电大《经济数学基础》参考答案
国家开放大学《经济数学基础》期末考试复习题及参考答案
国家开放⼤学《经济数学基础》期末考试复习题及参考答案题⽬1:函数的定义域为().答案:题⽬1:函数的定义域为().答案:题⽬1:函数的定义域为().答案:题⽬2:下列函数在指定区间上单调增加的是().答案:题⽬2:下列函数在指定区间上单调增加的是().答案:题⽬2:下列函数在指定区间上单调减少的是().答案:题⽬3:设,则().答案:题⽬3:设,则().答案:题⽬3:设,则=().答案:题⽬4:当时,下列变量为⽆穷⼩量的是().答案:题⽬4:当时,下列变量为⽆穷⼩量的是().答案:题⽬4:当时,下列变量为⽆穷⼩量的是().答案:题⽬5:下列极限计算正确的是().答案:题⽬5:下列极限计算正确的是().答案:题⽬5:下列极限计算正确的是().答案:题⽬6:().答案:0题⽬6:().答案:-1题⽬6:().答案:1题⽬7:().答案:题⽬7:().答案:().题⽬7:().答案:-1题⽬8:().答案:题⽬8:().答案:题⽬8:().答案:().题⽬9:().答案:4题⽬9:().答案:-4题⽬9:().答案:2题⽬10:设在处连续,则().答案:1 题⽬10:设在处连续,则().答案:1 题⽬10:设在处连续,则().答案:2题⽬11:当(),()时,函数在处连续.答案:题⽬11:当(),()时,函数在处连续.答案:题⽬11:当(),()时,函数在处连续.答案:题⽬12:曲线在点的切线⽅程是().答案:题⽬12:曲线在点的切线⽅程是().答案:题⽬12:曲线在点的切线⽅程是().答案:题⽬13:若函数在点处可导,则()是错误的.答案:,但题⽬13:若函数在点处可微,则()是错误的.答案:,但题⽬13:若函数在点处连续,则()是正确的.答案:函数在点处有定义题⽬14:若,则().答案:题⽬14:若,则().答案:1题⽬14:若,则().答案:题⽬15:设,则().答案:题⽬15:设,则().答案:题⽬15:设,则().答案:题⽬16:设函数,则().答案:题⽬16:设函数,则().答案:题⽬16:设函数,则().答案:题⽬17:设,则().答案:题⽬17:设,则().答案:题⽬17:设,则().答案:题⽬18:设,则().答案:题⽬18:设,则().答案:题⽬18:设,则().答案:题⽬19:设,则().答案:题⽬19:设,则().答案:题⽬19:设,则().答案:题⽬20:设,则().答案:题⽬20:设,则().答案:题⽬20:设,则().答案:题⽬21:设,则().答案:题⽬21:设,则().答案:题⽬21:设,则().答案:题⽬22:设,⽅程两边对求导,可得().答案:题⽬22:设,⽅程两边对求导,可得().答案:题⽬22:设,⽅程两边对求导,可得().答案:题⽬23:设,则().答案:题⽬23:设,则().答案:题⽬23:设,则().答案:-2题⽬24:函数的驻点是().答案:题⽬24:函数的驻点是().答案:题⽬24:函数的驻点是().答案:题⽬25:设某商品的需求函数为,则需求弹性().答案:题⽬25:设某商品的需求函数为,则需求弹性().答案:题⽬25:设某商品的需求函数为,则需求弹性().答案:题⽬1:下列函数中,()是的⼀个原函数.答案:题⽬1:下列函数中,()是的⼀个原函数.答案:题⽬1:下列函数中,()是的⼀个原函数.答案:题⽬2:若,则(). 答案:题⽬2:若,则().答案:题⽬2:若,则(). 答案:题⽬3:(). 答案:题⽬3:().答案:题⽬3:(). 答案:题⽬4:().答案:题⽬4:().答案:题⽬4:().答案:题⽬5:下列等式成⽴的是().答案:题⽬5:下列等式成⽴的是().答案:题⽬5:下列等式成⽴的是().答案:题⽬6:若,则(). 答案:题⽬6:若,则().答案:题⽬6:若,则(). 答案:题⽬7:⽤第⼀换元法求不定积分,则下列步骤中正确的是().答案:题⽬7:⽤第⼀换元法求不定积分,则下列步骤中正确的是().答案:题⽬7:⽤第⼀换元法求不定积分,则下列步骤中正确的是().答案:题⽬8:下列不定积分中,常⽤分部积分法计算的是().答案:题⽬8:下列不定积分中,常⽤分部积分法计算的是().答案:题⽬8:下列不定积分中,常⽤分部积分法计算的是().答案:题⽬9:⽤分部积分法求不定积分,则下列步骤中正确的是().答案:题⽬9:⽤分部积分法求不定积分,则下列步骤中正确的是().答案:题⽬9:⽤分部积分法求不定积分,则下列步骤中正确的是().答案:题⽬10:(). 答案:0题⽬10:().答案:0题⽬10:(). 答案:题⽬11:设,则(). 答案:题⽬11:设,则().答案:题⽬11:设,则(). 答案:题⽬12:下列定积分计算正确的是().答案:题⽬12:下列定积分计算正确的是().答案:题⽬12:下列定积分计算正确的是().答案:题⽬13:下列定积分计算正确的是().答案:题⽬13:下列定积分计算正确的是().答案:题⽬13:下列定积分计算正确的是().答案:题⽬14:计算定积分,则下列步骤中正确的是().答案:题⽬14:().答案:题⽬14:().答案:题⽬15:⽤第⼀换元法求定积分,则下列步骤中正确的是().答案:题⽬15:⽤第⼀换元法求定积分,则下列步骤中正确的是().答案:题⽬15:⽤第⼀换元法求定积分,则下列步骤中正确的是().答案:题⽬16:⽤分部积分法求定积分,则下列步骤正确的是().答案:题⽬16:⽤分部积分法求定积分,则下列步骤正确的是().答案:题⽬16:⽤分部积分法求定积分,则下列步骤正确的是().答案:题⽬17:下列⽆穷积分中收敛的是().答案:题⽬17:下列⽆穷积分中收敛的是().答案:题⽬17:下列⽆穷积分中收敛的是().答案:题⽬18:求解可分离变量的微分⽅程,分离变量后可得().答案:题⽬18:求解可分离变量的微分⽅程,分离变量后可得().答案:题⽬18:求解可分离变量的微分⽅程,分离变量后可得().答案:题⽬19:根据⼀阶线性微分⽅程的通解公式求解,则下列选项正确的是().答案:题⽬19:根据⼀阶线性微分⽅程的通解公式求解,则下列选项正确的是答案:题⽬19:根据⼀阶线性微分⽅程的通解公式求解,则下列选项正确的是().答案:题⽬20:微分⽅程满⾜的特解为().答案:题⽬20:微分⽅程满⾜的特解为().答案:题⽬20:微分⽅程满⾜的特解为().答案:题⽬1:设矩阵,则的元素().答案:3题⽬1:设矩阵,则的元素a32=().答案:1题⽬1:设矩阵,则的元素a24=().答案:2题⽬2:设,,则().答案:题⽬2:设,,则()答案:题⽬2:设,,则BA =().答案:题⽬3:设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.答案:题⽬3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题⽬3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题⽬4:设,为单位矩阵,则()答案:题⽬4:设,为单位矩阵,则(A - I )T =().答案:题⽬4:,为单位矩阵,则A T–I =().答案:题⽬5:设均为阶矩阵,则等式成⽴的充分必要条件是().答案:题⽬5:设均为阶矩阵,则等式成⽴的充分必要条件是().答案:题⽬5:设均为阶矩阵,则等式成⽴的充分必要条件是().答案:题⽬6:下列关于矩阵的结论正确的是().答案:对⾓矩阵是对称矩阵题⽬6:下列关于矩阵的结论正确的是().答案:数量矩阵是对称矩阵题⽬6:下列关于矩阵的结论正确的是().答案:若为可逆矩阵,且,则题⽬7:设,,则().答案:0题⽬7:设,,则().答案:0题⽬7:设,,则().答案:-2, 4题⽬8:设均为阶可逆矩阵,则下列等式成⽴的是().答案:题⽬8:设均为阶可逆矩阵,则下列等式成⽴的是().答案:题⽬8:设均为阶可逆矩阵,则下列等式成⽴的是().答案:题⽬9:下列矩阵可逆的是().答案:题⽬9:下列矩阵可逆的是().答案:题⽬9:下列矩阵可逆的是().答案:题⽬10:设矩阵,则().答案:题⽬10:设矩阵,则().答案:题⽬10:设矩阵,则().答案:题⽬11:设均为阶矩阵,可逆,则矩阵⽅程的解().答案:题⽬11:设均为阶矩阵,可逆,则矩阵⽅程的解().答案:题⽬11:设均为阶矩阵,可逆,则矩阵⽅程的解().答案:题⽬12:矩阵的秩是().答案:2题⽬12:矩阵的秩是().答案:3题⽬12:矩阵的秩是().答案:3题⽬13:设矩阵,则当()时,最⼩.答案:2题⽬13:设矩阵,则当()时,最⼩.答案:-2题⽬13:设矩阵,则当()时,最⼩.答案:-12题⽬14:对线性⽅程组的增⼴矩阵做初等⾏变换可得则该⽅程组的⼀般解为(),其中是⾃由未知量答案:题⽬14:对线性⽅程组的增⼴矩阵做初等⾏变换可得则该⽅程组的⼀般解为(),其中是⾃由未知量.