2021-2022年高三第二次月考(数学文)

合集下载

三明一中2022-2023学年上学期月考二高三数学科试卷含答案

三明一中2022-2023学年上学期月考二高三数学科试卷含答案

三明一中2022-2023学年上学期月考二高三数学科试卷(考试时间:120分钟,满分150分)注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的姓名、准考证号.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.非选择题用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,仅有一项是符合题目要求的.)1.已知集合{}{}22,3,4,230A B x x x ==∈+-<N ,则A B 中元素的个数是A.2B.3C.4D.52.复平面内表示复数622iz i+=-,则z =A. B. C.4 D.3.若非零实数,a b 满足a b >,则A.22ac bc> B.2b a a b+> C.e1a b-> D.ln ln a b>4.函数()cos f x x x =的图像大致是A .B .C .D .5.如图,在矩形ABCD 中,2AD =,点M ,N 在线段AB 上,且1AM MN NB ===,则MD 与NC所成角的余弦值为A .13B .45C .23D .356.足球起源于中国古代的蹴鞠游戏.“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动.已知某“鞠”的表面上有四个点,,,P A B C ,满足1,PA PA =⊥面ABC ,AC BC ⊥,若23P ABC V -=,则该“鞠”的体积的最小值为A.256π B.9π C.92π D.98π7.如图,在杨辉三角形中,斜线l 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,3,3,4,6,5,10,…,记其前n 项和为n S ,则22S =A.361B.374C.385D.3958.在ABC 中,角A、B 、C 所对的边分别为a 、b 、c ,若sin c A =,b a λ=,则实数λ的最大值是A.B.32+C.D.2二、多选题(本题共4小题,每小题5分,共20分。

2021-2022学年内蒙古赤峰二中高二下学期第二次月考数学(文)试题(解析版)

2021-2022学年内蒙古赤峰二中高二下学期第二次月考数学(文)试题(解析版)

2021-2022学年内蒙古赤峰二中高二下学期第二次月考数学(文)试题一、单选题1.已知复数z 满足:()()312z i i i -+=(其中i 为虚数单位),复数z 的虚部等于A .15-B .25-C .45D .35【答案】C【分析】利用复数代数形式的乘除运算法则求出241255i z i i i -=+=-++,由此能求出复数z 的虚部.【详解】∵复数z 满足:()()312z i i i -+=(其中i 为虚数单位),∴()()()122412121255i i i z i i i i i i ---=+=+=-+++-. ∴复数z 的虚部等于45,故选C.【点睛】本题考查复数的虚部的求法,是基础题,解题时要认真审题,注意复数代数形式的乘除运算法则的合理运用.2.命题“0R x ∃∈,使得2001>-x x ”的否定是( )A .0R x ∃∈,使得2001≤-x x B .0R x ∃∈,使得2001x x <-C .R x ∀∈,都有21≤-x xD .R x ∀∈,都有21x x >-【答案】C【分析】特称命题的否定是全称命题,把存在改为任意,把结论否定.【详解】“0R x ∃∈,使得2001>-x x ”的否定是“R x ∀∈,都有21≤-x x ” .故选:C3.抛物线24y x =的焦点坐标是( ) A .(0,1) B .(1,0) C .(0,2) D .(0,116) 【答案】D【分析】将抛物线化成标准方程形式再计算即得结果.【详解】抛物线24y x =的标准方程为214x y =,故124p =,即18p =,故焦点坐标是0,2p ⎛⎫ ⎪⎝⎭,即10,16⎛⎫⎪⎝⎭.故选:D.【点睛】本题考查了抛物线的标准方程及焦点坐标,属于基础题.4.对两个变量y 和x 进行回归分析,得到一组样本数据()11,x y ,()22,x y ,…(),n n x y ,则下列说法不正确的是( )A .若变量y 和x 之间的相关系数为0.9462r =-,则变量y 和x 之间具有较强的线性相关关系B .残差平方和越小的模型,拟合的效果越好C .用决定系数2R 来刻画回归效果,2R 越小说明拟合效果越好D .在残差图中,残差点分布水平带状区域的宽度越窄,则回归方程的预报精确度越高 【答案】C【分析】变量y 和x 之间的相关系数为r 越大,则变量y 和x 之间具有较强的线性相关关系可判断A ;残差平方和越小的模型,拟合的效果越好可判断B ;用决定系数2R 来刻画回归效果,2R 越大说明拟合效果越好可判断 C ;在残差图中,残差点分布水平带状区域的宽度越窄,则回归方程的预报精确度越高可判断D.【详解】变量y 和x 之间的相关系数为r 越大,则变量y 和x 之间具有较强的线性相关关系,故A 正确;残差平方和越小的模型,拟合的效果越好,故B 正确;用决定系数2R 来刻画回归效果,2R 越大说明拟合效果越好,故C 错误;在残差图中,残差点分布水平带状区域的宽度越窄,则回归方程的预报精确度越高,故D 正确. 故选:C.5.在一次高三模拟考试后,数学老师为了调查数学成绩与学习数学兴趣之间的关系,将某班同学的数学成绩绘制成如图所示的等高堆积条形图(1x 表示对数学感兴趣,2x 表示对数学不感兴趣,1y 表示数学成绩不好,2y 表示数学成绩好),则( )A .数学成绩与学习数学兴趣关系较强B .数学成绩与学习数学兴趣关系较弱C .数学成绩与学习数学兴趣无关系D .数学成绩与学习数学兴趣关系难以判断 【答案】A【分析】由等高堆积条形图分析可知在1x 中2y 的比重明显大于2x 中2y 的比重,即可得出答案.【详解】从题中等高堆积条形图可以看出,在1x 中2y 的比重明显大于2x 中2y 的比重, 所以数学成绩与学习数学兴趣关系较强. 故选:A .6.若函数321()(2)13f x x x a x =---+有极值点,则实数a 的取值范围为( )A .()1,+∞B .[)1,+∞C .(),1-∞D .(],1-∞【答案】A【分析】函数有极值点,说明导数有两个零点,先求导,再由0∆>求解即可 【详解】由3221()(2)1'()2(2)3f x x x a x f x x x a =---+⇒=---,因为函数有极值点,所以导数有两个实数根,对应的0∆>一定成立,即()4420a ∆=+->,解得()1,a ∈+∞故选:A【点睛】本题考查函数存在极值点的条件,属于基础题7.设复数z 满足|z ﹣i |+|z +i |=4,z 在复平面内对应的点为(x ,y ),则( )A .22143x y -=B .22143x y +=C .22143y x -=D .22143y x +=【答案】D【分析】利用复数模的几何意义以及椭圆的定义即可求解.【详解】设z x yi =+,则()1z i x y i -=+-,所以z i -=同理可得z i +=即|z ﹣i |+|z +i |4, 即(),x y 到两点()()0,1,0,1-的距离之和为4,所以z 在复平面内对应的点(x ,y )的轨迹为22143y x +=故选:D【点睛】本题考查了复数模的几何意义以及椭圆的定义,需熟记椭圆的定义,属于基础题.8.函数()cos f x x x =⋅的导函数为()f x ',则()f x 与()f x '在一个坐标系中的图象为( )A .B .C .D .【答案】A【解析】分析函数()f x 、()f x '的奇偶性,以及2f π⎛⎫' ⎪⎝⎭、()f π'的符号,利用排除法可得出合适的选项.【详解】函数()cos f x x x =的定义域为R ,()()()cos cos f x x x x x f x -=--=-=-, 即函数()cos f x x x =为奇函数,()cos sin f x x x x '=-,函数()f x '的定义域为R ,()()()()cos sin cos sin f x x x x x x x f x ''-=-+-=-=,函数()f x '为偶函数,排除B 、C选项;22f ππ⎛⎫'=- ⎪⎝⎭,()1f π'=-,则()02f f ππ⎛⎫<< ⎪⎝⎭''.对于D 选项,图中的偶函数为()f x ',由02f π⎛⎫'< ⎪⎝⎭,()0f π'<与题图不符,D 选项错误, 故选:A.【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.9.已知双曲线C 的中心在坐标原点,其中一个焦点为()2,0F -,过F 的直线l 与双曲线C 交于A 、B 两点,且AB 的中点为()3,1N --,则C 的离心率为( )AB CD 【答案】B【分析】利用点差法即可.【详解】由F 、N 两点的坐标得直线l 的斜率1k =. ∵双曲线一个焦点为(-2,0),∴c =2.设双曲线C 的方程为()222210,0x y a b a b-=>>,则224a b +=.设()11,A x y ,()22,B x y ,则126x x +=-,122y y +=-,12121y y x x -=-. 由2211221x y a b -=,2222221x y a b -=得()()()()12121212220x x x x y y y y a b +-+--=, 即22620a b-+=,∴223a b ,易得23a =,21b =,24c =,∴双曲线C 的离心率c e a ==. 故选:B .10.某班举行了一次有意思的智力竞猜游戏,首先老师将三只冬奥会吉祥物冰墩墩进行了1、2、3三个数字的编号,然后将它们随机均分给甲、乙、丙三名同学,每人将得到的冰墩墩编号告知老师,老师根据三人抽取的号码情况给出了三种说法:①甲抽取的是1号冰墩墩;②乙抽取的不是2号冰墩墩:③丙抽取的不是1号冰墩墩.若三种说法中只有一个说法正确,则抽取2号冰墩墩的是( ) A .甲 B .乙C .丙D .无法判定【答案】A【分析】利用假设法进行推理,得到正确答案. 【详解】假设①正确,则③正确,故不合题意;假设②正确,若乙抽取到是1号冰墩墩,则③正确,符合题意;若乙抽取到的是3号冰墩墩,由于甲不能抽取1号冰墩墩,所以甲只能抽到2号冰墩墩,而丙抽取到1号冰墩墩,满足题意,假设③正确,若丙抽到的是2号冰墩墩,则甲抽到的是3号冰墩墩,乙抽取到1号冰墩墩,则②正确,不合题意;若丙抽到的是3号冰墩墩,则甲抽到的是2号冰墩墩,乙抽到的是1号冰墩墩,则②正确,不合题意.综上:甲抽到的是2号冰墩墩. 故选:A11.已知ABC 的三个顶点都在抛物线26x y =上,且F 为抛物线的焦点,若1()3AF AB AC =+,则||||||++=AF BF CF ( )A .12B .10C .9D .6【答案】C【分析】设A ,B ,C 的纵坐标分别是123,,y y y ,由1()3AF AB AC =+,得三点纵坐标之和,再结合抛物线的定义即可求出||||||AF BF CF ++的值.【详解】由26x y =,得3p =.设A ,B ,C 的纵坐标分别是123,,y y y ,由1()3AF AB AC =+,有1213131()23y y y y y -=-+-,即12392y y y ++=. 由抛物线的定义可得:1233||||||392pAF BF CF y y y p ++=+++==. 故选:C12.定义在R 上的偶函数()f x 的导函数为()'f x ,且当0x >时,()2()0xf x f x '+<.则( ) A .2(e)(2)4ef f > B .9(3)(1)>f f C .4(2)9(3)-<-f f D .2(e)(3)9e f f -> 【答案】D【分析】构造函数()()2g x x f x =,利用导数判断出函数()g x 的单调性即可比较.【详解】令()()2g x x f x =,因为()f x 是偶函数,所以()g x 为偶函数,当0x >时,()()()()()2220g x xf x x f x x f x xf x '''=+=+<⎡⎤⎣⎦,所以()g x 在()0,+∞单调递减,在(),0-∞单调递增,则()()e 2g g <,即()()22e e 22f f <,则2(e)(2)4ef f <,故A 错误; ()()31g g <,即()()931f f <,故B 错误;()()23g g ->-,即4(2)9(3)f f ->-,故C 错误;()()()e 33g g g >=-,即()()2e e 93f f >-,则2(e)(3)9e f f ->,故D 正确. 故选:D. 二、填空题13.函数()ln f x x x =-的单调递增区间为_______. 【答案】【详解】函数有意义,则:0x > ,且:()1'1f x x=- ,由()'0f x > 结合函数的定义域可得函数的单调递增区间为()0,1,故答案为()0,1.14.若命题3:[1,1],2p x x a x ∀∈-≥-为假命题,则实数a 的取值范围是___________. 【答案】(3,)-+∞【分析】写出0:[1,1]p x ⌝∃∈-,3002x a x <-为真命题,参变分离后求解函数最小值,求出实数a 的取值范围.【详解】由题得0:[1,1]p x ⌝∃∈-,3002x a x <-为真命题,所以当0[1,1]x ∈-时,3002a x x >+有解,令3()2,[1,1]f x x x x =+∈-,2()320f x x '=+>, 所以()f x 在区间[1,1]-上单调递增, 所以min ()(1)3f x f =-=-,所以只需3a >-,即实数a 的取值范围是(3,)-+∞. 故答案为:(3,)-+∞15.已知1F ,2F 分别是椭圆2222:1(0,0)x y C a b a b+=>>的左、右焦点,点P 在椭圆上,且在第一象限,过2F 作12F PF ∠的外角平分线的垂线,垂足为A ,O 为坐标原点,若||3OA b =,则该椭圆的离心率为______.6【分析】延长2F A ,交1PF 于点Q ,根据P A 是12F PF ∠的外角平分线,得到2||=AQ AF ,2||PQ PF =,再利用椭圆的定义求解.【详解】解:如图所示:延长2F A ,交1PF 于点Q , ∵P A 是12F PF ∠的外角平分线,2||AQ AF ∴=,2||PQ PF =,又O 是12F F 的中点,1QF AO ∴∥,且12||23QF OA b ==. 又1112||2QF PF PQ PF PF a =+=+=, 223a b ∴=,222233()a b a c ∴==-,∴离心率为6c a =616.已知()ln e a f x x x x =-+,321()23g x x x =-+,若1(0,1]x ∀∈,2[1,1]x ∀∈-,都有()()12f x g x ≥,则a 的取值范围为____________.【答案】2,e ⎛⎤-∞- ⎥⎝⎦【分析】利用导数求出()g x 在区间[1,1]-上的最大值,即可得到()ln e 2af x x x x=-+≥在(0,1]恒成立,参变分离可得2ln e 2a x x x x ≤+-在(0,1]恒成立,令2()ln e 2(01)h x x x x x x =+-<,利用导数说明函数的单调性,即可求出函数的最小值,从而得解;【详解】解:因为321()23g x x x =-+,[1,1]x ∈-,所以()(2)g x x x '=-,10x ∴-<<时,()0g x '>,01x <<时,()0g x '<,即()g x 在()1,0-上单调递增,在()0,1上单调递减,所以()()max 02g x g ==,()ln e 2af x x x x∴=-+≥在(0,1]恒成立,即2ln e 2a x x x x ≤+-在(0,1]恒成立, 令2()ln e 2(01)h x x x x x x =+-<,()ln 2e 1h x x x '=+-, 令()()ln 2e 1m x h x x x '==+-,则1()2e 0m x x'=+>恒成立,()h x '∴在(]0,1单调递增,又0x →时,()h x '→-∞, ()12e 10h '=->,故存在(]00,1x ∈,使得00x x <<,()0h x '<,01x x <<,()0h x '>, 即000()ln 2e 10h x x x '=+-=,解得01ex =,211112()e 2e e e e e minh x h ⎛⎫⎛⎫∴==-+⋅-⨯=- ⎪ ⎪⎝⎭⎝⎭,2e a ∴≤-,即2,e a ⎛⎤∈-∞- ⎥⎝⎦;故答案为:2,e ⎛⎤-∞- ⎥⎝⎦.三、解答题17.已知方程()221R 4x y m m m+=∈-表示双曲线.(1)求实数m 的取值集合A ;(2)设不等式()22210x a x a a -+++<的解集为B ,若x B ∈是x A ∈的充分不必要条件,求实数a 的取值范围.【答案】(1){0A m m =<或}4m > (2)(][),14,-∞-⋃+∞【分析】(1)由方程表示双曲线可得()40m m -<,解不等式可求得集合A ;(2)解一元二次不等式可得集合B ,由充分不必要条件定义可知B A ≠⊂,由此可得不等关系,可求得a 的范围.【详解】(1)方程()221R 4x y m m m+=∈-表示双曲线,()40m m ∴-<,解得:0m <或4m >,{0A m m ∴=<或}4m >.(2)由()22210x a x a a -+++<得:1a x a <<+,即{}1B x a x a =<<+;x B ∈是x A ∈的充分不必要条件,B A ,10a ∴+≤或4a ≥, 即1a ≤-或4a ≥,∴实数a 的取值范围为(][),14,-∞-⋃+∞.18.为研制新冠肺炎的疫苗,某生物制品研究所将所研制的某型号疫苗用在小白鼠身上进行科研和临床试验,得到如下统计数据:现从未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率为23.求: (1)求p ,q ,x ,y ;(2)能否有99%的把握认为注射此疫苗有效? 附:下面的临界值表仅供参考.)20k0.10 2.706参考公式:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++. 【答案】(1)80,20,120,80p q x y ====; (2)有99%的把握认为注射此疫苗有效【分析】(1)由取到“感染病毒”的小白鼠的概率为23计算出80p =,再依次计算,,q x y 即可;(2)写出列联表,直接计算2K ,和6.635比较即可判断. 【详解】(1)由2403p p =+,解得80p =,所以20,120,80q x y ===; (2)由(1)得列联表如下:则()222004020608033.333 6.63510010012080K ⨯⨯-⨯=≈>⨯⨯⨯,故有99%的把握认为注射此疫苗有效. 19.根据党中央规划的“精准发力,着力提高脱贫攻坚成效”的精准扶贫、精准脱贫路径,某农业机械上市公司为强化现代农业的基础支撑,不断投入资金对产品进行研发,从而提升农机装备的应用水平.通过对该公司近几年的年报公布的研发费用x (亿元)与产品的直接收益y (亿元)的数据进行统计,得到如下表:根据数据,可建立y 关于x 的两个回归模型:模型①: 4.110.9y x =+;模型②:14.4y =.(1)根据表格中的数据,分别求出模型①,②的相关指数2R 的大小(保留三位有效数字); (2)根据(1)选择拟合精度更高、更可靠的模型,若2022年该公司计划投入研发费用17亿元,预测可为该公司带来多少直接收益.附:相关指数()()22121ni ii n iy y R y y =-=--∑∑ 4.1≈.【答案】(1)210.955R ≈,220.989R ≈(2)72.93亿元【分析】(1)先计算y ,再求()21ni i y y =-∑,然后由公式直接计算可得;(2)比较相关系数,选择拟合精度更高、更可靠的模型计算可得. 【详解】(1)因为15222740485460387y ++++++==所以()22222222123161121016221750ni i y y =-=++++++=∑则模型①的相关指数()()22112179.13110.9551750niii nii y y R y y ==-=-=-≈-∑∑ 模型②的相关指数()()22122118.86110.9891750ni ii n ii y y R y y ==-=-=-≈-∑∑ (2)由(1)知,2212R R <所以模型②的拟合精度更高、更可靠,由回归方程21.314.4y x =-可得,当17x =时,21.31714.472.93y =-=所以若2022年该公司计划投入研发费用17亿元,大约可为该公司带来72.93亿元直接收益.20.已知函数()2x e x f x a =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在只有一个零点,求a 的值.【答案】(1)见解析;(2)24e a =【详解】分析:(1)先构造函数()()211xg x x e -=+-,再求导函数,根据导函数不大于零得函数单调递减,最后根据单调性证得不等式;(2)研究()f x 零点,等价研究()21x h x ax e -=-的零点,先求()h x 导数:()()'2x h x ax x e -=-,这里产生两个讨论点,一个是a 与零,一个是x 与2,当0a ≤时,()0h x >,()h x 没有零点;当0a >时,()h x 先减后增,从而确定只有一个零点的必要条件,再利用零点存在定理确定条件的充分性,即得a 的值.详解:(1)当1a =时,()1f x ≥等价于()2110x x e -+-≤.设函数()()211x g x x e -=+-,则()()()22'211x xg x x x e x e --=--+=--.当1x ≠时,()'0g x <,所以()g x 在()0,∞+单调递减. 而()00g =,故当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数()21xh x ax e -=-.()f x 在()0,∞+只有一个零点当且仅当()h x 在()0,∞+只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点; (ii )当0a >时,()()'2xh x ax x e -=-.当()0,2x ∈时,()'0h x <;当()2,x ∈+∞时,()'0h x >. 所以()h x 在()0,2单调递减,在()2,+∞单调递增. 故()2421ah e =-是()h x 在[)0,+∞的最小值. ①若()20h >,即24e a <,()h x 在()0,∞+没有零点;②若()20h =,即24e a =,()h x 在()0,∞+只有一个零点;③若()20h <,即24e a >,由于()01h =,所以()h x 在()0,2有一个零点,由(1)知,当0x >时,2x e x >,所以()()()333244216161614111102a a a a a h a e a a e =-=->-=->. 故()h x 在()2,4a 有一个零点,因此()h x 在()0,∞+有两个零点.综上,()f x 在()0,∞+只有一个零点时,24e a =.点睛:利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.21.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,短轴长为(1)求椭圆C 的方程;(2)设A ,B 分别为椭圆C 的左、右顶点,若过点()4,0P 且斜率不为0的直线l 与椭圆C 交于M 、N 两点,直线AM 与BN 相交于点Q .证明:点Q 在定直线上. 【答案】(1)22143x y +=;(2)证明见解析.【解析】(1)用离心率公式和b 列方程求得a ,即可得椭圆方程;(2)方法一:设直线:4MN x ty =+,()11,M x y ,()22,N x y 联立椭圆方程,由韦达定理得12,y y 关系,由直线AM 和BN 方程联立求解交点坐标,并化简得1x =,即可证明问题;方法二:设()11,M x y ,()22,N x y ,()33,Q x y ,123,,x x x 两两不等,因为P ,M ,N 三点共线,由斜率相等得到方程,同理A ,M ,Q 三点共线与B ,N ,Q 三点共线也得到两方程,再结合三条方程求解31x =,即可证明问题.【详解】解:(1)因为椭圆的离心率12,12c a ∴=,2a c ∴=,又2b =b ∴=因为222233b a c c =-==,所以1c =,2a =, 所以椭圆C 的方程为22143x y +=. (2)解法一:设直线:4MN x ty =+,()11,M x y ,()22,N x y ,224143x ty x y =+⎧⎪⎨+=⎪⎩,可得()223424360t y ty +++=, 所以12212224343634t y y t y y t -⎧+=⎪⎪+⎨⎪=⎪+⎩.直线AM 的方程:()1122y y x x =++① 直线BN 的方程:()2222y y x x =--② 由对称性可知:点Q 在垂直于x 轴的直线上, 联立①②可得1221212623ty y y y x y y ++=-.因为121223y y t y y +=-, 所以()122112212121362262133y y y y ty y y y x y y y y -+++++===--所以点Q 在直线1x =上.解法二:设()11,M x y ,()22,N x y ,()33,Q x y ,123,,x x x 两两不等, 因为P ,M ,N 三点共线,所以()()()()22122212122222121212313144444444x x y y y y x x x x x x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=⇒=⇒=------, 整理得:()12122580x x x x -++=.又A ,M ,Q 三点共线,有:313122y y x x =++① 又B ,N ,Q 三点共线,有323222y y x x =--②将①与②两式相除得: ()()()()2222121332231231222222222y x y x x x x y x x y x ++⎛⎫++=⇒= ⎪----⎝⎭ ()()()()()()222121221212312224223124x x x x x x x x ⎛⎫-+ ⎪++⎝⎭==--⎛⎫-- ⎪⎝⎭即()()()()()()2211212331212122224222224x x x x x x x x x x x x x x +++++⎛⎫+== ⎪----++⎝⎭, 将()12122580x x x x -++=即()12125402x x x x =+-= 代入得:233292x x ⎛⎫+= ⎪-⎝⎭解得34x =(舍去)或31x =,(因为直线BQ 与椭圆相交故34x ≠) 所以Q 在定直线1x =上. 【点晴】求解直线与圆锥曲线定点定值问题:关键在于运用设而不求思想、联立方程和韦达定理,构造坐标点方程从而解决相关问题.22.在直角坐标系xOy 中,曲线1C 的参数方程为()22221141t x t t y t ⎧-⎪=⎪+⎨⎪=⎪+⎩(t 为参数).在以平面直角坐标系的原点为极点、x 轴的正半轴为极轴,且与平面直角坐标系xOy 取相同单位长度的极坐标系中,曲线2Csin 04πθ⎛⎫+= ⎪⎝⎭.(1)求曲线1C 的普通方程以及曲线2C 的平面直角坐标方程;(2)若曲线1C 上恰好存在三个不同的点到曲线2C 的距离相等,请在极角范围是[)0,2π的条件下写出这三个点的极坐标.【答案】(1)()2242x y x +=≠-;0x y +=;(2)42,A π⎛⎫ ⎪⎝⎭,32,4b π⎛⎫ ⎪⎝⎭,72,4C π⎛⎫ ⎪⎝⎭.【解析】(1)观察参数方程的形式,消参后得到普通方程,曲线2C 的极坐标方程展开后,利用cos x ρθ=,sin y ρθ=,代入后求直角坐标方程;(2)由圆的半径可知,若圆上有3个点到直线的距离相等,圆心到直线的距离12d r =,再利用数形结合得到三点,并表示三点的极坐标.【详解】(1)由为()22221141t x t ty t ⎧-⎪=⎪+⎨⎪=⎪+⎩(t 为参数),得()222222221164411t t x y t t ⎛⎫-+=+= ⎪+⎝⎭+ 故曲线1C 的普通方程为()2242x y x +=≠-又由2sin 204πρθ⎛⎫+-= ⎪⎝⎭得()cos sin 20ρθθ+-=,即为20x y +-=.(2)∵圆心O 到曲线2:20C x y +-=的距离22211211d r ===+, ∴直线220x y +-=与圆的切点A 以及直线0x y +=与圆的两个交点B ,C 即为所求.OA BC ⊥,则1OA k =,直线OA l 的倾斜角为4π,即A 点的极角为4π, B ∴点的极角为2344πππ+=,C 点的极角为7244πππ-=, ∴三个点的极坐标为42,A π⎛⎫ ⎪⎝⎭,32,4B π⎛⎫ ⎪⎝⎭,72,4C π⎛⎫⎪⎝⎭【点睛】关键点点睛:本题第二问的关键是由数形结合可知圆心到直线的距离12d r =,再根据数形结合确定三点,结合斜率求得三点的极角.23.已知函数()|1|2|2|(R)f x x x x =-+-∈,记()f x 的最小值为m . (1)求m ;(2)若2a b m +=,求22a b +的最小值. 【答案】(1)1;(2)15. 【分析】(1)将()f x 写成分段函数的形式,求出分段函数的最小值,即可得到结果; (2)由(1)可知21a b +=,再利柯西不等式求出最小值.【详解】(1)53,1,()1223,12,35,2,x x f x x x x x x x -≤⎧⎪=-+-=-<<⎨⎪-≥⎩当1x ≤时,()2f x ≥; 当12x <<时,1()2f x <<; 当2x ≥时,()1f x ≥; 综上,min ()1f x =,故1m =. (2)21a b +=,22222)(12)(2)1(b b a a ∴++≥+=,即2215a b +≥当且仅当2112a b a b +=⎧⎪⎨=⎪⎩时,即12,55a b ==时等号成立,22a b ∴+的最小值为15.。

