材料表征技术PPT课件

合集下载

材料表征技术ppt课件

材料表征技术ppt课件

1.空间点阵
F1-8空间点阵
30
莫塞莱定律
X射线荧光光谱分析和电子探针微区成分分 析的理论16 K射线的双重线
W靶: 0.0709nm 0.0714nm
K波长=? 加权平均
32
产生特征(标识)X射线的根本原因:内层电子的跃迁 • 激发源:高速电子、质子、中子、 X射线; • 每种元素都有特定波长的标识X射线:X射线光谱分析的原理
indexing, structure refinement and ultimately structure solving • Degree of orientation of the crystallites: texture analysis. • Deformation of the crystallites as a result of the production process: residual stress
• 要求与目标 正确选择方法、制订方案、分析结果 为以后掌握新方法打基础
• 课程安排
10
第一章 X射线的性质
• •1.1 引言 • •1.2 X射线的本质 • •1.3 X射线的产生及X射线管 • •1.4 X射线谱 • •1.5 X射线与固体物质相互作用
11
第一章 X射线的性质 1.1 引言
• 1895, (德,物)伦琴发现X射线 • 1912,(德,物)劳厄发现X射线在晶体 中的衍射
T2-15 特征X射线谱及管电压对特征谱的影响
27
特征X射线产生:能量阈值
EnRn2h(cZ)2
hn2 n1 En2 En1
激发--跃迁--能量降低
KL LK
辐射出来的光子能量
KL hh/c
激发所需能量--与原子核的结合能Ek

薄膜材料的表征方法-PPT

薄膜材料的表征方法-PPT

❖ 通过测量膜厚可以确定各种薄膜得沉积速率,即 以所测膜厚除以溅射时间得到平均沉积速率,因 此精确测量膜厚变显得尤为重要。
❖ 粗糙度仪法测膜厚得优点就是:
①直观―可以直接显示薄膜得几何厚度与表面(或 厚度)得不均匀;
②精确度高―在精确测量中,精度可达到0、5nm,通 常也能达到2nm,因此常用来校验其它膜厚测试方 法得测试结果;
来观测表面形貌。特别就
是二次电子因它来自样品
本身而且动能小,最能反映
样品表面层形貌信息。一
般都用它观测样品形貌。
图3-2 电子束与表面原子相互 特征X射线可供分析样品
作用图
得化学组分。
❖ 在扫描电子显微镜中,将样品发射得特征X射线送 入X射线色谱仪或X射线能谱仪可进行化学成份 分析。
❖ 当样品得厚度小于入射电子穿透得深度时,一部 分入射电子穿透样品从下表面射出。将这一系列 信号分别接受处理后,即可得到样品表层得各种 信息。SEM技术就是在试样表面得微小区域形成 影像得。下表列出了扫描电子显微镜可提供得样 品表层信息。
❖30keV左右得能量得电子束在入射到样品表面之后,将
与表面层得原子发生各种相互作用,产生二次电子、背散
射电子、俄歇电子、吸收电子、透射电子等各种信号(如
图3-2)。
从图3-2中瞧到,入射电子
束与样品表面相互作用可
产生7种信息。其中最常
用于薄膜分析得就是背散
射电子、二次电子与特征
X射线。前两种信息可用
❖ 扫描电子显微镜就是目前薄膜材料结构研究最直 接得手段之一,主要因为这种方法既像光学金相显 微镜那样可以提供清洗直观得形貌图象,同时又具 有分辨率高、观察景深长、可以采用不同得图象 信息形式、可以给出定量或半定量得表面成分分 析结果等一系列优点。扫描电子显微镜就是目前 材料结构研究得最直接得手段之一。