答案:题⽬14:对线性⽅程组的增⼴矩阵做初等⾏变换可得则该⽅程组的⼀般解为(),其中是⾃由未知量.选择⼀项:A.B.C.D.答案:题⽬15:设线性⽅程组有⾮0解,则().答案:-1 题⽬15:设线性⽅程组有⾮0解,则().答案:1题⽬15:设线性⽅程组有⾮0解,则().答案:-1题⽬16:设线性⽅程组,且,则当且仅当()时,⽅程组有唯⼀解.答案:题⽬16:设线性⽅程组,且,则当()时,⽅程组没有唯⼀解.答案:题⽬16:设线性⽅程组,且,则当()时,⽅程组有⽆穷多解.答案:题⽬17:线性⽅程组有⽆穷多解的充分必要条件是().答案:题⽬17线性⽅程组有唯⼀解的充分必要条件是().:答案:题⽬17:线性⽅程组⽆解,则().答案:题⽬18:设线性⽅程组,则⽅程组有解的充分必要条件是().答案:题⽬18:设线性⽅程组,则⽅程组有解的充分必要条件是().答案:题⽬18:设线性⽅程组,则⽅程组有解的充分必要条件是()答案:题⽬19:对线性⽅程组的增⼴矩阵做初等⾏变换可得则当()时,该⽅程组⽆解.答案:且题⽬19:对线性⽅程组的增⼴矩阵做初等⾏变换可得则当()时,该⽅程组有⽆穷多解.答案:且题⽬19:对线性⽅程组的增⼴矩阵做初等⾏变换可得则当()时,该⽅程组有唯⼀解.答案:题⽬20:若线性⽅程组只有零解,则线性⽅程组()答案:解不能确定题⽬20:若线性⽅程组有唯⼀解,则线性⽅程组().答案:只有零解题⽬20:若线性⽅程组有⽆穷多解,则线性⽅程组().答案:有⽆穷多解。
最新国家开放大学电大《经济数学基础》期末题库及答案
最新国家开放大学电大《经济数学基础》期末题库及答案考试说明:本人针对该科精心汇总了历年题库及答案,形成一个完整的题库,并且每年都在更新。
该题库对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
《经济数学基础》题库及答案一一、单项选择题(每小题3分。
共l5分)1.下列各函数对中,( )中的两个函数相等.x x g x x f A ==)(,)()(.21)(,11)(.2+=--=x x g x x x f Bx x g x y C ln 2)(,ln .2==1)(,cos sin )(22=+=⋅x g x x x f D2.已知,1sin )(-=xx x f 当( )时,,(z)为无穷小量.0.→x A1.→x B-∞→x C .+∞→x D .=⎰∝+dx x1131.3 ( ).A .0⋅-21.B21.C∞.D4.设A 是可逆矩阵,且AB A +=1,则=-1A().B A .B B +1.B IC +.1).(--AB I D5.设线性方程组b AX =的增广矩阵为,124220621106211041231⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------ 则此线性方程组的一般解中自由未知量的个数为( ).A .1 、B .2C 3D .4二、填空题(每小题3分,共15分)6.若函数,11)(xx f +=则⋅-=-+hx f h x f )()( 7.已知,{)(11112=/--==x x x ax x f若,(z)在),(+∞⊃-α内连续,则=a8.若)(x f '存在且连续,则⋅-='⎰)]([x df9.设矩阵1,3421⎥⎦⎤⎢⎣⎡-=A 为单位矩阵,则-=-T A I )(10.已知齐次线性方程组O AX =中A 为53⨯矩阵,且该方程组有非0解,则≤)(A r三、微积分计算题(每小题10分。
2019-2020年电大考试数学经济基础试题答案及答案
《经济数学基础》真题一、填空题(每题3分,共15分)6.函数()f x =的定义域是 (,2](2,)-∞-+∞ .7.函数1()1xf x e =-的间断点是 0x =.8.若()()f x dx F x C =+⎰,则()x x e f e dx --=⎰()x F e c --+.9.设10203231A a ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,当a = 0 时,A 是对称矩阵。
10.若线性方程组12120x x x x λ-=⎧⎨+=⎩有非零解,则λ= -1 。
6.函数()2x xe ef x --=的图形关于 原点 对称.7.已知sin ()1xf x x=-,当x → 0时,()f x 为无穷小量。
8.若()()f x dx F x C =+⎰,则(23)f x dx -=⎰1(23)2F x c -+ .9.设矩阵A 可逆,B 是A 的逆矩阵,则当1()T A -= TB 。
10.若n 元线性方程组0AX =满足()r A n <,则该线性方程组 有非零解 。
6.函数1()ln(5)2f x x x =++-的定义域是 (5,2)(2,-+∞ . 7.函数1()1xf x e =-的间断点是 0x = 。
8.若2()22x f x dx x c =++⎰,则()f x =2ln 24x x +.9.设111222333A ⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦,则()r A = 1 。
10.设齐次线性方程组35A X O ⨯=满,且()2r A =,则方程组一般解中自由未知量的个数为 3 。
6.设2(1)25f x x x -=-+,则()f x =x2+4 .7.若函数1sin 2,0(),0x x f x xk x ⎧+≠⎪=⎨⎪=⎩在0x =处连续,则k= 2 。
8.若()()f x dx F x c =+⎰,则(23)f x dx -=⎰1/2F(2x-3)+c.9.若A 为n 阶可逆矩阵,则()r A = n 。
2020年最新电大《经济数学基础》考试题及答案 完整版
经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设,则( ).答案:BA .B .C .D .4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x(3)2111lim0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim22=--→x x x 2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
国家开放大学《经济数学基础》期末考试复习题及参考答案
题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调减少的是().答案:题目3:设,则().答案:题目3:设,则().答案:题目3:设,则=().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目6:().答案:0题目6:().答案:-1题目6:().答案:1题目7:().答案:题目7:().答案:().题目7:().答案:-1题目8:().答案:题目8:().答案:题目8:().答案:().题目9:().答案:4题目9:().答案:-4题目9:().答案:2题目10:设在处连续,则().答案:1 题目10:设在处连续,则().答案:1 题目10:设在处连续,则().答案:2题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目13:若函数在点处可导,则()是错误的.答案:,但题目13:若函数在点处可微,则()是错误的.答案:,但题目13:若函数在点处连续,则()是正确的.答案:函数在点处有定义题目14:若,则().答案:题目14:若,则().答案:1题目14:若,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目16:设函数,则().答案:题目16:设函数,则().答案:题目16:设函数,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目23:设,则().答案:题目23:设,则().答案:题目23:设,则().答案:-2题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目2:若,则(). 答案:题目2:若,则().答案:题目2:若,则(). 答案:题目3:(). 答案:题目3:().答案:题目3:(). 答案:题目4:().答案:题目4:().答案:题目4:().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目6:若,则(). 答案:题目6:若,则().答案:题目6:若,则(). 答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目10:(). 