云南省名校2023届高三上学期第二次月考数学试题

云南省名校2023届高三上学期第二次月考数学试题

数学(二)试卷注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数1+3i1+i 在复平面内对应的点的坐标为()A.()2,4 B.()4,2 C.()1,2 D.()2,12.设集合{}=Z 2U x x ∈≤,{}1,0,1A =-,{}0,1B =,则()U A B = ð()A.{}2,1,0,1,2-- B.{}1,0,1- C.{}1- D.{}1,0-3.某游泳馆统计了10天内某小区居民每日到该游泳馆锻炼的人数,整理数据,得到如下所示的折线图.则根据此折线图,下面结论正确的是()A.这10天内,每日游泳人数的极差大于106B.这10天内,每日游泳人数的平均值大于135C.这10天内,每日游泳人数的中位数大于145D.前5天每日游泳人数的方差小于后5天每日游泳人数的方差4.一个礼堂的座位分左、中、右三组,左、右两组从第一排到最后一排每排依次增加1个座位,中间一组从第一排到最后一排每排依次增加2个座位,各组座位具有相同的排数,第一排共有16个座位,最后一排共有52个座位,则该礼堂的座位总数共有()A.442个B.408个C.340个D.306个5.已知1sin 23β=,()()2sin sin 3αβαβ++-=,则sin α=()A.37B.38 C.37- D.38-6.已知0.11.1a-=,ln 3b =,c =,则()A.a b c<< B.a c b<< C.c a b<< D.c b a<<7.已知双线()222210,0:6x y C a ba =>>=的左、右焦点分别为1F ,2F ,O 为坐标原点,点M 在C 的右支上运动,12MF F 的内心为I ,若2IO IF =,则C 的离心率为()A.2B.C.3D.8.已知1x ,2x 是方程e ln a x x =的根,且12x x <,则下列结论正确的是()A.(],1a ∈-∞- B.()10,1x ∈ C.21,e ex ⎛⎫ ⎪⎝⎭∈ D.122x x +>二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得5分,部分选对得2分,有选错的得0分9.在正三棱柱111ABC A B C -中,1AA AB =,则下列结论正确的是()A.1BC 与11A B 的夹角为45°B.1BC 与平面ABC 所成角为45°C.1BC 与1AA 的夹角为45°D.1BC 与平面11ABB A 所成角为45°10.已知椭圆22:195x y E +=的左焦点为F ,过F 的直线l 与E 交于A ,B 两点,则下列说法正确的是()A.若直线l 垂直于x 轴,则103AB =B.10,63AB ⎡⎤∈⎢⎥⎣⎦C.若5AB =,则直线l 的斜率为33D.若2AF BF =,则154AB =11.一个不透明的纸箱中放有大小、形状均相同的10个小球,其中白球6个、红球4个,现无放回分两次从纸箱中取球,第一次先从箱中随机取出1球,第二次再从箱中随机取出2球,分别用1A ,2A 表示事件“第一次取出白球,”“第一次取出红球”;分别用B ,C 表示事件“第二次取出的都为红球”,“第二次取出两球为一个红球一个白球”.则下列结论正确的是()A.()11=6P B A B.()21=2P C A C.()13P B =D.()115P A C =12.某制造企业一种原材料的年需求量为16000千克(该原材料的需求是均匀的,且不存在季节性因素),每千克该原材料标准价为200元.该原材料的供应商规定:每批购买量不足1000千克的,按照标准价格计算;每批购买量1000千克及以上,2000千克以下的,价格优惠5%;每批购买量2000千克及以上的,价格优惠10%.已知该企业每次订货成本为600元,每千克该原材料年平均库存成本为采购单价的15%.该企业资金充足,该原材料不允许缺货,则下列结论正确的是()(采购总成本=采购价格成本Ap +订货成本AB Q +库存成本2CQ ,A 为原料年需求量,B 为平均每次订货成本,C 为单位原料年库存成本,Q 为订货批量即每批购买量,p 为采购单价)A.该原材料最低采购单价为180元/千克 B.该原材料最佳订货批量为800千克C.该原材料最佳订货批量为2000千克D.该企业采购总成本最低为2911800元三、填空题:本题共4小题,每小题5分,共20分.13.设向量a 的模为2,向量,22b ⎛⎫=- ⎪ ⎪⎝⎭,且2a b -= ,则a 与b的夹角等于______.14.已知函数()()0bf x ax ab x=+≠,使()f x 在(0)+∞,上为增函数的a 与b 组成的有序实数对为(),a b ,则(),a b 可以是______.(写出一对符合题意的即可)15.已知两个平行平面间的距离为2,这两个平面截球O 所得两个截面圆的半径分别为1O 的表面积等于______.16.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭,若π,06⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心,()f x 在区间5π7π,1818⎛⎫⎪⎝⎭上有最大值点无最小值点,且5π7π1818f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,记满足条件的ω的取值集合为M ,则=M ______.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c,sin b C =,1cos c B =.(1)求B ;(2)若b =,求ABC 的面积.18.某市从2017年到2021年新能源汽车保有量y (单位:千辆)与年份的散点图如下:记年份代码为()1,2,3,4,5x x =,2t x =,对数据处理后得:y521ii x=∑521ii t=∑51iii x y=∑51iii t y=∑35559797153115(1)根据散点图判断,模型①y a bx =+与模型②2y c dx =+哪一个更适宜作为y 关于x 的回归模型?(给出结论即可,不必说明理由)(2)根据(1)的判断结果,建立y 关于x 的回归方程,并预测2022年该市新能源汽车保有量(计算结果都精确到1).参考公式:回归方程 y abx =+ 中斜率和截距的最小二乘估计公式分别为:()()()1122211n niii i i i nniii i x x y y x y nx ybx x xnx====---==--∑∑∑∑ , ay bx =- .19.设数列{}n a 的前n 项和为n S ,且22n n S a =-,数列{}n b 满足111b a =,且131n n n b b b +=+.(1)证明:数列{}n a 是等比数列,数列1n b ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a ,{}n b 的通项公式;(2)设数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T .20.如图,在四面体ABCD 中,ABD △是边长为2的等边三角形,=AB AC ,BC CD ⊥.(1)证明:平面ABD ⊥平面BCD ;(2)若二面角A BC D --的余弦值为55,求四面体ABCD 的体积.21.已知抛物线()2:20E x py p =>的焦点为F ,斜率为()0k k ≠的直线l 与E 相切于点A .(1)当=2k ,=5AF 时,求E 的方程;(2)若直线l '与l 平行,l '与E 交于B ,C 两点,且2BAC π∠=,设点F 到l '的距离为1d ,到l 的距离为2d ,试问:12d d 是否为定值?若是,求出定值;若不是,说明理由.22.已知函数()()32,,,R,0f x ax bx cx d a b c d a =+++∈≠是奇函数,曲线()=y f x 在点()()2,2f 处的切线方程为93160x y +-=.(1)求()f x 的零点;(2)若()f x 在区间()2,10m m-内有最大值,求m 的取值范围.数学(二)试卷注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】A【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】D二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得5分,部分选对得2分,有选错的得0分【9题答案】【答案】BC【10题答案】【答案】ABD 【11题答案】【答案】AB 【12题答案】【答案】ACD三、填空题:本题共4小题,每小题5分,共20分.【13题答案】【答案】23π##120 【14题答案】【答案】()1,1-(答案不唯一)【15题答案】【答案】13π【16题答案】【答案】{}1,7,13四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.【17题答案】【答案】(1)60B =︒(2)2【18题答案】【答案】(1)模型②2y c dx =+更适宜作为y 关于x 的回归方程(2) 223y x =+,预计2022年该市新能源汽车保有量约为110千辆【19题答案】【答案】(1)证明见解析,2nn a =,131n b n =-(2)()18342n n T n +=+-⋅【20题答案】【答案】(1)证明见解析(2)12【21题答案】【答案】(1)24x y=(2)12d d 是定值,定值为3【22题答案】【答案】(1)()f x 的零点有3个,分别是0(2)[)2,1-第9页/共9页。