XRD的原理、方法及应用 ppt课件

XRD的原理、方法及应用 ppt课件

汇报内容
材料表征概述 XRD的原理 XRD的实施方法 XRD的应用
XRD的原理
• X射线是一种波长很短(约为20~0.06埃),介于紫 外线和伽马射线之间的电磁辐射。由德国物理学家 W.K.伦琴于1895年发现,故又称伦琴射线。X射线 ,能穿透一定厚度的物质,并能使荧光物质发光、 照相胶乳感光、气体电离。
XRD的原理
• 布拉格公式: 2dsinθ=nλ
式中: λ,X射线波长; n,衍射级数; d,晶面间距; θ,衍射半角
汇报内容
材料表征概述 XRD的原理 XRD的实施方法 XRD的应用
XRD的实施方法
• 样品制备
• 准备衍射仪用的样品试片一般包括两个步骤: • 1.需把样品研磨成适合衍射实验用的粉末; • 2.把样品粉末制成有一个十分平整平面的试片。
材料表征概述
• 以纳米粉体材料为例,常用的表征手法如下图所示 :
材料表征概述
• XRD即X-Ray Diffraction(X射线衍射)的缩写。通 过对材料进行X射线衍射,分析其衍射图谱,获得 材料的成分、材料内部原子或分子的结构或形态等 信息的研究手段。
X射线衍射仪
材料表征概述
• 1. 1895年,德国,伦琴,发现,医疗,第一个诺贝 尔物理奖;
样品中晶体学取向与样品外坐 标系的位向关系。一般用劳厄 法单晶定向,其根据是底片上 劳埃斑点转换的极射赤面投影 与样品外坐标轴的极射赤面投 影之间的位置关系。(透射/ 背射)
X射线单晶衍射仪
XRD的应用
• 多晶材料中晶粒取向沿一定方位偏聚的现象称为织 构,常见的织构有丝织构和板织构两种类型。
• 为反映织构的概貌和确定织构指数,有三种方法描 述织构:极图、反极图和三维取向函数。

材料的测试、表征方法和技巧ppt课件

材料的测试、表征方法和技巧ppt课件
用) 共聚焦方式,适于表面或层面分析,高信噪比 能适合黑色和含水样品 高、低温及高压条件下测量 光谱成像快速、简便,分辨率高 仪器18稳固,体积适中,维护成本低,使用简单
红外光谱
光谱范围400-4000cm-1 分子振动谱 吸收,直接过程,发展较早
平衡位置附近偶极矩变化不为零 与拉曼光谱互补 实验仪器是以干涉仪为色散元件 测试在中远红外进行,不收荧光干扰
方法一:纵坐标为吸收强度,横坐标为波长λ(m) 和波数1/λ,单位:cm-1 。可以用峰数,峰位,峰
形,峰强来描述。 纵坐标是:吸光度A 应用:有机化合物
的结构解析 定性:基团的特征
吸收频率; 定量:特征峰的强

6
方法二:纵坐标是百分透过率T%。百分透过率的定义 是辅射光透过样品物质的百分率,即 T%= I/I0×100%, I是透过强度,Io为入射强度。
峰数 峰数与分子自由度有关。无瞬间偶基距变化 时,无红外吸收
峰强 瞬间偶极矩大,吸收峰强;键两端原子电负 性相差越大(极性越大),吸收峰越强
由基态跃迁到第一激发态,产生一个强的吸收峰, 基频峰
由基态直接跃迁到第二激发态,产生一个弱的吸收 峰,倍1频1 峰
有机化合物基团的特征吸收
化合物红外光谱是各种基团红外吸收的叠加
各种基团在红外光谱的特定区域会出现对应的吸收 带,其位置大致固定
受化学结构和外部条件的影响,吸收带会发生位移, 但综合吸收峰位置、谱带强度、谱带形状及相关峰 的存在,可以从谱带信息中反映出各种基团的存在 与否
12
常见基团的红外吸收带
=C-H C-H CC C=C
O-H O-H(氢键)
C=O C-C,C-N,C-O
S-H P-H N-O N-N C-F C-X