答案:0题目10:().答案:0题目10:(). 答案:题目11:设,则(). 答案:题目11:设,则().答案:题目11:设,则(). 答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目14:计算定积分,则下列步骤中正确的是().答案:题目14:().答案:题目14:().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:题目1:设矩阵,则的元素().答案:3题目1:设矩阵,则的元素a32=().答案:1题目1:设矩阵,则的元素a24=().答案:2题目2:设,,则().答案:题目2:设,,则()答案:题目2:设,,则BA =().答案:题目3:设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目4:设,为单位矩阵,则()答案:题目4:设,为单位矩阵,则(A - I )T =().答案:题目4:,为单位矩阵,则A T–I =().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目6:下列关于矩阵的结论正确的是().答案:对角矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:数量矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:若为可逆矩阵,且,则题目7:设,,则().答案:0题目7:设,,则().答案:0题目7:设,,则().答案:-2, 4题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目12:矩阵的秩是().答案:2题目12:矩阵的秩是().答案:3题目12:矩阵的秩是().答案:3题目13:设矩阵,则当()时,最小.答案:2题目13:设矩阵,则当()时,最小.答案:-2题目13:设矩阵,则当()时,最小.答案:-12题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.选择一项:A.B.C.D.答案:题目15:设线性方程组有非0解,则().答案:-1 题目15:设线性方程组有非0解,则().答案:1题目15:设线性方程组有非0解,则().答案:-1题目16:设线性方程组,且,则当且仅当()时,方程组有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组没有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组有无穷多解.答案:题目17:线性方程组有无穷多解的充分必要条件是().答案:题目17线性方程组有唯一解的充分必要条件是().:答案:题目17:线性方程组无解,则().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是()答案:题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组无解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有无穷多解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有唯一解.答案:题目20:若线性方程组只有零解,则线性方程组()答案:解不能确定题目20:若线性方程组有唯一解,则线性方程组().答案:只有零解题目20:若线性方程组有无穷多解,则线性方程组().答案:有无穷多解一、计算题(每题6分,共60分)1.解:综上所述,2.解:方程两边关于求导:,3.解:原式=。
2024年电大《经济数学基础12》考试题及答案
2024年电大《经济数学基础12》考试题及答案2024年电大《经济数学基础12》考试题及答案一、单选题1、以下哪个选项是正确的经济数学基础12的考试题目? A. “求导数的方法是什么?” B. “如何用Excel进行回归分析?” C. “什么是市场均衡价格?” D. “如何计算股票的收益率?”正确答案是A. “求导数的方法是什么?”。
该问题涉及到经济数学基础12的基本概念,是有关微积分的求导数的方法,是经济数学基础12的考试题目。
而其他三个问题则涉及到不同的学科领域,不是经济数学基础12的考试题目。
二、多选题 2. 下列哪些是经济数学基础12的多选题? A. “求导数的步骤有哪些?” B. “什么是市场均衡价格?” C. “如何用Excel进行回归分析?” D. “如何计算股票的收益率?”正确答案是A. “求导数的步骤有哪些?”。
该问题涉及到经济数学基础12的基本概念,是有关微积分的求导数的步骤,是经济数学基础12的多选题。
而其他三个问题则不是经济数学基础12的多选题。
三、判断题 3. 下列命题是否正确:“在市场均衡点,供给量等于需求量。
”正确答案是正确。
这是一个经济学的基本原理,即在市场均衡点,供给量等于需求量,这是经济数学基础12的基本概念之一。
四、填空题 4. 如果一个函数f(x)在x=3处可导,那么该函数的导数f'(3)等于______。
正确答案是0。
根据导数的定义,函数在某一点处的导数就是函数在该点的切线的斜率。
因此,当x=3时,该函数的导数f'(3)就是函数在x=3处的切线的斜率,而该斜率显然等于0。
五、简答题 5. 请简述什么是泰勒级数,并说明它在经济学中的应用。
正确答案如下:泰勒级数是一个无穷级数,它可以用一个函数在某一点处的幂级数展开来表示该函数。
在经济学中,泰勒级数被广泛应用于近似计算、误差分析和数值模拟等领域。
例如,可以用泰勒级数来近似计算非线性函数的局部线性行为,或者用它来建立经济学模型并进行数值模拟。
经济数学基础12-国家开放大学电大易考通考试题目答案
经济数学基础12【填空题】若,则=1/3&三分之一。
【知识点】凑微分【填空题】若,则=1/2&二分之一。
【知识点】凑微分【填空题】若,则=-1。
【知识点】凑微分【填空题】若,则=-1/2&负二分之一。
【知识点】凑微分【单选题】若,则f(x)=。
A.B.C.D.【答案】C【单选题】下列给出了四个等式中,正确的是。
A.B.C.D.【答案】A【单选题】若=。
A.4sin2xB.-4sin2xC.2cos2xD.-2cos2x【答案】B【单选题】若f(x)是可导函数,则下列等式中不正确的是。
A.B.C.D.【答案】D【单选题】微分=。
A.B.C.D.【答案】B【单选题】若f(x)可微,则=。
A.f(x)B.C.D.f(x)+c【答案】B【单选题】若,则f(x)=。
A.B.C.D.【答案】C【单选题】以下结论正确的是。
A.方程的个数小于未知量的个数的线性方程组一定有无穷多解B.方程的个数等于未知量的个数的线性方程组一定有唯一解C.方程的个数大于未知量的个数的线性方程组一定有无解D.A,B,C都不对【答案】D【单选题】若线性方程组AX=O只有零解,则线性方程组AX=b。
A.有唯一解B.有无穷多解C.无解D.解不能确定【答案】D【单选题】齐次线性方程组。
A.有非零解B.只有零解C.无解D.可能有解也可能无解【答案】A【单选题】线性方程组一定。
A.有无穷多解B.有唯一解C.只有零解D.无解【答案】B【单选题】线性方程组一定。
A.有唯一解B.有无穷多解C.无解D.有是一个解【答案】C【单选题】线性方程组的解的情况是。
A.无解B.只有零解C.有唯一解D.有无穷多解【答案】A【单选题】线性方程组解的情况是。
A.有无穷多解B.只有零解C.有唯一解D.无解【答案】D【单选题】线性方程组解的情况是。
A.有唯一解B.只有零解C.有无穷多解D.无解【答案】C【单选题】设线性方程组AX=b有唯一解,则相应的齐次方程组AX=O解的情况是。
国开电大 经济数学基础1 形成性考核册答案
