操作,并能够运用所学知识解决实际问题,提高对遥感数据的分析和应用能力。

二、实习内容(一)数据准备在实习开始前,我们收集了一系列的遥感图像数据,包括不同传感器、不同分辨率、不同波段组合的图像。

这些数据涵盖了城市、农田、森林、水域等多种地物类型,为后续的处理和分析提供了丰富的素材。

(二)软件学习我们使用了 ERDAS IMAGINE 和 ENVI 这两款主流的遥感图像处理软件。

通过学习这两款软件的基本操作界面、功能模块和工具菜单,我们逐渐熟悉了如何导入数据、显示图像、进行图像裁剪和拼接等基本操作。

(三)几何校正几何校正是遥感图像处理中的重要环节,它可以消除由于传感器姿态、地球曲率、地形起伏等因素引起的图像几何变形。

我们首先选取了具有精确地理坐标的控制点,然后利用多项式模型对图像进行几何校正,通过不断调整参数,使校正后的图像与实际地理坐标相匹配。

(四)辐射校正辐射校正旨在消除由于传感器性能、大气散射和吸收等因素引起的图像辐射误差。

我们采用了基于直方图匹配和辐射定标的方法,对图像的亮度和对比度进行了调整,使不同时相、不同传感器获取的图像具有可比性。

(五)图像增强为了突出图像中的有用信息,我们运用了多种图像增强技术,如对比度拉伸、直方图均衡化、滤波等。

通过这些操作,图像中的地物特征更加清晰,有利于后续的分析和识别。

(六)图像分类图像分类是遥感图像处理的核心任务之一,我们尝试了监督分类和非监督分类两种方法。

初识遥感影像实验报告(3篇)

初识遥感影像实验报告(3篇)

第1篇一、实验背景随着遥感技术的不断发展,遥感影像在地理信息科学、环境监测、城市规划等领域得到了广泛应用。

为了深入了解遥感影像的基本原理和应用方法,我们开展了本次遥感影像实验。

通过实验,旨在培养学生对遥感影像的认识,掌握遥感影像处理的基本技能,并能够运用遥感影像进行简单的分析和应用。

二、实验目的1. 了解遥感影像的基本概念和分类。

2. 掌握遥感影像的获取方法和数据格式。

3. 学习遥感影像的基本处理方法,包括图像增强、几何校正和图像分类。

4. 熟悉遥感影像在地理信息分析中的应用。

三、实验内容1. 遥感影像基本概念与分类(1)遥感影像的定义:遥感影像是指通过遥感传感器从地球表面或其他天体表面获取的图像数据。

(2)遥感影像的分类:按获取平台分为航空遥感影像和航天遥感影像;按传感器类型分为光学遥感影像和雷达遥感影像;按应用领域分为资源遥感影像、环境遥感影像和灾害遥感影像等。