《材料结构的表征》课件

《材料结构的表征》课件
《材料结构的表征》PPT 课件
欢迎来到《材料结构的表征》PPT课件!本课程将介绍材料结构的不同表征 方法,包括X射线衍射、电子显微镜技术、原子力显微镜技术等。
1. X射线衍射
1 原理
X射线通过物质后发生衍 射,通过分析衍射图案来 确定物质结构。
2 应用
X射线衍射广泛应用于晶 体学、材料科学等领域, 可用于分析晶体结构和晶 格参数。
原理
通过测量物质对不同波长的红外辐射的吸收、发射或散射,来确定物质的成分和结构。
应用
红外光谱广泛应用于化学、材料科学等领域,可用于鉴定化合物和分析有机物的功能基团。
示例
通过红外光谱可以鉴定食品中的添加剂,如防腐剂、甜味剂等。
5. 核磁共振
原理 应用 示例
核磁共振通过测量物质中原子核的能级跃迁和自 旋相互作用,得到原子核的谱线信息。
通过测量束缚与散射电子的能量 分布,研究材料表面的次表面组 分。
在湿润、低真空等环境下观察样品的显微结构。
3. 原子力显微镜技术
ห้องสมุดไป่ตู้
扫描隧道显微镜(STM)
原子力显微镜(AFM)
磁力显微镜
利用针尖与样品之间的隧道效应, 实现原子级别的表面成像。
通过感知样品表面的原子力变化, 实现高分辨率的微观成像。
利用样品表面的磁场分布,观察 磁性材料的磁场图像。
4. 红外光谱
3 示例
通过X射线衍射技术可以 确定金属合金中不同相的 含量和相间距离。
2. 电子显微镜技术
1
扫描电子显微镜(SEM)
利用射出的电子束与样品表面的相互作用,获取高分辨率的表面形貌信息。
2
透射电子显微镜(TEM)
通过射入样品的电子束与样品内部的相互作用,获取材料的内部结构信息。

材料结构表征与应用ppt课件

材料结构表征与应用ppt课件
2表面结构定性分 析与表面化学研究
固体样品探 测深度
约0.4~2nm(俄歇电 约0.5~2.5nm(金属 子能量50~2000eV范 及金属氧化物);约 围内)(与电子能量 4~10nm(有机化合 及样品材料有关) 物和聚合物)。
28
X射线衍射(X-ray diffraction,XRD)
XRD ,通过对材料进行X射线衍射,分析其衍射图谱, 获得材料的成分、材料内部原子或分子的结构或形态 等信息的研究手段。
XRD可以做定性,定量分析。即可以分析合金里面的相 成分和含量,可以测定晶格参数,可以测定结构方向、 含量,可以测定材料的内应力,材料晶体的大小等等。 一般主要是用来分析合金里面的相成分和含量。
10
三种组织分析手段的比较
扫描探针显微镜 扫描电子显微镜
观察倍率 ×10000000 ×1000000
×100000
×10000
光学显微镜
×1000
×100
分辨率
1000 0 10
1000 1
×10
100
10
1
0.1 nm
0.1
0.01
0.001 0.0001 μm
11
光学和电子显微镜
光学显微镜是利用光学原理,把人眼所不能分 辨的微小物体放大成像,以供人们提取微细结 构信息的光学仪器
应力分析等; (2)相变过程与产物的X射线研究:相变过程中产物
(相)结构的变化及最终产物、工艺参数对相变的影 响、新生相与母相的取向关系等; (3)固溶体的X射线分析:固溶极限测定、点阵有序化 (超点阵)参数、短程有序分析等; (4)高分子材料的X射线分析:高聚物鉴定、晶态与非 晶态及晶型的确定、结晶度测定、微晶尺寸测定等。