经济数学基础 1 形成性考核册教育教学部编作业(一)一、填空题1.___________________sin lim=-→xxx x .答案:1 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =+1在)1,1(的切线方程是 . 答案:y=1/2X+3/24.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π-二、单项选择题1. 当+∞→x 时,下列变量为无穷小量的是( D )A .)1ln(x +B . 12+x xC .21x e - D . xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx x C.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg 2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.若x xf =)1(,则=')(x f ( B ). A .21x B .21x - C .x 1 D .x 1-三、解答题1.计算极限.(1)123lim 221-+-→x x x x (2)8665lim 222+-+-→x x x x x(1)解:原式=)1)(1()2)(1(lim1-+--→x x x x x =12lim 1+-→x x x =211121-=+-(2)解:原式=)4)(2()3)(2(lim2----→x x x x x =21423243lim 2=--=--→x x x(3)xx x 11lim 0--→ (4)42353lim 22+++-∞→x x x x x(3)解:原式=)11()11)(11(lim+-+---→x x x x x =)11(11lim+---→x x x x =111lim 0+--→x x =21-(4)解:原式=32003002423532lim22=+++-=+++-∞→xx x x x(5)xxx 5sin 3sin lim 0→ (6))2sin(4lim 22--→x x x(5)解:原式=53115355sin lim 33sin lim535355sin 33sin lim 000=⨯=⨯=⨯→→→xx x xx x x x x x x (6)解:原式=414)2sin(2lim )2(lim )2sin()2)(2(lim 222=⨯=--⨯+=--+→→→x x x x x x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.解:(1)因为)(x f 在0=x 处有极限存在,则有)(lim )(lim 00x f x f x x +-→→=又 b b xx x f x x =+=--→→)1sin(lim )(lim 01sin lim )(lim 0==++→→xxx f x x 即 1=b所以当a 为实数、1=b 时,)(x f 在0=x 处极限存在. (2)因为)(x f 在0=x 处连续,则有 )0()(lim )(lim 0f x f x f x x ==+-→→又 a f =)0(,结合(1)可知1==b a 所以当1==b a 时,)(x f 在0=x 处连续.3.计算下列函数的导数或微分. (1)2222log 2-++=x x y x ,求y '.解:2ln 12ln 22x x y x++=' (2)dcx bax y ++=,求y '. 解:2)())(()()(d cx d cx b ax d cx b ax y +'++-+'+='=2)()()(d cx c b ax d cx a ++-+ =2)(d cx bcad +-(3)531-=x y ,求y '.解:2312121)53(23)53()53(21])53[(------='---='-='x x x x y(4)x x x y e -=,求y '.解:xx xxe e x xe x y --='-'='-212121)()((5)bx y ax sin e =,求y d .解:)(cos sin )()(sin sin )('-'='-'='bx bx e bx ax e bx e bx e y ax ax ax ax=bx be bx ae axaxcos sin -dx bx be bx ae dx y dy ax ax )cos sin (-='=(6)x x y x+=1e ,求y d .解:212112312312323)1()()(x xe xx e x e y xxx+-=+'='+'='-dx x xe dx y y x)23(d 2121+-='=(7)2e cos x x y --=,求y d .解:222e 22sin )(e )(sin)e ()(cos 2x x x x xx x x x x y ---+-='--'-='-'='(8)nx x y n sin sin +=,求y '.解:)(cos )(sin )(sin )(sin ])[(sin 1'+'='+'='-nx nx x x n nx x y n n nx n x x n n cos cos )(sin 1+=-4.下列各方程中y 是x 的隐函数,试求y '或y d . (1)1322=+-+x xy y x ,求y d .解:方程两边同时对x 求导得: )1()3()()()(22'='+'-'+'x xy y x 0322=+'--'+y x y y y x xy x y y ---='232dx xy x y dx y y ---='=232d(2)x y x xy 4e )sin(=++,求y '.解:方程两边同时对x 求导得: 4)()()cos(='⨯+'+⨯+xy ey x y x xy4)()1()cos(='+⨯+'+⨯+y x y e y y x xyxyxyye y x xe y x y -+-=++')cos(4))(cos(xyxyxe y x ye y x y ++-+-=')cos()cos(45.求下列函数的二阶导数. (1))1ln(2x y +=,求y ''.解:22212)1(11x x x x y +='++=' 2222222)1(22)1()20(2)1(2)12(x x x x x x x x y +-=++-+='+='' (2)xx y -=1,求y ''及)1(y ''.解:212321212121)()()1(-----='-'='-='x x x x xx y2325232521234143)21(21)23(21)2121(------+=-⨯--⨯-='--=''x x x x x x y =1作业(二)一、填空题1.函数2)(2+=x x f 的单调增加区间为 [0,+∞) .2.函数xx x f 1)(+=在区间 (0,1) 内是单调减少的. 3.函数2)1(3-=x y 的驻点是 (1,0 ) ,极值点是 (1,0 ) ,它是极 小 值点.4.设某商品的需求函数为2e10)(p p q -=,则需求弹性=p E 2p -. 5.已知某产品的单位售价p 是销量q 的函数1002q p =-,那么该产品的边际收入函数()R q '= 2100q q - . 二、单项选择题1.函数422+-=x x y 在]2,2[-内( D ). A .单调增加 B .单调减少C .先单调增加再单调减少D .先单调减少再单调增加 2.下列函数在指定区间上单调增加的是( B ).A .sin xB .e xC .2xD .3x - 3.下列结论正确的是( C ).A .0x 是)(x f 的极值点,则0x 必是)(x f 的驻点.B .若0)(0='x f ,则0x 必是)(x f 的极值点.C .0x 是)(x f 的极值点,且)(0x f '存在,则0x 必是)(x f 的驻点.D .使)(x f '不存在的点0x 一定是)(x f 的极值点.4.设某商品的需求函数为p p q 23)(-=,则需求弹性=p E ( A ). A .pp 23- B .pp23-- C .pp23- D .pp --235.若函数)(x f 在],[b a 内恒有0)(<'x f ,则)(x f 在],[b a 内的最小值为( D ).A .aB .bC .)(a fD .)(b f 三、应用题1.设生产某种产品q 个单位时的成本函数为q q q C 625.0100)(2++=(万元),求:(1)当10q =时的总成本、平均成本和边际成本; (2)当产量q 为多少时,平均成本最小? 解:① ∵平均成本函数为: ()625.0100++=q qq c 边际成本为: ()65.0+='q q c∴ 当10=q 时的总成本、平均成本和边际成本分别为: 总成本:()1851061025.0100102=⨯+⨯+=c (万元) 平均成本:()5.1861025.01010010=+⨯+=c (万元) 边际成本:()116105.010=+⨯='c (万元) ②由平均成本函数求导得:()25.01002+-='qq c 令 ()0='q c 得 驻点 201=q 202-=q (舍去) 由实际问题可知,当产量q=20个时,平均成本最小。
电大经济数学基础作业答案
1 x 13.设 y lg2 x ,则 dy ().答案:B1. 函数y的连续区间是 答案:DA . (,1) (1,) ,2)2,)C. (,2) ( 2,1) (1,)2)(2,)或(,1) (1,)2. F 列极限计算正确的是 答案:BA. lim —B.limx 0C. lim xs in 1 1x 0xD.lim 沁 x x资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。