专题03 复数-备战2022年高考数学(文)母题题源解密(全国甲卷)(解析版)

专题03 复数-备战2022年高考数学(文)母题题源解密(全国甲卷)(解析版)

专题03 复数1.已知2(1)32i z i -=+,则z = A .312i --B .312i -+C .32i -+D .32i --【试题来源】2021年全国高考甲卷(文) 【答案】B【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解. 【解析】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅.故选B .1.【2020年高考全国Ⅰ卷文数】若312i i z =++,则||=zA .0B .1C .2D .2【答案】C【解析】因为31+21+21z i i i i i =+=-=+,所以22112z =+=.故选C .【点睛】本题主要考查向量的模的计算公式的应用,属于容易题. 2.【2020年高考全国Ⅱ卷文数】(1–i )4= A .–4 B .4C .–4iD .4i【答案】A【解析】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-. 故选A.【点睛】本题考查了复数的乘方运算性质,考查了数学运算能力,属于基础题.3.【2020年高考全国Ⅲ卷文数】若)(1i 1i z +=-,则z = A .1–iB .1+iC .–iD .i【答案】D【解析】因为21(1)21(1)(1)2i i iz i i i i ---====-++-,所以z i . 故选:D【点晴】本题主要考查复数的除法运算,涉及到共轭复数的概念,是一道基础题. 4.【2020年新高考全国Ⅰ卷】2i12i-=+ A .1 B .−1 C .iD .−i【答案】D【解析】2(2)(12)512(12)(i i i ii i 12)i i 5----===-++- 故选:D【点睛】本题考查复数除法,考查基本分析求解能力,属基础题. 5.【2019年高考全国Ⅰ卷文数】设3i12iz -=+,则||z = A .2B .3C .2D .1【答案】C【分析】先由复数的除法运算(分母实数化)求得z ,再求||z 即可. 【解析】方法1:由题可得(3i)(12i)17i (12i)(12i)55z --==-+-,所以2217()()||255z =+-=,故选C .方法2:由题可得2222|3i |10||2|12i 3(1|5)12z +-+-====+,故选C .【名师点睛】本题主要考查复数的乘法、除法运算、复数模的计算,是基础题.本题也可以运用复数模的运算性质直接求解.6.【2019年高考全国Ⅱ卷文数】设)i i (2z =+,则z =A .12i +B .12i -+C .12i -D .12i --【答案】 D【分析】根据复数的乘法运算法则先求得z ,然后根据共轭复数的概念写出z 即可. 【解析】由题可得2i(2i)2i i 12i z =+=+=-+,所以12i z =--,故选D .【名师点睛】本题主要考查复数的乘法运算及共轭复数,是容易题,注重对基础知识、基本计算能力的考查.其中,正确理解概念、准确计算是解答此类问题的关键,部分考生易出现理解性错误. 7.【2019年高考全国Ⅲ卷文数】若(1i)2i z +=,则z = A .1i -- B .1i -+ C .1i-D .1i +【答案】D【解析】由题可得()(2i 2i 1i 1i 1i 1i 1i )()z -===+++-.故选D . 【名师点睛】本题考查复数的除法的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题.复数问题每年必考,多以选择题的形式出现,而且是必拿分题,高考试题对该部分内容考查的主要角度有两种:①考查单纯的复数运算求解题;②考查复数的几何意义以及有关概念.熟练掌握复数的加、减、乘、除运算法则是关键:设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:12i (i)(i)i (i)(i)z a b a b c d z c d c d c d ++-==++-22()i ac bd bc ad c d ++-+=2222i(i 0)ac bd bc adc d c d c d+-=++≠++. 注意:复数除法与作根式除法时的处理类似.在作根式除法时,分子、分母都乘以分母的“有理化因式”,从而使分母“有理化”;复数的除法是分子、分母都乘以分母的“实数化因式”(共轭复数),从而使分母“实数化”.虚数单位i 具有周期性,且最小正周期为4,有如下性质: (1)41424344ii,i 1,i i,i 1()n n n n n ++++==-=-=∈N ;(2)41424344ii i )i 0(n n n n n +++++++=∈N .1.已知复数1i z a =-,22+i z =(i 为虚数单位),若12z z 是纯虚数.则实数a = A .12-B .12 C .2-D .3【试题来源】湖南省长沙市第一中学2021-2022学年高三上学期月考(一) 【答案】A【分析】结合复数的乘法运算求出12z z ,进而结合纯虚数的概念即可求出结果.【解析】由已()()()()12i 2i 212i z z a a a =-+=++-是纯虚数,所以210a +=且20a -≠,可得12a =-,故选A .2.已知i 是虚数单位,若复数z 满足()()21i 1i z -=+,则z = A .1 B .2 C .2D .3【试题来源】湖北省黄石市有色一中2021届高三下学期5月模拟考试 【答案】B【分析】根据复数的乘除法运算求出复数z ,然后根据复数的模的公式即可得出答案. 【解析】因为()()21i 1i z -=+,所以()()()()21i 1i 1i 1ii 2i 1i 1z ++===-+--+,所以112z =+=.故选B .3.设i 为虚数单位,若复数()()i 2i x +-的实部与虚部相等,则实数x 的值为 A .3 B .13C .12D .1【试题来源】湖南省永州市第四中学2021届高三下学期高考冲刺(二) 【答案】B【分析】由复数乘法运算展开()()i 2i x +-,再由实部、虚部相等列方程求x 的值.【解析】由()()()i 2i 212i x x x +-=++-的实部与虚部相等, 所以212x x +=-,解得13x =.故选B4.若复数z 满足()1i 22i z -=-,则z = A .13 B .13 C .5D .5【试题来源】江苏省南京市第二十九中学2021-2022学年高三上学期8月第二次学情调研 【答案】D【分析】根据条件求出复数z ,进而可求得z . 【解析】由(1)i 22i z -=-得i i 22i z -=-,则2i12i iz -==--,所以()()22125z =-+-=.故选D .5.i 是虚数单位,复数z 满足:1i iz=-,则z =A .1i -B .1i +C .1i -+D .1i --【试题来源】河南省洛阳市孟津县第一高级中学2021届高三下学期4月(文)调研试题 【答案】A【分析】先求z ,再求z . 【解析】1i,1i izz =-∴=+,1z i ∴=-.故选A . 6.设复数z 满足()12i 5z +=,则z = A .5 B .5 C .3D .1【试题来源】云南省曲靖市2021届高三二模(文) 【答案】B【分析】由()12i 5z +=用复数的除法求出z ,再求z . 【解析】由()12i 5z +=,得()()()()512i 512i 12i 12i 12i 5z --===-+-,所以12z i =+,5z B .7.25i3i+-的虚部为 A .110B .1310C .1710D .1310-【试题来源】河北省唐山市第十一中学2021届高三下学期3月调研 【答案】C【分析】利用复数的除法化简25i3i+-,即可知虚部. 【解析】25i (25i)(3i)117i 3i (3i)(3i)10++++==--+,故虚部为1710.故选C 8.已知i 是虚数单位,若复数z 满足2i 1iz=+,则z =. A .2 B .2 C .22D .4【试题来源】广东省江门市蓬江区培英高中2021届高三5月份数学冲刺试题 【答案】C【分析】先求出z ,然后根据复数的模求解即可 【解析】2i 1iz=+, ()2i 1i 22i z =+=-+,则4422z =+=,故选C 9.若复数1i z =-,则2|2|z z -= A .0 B .2 C .4D .6【试题来源】山东省菏泽市2021届高三二模 【答案】B【分析】根据复数的乘方运算以及减法运算求出22z z -,然后利用模长公式即可求出结果. 【解析】由题意可得()221i 2i z =-=-,则()()2221i 21i 2i 22i 2z z -=---=--+=-,所以2222z z -=-=.故选B .10.设z C ∈,则“0z z +=”是“z 是纯虛数”的A .充分但非必覂条件B .必要但非充分条件C .充要条件D .既非充分也非必要条件【试题来源】重庆市巴蜀中学2022届高三上学期适应性月考(一) 【答案】B【分析】先证明“0z z +="是“z 是纯虛数”的非充分条件;再证明“0z z +="是“z 是纯虛数”的必要条件.即得解.【解析】设()i ,z a b a b =+∈R ,则i z a b =-, 若0z z +=,则0,a z =不一定是纯虛数, 所以“0z z +="是“z 是纯虛数”的非充分条件;若z 是纯虛数,则()i 0,i z b b z b =≠=-,一定有0z z +=成立. 所以“0z z +="是“z 是纯虛数”的必要条件;所以“0z z +="是“z 是纯虛数”的必要非充分条件.故选B11.已知i 是虛数单位,z 为复数,2+1i=z (3+i),则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【试题来源】重庆市巴蜀中学2022届高三上学期适应性月考(一) 【答案】D【分析】先求出复数,即得解. 【解析】2i 11i 3i 22z -==-+,复平面内z 对应的点为11,22⎛⎫- ⎪⎝⎭,故选D . 12.若复数i1iz -=+,则z = A .14B .12 C .22D .2【试题来源】重庆市第八中学2021届高三下学期高考适应性考试(一) 【答案】C【分析】利用复数的除法运算求出i 12z --=,结合复数的几何意义求出复数的模即可. 【解析】因为i(1i)i 1(1i)(1i)2z ----==+-,所以2||z =C13.若()1i 2i z +=,则z = A .1i - B .1i -- C .1i +D .1i -+【试题来源】贵州省贵阳市第一中学2021届高三下学期高考适应性月考卷(六)(文) 【答案】A【分析】先求出1i z =+,再由共轭复数的概念即可求解 【解析】()()()2i 1i 2i1i 1i 1i 1i z -===+++-, 所以1i z =-,故选A . 14.若复数z 满足1i31iz z -+=+,则||z = A .116B .18C .14D .12【试题来源】重庆市第一中学2021届高三下学期第二次月考 【答案】D【分析】令i z x y =+(,)x y R ∈,由题设易得42i i x y -=-求x 、y ,进而可求||z . 【解析】若i z x y =+(,)x y R ∈,则1i342i i 1iz z x y -+=-==-+, 所以0x =,12y =,即i 2z =, 所以1||2z =.故选D 15.i 是虚数单位,复数z 满足i 13i z ⋅=+,则||z = A .10 B .10 C .8D .22【试题来源】福建省莆田市2021届高三高中毕业班3月第二次教学质量检测 【答案】B【分析】根据复数的除法运算求出复数z ,然后利用复数模的公式求||z . 【解析】因为i 13i z ⋅=+,所以()13i i13i 3i i i iz ++===-⋅, 所以()22||3110z =+-=.故选B .16.在复平面内,平行四边形ABCD 的三个顶点,A ,B ,C 对应的复数分别为12i -+,3i -,12i +(i 为虚数单位),则点D 对应的复数为 A .35i -+ B .1i - C .13i +D .3i -+【试题来源】江西省景德镇一中2022届高三7月月考(理) 【答案】A【分析】先利用复数的几何意义写出各点的坐标,再利用平行四边形构造相等向量列方程组求解. 【解析】由题知,()1,2A -,()3,1B -,()1,2C ,设(),D x y . 则()4,3AB =-,()1,2DC x y =--. 因为ABCD 为平行四边形,所以AB DC =.由14,23x y -=⎧⎨-=-⎩,解得3,5x y =-⎧⎨=⎩, 所以点()3,5D -对应的复数为35i -+.故选A . 17.复数2i2i-+的共轭复数是 A .34i 55-- B .34i 55-+ C .34i 55-D .34i 55+【试题来源】四川省绵阳中学2022届高三上学期第一次质量检测 【答案】D【分析】利用复数的除法化简复数2i2i-+,结合共轭复数的定义可得出结果. 【解析】因为()()()22i 2i 34i 2i 2i 2i 55--==-+-+,因此,复数2i2i -+的共轭复数是34i 55+.故选D .18.已知复数i1iz =+,则它的共轭复数z = A .1i2+ B .1i2- C .1i +D .1i -【试题来源】贵州省贵阳市第一中学2021届高三下学期高考适应性月考卷(五)(文) 【答案】B【分析】利用复数的除法运算化简复数z ,再由共轭复数的定义即可求解.【解析】因为i i(1i)1i =1i (1i)(1i)2z -+==++-,所以1i 2z -=,故选B . 19.已知i 为虚数单位,复数1z 、2z 满足122z z ==,1248i2iz z +-=-,则12z z = A .4- B .4i - C .4iD .4【试题来源】重庆市第八中学2021届高三下学期高考适应性考试(二) 【答案】D【分析】设12i,i z a b z c d =+=+,根据题设有22224,0,4a b c d a c b d +=+=-=-=,进而求12z z 即可. 【解析】()()()()1248i 2i 20i 4i2i 2i 5z z ++-===-+,设12i,i z a b z c d =+=+,则有22224,0,4a b c d a c b d +=+=-=-=,解得2,2,0b d a c ==-==, 所以122i,2i z z ==-,则124z z =,故选D .20.已知方程210(,)ax bx a b ++=∈R 在复数范围内有一根为1i +,则复数z a bi =+在复平面上对应的点在 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】重庆市南开中学2021届高三下学期第七次质量检测 【答案】D【分析】把1i +代入已知方程,结合复数的运算及复数相等条件求得a ,b ,再由复数的几何意义可得选项. 【解析】因为方程210(,)ax bx a b ++=∈R 在复数范围内有一根为1i +,所以()()21110i a b i ++++=, 整理得()2+10a b i b ++=,所以112a b ==-,,所以12z a bi i =+=-,所以复数z a bi =+在复平面上对应的点在第四象限,故选D . 21.已知复数1121i,1z z z =-⋅=,则复数2z 的虚部为 A .12 B .12-C .1D .1-【试题来源】贵州省贵阳市第一中学2021届高三下学期高考适应性月考卷(五)(理) 【答案】B【分析】根据条件可知211z z =,化简复数后求2z 的虚部.【解析】因为1121i,1z z z =+⋅=,所以211i 1i 1i (1i)(1i)2z --===++-,所以其虚部为12-.故选B . 22.已知复数()()2i 2i z m =+-为纯虚数,则m =A .1-B .1C .4-D .4【试题来源】重庆市第八中学2021届高三下学期适应性月考卷(七)【答案】C【分析】根据导数的乘法运算化简复数z ,再根据纯虚数的定义即可求解.【解析】()422i z m m =++-为纯虚数,则4m =-.故选C .23.若复数z 满足i i z z ⋅=-,则|i |z -=A .22B .2C .1D .22 【试题来源】湖南省新高考2021届高三下学期考前押题《最后一卷》【答案】A【分析】先根据复数的除法运算化简复数z ,再由模长公式计算即可求解.【解析】因为i i z z ⋅=-,所以()()()i 1i i 1i 1i 1i 1i 2z +-+===--+, 所以1i 11i i 222z ---==--, 故22112|i |222z ⎛⎫⎛⎫-=-+-= ⎪ ⎪⎝⎭⎝⎭,故选A . 24.设若1z 、2z 、3z 为复数,则下列命题中正确的是A .若23z z =,则23z z =±B .若1213z z z z =,则23z z =C .若23z z =,则1213z z z z =D .若2121z z z =,则21z z = 【试题来源】预测05 算法、复数、推理与证明-【临门一脚】2021年高考数学(理)三轮冲刺过关【答案】C【分析】取特殊值法可判断AD 错误,根据复数的运算及复数模的性质可判断BC .【解析】由复数模的概念可知,23z z =不能得到23z z =±,例如23,11i i z z =+=-,A 错误;由1213z z z z =可得123()0z z z -=,若10z =,则230z z -=不一定成立,即23z z =不一定成立,B 错误; 因为2121||||z z z z =,1313||||z z z z =,而23z z =,所以232||||||z z z ==,所以1213z z z z =,C 正确;取121,1z i z i =+=-,显然满足2121z z z =,但12z z ≠,D 错误.故选C25.已知复数z 的共轭复数是z ,若312i z z -=+,则z =A .22B .12C .52D .52 【试题来源】重庆市巴蜀中学2021届高三适应性(九)【答案】A【分析】设i,,z a b a b R =+∈,则i z a b =-,代入原式,利用复数相等求出,a b ,进而可得答案.【解析】设i,,z a b a b R =+∈,则i z a b =-,由312i z z -=+可得24i 12i a b -+=+,则12a =-,12b =, 所以2222z a b =+=,故选A . 26.复数()2i i +的虚部是A .2iB .i -C .2D .1-【试题来源】广东省七校联合体2021届高三下学期第三次联考(5月)【答案】C【分析】利用复数的乘法运算化简复数()2i i +,再根据复数虚部的定义求解即可.【解析】因为()2+i i 12i =-+,所以虚部为2.故选C .27.已知复数1z i =+,设复数22z w z =,则w 的虚部是 A .1- B .1C .iD .i -【试题来源】陕西省2021届高三下学期教学质量检测测评(六)(理)【答案】A【分析】根据复数的运算法则,求得1w i =--,结合复数的基本概念,即可求解.【解析】由题意,复数1z i =+, 根据复数的运算法则,可得2222(1)2(1)(1)1(1)2z i i i i w i z i i i i----=====--+-⋅, 所以复数w 的虚部是1-.故选A . 28.复数45i z =-(其中i 为虚数单位),则2i z +=A .7B .5C .7D .25【试题来源】内蒙古赤峰二中2021届高三三模(理)【答案】B【分析】由复数加法求得2i z +,然后由复数模的运算求解.【解析】因为45i z =-,所以i 23i 4z +=-,所以()222435i z +=+-=,故选B .29.已知i 为虚数单位,复数21i +的共轭复数为z ,则z 的虚部为 A .1-B .1C .i -D .i【试题来源】(理)-学科网2021年高三5月大联考考后强化卷(新课标Ⅰ卷)【答案】B【分析】先对21i+化简,求出复数z ,从而可求出其共轭复数z ,进而可求出z 的虚部 【解析】由题可得22(1i)1i 1i (1i)(1i)-==-++-,所以1i z =+,其虚部为1,故选B .30.设复数z 满足()1i i z m -=+()m R ∈,若z 为纯虚数,则实数m =A .1B .-1C .2D .-2【试题来源】江苏省跨地区职业学校单招2020届高三下学期一轮联考【答案】A【分析】将i 1i m z +=-利用复数的除法运算化简,再令实部等于0,虚部不等于0即可求解 【解析】由()1i i z m -=+可得()()()()()i 1i 11i i 11i 1i 1i 1i 222m m m m m m z ++-+++-+====+--+, 所以1010m m -=⎧⎨+≠⎩,可得1m =,故选A . 31.已知i 为虚数单位,若复数2i i ia z =-+ (a R ∈)为实数,则a = A .2-B .1-C .1D .2【试题来源】广东省揭阳市2021届高考数学模拟考精选题试题(一)【答案】D【分析】先对2i i ia z =-+化简,然后由虚部为零可求出a 的值 【解析】因为()222i i i 12i i 12i iz a a a -=+=--+=-+-为实数, 所以2a =;故选D32.法国数学家棣莫弗(1667-1754)发现的公式()cos isin cos isin nx x nx nx +=+推动了复数领域的研究.根据该公式,可得4ππcos isin 88⎛⎫+= ⎪⎝⎭. A .1B .iC .1-D .i -【试题来源】福建省2021届高三高考考前适应性练习卷(二)【答案】B【分析】根据已知条件将4ππcos sin 8i 8⎛⎫+ ⎪⎝⎭化成i ππcos sin 22+,根据复数的运算即可. 【解析】根据公式得4i i i ππππcos sin cos sin 8822⎛⎫+=+= ⎪⎝⎭,故选B . 33.已知复数z 满足121z i i =+-(其中i 为虚数单位),则z = A .3B .22C .2D .10【试题来源】全国Ⅰ卷2021届高三高考数学(文)押题试题(二)【答案】D【分析】把已知等式变形,再由复数代数形式的乘法运算化简求得z ,然后利用复数模的公式计算.【解析】因为()()1i 12i 3i z =-+=+, 所以22||=3110z +=.故选D . 34.若复数z 满足()23i 1i z ⋅-=-,复数z 的虚部是A .5i 13 B .513 C .113D .1i 13 【试题来源】全国Ⅰ卷2021届高三高考数学(文)押题试题(一)【答案】C【分析】利用复数代数形式的乘除运算化简可得.【解析】由()23i 1i z ⋅-=-,得()()()()1i 23i 1i 5i 51i 23i 23i 23i 131313z -+-+====+--+ 所以复数z 的虚部是113故选C 35.若复数1=-i z i ,则|z |= A .2B .1C .2D .22【试题来源】四川绵阳南山中学2021届高三高考适应性考试(理)【答案】D【分析】首先化简复数z ,再求复数的模.【解析】()()()1111111222i i i i z i i i i +-+====-+--+, 所以22112222z ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭.故选D 36.若复数1=-i z i ,则z = A .14 B 2C .12D .2 【试题来源】四川绵阳南山中学2021届高三高考考适应性考试(文) 【答案】B 【分析】化简122i z =-+,再求||z 得解. 【解析】由题得(1)111(1)(1)222i i i i i z i i i +-+====-+--+, 所以22112()()222z =-+=.故选B 37.已知复数z 满足()()1i 2i i z -=+,则z =A .1B .2C .52D .102【试题来源】湖南省长沙市雅礼中学2021-2022学年高三上学期入学考试【答案】D【分析】()2i i 1iz +=-,利用复数的运算求出复数z ,从而求出z . 【解析】()()()()()2i i 12i 1i 3i 1i 1i 1i 2z +-++-+===--+, 所以223110222z ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭.故选D . 38.已知复数z 满足z (1﹣i )=2+i 2021,则zi 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【试题来源】全国2021届高三高考数学(文)演练试卷(一)【答案】B【分析】利用复数的乘法、除法运算即可求解.【解析】由z (1﹣i )=2+i 2021,则()()()()2020212213131111222i i i i i i z i i i i i +++⋅++=====+---+, 3122zi i =-+,所以zi 在复平面内对应的点为31,22⎛⎫- ⎪⎝⎭,点位于第二象限.故选B 39.若复数z 满足23i 13z z -=,则z = A .23i -B .23i +C .32i -D .32i +【试题来源】全国100所普通高等学校招生全国统一考试2021届高三 数学(理)冲刺卷试题【答案】A【分析】由题意得1323iz =-,根据复数代数形式的除法运算和共轭复数的概念即可求出答案. 【解析】因为23i 13z z -=,所以()()()1323i 1323i 23i 23i z +==--+()1323i 23i 13+==+, 所以23i z =-,故选A .40.已知复数12i z =-,21i z b =+(其中i 是虚数单位,b ∈R ),若12z z ⋅为实数,则b = A .2-B .12 C .1 D .2 【试题来源】贵州省凯里市第一中学2021届高三三模《黄金三卷》(文)【答案】B【分析】利用复数代数形式的乘法运算法则化简12z z ⋅,再根据复数为实数的充要条件即可得出.【解析】因为12i z =-,21i z b =+()()()2122i 1i 22i i i 221i z z b b b b b ⋅=-⋅+=+--=++-,因为12z z ⋅为实数,210b ∴-=,解得12b =.故选B.。