2. 遥感影像获取方法(1)航空遥感影像:通过飞机搭载的遥感传感器获取,具有高分辨率、高精度等特点。

(2)航天遥感影像:通过卫星搭载的遥感传感器获取,具有大范围、大动态范围等特点。

3. 遥感影像数据格式(1)TIFF格式:支持多种数据类型,广泛应用于遥感影像处理。

(2)JPEG格式:压缩效果好,但可能损失部分图像信息。

(3)GeoTIFF格式:包含地理信息,便于地理信息分析。

4. 遥感影像处理(1)图像增强:通过对遥感影像进行增强处理,提高图像质量,便于后续分析。

(2)几何校正:将遥感影像进行几何校正,使其符合实际地理坐标。

(3)图像分类:根据遥感影像的灰度值、纹理、光谱等信息,对地表物体进行分类。

5. 遥感影像应用(1)地理信息分析:通过遥感影像进行地形、地貌、土地利用等地理信息的分析。

(2)环境监测:利用遥感影像监测植被覆盖、水质、大气污染等环境问题。

(3)城市规划:通过遥感影像进行城市规划、土地管理等工作。

四、实验步骤1. 准备实验数据:收集遥感影像数据,包括航空遥感影像和航天遥感影像。

遥感图像解译 实验报告

遥感图像解译 实验报告

遥感图像解译实验报告1. 实验目的本实验旨在通过遥感图像解译技术,对不同区域的地物进行分类和识别,实现对遥感图像的解读和分析。

2. 实验原理遥感图像解译是利用遥感图像获取的信息,通过对图像进行分析和解读,对图像中的地物进行分类和识别的过程。

其主要依靠计算机图像处理技术、模式识别和人工智能等方法。

本实验采用的遥感图像为航拍图像,航拍图像分辨率高,能够提供更为详细的地物信息。

在图像预处理阶段,首先对图像进行镶边去除、几何校正和辐射校正等预处理工作,以消除图像中的各种干扰因素。

在图像解译阶段,首先进行目标选择,选取感兴趣的区域进行进一步分析。

然后进行目标分类,将不同的地物进行分类和识别,可以根据地物的不同光谱特征和纹理信息进行分类。

本实验使用的图像解译方法主要包括:- 监督分类方法:通过对已知类别地物进行样本点选择,从而建立分类器进行分类。

- 非监督分类方法:根据像元的统计学特征,将图像中的地物进行聚类,从而实现地物分类。

- 物体识别方法:基于物体的形态、纹理等特征,通过模式识别方法进行识别。

3. 实验步骤3.1 数据准备本实验使用的航拍图像是一幅城市区域的遥感图像,分辨率为1米。

图像中包含了建筑物、道路、植被等多种地物。

3.2 图像预处理首先对图像进行镶边去除,去除图像四周的无效边缘信息。

然后进行图像的几何校正和辐射校正,以消除图像中的几何畸变和辐射差异。

3.3 目标选择选取感兴趣的区域进行进一步的分析。

根据图像中的特定区域选择建筑物、道路、植被等不同类别的地物。

3.4 目标分类对选取的目标进行分类和识别。

首先使用监督分类方法,选择已知类别地物进行样本点选择,并建立分类器。

然后使用非监督分类方法,对图像中的地物进行聚类分类。

最后使用物体识别方法,对地物进行形状和纹理等特征的识别。

3.5 结果分析分析实验得到的分类结果,评估分类的准确性和可靠性。

通过对分类结果的比较和分析,得出对地物的解释和发现。

4. 实验结果经过实验的数据处理和图像解译,得到了图像中各个地物类别的分类结果。

【报告】遥感图像处理实验报告

【报告】遥感图像处理实验报告

【关键字】报告遥感图像处理实验报告篇一:遥感数字图像处理实验报告设计重庆交通大学遥感数字图像处理实验报告实验课程:数字图像处理实验名称:设计所有遥感数字图像处理的实验班级:实验一:遥感图像合成和显示增强一、目的和要求1. 目的掌握图像合成和显示增强的基本方法,理解存储的图像数据与显示的图像数据之间的差异。

2. 要求熟练根据图像中的地物特征进行合成显示、拉伸、图像均衡化等显示增强操作。

理解直方图的含义,能熟练利用直方图进行多波段的图像显示拉伸增强处理。

2、实验内容1. 图像的彩色合成显示2. 图像的基本拉伸方法3. 图像均衡化方法4. 图像规定化三、实验步骤四、实验体会实验二:遥感图像的几何精纠正一、目的和要求1.目的使用多项式方法对TM遥感图像进行几何精纠正。

2.要求能熟练根据地图、GPS测点数据或具有投影的图像对遥感图像进行几何精纠正。

能够正确地选择几何纠正中的各种参数。

能够对纠正结果进行评估。

掌握几何精纠正的基本方法和操作要点。

能够自定义地图投影并进行图像的投影转换。

2、实验内容1. 对TM图像进行几何精纠正。

2. 自定义地图投影。

3. 转换图像的投影。

三、实验步骤四、实验体会实验三:图像变换一、目的和要求1.目的掌握图像变换的基本操作方法,对比变换前后图像差异,理解不同变换方法之间的区别。

2.要求能够根据图像的特征设定傅里叶变换的滤波器,消除图像中的条纹。

能够解释主成分变换后的图像,利用主成分变换消除图像中的噪声。

能够利用KT变换结果进行图像合成、解释地物信息。

熟练利用代数运算产生不同的波段组合。

利用彩色变换进行图像的合成和融合。

能够解释变换后的图像,并根据工作目的选择合适的图像变换方法。

2、实验内容1. SPOT图像的傅里叶变换。

2. TM图像的主成分变换。

3. TM图像的代数变换。

4. ETM 图像的彩色变换。

三、实验步骤四、实验体会篇二:遥感图像处理实验报告格式遥感图像处理班级:学号:姓名:指导教师:实验报告目录一、实验目的 (3)2、实验时间 (3)三、实验地点 (3)四、实验内容 (3)1.图像j50e023013和j50e024013的校正 (3)2.校正后图像的裁剪 (3)3.图像裁剪后的拼接 (5)4.图像pinjie校正spot图像 (7)5.校正后的spot图像校正图像etm+ (10)6.校正后图像的融合 (12)7.融合图像的分类 (13)五、实验体会 (14)一、实验目的:(1)了解遥感软件的基本结构,并能熟练地运用该软件处理遥感数据。

遥感图像的正射校正实验报告

遥感图像的正射校正实验报告

遥感图像的正射校正
实验报告
一、实验目的
通过实习操作,掌握遥感图像正射校正的基本原理和和方法,理解遥感图像正射校正的意义。

二、实验环境
操作系统:Windows XP
软件:ENVI4.7
三、实验内容
首先打开实验数据,数据图显示如下:
进行正射校正,进行如下的操作,选择第二种模式
通过导进外部测量控制点来进行控制点的采样工作
找到扩展名为.pts的文件导进去,点击show list查看控制点的选择精度
点击predict查看控制点的分布状况进行如下选择进行正射校正工作
点击确定即可,在弹出来的对话框中点击select dem file按钮,导入一个dem数据
点击ok即可,对剩下来的对话框进行如下所示的设置,修改一些参数,如下图:点击确定按钮即可
对于正射校正好的图像进行和原始数据图像进行比较,在原始图像上右击,选择第二个选项在弹出来的对话框中进行如下修改:
选择一个点对正射校正过的图像和原始数据图像进行比较,看看那里不同
四、实验总结
从实验看出,ENVI的正射校正功能具有操作简单、灵活和支持的传感器多等特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遥感图像实验报告
一.实验目的
1、初步了解目前主流的遥感图象处理软件ERDAS的主要功能模块。