经济数学基础形成性考核册及参考答案作业(一)(一) 填空题l.limli^ ____________________________ .答案:0Xx2. 设f(x) x 2 1, x 0,在x o 处连续,则k _____________________ .答案:1k, x 03. 曲线y 低在(1,1)的切线方程是答案:y 丄2 24. 设函数 f (x 1) x 2 2x 5,则 f (x) _______________________ .答案:2x5.设 f(x) xsinx,则 /) -------------------------------------- .答案:; (二) 单项选择题资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。
A . 2xB . sin ^xC . ln(1 x)D . cosxx(三) 解答题 1. 计算极限(1)lim x 2 3x 2 21 ( 2) 2..x 5x 6 1 lim 2x 1x 12x 2 x 6x 8 2 (3)lim ■. 1 x 11( 4)2 ..x 3x 5 1 lim 2 x 0x2 x3x 2 2x 43(5)lim sin 3x 3 (6)x 24lim 4x 0sin 5x5x 2sin(x 2)(2)当a,b 为何值时,f(x)在x o 处连续.答案:(1) 当b 1, a 任意时,f(x)在x o 处有极限存在.1 . xsin b, x 0xa, x 0,sin xx 0x2.设函数f (x) A £dx B1ln101dx C - ---- dx D .—dx4.若函数f (x )在点x o 处可导,则() 是错误的.答案:BA .函数f (x )在点x o 处有定义 Blim f (x) A , 但 Af (x 0)X X oC .函数f (X )在点x o 处连续D .函数f (x )在点x o 处可微5.当x o 时,下列变量是无穷小量的是().答案:C问:(1) 当a,b 为何值时,f(x)在x o 处有极限存在资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。
电大经济数学基础形成性考核册答案
电大经济数学基础形成性考核册及参考答案一填空题1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π-二单项选择题1. 函数212-+-=x x x y 的连续区间是 D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞2. 下列极限计算正确的是 BA.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =lg2,则d y = B .A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f x 在点x 0处可导,则 B 是错误的.A .函数f x 在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f x 在点x 0处连续D .函数f x 在点x 0处可微5.当0→x 时,下列变量是无穷小量的是 C .A .x 2B .xxsin C .)1ln(x + D .x cos 三解答题1.计算极限121123lim 221-=-+-→x x x x 2218665lim 222=+-+-→x x x x x 原式=4)-2)(x -(x 3)-2)(x -(x lim2x →32111lim-=--→x x x原式=)11()11)(11(lim+-+---→x x x x x=111lim+--→x x=21-43142353lim 22=+++-∞→x x x x x 原式=22433531xx x x +++-=315535sin 3sin lim0=→x x x原式=xx x xx 55sin 33sin lim 530→ =5364)2sin(4lim22=--→x x x 原式=2)2sin(2lim2+++→x x x x=2)2sin(lim )2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:1当b a ,为何值时,)(x f 在0=x 处有极限存在2当b a ,为何值时,)(x f 在0=x 处连续. 解:11)(lim ,)(lim 00==+-→→x f b x f x x当 1f(0)f(x)lim 10x ====→有时,b a2. 1f(0)f(x)lim 1b a 0x ====→有时,当函数fx 在x=0处连续.3.计算下列函数的导数或微分:12222log 2-++=x x y x ,求y '答案:2ln 12ln 22x x y x ++='2dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+='3531-=x y ,求y '答案:23)53(23---='x y4x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--215bx y ax sin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'='∴dxbx b bx a e dy ax )cos sin (+=6x x y x+=1e ,求y d答案:∵x e x y x23112+-=' ∴dx e xx dy x )123(12-= 72e cos x x y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin xxe xx-+-∴dx xe xxdy x )22sin (2-+-=8nx x y n sin sin +=,求y '答案:nx n x x n y n cos cos sin 1+⋅='-9)1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+10xxx y x212321cot-++=,求y '答案:531cos 261211cos 61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='-4.下列各方程中y 是x 的隐函数,试求y '或y d1 方程两边对x 求导:所以 dx xy x y dy ---=2322 方程两边对x 求导:所以 xyxyxe y x ye y x y ++-+-=')cos()cos(45.求下列函数的二阶导数:1)1ln(2x y +=,求y ''答案: 1 212x x y +='2 212321212121)(-----='-='x x x xy作业二一填空题1.若c x x x f x ++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2. ⎰='x x d )sin (________.答案:c x +sin3. 若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2 .答案:c x F +--)1(212 4.设函数___________d )1ln(d d e12=+⎰x x x .答案:05. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-二单项选择题1. 下列函数中, D 是x sin x 2的原函数.A .21cos x 2B .2cos x 2C .-2cos x 2D .-21cos x 22. 下列等式成立的是 C .A .)d(cos d sin x x x =B .)1d(d ln xx x =C .)d(22ln 1d 2x x x =D .x x xd d 1=3. 下列不定积分中,常用分部积分法计算的是 C .A .⎰+x x c 1)d os(2,B .⎰-x x x d 12C .⎰x x x d 2sinD .⎰+x xxd 124. 下列定积分计算正确的是 D .A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x x ππD .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是 B .A .⎰∞+1d 1x x B .⎰∞+12d 1x x C .⎰∞+0de x xD .⎰∞+1d sin x x三解答题1.