高三第二次月考数学文试题

高三第二次月考数学文试题

2014届毕业班第二次月考数学文本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名,准考证号填写清楚,并帖好条形码。

请认真核准条形码的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

第Ⅰ卷一、选择题:本大题共12小题.每小题5分。

共60分。

在每小题绘出的四个选项中。

只有一项是符合题目要求的。

1.已知全集U =R ,集台M ={x |2x>1},集合N ={x |2log x >1},则下列结论中成立的是A .M ∩N =MB .M ∪N =NC .M ∩(C UN )=φD .(CU M )∩N =φ2.设z =1-i (i 是虚数单位),则2z+z 等于 A .2-2i B .2+2i C .3-i D .3+i3.已知P (x 0,y 0)是直线L :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0A .过点P 且与L 垂直的直线B .过点P 且与L 平行的直线C .不过点P 且与L 垂直的直线D .不过点P 且与L 平行的直线 4.已知f (x )=214x +sin (2π+x ),()f x '为f (x )的导函数,则()f x '的图像是5.已知一个几何体的三视图如右图所示,则该几何体的表面积为 A .10π+96 B .9π+96 C .8π+96 D .8π+80 6.已知等差数列{n a }的前n 项的和为n S ,若65a a =911, 则119S S 等于 A .1 B .-1 C .2 D .127.执行右边的程序框图,若t ∈[-1,2],则S ∈A .[-1,1)B .[0,2]C .[0,1)D .[-1,2] 8.已知命题p :x ∃∈(-∞,0),3x <4x;命题q :x ∀∈(0,+∞),x >sinx ,则下列命题中真命题是 A .p ∧q B .p ∨(q ⌝) C .p ∧(p ⌝) D .(p ⌝)∧q9.已知等比数列{n a }的公比为q ,则“0<q <1”是“{n a }为递减数列”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件10.已知函数f (x )=sin (2x +θ(2x +θ) (x ∈R )满足()2014f x -=()12014f x ,且f (x )在[0,4π]上是减函数,则θ的一个可 能值是 A .3π B .23π C .43π D .53π11.已知F 1,F 2分别是双曲线2221x a b2y -=(a >0,b >0)的左、右焦点,P 为双曲线上的一点,若∠F 1PF 2=90°,且△F 1PF 2的三边长成等差数列,则双曲线的离心率是 A .2 B .3 C .4 D .512.已知f (x )是定义在R 上的偶函数,对任意x ∈R ,都有f (2+x )=-f (x ),且当x ∈[0,1]时,f (x )=-2x +1,若a 2[()]f x -bf (x )+3=0在[-1,5]上有5个根 x i (i =1,2,…5), 则x 1+x 2+…+x 5的值为A .7B .8C .10D .12第Ⅱ卷 非选择题(共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答。

2021-2022年高三上学期第二次月考数学(理)试题含答案

2021-2022年高三上学期第二次月考数学(理)试题含答案

2021-2022年高三上学期第二次月考数学(理)试题含答案一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0}, 则A∩()=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}2.下列函数在其定义域内既是奇函数又是增函数的是( ) (A)y=tanx (B)y=3x (C)y= (D)y=lg|x|3.下列四种说法中,错误的个数是( ) ①A={0,1}的子集有3个;②“若am 2<bm 2,则a<b ”的逆命题为真;③“命题p ∨q 为真”是“命题p ∧q 为真”的必要不充分条件;④命题“∀x ∈R,均有x 2-3x-2≥0”的否定是:“∃x 0∈R,使得x 02-3x 0-2≤0”. (A)0 (B)1 (C)2 (D)3 4.已知函数则f(f())的值是( ) (A)9(B)(C)-9(D)-5.若a=log 20.9,则( )(A)a<b<c (B)a<c<b (C)c<a<b(D)b<c<a6.若函数y=-x 2+1(0<x<2)的图象上任意点处切线的倾斜角为α,则α的最小值是( )()()()()53A B C D 4664ππππ7.已知命题p:函数f(x)=2ax 2-x-1(a ≠0)在(0,1)内恰有一个零点;命题q:函数y=x 2-a 在(0,+∞)上是减函数.若p 且﹁q 为真命题,则实数a 的取值范围是 ( ) (A)a>1(B)a ≤2 (C)1<a ≤2(D)a ≤1或a>28.函数f(x)=的大致图象为( )9.设函数f (x )=x 2+xsinx ,对任意x 1,x 2∈(﹣π,π), 若f (x 1)>f (x 2),则下列式子成立的是( ) A .x 1>x 2B .C .x 1>|x 2|D .|x 1|<|x 2|10函数y=f(x)(x ∈R)满足f(x+1)=-f(x),且x ∈[-1,1]时f(x)=1-x 2,函数()lg x,x 0,g x 1,x 0,x>⎧⎪=⎨-<⎪⎩则函数h(x)=f(x)-g(x)在区间[-5,4]内的零点的个数为( ) (A)7(B)8(C)9(D)10二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知集合M={y|y=x 2﹣1,x ∈R},,则M∩N=_____ 12.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是 [﹣1,0],则a+b= .13.已知p:≤x ≤1,q:(x-a)(x-a-1)>0,若p 是﹁q 的充分不必要条件,则实数a 的取值范围是 .14.若f (x )=是R 上的单调函数,则实数a 的取值范围为 . 15.若方程有正数解,则实数的取值范围是_______三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)已知p :∀x ∈R ,2x >m (x 2+1),q :∃x 0∈R , x+2x 0﹣m ﹣1=0,且p ∧q 为真,求实数m 的取值范围.17、(12分)已知函数.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)证明f(x)在(0,1)内单调递减.18.(12分)已知函数f(x)=x3﹣ax2﹣3x(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;(2)若x=﹣是f(x)的极值点,求f(x)在[1,4]上的最大值.19.(12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).20. (13分)已知函数f(x)满足()()()x 121f x f 1e f 0x x .2-='-+(1)求f(x)的解析式及单调区间.(2)若f(x)≥x 2+ax+b,求(a+1)b 的最大值.21、 (14分)已知函数21()(21)2ln ()2f x ax a x x a R =-++∈.(Ⅰ)若曲线y=f (x )在x=1和x=3处的切线互相平行,求a 的值; (Ⅱ)求f (x )的单调区间;(Ⅲ)设g (x )=x 2﹣2x ,若对任意x 1∈(0,2],均存在x 2∈(0,2],使得 f (x 1)<g (x 2),求a 的取值范围.高三数学第一次检测题答案解析1. C .2.C.3.D.4.B.5.B.6.D.7.C 8、D.9.【解析】∵f (﹣x )=(﹣x )2﹣xsin (﹣x )=x 2+xsinx=f (x ),∴函数f (x )=x 2+xsinx 为偶函数,又f′(x )=2x+sinx+xcosx ,∴当x >0时,f′(x )>0,∴f (x )=xsinx 在[0,π]上单调递增,∴f (﹣x )=f (|x|);∵f (x 1)>f (x 2),∴结合偶函数的性质得f (|x 1|)>f (|x 2|),∴|x 1|>|x 2|,∴x 12>x 22.故选B .10.选A.由f(x+1)=-f(x),可得f(x+2)=-f(x+1)=f(x),所以函数f(x)的周期为2,求h(x)=f(x)-g(x)的零点,即求f(x)=g(x)在区间[-5,4]的解的个数.画出函数f(x)与g(x)的图象,如图,由图可知两图象在[-5,4]之间有7个交点,所以所求函数有7个零点,选A.11、解:∵集合M={y|y=x2﹣1,x∈R}={y|y≥﹣1},={x|﹣},∴M∩N=.故答案为:.12、解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:13.q:x>a+1或x<a,从而﹁q:a≤x≤a+1.由于p是﹁q的充分不必要条件,故a111a2≥⎧⎪⎨≤⎪⎩+,,即0≤a≤.答案:[0,]14、解:∵f(x)=是R上的单调函数,∴,解得:a≥,故实数a的取值范围为[,+∞),故答案为:[,+∞)15.16、解:不等式2x>m(x2+1),等价为mx2﹣2x+m<0,若m=0,则﹣2x<0,即x>0,不满足条件.若m≠0,要使不等式恒成立,则,即,解得m<﹣1.即p:m<﹣1.———————————————————————4分若∃x0∈R,x+2x﹣m﹣1=0,则△=4+4(m+1)≥0,解得m≥﹣2,即q:m≥﹣2.———————————————————————8分若p∧q为真,则p与q同时为真,则,即﹣2≤m<﹣1————12分17、解:(1)⇔﹣1<x<0或0<x<1,故f(x)的定义域为(﹣1,0)∪(0,1);————————————4分(2)∵,∴f(x)是奇函数;————————————————————————————6分(3)设0<x1<x2<1,则∵0<x1<x2<1,∴x2﹣x1>0,x1x2>0,(1﹣x1)(1+x2)=1﹣x1x2+(x2﹣x1)>1﹣x1x2﹣(x2﹣x1)=(1+x1)(1﹣x2)>0∴,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2)∴f(x)在(0,1)内递减——————————————————12分另解:∴当x∈(0,1)时,f′(x)<0故f(x)在(0,1)内是减函数.—————————————————12分18、解:(1)求导函数,可得f′(x)=3x2﹣2ax﹣3,∵f(x)在区间[1,+∞)上是增函数,∴f′(x)≥0在区间[1,+∞)上恒成立∴3x2﹣2ax﹣3≥0在区间[1,+∞)上恒成立∴且f′(1)=﹣2a≥0∴a≤0———4分(2)∵x=﹣是f(x)的极值点,∴∴∴a=4——6分∴f(x)=x3﹣4x2﹣3x,f′(x)=3x2﹣8x﹣3,∴x1=﹣,x2=3令f′(x)>0,1<x<4,可得3<x<4;令f′(x)<0,1<x<4,可得1<x<3;∴x=3时,函数取得最小值﹣18∵f(1)=﹣6,f(4)=﹣12∴f(x)在[1,4]上的最大值为﹣6.————————————————12分19、解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v (x)=ax+b再由已知得,解得故函数v(x)的表达式为.——————4分(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.—————————————————————————10分答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.——————————————————————————12分20.(1)∵f(x)=f′(1)e x-1-f(0)x+x2,∴f′(x)=f′(1)e x-1-f(0)+x,令x=1得:f(0)=1,∴f(x)=f′(1)e x-1-x+x2,∴f(0)=f′(1)e-1=1,∴f′(1)=e得:f(x)=e x-x+x2.—————————4分设g(x)=f′(x)=e x-1+x,g′(x)=e x+1>0,∴y=g(x)在R上单调递增.令f′(x)>0=f′(0),得x>0,令f′(x)<0=f′(0)得x<0,∴f(x)的解析式为f(x)=e x-x+x2且单调递增区间为(0,+∞),单调递减区间为(-∞,0).————————————-4分(2)由f(x)≥x2+ax+b得e x-(a+1)x-b≥0,令h(x)=e x-(a+1)x-b,则h′(x)=e x-(a+1).①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增.x→-∞时,h(x)→-∞与h(x)≥0矛盾.——————————6分②当a+1>0时,由h′(x)>0得x>ln(a+1),由h′(x)<0得x<ln(a+1)=(a+1)-(a+1)ln(a+1)-b≥0.———8分得当x=ln(a+1)时,h(x)min(a+1)b≤(a+1)2-(a+1)2ln(a+1) (a+1>0).令F(x)=x2-x2ln x(x>0),则F′(x)=x(1-2ln x),——————10分由F′(x)>0得0<x<,由F′(x)<0得x>,当x=时,F(x)=,∴当a=-1,b=时,(a+1)b的最大值为.—————————max—————————————13分21、解:(Ⅰ)∵函数,∴(x>0).∵曲线y=f(x)在x=1和x=3处的切线互相平行,∴f'(1)=f'(3),即,解得.————————————4分(Ⅱ)(x>0).①当a≤0时,x>0,ax﹣1<0,在区间(0,2)上,f'(x)>0;在区间(2,+∞)上f'(x)<0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).②当时,,在区间(0,2)和上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是(0,2)和,单调递减区间是③当时,,故f(x)的单调递增区间是(0,+∞).④当时,,在区间和(2,+∞)上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是和(2,+∞),单调递减区间是.————————————8分(Ⅲ)由已知,在(0,2]上有f(x)max <g(x)max.由已知,g(x)max=0,由(Ⅱ)可知,①当时,f(x)在(0,2]上单调递增,故f(x)max=f(2)=2a﹣2(2a+1)+2ln2=﹣2a﹣2+2ln2,所以,﹣2a﹣2+2ln2<0,解得a>ln2﹣1,故.——————————————————12分②当时,f(x)在上单调递增,在上单调递减,故.由可知,2lna>﹣2,﹣2lna<2,所以,﹣2﹣2lna<0,f(x)max<0,综上所述,a>ln2﹣1.————————————————14分21072 5250 剐31873 7C81 粁31426 7AC2 竂z33043 8113 脓e35722 8B8A 變 39463 9A27 騧K34467 86A3 蚣38124 94EC 铬=40272 9D50 鵐。