2、掌握Landsat ETM遥感影像数据,数据获取手段.掌握遥感分类的方法,
土地利用变化的分析,植被变化分析,以及利用遥感软件建模的方法。

3、加深对遥感理论知识理解,掌握遥感处理技术平台和方法。

二.实验内容
1、遥感图像的分类
2、土地利用变化分析,植被变化分析
3、遥感空间建模技术
三.实验部分
1.遥感图像的分类
(1)类别定义:根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;
(2)特征判别:对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理;
(3)样本选择:为了建立分类函数,需要对每一类别选取一定数目的样本;(4)分类器选择:根据分类的复杂度、精度需求等确定哪一种分类器;
(5)影像分类:利用选择的分类器对影像数据进行分类,有的时候还需要进行分类后处理;分类图如下:
图1.1 1992年土地利用图
图1.2 2001年土地利用图
(6)结果验证:对分类结果进行评价,确定分类的精度和可靠性。

图1.3 1992年精度图
图1.4 2002年精度图
2.土地利用变化
2.1 两年土地利用相重合区域
(1)在两年的遥感影像中选择相同的区域。

Subset(x:568121~684371,y:3427359~3288369),过程如下:
图2.1 截图过程图
图2.2.2 截图过程图
(2)土地利用专题地图如下:
图2.2.3 1992年专题地图
图2.2.4 2001年土地利用图
2.2 土地利用变化
表2.2.1 土地利用变化表
表2.2.2 土地利用变化柱形图
(1)用矩阵方法对年份不同的土地利用图做变化分析,得出一幅可以体现变化的
成果图。

图2.2.1 土地变化分析过程图
图2.2.2 土地变化分析过程图
(2)土地利用结果图:
图2.2.3 土地利用变化图
(3)根据图像进行土地利用变化分析
利用ARCGIS分析模块,对土地利用类型动态监测结果为基础,对1992年和2002年土地利用情况进行分析,结果表明:
(1)根据上图所示,该区域耕地面积在不断减少,可能的原因是此地区经济状况不断发展,人口增多,建筑用地,商业用地增多,造成了耕地面积的减少;(2)湖泊面积减少,而湖泊变成了田地,可分析得,此地区围湖造田的现象依然存在;
(3)城镇面积不断增加;原因是城镇化发展迅速,人口涌入城市,使得地区城镇增加,从一定程度上反映出此地区经济不断发展;
(4)土地利用变化的区域性差异不明显。

3.植被变化分析
(1)路径:Interpreter\Spectral enhancement\indices
(2)建模:
NDVI=(NIR-R)/(NIR+R)
NIR——近红外波段
R ——可见光波段
-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而
增大;
图3.1 1992年植被归一化指数图3.2 2001年植被归一化指数(3)应用模型ndvi-cover.gmd计算植被覆盖度。

图3.3 1992年植被覆盖图图3.4 1992年植被覆盖图(4)两年相减,得出植被覆盖度变化趋势图
图3.5 植被变化图
(5)植被变化分析
由图可以得到,江汉平原近几年里,植被的覆盖度降低。

可能原因是,随着经济的发展,江汉平原的人口增多,使得自然环境受到人类干扰,生态遭到破坏。

植被数量减少.
4. 遥感温度反演
(1)数据获取
TM/ETM影像
(2)归一化植被指数计算
利用之前得出的植被指数NDVI,如下图所示:
图4.1 1992年NDVI 图4.2 2001年NDVI (3)比辐射率(Emissivity)计算
地表比辐射率对地表温度反演精度影响很大,研究发现地表比辐射率与植被指数高度相关,建立关系模型:
E=1.0094+0.047ln(NDVI) ndvi∈[0.157,0.727]
a.比辐射率计算模型
图4.3 地表比辐射率模型
b.地表比辐射率模型图
图4.4 1992年比辐射率图图4.5 2001年比辐射率图(4)温度反演
a.温度反演一
运用Planck方程计算亮度温度。

对于TM数据,参考模型
图4.6 温度反演(1)图4.7 温度反演(1)
图4.8 1992年温度反演图(1)图4.9 2001年温度反演图(1)b.温度反演二
TM6中心波长11.457μm,反解Planck函数获取地表真实温度模型
图4.10 温度反演(2)图4.11 温度反演(2)
图4.12 1992温度反演(2) 图4.13 2001温度反演(2)。

相关文档
最新文档