纳米材料的表征方法ppt课件

纳米材料的表征方法ppt课件
3
透射电子显微镜(TEM)的主要功能
研究纳米材料的 结晶情况,
观察纳米材料的 形貌,
分散情况 评估纳米粒子的
粒径。
4
扫描电子显微镜(SEM)
SEM是一种多功能的电子显微镜分析仪器. 1935年卡奴提出了SEM的工作原理 1942年制造出了世界上第一台SEM 现代的SEM是剑桥大学欧特利与学生在1948-
对表面进行纳米加工,构建新一代的纳米电子器件.
8
STM的优点
它有原子量级的极高分辨率(横向可达0.1nm,纵向可达 0.01nm),即能直接观察到单原子层表面的局部结构 。 比如表 面缺陷、表面吸附体的形态和位置等.
STM能够给出表面的三维图像 STM可在不同的环境条件下工作,包括真空、大气、低温,甚至
纳米材料的表征方法
向利
1
纳米材料的表征
表征技术是指物质结构与性质及其应用的有关分析、 测试方法,也包括测试、测量工具的研究与制造。
表征的内容包括材料的组成、结构和性质等。 组成:构成材料的化学元素及其相关关系 结构:材料的几何学、相组成和相形态等 性质:指材料的力学、热学、磁学、化学等
2
纳米材料表征手段
1.形貌,电子显微镜(TEM、SEM),普通的是电子枪 发射光电子,还有场发射的,分辨率和适应性更好;
2.结构,一般是需要光电电子显微镜,扫描电子显 微镜不行
3.晶形,单晶衍射仪,XRD,判断纳米粒子的晶形及 结晶度
4.组成,一般是红外,结合四大谱图,判断核壳组பைடு நூலகம்成,只作为佐证
5.性能,光-紫外,荧光;电--原子力显微镜 (AFM),拉曼;磁--原子力显微镜或者专用的仪器
样品可浸在水中或电解液中,所以适用于研究环境因素对样品表 面的影响. 可研究纳米薄膜的分子结构.

材料表征技术

材料表征技术
m = / [cm2/g] 质量吸收系数:物质固有值 物理意义:单位质量物质对X射线的衰 减量。与物质密度和物质状态无关。
m K3Z3
含多种元素物质的质量吸收系数 m
m i (m)i
为各元素的质量百分比
应用:
生物体透视 工业产品探伤
2.二次特征辐射
m = / m K3Z3
逸出功
hWk = eVk hc/ eVk=1.24/Vk = k
• 每种元素都有特定波长的标识X射线:X 射线光谱分析的原理
1.5 X射线与固体物质相互作用
内层电子 外层电子、 价电子、自 由电子
真吸收
X射线的吸收
1. X射线的吸收与吸收系数
T2-18 X射线衰减
X射线衰减规律It
:线吸收系数。 意义:在X射线传播方向上,单位长度 上的X射线强度衰减程度[cm-1].与物质种 类、密度、X射线波长有关。
T2-15 特征X射线谱及 管电压对特征谱的影

特征X射线产生:能量阈值
En Rhc (Z )2
n2
h n2 n1 En2 En1
激发--跃迁--能量降低
KL L K
辐射出来的光子能量
KL h hc /
激发所需能量--与原子核的结合能Ek
eVk =-Ek=Wk
特征X射线产生
此外,还有旋转阳 极X射线管、 细聚焦X射线管
1.4 X射线谱 (连续X射线、特征X射线) T2-13 连续X射线谱特征及辐射 管电压对连续连辐射续谱影响 I连积分公式
0
曲线连续变化
• 短波极限 eV=hmax =hc/0
0 =1.24/V (nm) V(kV)
在X射线谱中某个波长处出现强度峰,峰窄而 尖锐;此波长放映了物质的原子序数特征----特征X射线