四川省乐山市沫若中学2021-2022学年高二下学期第二次月考数学(文)试题

四川省乐山市沫若中学2021-2022学年高二下学期第二次月考数学(文)试题

113)
C.
P
=
4(1
-
1 3
+
1 5
-
1 7
+
L
-
1 15
)
D.
P
=
4(1
-
1 3
+
1 5
-
1 7
+
L
+
1 17
)
5.我国古代典籍《周易》用“卦”推测自然和社会的变化,如图是一个八卦图,包含 乾、坤、震、巽、坎、离、艮、兑八卦、分别象征着天、地、雷、风、水、火、山、 泽八种自然现象.每一卦由三个爻组成,其中“▃”表示一个阳爻,“▃▃”表示一个 阴爻).若从含有两个或两个以上阴爻的卦中任取两卦,这两卦中恰好含有两个阳爻的 概率是( )
(1)求 a,b 的值;
(2)当 x Î[-1,1] 时,求 f (x) 的最大值. 18.近几年,在缺“芯”困局之下,国产替代的呼声愈发高涨,在国家的政策扶持下, 国产芯片厂商呈爆发式增长.为估计某地芯片企业的营业收入,随机选取了 10 家芯片 企业,统计了每家企业的研发投入(单位:亿)和营业收入(单位:亿),得到如下 数据: 样本号 i 1 2 3 4 5 6 7 8 9 10 研发投入 2 2 4 6 8 10 14 16 18 20
xi
营业收入 14 16 30 38 50 60 70 90 102 130 yi
10
10
10
10
10
å å å å å 并计算得 xi = 100 , yi = 600 , xi2 = 1400 , yi2 = 49200 , xi yi = 8264 .
i =1
i =1
i =1

四川省资阳市乐至县吴仲良中学2021-2022学年高三数学文月考试题含解析

四川省资阳市乐至县吴仲良中学2021-2022学年高三数学文月考试题含解析

四川省资阳市乐至县吴仲良中学2021-2022学年高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知命题“,有成立”,则为A. ,有成立B. ,有成立C. ,有成立D. ,有成立参考答案:C略2. 设△ABC的内角A,B,C所对的边分别为a,b,c,且C=,a+b=12,则△ABC面积的最大值为()A.8 B.9 C.16 D.21参考答案:B【考点】三角形中的几何计算.【分析】根据基本不等式求得ab的范围,进而利用三角形面积公式求得.【解答】解:∵ab≤()2=36,当且仅当a=b=6时,等号成立,∴S△ABC=absinC≤×36×=9,故选:B.3. 若函数y=log2(x2-2x-3)的定义域、值域分别是M、N,则()A.[-1, 3] B.(-1, 3) C.(0, 3] D.[3, +∞)参考答案:A略4. 下列函数中,在其定义域内既是偶函数又在上单调递增的函数是()A. B. C. D.参考答案:C5. 的值是A. B.C. D.参考答案:C6. 若复数z=2i+,其中i是虚数单位,则复数z的模为( )A.B.C.D.2参考答案:C【考点】复数求模.【专题】数系的扩充和复数.【分析】化简复数为a+bi的形式,然后求解复数的模.【解答】解:复数z=2i+=2i+=2i+1﹣i=1+i.|z|=.故选:C.【点评】本题考查复数的乘除运算,复数的模的求法,考查计算能力.7. 不等式的解集是()A. B.C.(1,2) D.参考答案:答案:B8. 已知函数有且仅有两个不同的零点,,则( ) A .当时,, B .当时,,C .当时,,D .当时,,参考答案:B略9. 刘徽的《九章算术注》中有这样的记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也.”意思是说:把一块立方体沿斜线分成相同的两块,这两块叫做堑堵,再把一块堑堵沿斜线分成两块,大的叫阳马,小的叫鳖臑,两者体积比为2:1,这个比率是不变的,如图是一个阳马的三视图,则其表面积为( )A .2B .2+C .3+D .3+参考答案:B【考点】由三视图求面积、体积.【分析】根据几何体的三视图知该几何体是底面为正方形, 且一侧棱垂直于底面的四棱锥,结合图形求出它的表面积. 【解答】解:根据几何体的三视图知,该几何体是底面为正方形, 且一侧棱垂直于底面的四棱锥,如图所示; 根据图中数据,计算其表面积为 S=S 正方形ABCD +S △PAB +S △PBC +S △PCD +S △PAD =12+×1×1+×1×+×1×+×1×1=2+.故选:B .10. 已知命题p :?x∈R,x 2﹣3x+2=0,则?p 为( ) A .?x ?R ,x 2﹣3x+2=0 B .?x∈R,x 2﹣3x+2≠0 C .?x∈R,x 2﹣3x+2=0 D .?x∈R,x 2﹣3x+2≠0参考答案:D【考点】四种命题;命题的否定.【分析】根据命题p :“?x∈R,x 2﹣3x+2=0”是特称命题,其否定为全称命题,将“存在”改为“任意的”,“=“改为“≠”即可得答案.【解答】解:∵命题p :“?x∈R,x 2﹣3x+2=0”是特称命题 ∴?p:?x∈R,x 2﹣3x+2≠0故选D .二、 填空题:本大题共7小题,每小题4分,共28分 11. 已知,且的夹角为锐角,则的取值范围是______。

云南师范大学附属中学2021届高三高考适应性月考卷(二)文科数学试题

云南师范大学附属中学2021届高三高考适应性月考卷(二)文科数学试题

文科数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、选择题(本大题共12小题,每小题5分,共6分在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合305x A x x ⎧-⎫=<⎨⎬-⎩⎭,集合{}46B x x =<<,则A B = ()A .()3,6B .[)3,6C .[)4,5D .()4,52.瑞士数学家欧拉在1748年得到复数的三角方程:i e cos isin θθθ=+(i 为虚数单位),根据此公式可知,若i e 10θ+=,则θ的一个可能值为()A .0B .π2C .πD .3π23.cos 45cos15sin 45sin15+︒︒︒︒的值为()A .32B .32-C .12D .12-4.已知双曲线的方程为22143x y -=,双曲线右焦点F 到双曲线渐近线的距离为()A .1B C D .25.我国古代数学名著《增删算法统宗》中有如下问题:“一个公公九个儿,若问生年总不知,知长排来争三岁,其年二百七岁期.借问长儿多少岁,各儿岁数要详推.”大致意思是:一个公公九个儿子,若问他们的生年是不知道的,但从老大的开始排列,后面儿子比前面儿子小3岁,九个儿子共207岁。