计算下列不定积分1⎰x x x d e 3原式=⎰dx ex )3( =c e c ee x x x+-=+)13(ln 33ln )3( 2⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++252321523423⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 4⎰-x x d 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 5⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(316⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin 27⎰x xx d 2sin答案:∵+ x 2sinx - 1 2cos2x - + 0 2sin4x - ∴原式=c xx x ++-2sin 42cos2 8⎰+x x 1)d ln(答案:∵ + )1ln(+x 1- 11+-x x ∴ 原式=⎰+-+dx x xx x 1)1ln( =⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln(2.计算下列定积分1x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x 2x xxd e2121⎰答案:原式=⎰-212211)(xd x xe x=21211e e e x -=-3x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d xx x=21ln 123=+e x 4x x x d 2cos 20⎰π答案:∵ +x x 2cosx 2x 2∴ 原式=20)2cos 412sin 21(πx x x +=214141-=--5x x x d ln e1⎰答案:∵ + x ln x- x122x∴ 原式=⎰-e exdx x x 11221ln 21 =)1(414122122+=-e xe e 6x x x d )e 1(40⎰-+答案:∵原式=⎰-+404dx xe x又∵ +x x e --1 -x e -+0 x e -∴⎰-----=404)(x x x e xe dx xe=154+--e故:原式=455--e作业三一填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:32.设B A ,均为3阶矩阵,且3-==B A ,则T AB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X .答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A二单项选择题1. 以下结论或等式正确的是 C .A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则T C 为 A 矩阵.A .42⨯B .24⨯C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是 C . `A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB =4. 下列矩阵可逆的是 A .A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011D .⎥⎦⎤⎢⎣⎡2211 5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是 B .A .0B .1C .2D .3三、解答题1.计算1⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-53212⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 3[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB ;解 因为B A AB =所以002=⨯==B A AB4.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=01112421λA ,确定λ的值,使)(A r 最小;解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-⨯+-⨯+74041042141074042101112421)1()2(λλλ),(③②①③①②A 所以当49=λ时,秩)(A r 最小为2; 5.求矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=32114024713458512352A 的秩; 答案:解:−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=-⨯+-⨯+-⨯+)4()2()5()(3211412352345850247132114024713458512352①④①③①②③①A , 所以秩)(A r =2;6.求下列矩阵的逆矩阵:1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=111103231A答案解:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-⨯+⨯+101340013790001231100111010103001231)1(3①③①②I A 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-9437323111A ;2A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1121243613.答案解:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=⨯+10011201012470141110011201012400136137③①I A 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-2101720311A ;7.设矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=3221,5321B A ,求解矩阵方程B XA =.答案:1-=BA X四、证明题1.试证:若21,B B 都与A 可交换,则21B B +,21B B 也与A 可交换;证明:∵ A B AB 11=,A B AB 22=∴ A B B A B A B AB AB B B A )()(21212121+=+=+=+即 21B B +,21B B 也与A 可交换;2.试证:对于任意方阵A ,T A A +,A A AA T T ,是对称矩阵;证明:∵ T T T T T T T A A A A A A A A +=+=+=+)()(∴ T A A +,A A AA T T ,是对称矩阵;3.设B A ,均为n 阶对称矩阵,则AB 对称的充分必要条件是:BA AB =;证明:充分性∵ A A T =,B B T =,AB AB T =)(∴ BA A B AB AB T T T ===)(必要性∵ A A T =,B B T =,BA AB = ∴ AB B A BA AB T T T T ===)()(即AB 为对称矩阵;4.设A 为n 阶对称矩阵,B 为n 阶可逆矩阵,且T B B =-1,证明AB B 1-是对称矩阵;证明:∵ A A T =,T B B =-1∴ AB B B A B B A B B A B AB B T T T T T 11111111)()()()(--------====即 AB B 1-是对称矩阵;作业四一填空题1.函数xx x f 1)(+=在区间___________________内是单调减少的.答案:)1,0()0,1(⋃-2. 函数2)1(3-=x y 的驻点是________,极值点是 ,它是极 值点.答案:1,1==x x ,小3.设某商品的需求函数为2e10)(p p q -=,则需求弹性=p E .答案:p 2-4.行列式____________111111111=---=D .答案:45. 设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→010********1t A ,则__________t 时,方程组有唯一解.答案:1-≠二单项选择题1. 下列函数在指定区间(,)-∞+∞上单调增加的是 B .A .sin xB .e xC .x 2D .3 – x2. 