材料表征方法拉曼光谱课件

材料表征方法拉曼光谱课件

THANKS
数据分析
结合样品的性质和实验目 的,对特征峰进行定性和 定量分析,得出有关材料 结构和性质的结论。
03
拉曼光谱在材料表征中的应 用
晶体结构分析
总结标词题
拉••曼光文文谱字字能内内够容容通过分 析•材料文中字特内定容振动模 式来• 确文定字其内晶容体结构。
详细描述
拉曼光谱可以检测到 材料中特定分子的振 动模式,这些振动模 式与晶体的对称性和 振动频率密切相关, 从而可以推断出材料
样品安装
将处理好的样品放置在拉曼光谱仪的样品台上,确保样品与激光光路对准。
数据采集
启动光谱仪,收集样品的拉曼散射信号,记录光谱数据。
实验数据处理与分析
01
02
03
数据预处理
对采集到的原始数据进行 整理、平滑和背景校正等 处理,以提高数据质量。
特征峰识别
根据拉曼光谱的原理,识 别出与样品相关的特征峰, 并确定其对应的振动模式。
优点
可以提供分子振动和转动信息,适用 于各种类型的材料,包括非晶体、部 分晶体和有机/无机材料。
05
拉曼光谱的未来发展与展望
高灵敏度拉曼光谱技术
总结词
随着科学研究的深入,对材料表征的精度和灵敏度要求越来 越高,高灵敏度拉曼光谱技术成为未来的发展趋势。
详细描述
高灵敏度拉曼光谱技术通过采用先进的激光技术和信号处理 方法,提高了拉曼散射的信号强度和信噪比,从而能够更准 确地检测微弱信号,对痕量物质和低浓度样品进行有效的表征。
的晶体结构。
总结词
拉曼光谱在晶体结构 分析中具有高精度和
高灵敏度。
详细描述
拉曼光谱的分辨率高, 可以区分不同晶体的 振动模式,从而准确 地确定材料的晶体结 构。此外,拉曼光谱 的灵敏度高,可以检 测到微小的晶体结构