问老大是多少岁?()A .38B .35C .32D .296.为了更好地配合我市“文明城市”的创建工作,我校开展了“文明行为进班级”的评比活动,现对甲,乙两个年级进行评比,从甲、乙两个年级中随机选出10个班级进行评比打分,每个班级成绩满分为100分,评分后得到如图所示的茎叶图,通过茎叶图比较甲、乙两个年级成绩的平均数及方差大小()A .x x <甲乙,22s s <甲乙B .x x >甲乙,22s s <甲乙C .x x <甲乙,22s s >甲乙D .x x >甲乙,22s s >甲乙7.若AB 是以O 为圆心,半径为1的圆的直径,C 为圆外一点,且2OC =,则CA CB ⋅=()A .3B .3-C .0D .不确定,随着直径AB 的变化而变化8.已知圆M 的方程为22680x y x y +--=,过点()0,4P 的直线l 与圆M 相交的所有弦中,弦长最短的弦为AC ,弦长量长的弦为BD ,则四边形ABCD 的面积为()A .30B .40C .60D .809.正四面体ABCD 的储视图为边长为1的正方形,则正四面体ABCD 的外接球的表面积为()A .3π2B .3π2C .3πD .12π10.已知()2sin cos f x x x =,下列结论中错误的是()A .()f x 即是奇函数也是周期函数B .()f x 的最大值为33C .()f x 的图象关于直线π2x =对称D .()f x 的图象关于点()π,0中心对称11.已卸抛物线()2:20C y px p =>,F 为C 的焦点,过焦点F 且倾斜角为α的直线l 与C 交于()11,A x y ,()22,B x y 两点,则下面陈述不正确的为()A .2121234x x y y p +=-B .22sin p AB α=C .112AF BF p+=D .记原点为O ,则2sin AOBp S α=12.下列四个命题:①1ln 22>,②2ln 2e>,③0.22.22log 0.4log 0.4log 0.4log 0.4a +=⋅,④1331log 7log 13<,其中真命题的个数为()A .1个B .2个C .3个D .4个二、填空题(本大题共4小题,每小题5分,共20分)13.若x ,y 满足约束条件10,10,24,x y x y x y --≥⎧⎪+-≥⎨⎪-≤⎩,则32x y +的最大值为________.14.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若sin 2sin A C =,且三条边a ,b ,c 成等比数列,则cos A 的值为________.15.已知函数()ln 2f x x ax =-恰有三个零点,则实数a 的取值范围为________.16.边长为1的正方体ABCD A B C D ''''-,点FP 为面对角线CD '上一点,则AP BP +的最小值为________.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)记n S 为正项数列{}n a 的前n 项和,且满足()241n n S a =+.(1)求数列{}n a 的通项;(2)求证:1223111112n n a a a a a a ++++< .18.(本小题满分12分)如图,在等腰梯形ABCD 中,AB CD ,222AB CD AD ===,将ADC 沿着AC 翻折,使得点D 到点P ,且AP BC ⊥.(1)求证:平面APC ⊥平面ABC ;(2)求点C 到平面APB 的距离.19.(本小题满分12分)为了调查高中生文理科偏向情况是否与性别有关,设计了“更擅长理科,理科文科无差异,更擅长文科三个选项的调在问卷”,并从我校随机选择了55名男生,45名女生进行问卷调查,问卷调查的统计情况为:男生选择更擅长理科的人数占25,选择文科理科无显著差异的人数占15,选择更擅长文科的人数占25;女生选择更擅长理科的人数占15,选择文科理科无显著差异的人数占35,选择更擅长文科的人数占15.根据调查结果制作了如下22⨯列联表.更擅长理科其他合计男生女生合计(1)请将22⨯的列联表补充完整,并判断能否有95%的把握认为文理科偏向与性别有关;(2)从55名男生中,根据问卷答题结果为标准,采取分层抽样的方法随机抽取5人,再从这5人中随机选取2人,求所选的2人中恰有1人更擅长理科的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.0500.0250.0100.0010k 3.8415.0246.63510.82820.(本小题满分12分)已知点()2,0M -,()2,0N ,点P 满足:直线PM 的斜率为1k ,直线PN 的斜率为2k ,且1234k k ⋅=-.(1)求点(),P x y 的轨迹C 的方程;(2)过点()1,0F 的直线l 交曲线C 于A ,B 两点,问在x 轴上是否存在点Q ,使得QA QB ⋅为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.21.(本小题满分12分)已知()22ln f x ax x x =-+.(1)若12a =-,求()f x 的最大值;(2)若()f x 有两个不同的极值点1x ,2x ,证明:()()()121214ln 543f x f x x x +++<-.请考生在第22、23两题中任选一题作答,并用2B 铅笔在答题卡上把所选题目的题号涂黑.注意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分.22.(本小题满分10分)【选修4-4:坐标系与参数方程】在平面直角坐标系中,以坐标原点为极点,以x 轴的正半轴为极轴,曲线C 的极坐标方程为2ρ=,直线l的参数方程为2,,x t y =--⎧⎪⎨=⎪⎩(t 为参数).(1)求曲线C 和直线l 的直角坐标方程;(2)设点(P -,直线l 与曲线C 有不同的两个交点分别为A ,B ,求11PA PB+的值.23.(本小题满分10分)【选修4-5:不等式选讲】已知函数()123f x x x =-+-.(1)求函数()f x 的最小值M ;(2)若0a >,0b >,且a b M +=,证明:22111a b a b +≥++.云南师大附中2021届高考适应性月考卷(二)文科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)题号123456789101112答案DCACBAABCBDB【解析】1.由题意知,()3,5A =,()4,6B =,所以()4,5A B =,故选D .2.由题意知,iπe 1cos πisin π10+=++=,故选C .3.原式()3cos4515cos302︒==︒︒-=,故选A .4.由题意知,双曲线的右焦点为)F,双曲线的渐近线方程为2y x =±,即20y -=,所以点)F到渐近线的距离d ==,故选C .5.由题意可知,九个儿子的年龄可以看成以老大的年龄1a 为首项,公差为3-的等差数列,所以()198932072a ⨯+⨯-=,解得135a =,故选B .6.由茎叶图可知,甲年级的平均分主要集中在70多分,而且比较集中,而乙主要集中在80分以上,但是比较分散,故选A .7.如图,()()()g g CA CB CO OA CO OB CO OA =++=+,A .8.圆M 的标准方程为()()223425x y -+-=,即圆是以()3,4M 为圆心,5为半径的圆,且由()()220344925-+-=<,即点()0,4P 在圆内,则最短的弦是以()0,4P 为中点的弦,所以22592AC ⎛⎫=+ ⎪⎝⎭,所以8AC =,过()0,4P 最长的弦BD 为直径,所以10BD =,且AC BD ⊥,故而1g g 402ABCD S AC BD ==,故选B .9.如图,该正四面体可以看成边长为1的正方体六个面对角线组成的正四面体ABCD ,所以正四面体ABCD 的外接球,即为边长为1的正方体的外接球,所以外接球的半径为32,则24π3π2S ⎛⎫== ⎪ ⎪⎝⎭,故选C .10.由()2sin cos f x x x =,所以()()()()22sin cossin cos f x x x x x f x -=--=-=-,所以()f x 是奇函数;()()()()222πsin 2πcos2πsin cos f x x x x x f x +=++==,所以()f x 又是周期函数;()()()()22πsin πcos πsin cos f x x x x x f x -=--==,所以()f x 关于直线π2x =对称;()()()()222πsin 2πcos 2πsin cos f x x x x x f x -=--=-=-,所以()f x 关于点()π,0对称,即选项A ,C ,D 正确;又()()()()222222sin cos sin 1sin 1sin f x x x x x x ==--()()22232sin 1sin 1sin 12422327x x x --⎛⎫=≤=⎪⎝⎭,当且仅当3sin 3x =,()max 239f x =,故B 选项错误,故选B .11.由题意知,令直线2px my =+,()11,A x y ,()22,B x y ,与抛物线2:2C y px =联立方程,消去x 得2220y pmy p --=,所以122y y pm +=,212y y p =-,所以21212224p p p x x my my ⎛⎫⎛⎫=++=⎪⎪⎝⎭⎝⎭,则2121234x gx y y p +=-,故A 正确;由1πtan 2m αα⎛⎫=≠ ⎪⎝⎭,所以12AB AF BF x x p =+=++()212222m y y p pm p =++=+=()222122121tan sin p p m p αα⎛⎫+=+= ⎪⎝⎭,当π2α=时,经检验22sin p AB α=亦成立,故B 确;所以12121211112222x x p p p p p AF BF x x x x +++=+=⎛⎫⎛⎫++++ ⎪⎪⎝⎭⎝⎭()122121224x x pp p x x x x ++==+++()()121222121222424x x p x x p p p p p p x x p x x ++++==+++++,故C 正确.如图,作OE 垂直AB 于E ,则22112g g g sin 22sin 22sin AOBp p p S AB OE ααα=== ,当π2α=时,经检验22sin AOB p S α= 亦成立,故D 错误,故选D.12.由2ln 2ln 4ln e 1=>=,故①正确;由2ln 2ln e ln 2e 2e >⇔>,考察函数ln x y x =,21ln x y x -'=,所以当()0,e x ∈时,0y '>,即y 在()0,e 上单调递增,当()e,x ∈+∞时,0y '<,即y 在()e,+∞上单调递减,所以e x =时,y 取到最大值1e ,所以ln 2ln e2e<,故②错误;令0.2log 0.4a =,2log 0.4b =,所以0.40.40.411log 0.2log 2log 0.41a b+=+==,所以a b ab +=,即0.220.22log 0.4log 0.4log 0.4glog 0.4+=,故③正确;由4372401219713=>=,所以133log 74>,由4313285612979131=<=,所以313log 134<,故④错误,故选B .二、填空题(本大题共4小题,每小题5分,共20分)【解析】13.约束条件所表示的线性区域,如图所示,又有题意知:32x y +在点()3,2A 处取得最大值,所以32x y +的最大值为13.14.由正弦定理知:sin 2sin a A c C==,又2b ac =,所以::2:1a b c =,从而由余弦定理得22222212cos 24b c aA bc+-+-===-.15.如图,函数()f x 恰有三个零点,等价于方程ln 2x ax =,有三个解,即函数ln y x =与函数2y ax =的图象有三个交点,又有2y ax =为过原点的直线,由图可知,当且仅当2y ax =为ln y x =切线的时候,方程ln 2x ax =恰有两个解,故而,令2y ax =为ln y x =的切线,设切点为()00,ln A x x ,则线的方程为()0001ln y x x x x -=-,由于切线过原点,所以0ln 1x =,即0e x =,此时直线的斜率为1e,由题意知,102e a <<,即10,2e a ⎛⎫∈ ⎪⎝⎭.16.如图甲,将等边ACD ' 沿CD '向后旋转到与面A BCD ''共面,得到等边1A CD ' ,则AP BP +的最小值即为图乙中线段1A B 的长,取A B '的中点I ,由题意知:等边ACD ' 的边长为,A BCD ''是以1BC =,A B '=1A B ===.甲乙三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)(1)解:当1n =时,由11S a =,所以()21141a a =+,解得11a =,当2n ≥时,由()241n n S a =+①,则()21141n n S a --=+②,由①式减去②式得()()221411n n n a a a -=+-+,即()()()2211112n n n n n n n n a a a a a a a a ----+=-=+-,由题意知,10n n a a -+>,所以12n n a a --=,则数列{}n a 为11a =,公差为2的等差数列,所以21n a n =-.(6分)(2)证明:由(1)知,()()111111212122121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭,所以122311111111111213352121n n a a a a a a n n +⎛⎫+++=-+-++- ⎪-+⎝⎭11112212n ⎛⎫=-< ⎪+⎝⎭,证毕.(12分)18.(本小题满分12分)(1)证明:由等腰梯形222AB CD AD ===,则60ABC ∠=︒,又2AB BC =,所以AC BC ⊥①,又BC AP ⊥②又 AC AP A =③,由①②③知,BC ⊥平面APC ,所以平面,APC ⊥平面ABC .(6分)(2)解:如图,取AB 的中点E ,连接DE ,CE ,AC ,则AECD 为菱形,且60DAE ∠=︒,则AC DE ⊥,记垂足为O ,则12DO =,AC =,由(1)知,平面APC ⊥平面ABC,如图,又DO AC ⊥,所以DO ⊥平面ABC ,由(1)知,BC ⊥平面APC ,即BC CP ⊥,又1BC CP ==,所以BP =,所以13g 22ACB S AC CB ==,在ABP 中,由2AB =,1AP =,BP =所以2223cos 2g 4PA AB PB PAB AB AP +-∠==,所以sin 4PAB ∠=,则17g gsin 24PAB S AP AB PAB =∠=.设点C 到平面APB 的距离为h ,由P ACB C ABP V V --=,得11g g 33ACB ABP PO S h S = ,即217ACB ABP POgS h S == .(12分)19.(本小题满分12分)解:(1)补充22⨯的列联表如下:更擅长理科其他合计男生223355女生93645合计3169100所以()221002236933100334.628 3.841554531693123K ⨯⨯-⨯⨯==≈>⨯⨯⨯⨯,所以有95%的把握认为文理科偏向与性别有关.(6分)(2)由题意可知,选取的5人中,有2人更擅长理科,3人不更擅长理科,用1A ,2A 表示更擅长理科的两人,用1B ,2B ,3B 表示其他三人,则从这5人中,任取2人共有以下10种情况:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()21,A B ,()22,A B ,()23,A B ,()12,B B ,()13,B B ,()23,B B ,满足条件的有()11,A B ,()12,A B ,()13,A B ,()21,A B ,()22,A B ,()23,A B ,共6种情况,所以所选的2人中恰有1人更擅长理科的概率为35.(12分)20.(本小题满分12分)解:(1)由题意知:()122y k x x =≠-+,()222y k x x =≠-,由123gk 4k =-,即()32224y y g x x x =-≠±+-,整理得点(),P x y 的轨迹C 的方程为()221243x y x +=≠±.(4分)(2)假设在x 轴上存在点()0,0Q x ,使得g QA QB 为定值.当直线l 的斜率存在时,设直线l 的方程为()()10y k x k =-≠,联立方程()221,431,x y y k x ⎧+=⎪⎨⎪=-⎩消去y 得()22223484120k x k x k +-+-=,令()11,A x y ,()22,B x y ,则2122834k x x k +=+,212241234k x gx k-=+,由()101,QA x x y =-,()202,QB x x y =-,所以()()()()()()2102012102012g 11QA QB x x x x y y x x x x kx x =--+=--+--()()()22221201201k x x x k x x k x =+-++++()2022581234x k x k-+-=++,将0x 看成常数,要使得上式为定值,需满足05816x +=,即0118x =,此时135g 64QA QB =-;当直线l 的斜率不存在时,可得31,2A ⎛⎫ ⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭,11,08Q ⎛⎫⎪⎝⎭,所以33,82QA ⎛⎫=- ⎪⎝⎭,33,82QB ⎛⎫=-- ⎪⎝⎭,135g 64OA QB =-,综上所迷,存在11,08Q ⎛⎫ ⎪⎝⎭,得g QA QB 为定值.(12分)21.(本小题满分12分)(1)解:当12a =-时,()212ln 2f x x x x =--+,所以()21f x x x'=--+,则()f x '在()0,+∞上是单调递减函数,且有()10f '=,当()0,1x ∈时,()0f x '>,即()f x 为()0,1上的增函数,当()1,x ∈+∞时,()0f x '<,即()f x 为()1,+∞上的减函数,所以()()max 312f x f ==-.(6分)(2)证明:由题意知:由()222ax x f x x-+'=则1x ,2x 即为方程2220ax x -+=的两个不同的正根,故而需满足:12121160,10,210,a x x a x x a ⎧⎪∆=->⎪⎪+=>⎨⎪⎪=>⎪⎩解得116a >,所以()()()()22121211122212112ln 2ln 33f x f x x x ax x x ax x x x x +++=-++-+++()()211212*********ln 2ln 2312a a x x x x x x x x g a ⎛⎫⎡⎤=+-+-+=-+- ⎪⎣⎦⎝⎭,令116t a =>,()()()1212112ln 2312f x f x x x t t +++=-+-,令()12ln 212g t t t =-+-,所以()1212g t t'=-+,则()g t '为()16,+∞上的减函数,且()240g '=所以当()16,24t ∈时,()0g t '>,即()g t 为()16,24上的增函数;当()24,t ∈+∞时,()0g t '<,即()g t 为()24,+∞上的减函数,所以()()max 242ln 244g t g ==-,所以()()()121212ln 2442ln 2544ln 543f x f x x x +++≤-<-=-,证毕.(12分)22.(本小题满分10分)【选修4-4:坐标系与参数方程】解:(1)由222x y ρ=+,所以曲线C 的直角坐标方程为224x y +=,由2,,x t y =--⎧⎪⎨=⎪⎩(t 为参数),消去t 得直线l的直角坐标方程为0y +=.(5分)(2)由题意知,关于点(P -的直线l的参数方2,23,2t x y ⎧=--⎪⎪⎨⎪=+⎪⎩(t 为参数),代入曲线C 的直角坐标方程得211270t t ++=,又121108130∆=-=>,所以方程有两个不同的解1t ,2t ,又12110t t +=-<,12g 270t t =>,所以10t <,20t <,有1t ,2t 的几何意义可知,121212121111111127t t PA PB t t t t t t ⎛⎫++=+=-+=-= ⎪⎝⎭.(10分)23.(本小题满分10分)【选修4-5:不等式选讲】(1)解:由绝对值三角不等式可知:()12313132f x x x x x x x =-+-≥-+-≥-+-=,当且仅当3x =时,两个不等式同时取等号,所以()f x 的最小值2M =.(5分)(2)证明:由(1)知,2a b +=,则()()114a b +++=,所以()()()()2211111112121111a b a b a b a b +-+-+=+-+++-+++++()111111144a b a b ⎛⎫++++ ⎪++⎝⎭⎝⎭=≥=当且仅当1a b ==,不等式取等号,所以22111a b a b +≥++.(10分)。