已知需求函数p p q 4.02100)(-⨯=,当10=p 时,需求弹性为 C .A .2ln 244p -⨯B .2ln 4C .2ln 4-D .2ln 24-4p -⨯3. 下列积分计算正确的是 A .A .⎰--=-110d 2e e x xx B .⎰--=+110d 2e e x xxC .0d sin 11=⎰x x x - D .0)d (3112=+⎰x x x -4. 设线性方程组b X A n m =⨯有无穷多解的充分必要条件是 D .A .m A r A r <=)()(B .n A r <)(C .n m <D .n A r A r <=)()(5. 设线性方程组⎪⎩⎪⎨⎧=++=+=+33212321212ax x x a x x a x x ,则方程组有解的充分必要条件是 C .A .0321=++a a aB .0321=+-a a aC .0321=-+a a aD .0321=++-a a a三、解答题1.求解下列可分离变量的微分方程:1 y x y +='e答案:原方程变形为:y x e dxdy+= 分离变量得:dx e dy e x y =-两边积分得:⎰⎰=---dx e y d e x y )( 原方程的通解为:C e e x y +=--223e d d yx x y x =答案:分离变量得:dx xe dy y x =23两边积分得:⎰⎰=dx xe dy y x 23 原方程的通解为:C e xe y x x +-=32. 求解下列一阶线性微分方程:13)1(12+=+-'x y x y 答案:原方程的通解为:2x x xyy 2sin 2=-' 答案:原方程的通解为:3.求解下列微分方程的初值问题:1 y x y -='2e ,0)0(=y答案:原方程变形为:y x e dxdy-=2 分离变量得:dx e dy e x y 2=两边积分得:⎰⎰=dx e dy e x y 2 原方程的通解为:C e e xy +=221 将00==y x ,代入上式得:21=C 则原方程的特解为:21212+=x y e e20e =-+'x y y x ,0)1(=y 答案:原方程变形为:x y x y xe 1=+'原方程的通解为:将01==y x ,代入上式得:e C -= 则原方程的特解为:)(1e e x y x -=4.求解下列线性方程组的一般解:1⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x答案:原方程的系数矩阵变形过程为: 由于秩A =2<n=4,所以原方程有无穷多解,其一般解为:⎩⎨⎧-=+-=4324312x x x x x x 其中43x x ,为自由未知量; 2⎪⎩⎪⎨⎧=+-+=+-+=++-5114724212432143214321x x x x x x x x x x x x答案:原方程的增广矩阵变形过程为: 由于秩A =2<n=4,所以原方程有无穷多解,其一般解为:⎪⎩⎪⎨⎧-+=--=432431575353565154x x x x x x 其中43x x,为自由未知量;5.当λ为何值时,线性方程组有解,并求一般解;答案:原方程的增广矩阵变形过程为:所以当8=λ时,秩A =2<n=4,原方程有无穷多解,其一般解为:5.b a ,为何值时,方程组答案:当3-=a 且3≠b 时,方程组无解;当3-≠a 时,方程组有唯一解;当3-=a 且3=b 时,方程组无穷多解;原方程的增广矩阵变形过程为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-⨯+-⨯+-⨯+3300112011111140112011113122111111)2()1()1(b a b a b a A ②③①③①②讨论:1当b a ,3-≠为实数时,秩A =3=n=3,方程组有唯一解;2当33=-=b a ,时,秩A =2<n=3,方程组有无穷多解;3当33≠-=b a ,时,秩A =3≠秩A =2,方程组无解;6.求解下列经济应用问题:1设生产某种产品q 个单位时的成本函数为:q q q C 625.0100)(2++=万元, 求:①当10=q 时的总成本、平均成本和边际成本;②当产量q 为多少时,平均成本最小答案:①∵ 平均成本函数为:625.0100)()(++==q qq q C q C 万元/单位 边际成本为:65.0)(+='q q C∴ 当10=q 时的总成本、平均成本和边际成本分别为: 5.1861025.010100)10(=+⨯+=C 万元/单位 116105.0)10(=+⨯='C 万元/单位 ②由平均成本函数求导得:25.0100)(2+-='qq C 令0)(='q C 得唯一驻点201=q 个,201-=q 舍去由实际问题可知,当产量q 为20个时,平均成本最小;2.某厂生产某种产品q 件时的总成本函数为201.0420)(q q q C ++=元,单位销售价格为q p 01.014-=元/件,问产量为多少时可使利润达到最大最大利润是多少.答案:2解:由q p 01.014-=得收入函数 201.014)(q q pq q R -==得利润函数: 2002.010)()()(2--=-=q q q C q R q L令 004.010)(=-='q q L解得:250=q 唯一驻点所以,当产量为250件时,利润最大,最大利润:12302025002.025010)250(2=-⨯-⨯=L 元3投产某产品的固定成本为36万元,且边际成本为402)(+='q q C 万元/百台.试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低. 解:当产量由4百台增至6百台时,总成本的增量为答案:①产量由4百台增至6百台时总成本的增量为 10046)40()402()(26464=+=+='=∆⎰⎰x x dx x dx x C C 万元 ②成本函数为:又固定成本为36万元,所以3640)(2++=x x x C 万元平均成本函数为:xx x x C x C 3640)()(++==万元/百台 求平均成本函数的导数得:2361)(xx C -=' 令0)(='x C 得驻点61=x ,62-=x 舍去由实际问题可知,当产量为6百台时,可使平均成本达到最低;4已知某产品的边际成本)(q C '=2元/件,固定成本为0,边际收益q q R 02.012)(-=',求:①产量为多少时利润最大②在最大利润产量的基础上再生产50件,利润将会发生什么变化答案:①求边际利润:q q C q R q L 02.010)()()(-='-'='令0)(='q L 得:500=q 件由实际问题可知,当产量为500件时利润最大;②在最大利润产量的基础上再生产50件,利润的增量为:25500550)01.010()02.010()(2550500550500-=-=-='=∆⎰⎰q q dq q dq q L L 元即利润将减少25元;。
电大《经济数学基础》参考答案
电大【经济数学基础】形成性考核册参考答案《经济数学基础》形成性考核册(一)一、填空题 1.___________________sin lim=-→xxx x .答案:1 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案13.曲线x y =+1在)1,1(的切线方程是 . 答案:y=1/2X+3/24.设函数52)1(2++=+x x x f ,则____________)(='x f .答案x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案: 2π-二、单项选择题1. 当+∞→x 时,下列变量为无穷小量的是( D )A .)1ln(x +B . 12+x x C .1x e - D . x x sin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx x C.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.若x xf =)1(,则=')(x f ( B ). A .21x B .21x- C .x 1 D .x 1-三、解答题 1.计算极限本类题考核的知识点是求简单极限的常用方法。
它包括: ⑴利用极限的四则运算法则; ⑵利用两个重要极限;⑶利用无穷小量的性质(有界变量乘以无穷小量还是无穷小量)⑷利用连续函数的定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《经济数学基础》形成性考核册(一)
一、填空题
1、、答案:1
2、设,在处连续,则、答案1
3、曲线+1在得切线方程就是、答案:y=1/2X+3/2
4、设函数,则、答案
5、设,则、答案:
二、单项选择题
1、当时,下列变量为无穷小量得就是(D)
A.B.C.D.