XRD技术介绍PPT课件

XRD技术介绍PPT课件
K系射线中,Kα射线相当于电子由L层跃迁到K层产生的射线,在特征X射线 中K系射线强度远远高于L、M等线系,而K系中Kα1、Kα2、Kβ1的强度比一 般为100:50:22。Kα1与Kα2非常接近,二者很难分离,所谓的Kα实际是二者 的统称,而Kβ1则通常称为Kβ。 Cu的特征谱线波长为:Kα1 =1.54056Å,Kα2 =1.54439Å,Kβ1 =1.39222Å 对于Cu靶,Kα波长取Kα1与Kα2的加权平均值为1.54184Å。
• 产生K系激发要阴极电子的能量eVK至少 等于击出一个K层电子所作的功WK。VK 就是激发电压。
莫塞莱定律
• 标识X射线谱的频率和波长只取决于阳极靶 物质的原子能级结构,是物质的固有特性。 且存在如下关系:
• 莫塞莱定律:标识X射线谱的波长λ与原子 序数Z关系为:
1 CZ
• 特征X射线波长与靶材料原子序数关系
φ O. φ d A . φ. .B
C
d
晶面间距
φ
掠射角
光程差 : δ = AC + CB = 2dsinφ
The condition of a constructive interference:
2dsink(k1.2.3 )
This relation is called Bragg’s law.
1915 物理
亨利.布拉格Henry Bragg 劳伦斯.布拉格Lawrence Bragg.
1917 物理
巴克拉Charles Glover Barkla
1924 物理
卡尔.西格班Karl Manne Georg Siegbahn
1937 物理
戴维森Clinton Joseph Davisson 汤姆孙George Paget Thomson
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• Identification of the phase(s) present: is it a pure phase or does the material contain impurities as a result of the production process?
• Quantification of mixtures of phases
材料表征技术(一)
金灯仁
参考书:无机非金属材料测试方法
材料现代分析方法
X射线衍射分析原理、方法、应用
(周上祺)等
(英文版)
-
1
绪论(一)
现代分析测试技术:是研究物质的微观状 态与宏观性能之间关系的一种手段.
人们能通过改变分子或晶体的结构来达 到控制物质宏观特性的目的,所以科学 技术的发展离不开分析测试.
• 其它
X射线光电子能谱(XPS)、俄歇电子能谱(AES)、 扫描隧道显微镜(STM)、原子力显微镜(AFM)等
• 要求与目标 正确选择方法、制订方案、分析结果 为以后掌握新方法打基础
• 课程安排
-
10
第一章 X射线的性质
• •1.1 引言 • •1.2 X射线的本质 • •1.3 X射线的产生及X射线管 • •1.4 X射线谱 • •1.5 X射线与固体物质相互作用
• Degree of orientation of the crystallites: texture analysis.
• Deformation of the crystallites as a result of the production process: residual stress analysis
• Influence of non-ambient conditions on these properties
All these investigations can be carried out on samples of varying dimensions:
• 传统的显微组织结构与成分分析测试方法
光学显微镜:100nm, 表面形态,难以实现同位微 区分析
化学分析:平均成分,不能给出元素分布
-
6
• X射线衍射与电子显微分析
• XRD:晶体结构、晶胞参数、晶体缺陷、相等。
• 局限性:无法形貌观察与晶体结构分析微观同位结 合;微米、 纳米级选择性分析
• 电子显微镜(EM,Electron Microscope):用高能电子束 作光源,用构:原子结构、晶体结构、缺陷等原子、分 子水平上的构造状况。
显微结构:材料内部不同的晶相、玻璃相及气孔的
形态、大小、取向、分布等结构状况。从尺度范围
上来讲一般电子显微镜及光学显微镜所观察到的范
围。
-
5
绪论(二)
• 材料的组织结构与性能
• 显微组织结构的内容:显微化学成分(不同相成分,
基体与析出相的成分、偏析等)、晶体结构与晶体缺陷、晶 粒大小与形态、相(成分、结构、形态、含量及分布)、 界面
-
2
材料现代分析方法,是关于材料成分、结构、 微观形貌与缺陷等的现代分析、测试技术及其 有关理论基础的科学。
内容:材料(整体的)成分、结构分析,也包 括材料表面与界面、微区分析、形貌分析等
一般原理:通过对表征材料的物理性质或物理 化学性质参数及其变化(称为测量信号或特征 信息)的检测实现的。即材料的分析原理是指 测量信号与材料成分、结构等的特征关系。采 用不同测量信号(相应地具有于材料的不同特 征关系)形成了各种不同的材料分析方法。
度的变化) • 多晶试样中晶粒大小、应力和应变情况
-
13
Structural analysis for materials research and crystallography
X-ray powder diffractometry (XRPD) is a valuable tool for the research and development of advanced materials. It can be used for investigation of the following properties:
-
7
表4-1 X射线衍射分析方法的应 用
-
8
材料表征 (本课程的)主要内容
元素成份分析(AAS,AES,XRF, EDX)
化学价键分析(IR,LRS)
结构分析(XRD,ED)
形貌分析(SEM,TEM,AFM,STM)
表面与界面分析(XPS,AES,SIMS)
-
9
本课程内容与要求
• X射线衍射、电子显微分析(重点掌握)
• Degree of crystallinity of the phase(s)
• Crystallographic structure of the material: space group determination and indexing, structure refinement and ultimately structure solving
-
3
入射线 X射线
X射线 晶体结构 衍射规律
试样(晶
体)?
衍射线
分析(结构)
XRD谱 I:强度
d(2):位置
XRD分析
-
4
结构
尺度:埃量级—核外电子结构;微米级的晶粒度。 尺度更大的孔隙、裂纹等
结构(或组织结构)(广义)包括从原子结构到肉 眼能观察到的宏观结构各个层次的构造状况的通称。 原子结构、分子结构、晶体结构、电畴结构等。
-
11
第一章 X射线的性质
1.1 引言
• 1895, (德,物)伦琴发现X射线 • 1912,(德,物)劳厄发现X射线在晶体
中的衍射
X射线:电磁波 晶体:格子构造;
研究晶体材料开辟道 路
-
12
X射线衍射(XRD)的应用
• 单晶材料:晶体结构;对称性和取向方位 • 金属、陶瓷:物相分析(定性、定量) • 测定相图或固溶度(定量、晶格常数随固溶
• TEM:微观组织形态与晶体结构鉴定(同位分析);10-1nm,106
• SEM:表面形貌,1nm, 2x105, 表面的成分分布 • EPMA:SEM、EPMA结合,达到微观形貌与化学成分的同位
分析 • STEM:SEM+TEM双重功能,+EPMA, 组织形貌观察、
晶体结构鉴定及化学成分测试三位一体的同位分析
相关文档
最新文档