2021-2022年高三上学期12月月考数学试卷(文科)含解析

2021-2022年高三上学期12月月考数学试卷(文科)含解析

2021年高三上学期12月月考数学试卷(文科)含解析一、选择题(每小题5分,共计50分)1.设i是虚数单位,复数( )A.3﹣2i B.3+2i C.2﹣3i D.2+3i2.集合A={x|x2﹣a≥0},B={x|x<2},若C R A⊆B,则实数a的取值范围是( ) A.(﹣∞,4] B.[0,4] C.(﹣∞,4)D.(0,4)3.已知a0=20.5,b=log32,c=log20.1,则( )A.a<b<c B.c<a<b C.c<b<a D.b<c<a4.下列四个结论:①若x>0,则x>sinx恒成立;②命题“若x﹣sinx=0则x=0”的逆命题为“若x≠0则x﹣sinx≠0”;③“命题p或q为真”是“命题p且q为真”的充分不必要条件;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”.其中正确结论的个数是( )A.1个B.2个C.3个D.4个5.直线x+my+1=0与不等式组表示的平面区域有公共点,则实数m的取值范围是( )A.[,]B.[﹣,﹣]C.[,3] D.[﹣3,﹣]6.已知某几何体的三视图,则该几何体的体积是( )A.12 B.24 C.36 D.487.设0<a<1,则函数y=的图象大致为( )A.B.C.D.8.已知向量=(0,sinx),=(1,2cosx),函数f(x)=•,g(x)=2+2﹣,则f(x)的图象可由g(x)的图象经过怎样的变换得到( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度9.已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈(,),则sinx0的值为( )A. B. C. D.10.设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是( )A.(0,)B.(,e)C.(0,]D.[,)二、解答题(每小题5分共计25分)11.已知sinα﹣cosα=,α∈(0,π),tanα=__________.12.已知平面向量=(1,2),=(﹣2,m),且⊥,则2+3=__________.13.函数y=lg(1﹣)+的定义域是__________.14.设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为υ1,υ2,若它们的侧面积相等,且的值为__________.15.给出下列四个命题:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”;②a、b、c是空间中的三条直线,a∥b的充要条件是a⊥c且b⊥c;③命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题;④对任意实数x,有f(﹣x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0.其中的真命题是__________.(写出所有真命题的编号)三、解答题:16.已知函数f(x)=sinωxcosωx﹣cos2ωx﹣(ω>0,x∈R)的图象上相邻两个最高点的距离为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,sinB=3sinA,求a,b的值.17.已知数列{a n}前n项和S n满足:2S n+a n=1(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,数列{b n}的前n项和为T n,求证:T n<.18.已知函数.(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间上的最大值和最小值,并求出相应的x的值.19.如图正方形ABCD的边长为ABCD的边长为,四边形BDEF是平行四边形,BD与AC 交于点G,O为GC的中点,平面ABCD.(I)求证:AE∥平面BCF;(Ⅱ)若,求证CF⊥平面AEF.20.(13分)已知函数f(x)=lnx﹣mx,m∈R(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≤﹣2m+1在[1,+∞)上恒成立,求实数m的取值范围.21.(14分)近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大.xx山东省潍坊市寿光五中高三(上)12月月考数学试卷(文科)一、选择题(每小题5分,共计50分)1.设i是虚数单位,复数( )A.3﹣2i B.3+2i C.2﹣3i D.2+3i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】利用复数的运算法则即可得出.【解答】解:复数===3﹣2i,故选:A.【点评】本题考查了复数的运算法则,属于基础题.2.集合A={x|x2﹣a≥0},B={x|x<2},若C R A⊆B,则实数a的取值范围是( )A.(﹣∞,4]B.[0,4]C.(﹣∞,4)D.(0,4)【考点】补集及其运算;集合的包含关系判断及应用.【专题】集合.【分析】根据集合的补集关系进行求解即可.【解答】解:∵A={x|x2﹣a≥0}={x|x2≥a},∴C R A={x|x2≤a},若a<0,则C R A=∅,满足C R A⊆B,若a≥0,则C R A={x|x2<a}={x|﹣<x<},若C R A⊆B,则≤2,解得0≤a≤4,综上a≤4,故选:A【点评】本题主要考查集合的基本运算和集合关系的应用,注意分类讨论.3.已知a0=20.5,b=log32,c=log20.1,则( )A.a<b<c B.c<a<b C.c<b<a D.b<c<a【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】利用指数函数和对数函数的单调性即可得出.【解答】解:∵a=20.5>20=1,0<b=log32<log33=1,c=log20.1<log21=0.∴c<b<a.故选:C.【点评】本题考查了指数函数和对数函数的单调性,属于基础题.4.下列四个结论:①若x>0,则x>sinx恒成立;②命题“若x﹣sinx=0则x=0”的逆命题为“若x≠0则x﹣sinx≠0”;③“命题p或q为真”是“命题p且q为真”的充分不必要条件;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”.其中正确结论的个数是( )A.1个B.2个C.3个D.4个【考点】命题的真假判断与应用.【专题】规律型;探究型;构造法;导数的概念及应用;简易逻辑.【分析】令f(x)=x﹣sinx,利用导数分析其单调性,可判断①;写出原命题的逆命题,可判断②;根据充要条件的定义,可判断③;写出原命题的否定,可判断④.【解答】解:令f(x)=x﹣sinx,则f′(x)=1﹣cosx≥0恒成立,故f(x)=x﹣sinx在R上为增函数,故x>0时,f(x)>f(0)=0,即x>sinx恒成立,故①正确;命题“若x﹣sinx=0,则x=0”的逆命题为“若x=0,则x﹣sinx=0”,故②错误;“命题p或q为真”时,“命题p且q为真”不一定成立,“命题p且q为真”时,“命题p或q为真”成立,故“命题p或q为真”是“命题p且q为真”的必要不充分条件,故③错误;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”,故正确.其中正确结论的个数是2个,故选:B【点评】本题考查的知识点是全称命题的否定,四种命题,复合命题,函数的单调性,难度中档.5.直线x+my+1=0与不等式组表示的平面区域有公共点,则实数m的取值范围是( )A.[,]B.[﹣,﹣]C.[,3] D.[﹣3,﹣]【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用线性规划的知识即可得到结论.【解答】解:即直线x+my+1=0过定点D(﹣1,0)作出不等式组对应的平面区域如图:当m=0时,直线为x=﹣1,此时直线和平面区域没有公共点,故m≠0,x+my+1=0的斜截式方程为y=x,斜率k=,要使直线和平面区域有公共点,则直线x+my+1=0的斜率k>0,即k=>0,即m<0,满足k CD≤k<k AB,此时AB的斜率k AB=2,由解得,即C(2,1),CD的斜率k CD==,由,解得,即A(2,4),AD的斜率k AD==,即≤k≤,则≤≤,解得﹣3≤m≤﹣,故选:D.【点评】本题主要考查线性规划以及斜率的应用,利用数形结合是解决本题的关键.6.已知某几何体的三视图,则该几何体的体积是( )A.12 B.24 C.36 D.48【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】利用三视图判断几何体的形状,通过三视图是数据,求出几何体的体积即可.【解答】解:三视图复原的几何体是底面为边长4、3的矩形,高为3的棱锥,高所在棱垂直底面矩形的一个得到,所以棱锥的体积为:=12.故选:A.【点评】本题主要考查关于“几何体的三视图”与“几何体的直观图”的相互转化的掌握情况,同时考查空间想象能力.7.设0<a<1,则函数y=的图象大致为( )A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】利用0<a<1,判断a x,x>0时的范围,以及x<0时的范围,然后求解a x﹣1的范围,倒数的范围,即可判断函数的图象.【解答】解:因为0<a<1,x>0时,0<a x<1,﹣1<a x﹣1<0,<﹣1,x<0时,a x>1,a x﹣1>0,>0,观察函数的图象可知:B满足题意.故选:B.【点评】本题考查指数函数的图象,解题时要认真审题,仔细解答,注意合理地进行等价转化,注意函数的值域以及指数函数的性质.8.已知向量=(0,sinx),=(1,2cosx),函数f(x)=•,g(x)=2+2﹣,则f(x)的图象可由g(x)的图象经过怎样的变换得到( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换;平面向量数量积的运算.【专题】平面向量及应用.【分析】由题意利用两个向量的数量积公式、诱导公式可得函数f(x)=sin2x,g(x)=sin2(x+),再根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:由题意可得函数f(x)=•=(2sinxcosx)=sin2x,g(x)=2+2﹣=sin2x+1+4cos2x﹣=3cos2x﹣=cos2x=sin(2x+)=sin2(x+),故把g(x)的图象向右平移个单位长度,可得f(x)的图象,故选:B.【点评】本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.9.已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈(,),则sinx0的值为( )A. B. C. D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】三角函数的图像与性质.【分析】由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,求出函数的解析式.再由f (x0)=3求出sin(x0+ )的值,可得cos(x0+ )的值,再由两角差的正弦公式求得sinx0 =sin[(x0+ )﹣]的值.【解答】解:由函数的图象可得A=5,且=,解得ω=1再由五点法作图可得1•+φ=,解得φ=.故函数的解析式为f(x)=5sin(x+ ).再由f (x0)=3,x0∈(,),可得5sin(1•x0+ )=3,解得sin(x0+ )=,故有cos(x0+ )=﹣,sinx0 =sin[(x0+ )﹣]=sin(x0+ )cos﹣cos(x0+ )sin=﹣(﹣)=.故选A.【点评】本题主要考查由函数y=Asin(ωx+∅)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,两角差的正弦公式的应用,属于中档题.10.设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是( )A.(0,)B.(,e)C.(0,]D.[,)【考点】根的存在性及根的个数判断;函数零点的判定定理.【专题】函数的性质及应用.【分析】首先,画出函数f(x)=|lnx|的图象,然后,借助于图象,结合在区间(0,3]上有三个零点,进行判断.【解答】解:函数f(x)=|lnx|的图象如图示:当a≤0时,显然,不合乎题意,当a>0时,如图示,当x∈(0,1]时,存在一个零点,当x>1时,f(x)=lnx,可得g(x)=lnx﹣ax,(x∈(1,3])g′(x)==,若g′(x)<0,可得x>,g(x)为减函数,若g′(x)>0,可得x<,g(x)为增函数,此时f(x)必须在[1,3]上有两个零点,∴解得,,在区间(0,3]上有三个零点时,,故选D.【点评】本题重点考查函数的零点,属于中档题,难度中等.二、解答题(每小题5分共计25分)11.已知sinα﹣cosα=,α∈(0,π),tanα=﹣1.【考点】同角三角函数间的基本关系.【专题】计算题;三角函数的求值.【分析】已知等式左边提取,利用两角和与差的正弦函数公式化简,求出sin(α﹣)的值为1,由α的范围,利用特殊角的三角函数值求出α的度数,即可求出tanα的值.【解答】解:∵sinα﹣cosα=sin(α﹣)=,∴sin(α﹣)=1,∵α∈(0,π),∴α﹣=,即α=,则tanα=﹣1.【点评】此题考查了同角三角函数间的基本关系,特殊角的三角函数值,以及两角和与差的正弦函数公式,熟练掌握公式及基本关系是解本题的关键.12.已知平面向量=(1,2),=(﹣2,m),且⊥,则2+3=(﹣4,7).【考点】平面向量的坐标运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】由向量=(1,2),=(﹣2,m),且⊥,求出m的值,则2+3的答案可求.【解答】解:∵向量=(1,2),=(﹣2,m),且⊥,∴﹣2+2m=0,解得m=1,则2+3=2×(1,2)+3×(﹣2,1)=(﹣4,7).故答案为:(﹣4,7).【点评】本题考查了平面向量数量积的运算,考查了平面向量的坐标运算,是基础题.13.函数y=lg(1﹣)+的定义域是[log23,+∞).【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据函数成立的条件,即可求出函数的定义域.【解答】解:要使函数有意义,则,即,∴x≥log23,即函数的定义域为[log23,+∞),故答案为:[log23,+∞)【点评】本题主要考查函数定义域的求法,要求熟练掌握常见函数成立的条件,比较基础.14.设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为υ1,υ2,若它们的侧面积相等,且的值为.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积.【专题】空间位置关系与距离.【分析】设两个圆柱的底面半径分别为R,r,高分别为H,h,由=,得=,由它们的侧面积相等,得=,由此能求出.【解答】解:设两个圆柱的底面半径分别为R,r,高分别为H,h,∵=,∴=,∵它们的侧面积相等,∴=1,∴=,∴==()2×=.故答案为:.【点评】本题考查两个圆柱的体积的比值的求法,是中档题,解题时要注意圆柱的体积和侧面积计算公式的合理运用.15.给出下列四个命题:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”;②a、b、c是空间中的三条直线,a∥b的充要条件是a⊥c且b⊥c;③命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题;④对任意实数x,有f(﹣x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0.其中的真命题是①④.(写出所有真命题的编号)【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】①利用命题的否定即可判断出;②由a⊥c且b⊥c可得a∥b或相交或为异面直线,另一方面由a∥b,推不出a⊥c,b⊥c,即可判断出;③在△ABC中,A>B⇔a>b,由正弦定理可得:,可得sinA>sinB.④利用偶函数的性质即可得出.【解答】解:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”,正确;②a、b、c是空间中的三条直线,由a⊥c且b⊥c可得a∥b或相交或为异面直线,由a∥b,推不出a⊥c,b⊥c,因此“a⊥c且b⊥c”是a∥b的既不充分也不必要条件,因此②不正确;③在△ABC中,由A>B⇔a>b,由正弦定理可得:,因此sinA>sinB.可知逆命题为真命题,因此不正确;④对任意实数x,有f(﹣x)=f(x),可知函数f(x)是偶函数.由当x>0时,f′(x)>0,则当x<0时,f′(x)<0.正确.综上可知:只有①④正确.故答案为:①④.【点评】本题综合考查了空间中的线线位置关系、三角形的边角关系、函数的奇偶性单调性、简易逻辑等基础知识与基本技能方法,属于基础题.三、解答题:16.已知函数f(x)=sinωxcosωx﹣cos2ωx﹣(ω>0,x∈R)的图象上相邻两个最高点的距离为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,sinB=3sinA,求a,b的值.【考点】余弦定理;两角和与差的正弦函数;正弦函数的单调性.【专题】解三角形.【分析】(Ⅰ)f(x)解析式利用二倍角的正弦、余弦函数公式化简,整理为一个角的正弦函数,根据题意确定出ω的值,确定出f(x)解析式,利用正弦函数的单调性求出函数f(x)的单调递增区间即可;(Ⅱ)由f(C)=0,求出C的度数,利用正弦定理化简sinB=3sinA,由余弦定理表示出cosC,把各自的值代入求出a与b的值即可.【解答】解:f(x)=sin2ωx﹣(1+cos2ωx)﹣=sin(2ωx﹣)﹣1,∵f (x )图象上相邻两个最高点的距离为π,∴=π,即ω=1,则f (x )=sin (2x ﹣)﹣1,(Ⅰ)令﹣+2k π≤2x ﹣≤+2k π,k ∈Z ,得到﹣+k π≤x ≤k π+,k ∈Z ,则函数f (x )的单调递增区间为[﹣+k π,k π+],k ∈Z ;(Ⅱ)由f (C )=0,得到f (C )=sin (2C ﹣)﹣1=0,即sin (2x ﹣)=1,∴2C ﹣=,即C=,由正弦定理=得:b=,把sinB=3sinA 代入得:b=3a ,由余弦定理及c=得:cosC===,整理得:10a 2﹣7=3a 2,解得:a=1,则b=3.【点评】此题考查了正弦、余弦定理,以及二倍角的正弦、余弦函数公式,熟练掌握定理是解本题的关键.17.已知数列{a n }前n 项和S n 满足:2S n +a n =1(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =,数列{b n }的前n 项和为T n ,求证:T n <.【考点】数列的求和;数列递推式.【专题】等差数列与等比数列.【分析】(I )利用递推式可得:.再利用等比数列的通项公式即可得出;(II )由(I )可得b n ==,;利用“裂项求和”即可得出数列{b n }的前n 项和为T n ,进而得到证明.【解答】(I )解:∵2S n +a n =1,∴当n ≥2时,2S n ﹣1+a n ﹣1=1,∴2a n +a n ﹣a n ﹣1=0,化为.当n=1时,2a 1+a 1=1,∴a 1=.∴数列{a n }是等比数列,首项与公比都为.∴.(II )证明:b n = ===,∴数列{b n }的前n 项和为T n =++…+=.∴T n <.【点评】本题考查了递推式的应用、等比数列的通项公式、“裂项求和”、不等式的证明,考查了推理能力与计算能力,属于中档题.18.已知函数.(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间上的最大值和最小值,并求出相应的x的值.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.【专题】三角函数的图像与性质.【分析】(1)利用三角函数的倍角公式和诱导公式化简函数f(x),然后直接由周期公式求周期;(2)通过函数的图象的平移求解函数g(x)的解析式为g(x)=,由x的范围求出的范围,从而求得函数g(x)的最值,并得到相应的x的值.【解答】解:(1)由,得==.∴f(x)的最小正周期为π;(2)∵将f(x)的图象向右平移个单位,得到函数g(x)的图象,∴=.∵x∈[0,)时,,∴当,即时,g(x)取得最大值2;当,即x=0时,g(x)取得最小值.【点评】本题考查了三角函数的倍角公式及诱导公式,考查了三角函数的图象平移,训练了三角函数的最值得求法,是中档题.19.如图正方形ABCD的边长为ABCD的边长为,四边形BDEF是平行四边形,BD与AC 交于点G,O为GC的中点,平面ABCD.(I)求证:AE∥平面BCF;(Ⅱ)若,求证CF⊥平面AEF.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题;数形结合;数形结合法;空间位置关系与距离.【分析】(I)利用正方形,平行四边形的性质可得AD∥BC,DE∥BF,可证平面ADE∥平面BCF,即可证明AE∥平面BCF…5分(Ⅱ)由已知可证AC2=AF2+CF2,由勾股定理可得CF⊥AF,又FO⊥平面ABCD,可得FO⊥BD,又AC⊥BD,即可证明BD⊥平面AFC,结合EF∥BD,即可证明EF⊥CF,从而可证CF⊥平面AEF.【解答】证明:(I)∵四边形ABCD为正方形,四边形BDEF是平行四边形,∴AD∥BC,DE∥BF,∵AD∩DE=D,BC∩BF=B,∴平面ADE∥平面BCF,又∵AE⊂平面ADE,∴AE∥平面BCF…5分(Ⅱ)∵正方形ABCD边长为2,∴对角线AC=4,又∵O为GC中点,∴AO=3,OC=1又∵FO⊥平面ABCD,且FO=,∴AF2=AO2+OF2=9+3=12,CF2=OC2+OF2=1+3=4,又AC2=16,∴AC2=AF2+CF2,∴CF⊥AF,又FO⊥平面ABCD,BD⊂平面ABCD,∴FO⊥BD又∵AC⊥BD∴BD⊥平面AFC,又∵EF∥BD,∴EF⊥平面AFC∴EF⊥CF,又EF∩AF=F∴CF⊥平面AEF…12分【点评】本题主要考查了直线与平面垂直的判定,直线与平面平行的判定,考查了空间想象能力和推理论证能力,属于中档题.20.(13分)已知函数f(x)=lnx﹣mx,m∈R(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≤﹣2m+1在[1,+∞)上恒成立,求实数m的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】导数的概念及应用;导数的综合应用.【分析】(1)先对原函数求导数,然后通过解导数大于零或小于零的不等式得到原函数的单调区间;(2)先将原不等式归零化简,然后通过求函数的最值解决问题,只需利用导数研究函数的单调性即可,注意分类讨论.【解答】解:由题意可得,函数f(x)的定义域为(0,+∞),f′(x)=.(1)当m≤0时,f′(x)>0,此时函数f(x)在(0,+∞)上单调递增,当m>0时,令f′(x)>0,解得,令f′(x)<0,解得.所以当m≤0时,此时函数f(x)在(0,+∞)上单调递增;当m>0时,函数f(x)的单调递增区间为(0,),单调减区间为().(2)因为在[1,+∞)上恒成立.即在[1,+∞)上恒成立,令g(x)=,则,(1)当,即时,若,则g′(x)<0,g(x)是减函数,所以g(x)<g(1)=0,即g(x)≥0在[1,+∞)上不恒成立;(2)当,即时,若x>1,则g′(x)>0,g(x)是增函数,所以g(x)>g(1)=0,即,故当x≥1时,f(x)恒成立.综上所述,所求的正实数m的取值范围是.【点评】本题考查了利用导数研究函数的单调性的思路,以及不等式恒成立问题转化为函数的最值问题来解的基本思想.21.(14分)近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大.【考点】基本不等式在最值问题中的应用.【专题】不等式的解法及应用.【分析】(1)根据产品的利润=销售额﹣产品的成本建立函数关系;(2)利用基本不等式可求出该函数的最值,注意等号成立的条件.【解答】解:(1)由题意知,,将代入化简得:(0≤x≤a).…(2),当且仅当,即x=1时,上式取等号.…当a≥1时,促销费用投入1万元时,厂家的利润最大;当a<1时,在[0,a]上单调递增,所以x=a时,函数有最大值.即促销费用投入a万元时,厂家的利润最大.综上,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,促销费用投入a万元,厂家的利润最大.…【点评】本题主要考查了函数模型的选择与应用,以及基本不等式在最值问题中的应用,同时考查了计算能力,属于中档题.。