2、下列极限计算正确得就是( B)
A.cosx2B。2cosx2C.—2cosx2D。—cosx2
2、下列等式成立得就是( C)。
A.B.C。ﻩ D.
3、下列不定积分中,常用分部积分法计算得就是( C).
A.,B.C。D。
4、下列定积分中积分值为0得就是(D)。
A。B。C.D.
5、下列无穷积分中收敛得就是( B).
A.B.C。D。
(三)解答题
4.设矩阵,确定得值,使最小。
解:
当时,达到最小值。
5.求矩阵得秩。
解:
→
∴。
6.求下列矩阵得逆矩阵:
(1)
解:
∴
(2)A=.
解:→
→
∴A—1=
7。设矩阵,求解矩阵方程.
解:
∴
∴=
四、证明题
1。试证:若都与可交换,则,也与可交换。
证:∵,
∴
即也与可交换.
即也与可交换、
2.试证:对于任意方阵,,就是对称矩阵。
具体方法就是:对分子分母进行因式分解,然后消去零因子,再利用函数得连续性进行计算
解:原式==
(3)
分析:这道题考核得知识点就是极限得四则运算法则.
具体方法就是:对分子进行有理化,然后消去零因子,再利用四则运算法则进行计算
解:原式====
(4)
分析:这道题考核得知识点主要就是函数得连线性.
解:原式=
(5)
分析:利用导数得基本公式与复合函数得求导法则计算即可。
解:==
(3),求
分析:利用导数得基本公式与复合函数得求导法则计算即可。
解:
(4),求
分析:利用导数得基本公式计算即可。
解:
分析:利用导数得基本公式与复合函数得求导法则计算即可。
(5),求
解: =
(6),求
分析:利用微分得基本公式与微分得运算法则计算即可.
A、B、C、D、
3、 设,则(B ).
A.B。C。D。
4、 若函数f(x)在点x0处可导,则(B)就是错误得.
A.函数f(x)在点x0处有定义B.,但
C.函数f(x)在点x0处连续D.函数f(x)在点x0处可微
5、若,则(B)、
A. B.C.D.
三、解答题
1.计算极限
本类题考核得知识点就是求简单极限得常用方法。它包括:
(1),求
解:方程两边同时对x求导得:
(2),求
解:方程两边同时对x求导得:
5。求下列函数得二阶导数:
本题考核得知识点就是高阶导数得概念与函数得二阶导数
(1),求
解:
(2),求及
解:
=1
《经济数学基础》形成性考核册(二)
(一)填空题
1、若,则、
2、、
3、若,则
4、设函数
5、若,则、
(二)单项选择题
1、下列函数中,(D)就是xsinx2得原函数.
1、计算下列不定积分
(1)(2)
解:原式解:原式
(3)(4)
解:原式解:原式
(5)(6)
解:原式解:原式
(7)(8)
解:原式解:原式
2、计算下列定积分
(1)(2)
解:原式解:原式
(3)(4)
解:原式解:原式
(5)(6)
解:原式解:原式
《经济数学基础》形成性考核册(三)
(一)填空题
1、设矩阵,则得元素、答案:3
⑴利用极限得四则运算法则;
⑵利用两个重要极限;
⑶利用无穷小量得性质(有界变量乘以无穷小量还就是无穷小量)
⑷利用连续函数得定义。
(1)
分析:这道题考核得知识点就是极限得四则运算法则。
具体方法就是:对分子分母进行因式分解,然后消去零因子,再利用四则运算法则限进行计算
解:原式===
(2)
分析:这道题考核得知识点主要就是利用函数得连续性求极限.
证:∵
∴就是对称矩阵。
∵=
∴就是对称矩阵。
∵
∴就是对称矩阵、
3.设均为阶对称矩阵,则对称得充分必要条件就是:。
证:必要性:
∵,
若就是对称矩阵,即
而因此
充分性:
若,则
∴就是对称矩阵、
(2)因为在处连续,则有
又,结合(1)可知
所以当时,在处连续、
3。计算下列函数得导数或微分:
本题考核得知识点主要就是求导数或(全)微分得方法,具体有以下三种:
⑴利用导数(或微分)得基本公式
⑵利用导数(或微分)得四则运算法则
⑶利用复合函数微分法
(1),求
分析:直接利用导数得基本公式计算即可。
解:
(2),求
分析:这道题考核得知识点主要就是重要极限得掌握.
具体方法就是:对分子分母同时除以x,并乘相应系数使其前后相等,然后四则运算法则与重要极限进行计算
解:原式=
(6)
分析:这道题考核得知识点就是极限得四则运算法则与重要极限得掌握。
具体方法就是:对分子进行因式分解,然后消去零因子,再利用四则运算法则与重要极限进行计算
解:
(7),求
分析:利用导数得基本公式与复合函数得求导法则计算
解:
(8),求
分析:利用导数得基本公式与复合函数得求导法则计算
解:
(9),求
分析:利用复合函数得求导法则计算
解:
=
(10),求
分析:利用导数得基本公式与复合函数得求导法则计算
解:
4、下列各方程中就是得隐函数,试求或
本题考核得知识点就是隐函数求导法则.
2、设均为3阶矩阵,且,则=、答案:
3、设均为阶矩阵,则等式成立得充分必要条件就是、答案:
4、 设均为阶矩阵,可逆,则矩阵得解、答案:
5、设矩阵,则、答案:
(二)单项选择题
1、以下结论或等式正确得就是(C).
A.若均为零矩阵,则有
B。若,且,则
C。对角矩阵就是对称矩阵
D.若,则
2、 设为矩阵,为矩阵,且乘积矩阵有意义,则为(A )矩阵.
解:原式=
2.设函数,
问:(1)当为何值时,在处极限存在?
(2)当为何值时,在处连续、
分析:本题考核得知识点有两点,一就是函数极限、左右极限得概念。即函数在某点极限存在得充分必要条件就是该点左右极限均存在且相等。二就是函数在某点连续得概念。
解:(1)因为在处有极限存在,则有
又
即
所以当a为实数、时,在处极限存在、
A.ﻩB。ﻩC.D。
3、设均为阶可逆矩阵,则下列等式成立得就是(C).`
A.,B。C.D.
4、下列矩阵可逆得就是(A)。
A.B。C.D.
5、矩阵得秩就是(B).
A.0B.1C.2D。3
三、解答题
1.计算
(1)=
(2)
(3)=
2.计算
解 =
3.设矩阵,求。
解 因为
所以
(注意:因为符号输入方面得原因,在题4—题7得矩阵初等行变换中,书写时应把(1)写成①;(2)写成②;(3)写成③;…)