宁夏银川一中2021届高三上学期第二次月考数学(文)试题+Word版含答案

宁夏银川一中2021届高三上学期第二次月考数学(文)试题+Word版含答案

银川一中2021届高三年级第二次月考文 科 数 学命题人:注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}312,log 1A x x B x x =-≤≤=≤,则AB =A .{}02x x <≤B .{}12x x -≤≤C .{}12x x ≤≤D .{}03x x <≤ 2.如果42ππα<<,那么下列不等式成立的是A .sin cos tan ααα<<B .tan sin cos ααα<<C .cos sin tan ααα<<D .cos tan sin ααα<<3.如图在边长为1的正方形组成的网格中,平行四边形ABC D 的顶点D 被阴影遮住,则 AB →·A D →=A .10B .11C .12D .13 4.若cos ⎝⎛⎭⎫π4-α=35,则sin 2α= A .725 B .15C .-15D .-7255.如图所示的曲线图是 2020年1月25日至 2020年2月12日陕 西省及西安市新冠 肺炎累计确诊病例 的曲线图,则下列 判断错误的是A .1月31日陕西省新冠肺炎累计确诊病例中西安市占比超过了13B .1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势C .2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了97例D .2月8日到2月10日西安市新冠肺炎累计确诊病例的增长率大于2月6日到2月8日的增长率6.正三角形ABC 中,D 是线段BC 上的点,6AB =,2BD =,则AB AD ⋅= A .12B .18C .24D .307.1626年,阿贝尔特格洛德最早推出简写的三角符号:sin 、tan 、sec (正割),1675年,英国人奥屈特最早推出余下的简写三角符号:cos 、cot 、csc (余割),但直到1748年,经过数学家欧拉的引用后,才逐渐通用起来,其中1sec cos θθ=,1csc sin θθ=.若(0,)a π∈,且322csc sec αα+=,则tan α= A .513B .1213C .0D .125-8.设f (x )=lg(21-x +a )是奇函数,且在x =0处有意义,则该函数是A .(-∞,+∞)上的减函数B .(-∞,+∞)上的增函数C .(-1,1)上的减函数D .(-1,1)上的增函数9.将函数f (x )=sin x 的图象向右平移4π个单位长度后得到函数y =g (x )的图象, 则函数y =f (x )•g (x )的最大值为 A .422+ B .422- C .1 D .21 10.△ABC 中三个内角为A ,B ,C ,若关于x 的方程x 2-x cos A cos B -cos 2C2=0有一根为1,则△ABC 一定是( )A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形11.函数f (x )是偶函数,对于任意的x ∈R ,都有f (x +2)=1f (x );当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1) 12.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若2cos ,4,cos a c Cb b B-== 则ABC ∆的面积的最大值为A .3B .3C .2D 3二、填空题:(本大题共4小题,每小题5分,共20分)13.已知扇形AOB 面积为π34,圆心角AOB 为︒120,则该扇形的半径为_________. 14.若)1,1(-=a ,2b =,且()-⊥a b a ,则a 与b 的夹角是_______________. 15.已知函数()()sin f x A x =+ωϕ,π0,0,2A >><ωϕ 的部分图象如图所示,则函数的解析式为_______________. 16.对于任意实数12,x x ,当120x x e <<<时,有122121ln ln x x x x ax ax ->-恒成立, 则实数a 的取值范围为___________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。

湖南省长郡中学高三第二次月考(数学文)

湖南省长郡中学高三第二次月考(数学文)

长郡中学高三月考试卷(二)文科数学一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知a 、R b ∈,集合{,1},{,0},:b M N a f x x a==→表示把集合M 中的元素x 映射到集合N 中仍为x ,则a b +的值为A .1-B .0C .1D .1±2.将函数sin()()6y x x R π=+∈的图象上所有的点向左平行移动4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为A .5sin(2)()12y x x R π=+∈ B .5sin()()212x y x R π=+∈ C .sin()()212x y x R π=-∈ D .5sin()()224x y x R π=+∈3.函数2()2ln f x x x =-的单调减区间是A .(0,1]B .[1,)+∞C .(,1]-∞-及(0,1]D .[1,0)-及(0,1]4.数列{}n a ,已知对任意正整数123,21n n n a a a a ++++=-,则2222123n a a a a ++++ 等于A .2(21)n - B .1(21)3n-C .1(41)3n - D .41n- 5.甲、乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则55是 A .乙胜的概率 B .乙不输的概率C .甲胜的概率D .甲不输的概率6.已知(0,0),(30,0),(30,30),(0,30),(12,0),(30,18),(18,30),(0,12)O A B C E F P Q ,在正方形OABC 内任意取一点,该点在六边形OEFBPQ 内的概率为 A .425 B .2125 C .725 D .16257.O 是ABC ∆所在平面内一点,满足222222OA BC OB AC OC AB +=+=+,则O 是ABC ∆的A .外心B .内心C .垂心D .重心 8.已知函数13y x x =-++的最大值为M ,最小值为m ,则mM的值为 A .14 B .12C .22D .32二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上。

广东省江门市陈经纶中学2021-2022学年高三数学文月考试题含解析

广东省江门市陈经纶中学2021-2022学年高三数学文月考试题含解析

广东省江门市陈经纶中学2021-2022学年高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合,,则()A.B.C.D.参考答案:D略2. 已知S n是数列{a n}的前n项和,且,则()A. 20B. 25C. 30D. 35参考答案:D【分析】先由得到数列是等差数列,再根据,即可求出结果.【详解】因为是数列的前项和,且,所以,因此数列是公差为的等差数列,又,所以,因此.故选D【点睛】本题主要考查等差数列的性质、以及等差数列的前项和,熟记等差数列的性质以及前项和公式即可,属于常考题型.3. 从4名男生和3名女生中选出4人参加市中学生知识竞赛活动,若这4人中必须既有男生又有女生,不同的选法共有(A)140种(B)120种(C)35种(D)34种参考答案:D 略4. 如右图,某几何体的三视图均为边长为l的正方形,则该几何体的体积是()A. B. C.1 D.参考答案:A5. 设全集.已知四棱锥的三视图如右图所示,则四棱锥的四个侧面中的最大面积是A.B.C. D.参考答案:A四棱锥如图所示:,,所以四棱锥的四个侧面中的最大面积是6.6. 已知是定义在R上的奇函数,它的最小正周期为T,则的值为A.0 B. C.TD.参考答案:A解析:因为的周期为T,所以,又是奇函数,所以,所以则7. 已知,现有下列命题:其中的所有正确命题的序号是()(A)(B)(C)(D)参考答案:C 8. 用C(A)表示非空集合A中的元素个数,定义.若,,且|A-B|=1,由a的所有可能值构成的集合为S,那么C(S)等于( )A.1 B.2 C.3 D.4参考答案:A略9. 在等比数列{}中,若是方程则=()A. B .- C. D. 3参考答案:C略10.已知等比数列{a n}的前n项为S n,S3 = 3,S6 = 27,则此等比数列的公比q等于()A.2 B.-2 C. D.-参考答案:答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知向量=(2,1),=(x,﹣6),若⊥,则|+|= .参考答案:5【考点】平面向量数量积的运算.【专题】方程思想;分析法;平面向量及应用.【分析】由向量垂直的条件:数量积为0,可得x=3,再由向量模的公式,计算即可得到所求.【解答】解:向量=(2,1),=(x,﹣6),若⊥,则?=2x﹣6=0,解得x=3,即有+=(5,﹣5),则|+|==5,故答案为:5.【点评】本题考查向量的垂直的条件:数量积为0,考查向量的模的计算,属于基础题.12. 已知f(x)是定义域为R的偶函数,当x≥0时,那么,不等式的解集是.参考答案:13. 、若函数的最小值为3,则实数=参考答案:或略14. 已知则的最大值是_____________.;参考答案:略15. 方程表示焦点在轴的椭圆时,实数的取值范围是____________ 参考答案:16. 若关于,的不等式组(为常数)所表示的平面区域的面积等于2,则的值为 .参考答案:317. 在△ABC中,a=1,b=2,cosC=,sinA= .参考答案:【考点】余弦定理;正弦定理.【专题】转化思想;综合法;解三角形.【分析】利用余弦定理可得c,cosA,再利用同角三角函数基本关系式即可得出.【解答】解:由余弦定理可得:c2=12+22﹣=4,解得c=2.∴cosA===,又A∈(0,π),∴sinA===.故答案为:.【点评】本题考查了余弦定理、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共72分。

重庆南开中学2021届高三数学10月月考试题 文(含解析)(1)

重庆南开中学2021届高三数学10月月考试题 文(含解析)(1)

重庆南开中学2021届高三10月月考数学(文)试题(解析版)本试卷是高三文科试卷,以基础知识和大体技术为为主导,在注重考查运算能力和分析问题解决问题的能力,知识考查注重基础、注重常规、注重骨干知识,兼顾覆盖面.试题重点考查:不等式、复数、导数、圆锥曲线、数列、函数的性质及图象、三角函数的性质、三角恒等变换与解三角形、等;考查学生解决实际问题的综合能力,是份较好的试卷.【题文】一.选择题:本大题共10小题,每题5分,共50分。

在每题给出的四个备选项中,只有一项为哪一项符合题目要求的.【题文】1.已知A ,B 为两个集合,假设命题:p x A ∀∈,都有2x B ∈,则 A.:p x A ⌝∃∈,使得2x B ∈ B.:p x A ⌝∃∉,使得2x B ∈ C.:p x A ⌝∃∈,使得2x B ∉D.:p x A ⌝∃∉,使得2x B ∉【知识点】命题及其关系A2【答案解析】C 假设命题:p x A ∀∈,都有2x B ∈,那么:p x A ⌝∃∈,使得2x B ∉, 应选C 。

【思路点拨】依照命题的关系确信非P 。

【题文】2. 已知向量(5,6)a =-,(6,5)b =,那么a 与b A.垂直B.不垂直也不平行C .平行且同向D .平行且反向【知识点】平面向量的数量积及应用F3【答案解析】A 因为a b ⋅=(-5)⨯6+6⨯5=0,因此a b ⊥,应选A 。

【思路点拨】依照向量的数量积为0,因此a b ⊥。

【题文】3.设集合{}2|20M x x x =--<,{}|2,N y y x x M ==∈,则集合()R C MN =A.()2,4-B.()1,2-C.(][),12,-∞-+∞D.()(),24,-∞-+∞【知识点】集合及其运算A1【答案解析】C 由题意得M={x 12x -<<},N={x 24x -<<}那么M N ⋂=M, 因此()R C MN =(][),12,-∞-+∞应选C.【思路点拨】先求出M ,N 再求 M N ⋂再求出结果。

四川省成都市四川音乐学院附属中学2021-2022学年高三数学文月考试题含解析

四川省成都市四川音乐学院附属中学2021-2022学年高三数学文月考试题含解析

四川省成都市四川音乐学院附属中学2021-2022学年高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若集合,且,则集合可能是()A. B. C. D.参考答案:考点:1.集合的包含关系;2.集合的基本运算.2. 已知圆b及抛物线,过圆心P作直线,此直线与上述两曲线的四个交点,自左向右顺次记为A,B,C,D,如果线段AB,BC,CD的长按此顺序构成一个等差数列,则直线的斜率为A. B. C. D.参考答案:A略3. 已知为常数,函数有两个极值点,则()A. B.C. D.参考答案:C 4. 已知双曲线,O为坐标原点,F为双曲线的右焦点,以OF为直径的圆与双曲线的渐近线交于一点A,若,则双曲线C的离心率为()A.2 B. C. D.参考答案:A5. (坐标系与参数方程选做题)若以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,则线段的极坐标为()A. B. C.D.参考答案:A所以选A。

3.填空题:本大题共4小题,每小题5分,共20分.12.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.【答案】【解析】6. “”成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:D略7. 函数的最小正周期是()参考答案:B8. 已知是所在平面内一点,为边中点,且,那么A. B. C.D.参考答案:A9. 若函数存在极值,且这些极值的和不小于,则的取值范围为()A. B. C.D.参考答案:C10. 巳知角a的终边与单位圆交于点,则sin2a的值为( )A. B.- C. - D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,若该几何体的各个顶点在某一个球面上,则该球面的表面积为.参考答案:48π【考点】球内接多面体;简单空间图形的三视图.【分析】判断几何体的特征,正方体中的三棱锥,利用正方体的体对角线得出外接球的半径求解即可.【解答】解:三棱锥补成正方体,棱长为4,三棱锥与正方体的外接球是同一球,半径为R==2,∴该球的表面积为4π×12=48π,故答案为:48π.【点评】本题综合考查了空间思维能力,三视图的理解,构造几何体解决问题,属于中档题.12. 过点(-1,2)的直线l被圆截得的弦长为,则直线l的斜率为__________。

2021-2022年高三第二次月考数学(文科)

2021-2022年高三第二次月考数学(文科)

2021-2022年高三第二次月考数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22小题,共150分,共3页,考试时间120分钟,考试结束后,将答题卡和答题纸一并交回.注意事项:1. 答题前,考生务必将自己的姓名、考号填写在答题纸上.2.请按照题号顺序在各题目的答题区域内作答,超过答题区域书写的答案无效;试题卷及草纸上的答题无效.3.不准使用涂改液、修正带、刮纸刀.一、选择题(本大题共12题,每小题5分,共60分,在每小题给出的四个选项中只有一个符合题目要求)1. sin600o的值为A B - C D -2.y=(sinx-cosx)2-1是:A 最小正周期为2的偶函数 B最小正周期为2的奇函数C最小正周期为的偶函数 D 最小正周期为的奇函数3.()[]的单调减区间是:=xx-xf∈x2,-cos函数0,sinπ23A B C D4.设曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a=A 2BC -D -25.对于函数给出下列结论,其中正确结论的个数为:①图象关于原点成中心对称;②图象关于直线x=成轴对称;③图象向左平移个单位,即得到函数y=2cos2x的图象。

A 0B 1C 2D 3 6.=+=++)34sin(352cos )6sin(πααπα,则已知A B C D7.已知函数:为偶函数(),其图像与直线交点的横坐标为,若最小值为,则 A B C D 8.已知函数有大于零的极值点,则 A -3<a<0 B a<-3 C D 9.函数y=log(x 2-6x+17)的值域是A RB [ 8, +∞ )C (-∞ ,-3]D [-3 ,+∞ )10.设a,b,c 分别是⊿ABC 的三个内角A,B,C 所对的边,且满足,则⊿ABC 的面积是:A B 4 C D 211.设函数,若f(-4)=f(0),f(-2)=-2则关于x 的方程f(x)=x 的解的个数为: A 1 B 2 C 3 D 4 12. 的值等于:A B C D第Ⅱ卷(非选择题共90分)二.填空题,(本大题共4小题,每题5分,共20分)13.设P 为曲线C:上的点,且曲线C 在点P 处的切线倾斜角范围为,则点P 横坐标的取值范围 . 14.已知 .15.f(x)是以5为周期的奇函数,f(-3)=4且cos=,则f(4cos2)= 16.对于函数f(x)定义域中任意的x 1,x 2(x 1≠x 2)有如下结论: ①f(x 1+x 2)=f(x 1)f(x 2);②f(x 1x 2)=f(x 1)+f(x 2); ③④当f(x)=lgx 时,上述结论中正确的序号是 .三.解答题(本大题共6个小题,共70分) 17.(10分)的值和求已知)42sin(2cos ),2,4(,25tan 1tan πααππααα+∈=+.18.(12分)设函数f(x)=),,0(cos sin cos 32R a a x x x ∈>++ωωωω其中且f(x)的图象在y 轴右侧的第一个最高点的横坐标为.(1)求ω的值;(2)如果f(x)在区间,365,3上的最小值为⎥⎦⎤⎢⎣⎡-ππ求a 的值.19.(12分) 已知对任意x ∈R,不等式>恒成立,求实数m的取值范围20.(本小题满分12分)如图:在平面直角坐标系中,以ox轴为始边作两个锐角,它们的终边分别与单位圆相交于两点A 、B ,已知A 、B 的横坐标分别为,(1)求的值。

2021-2022年高三第二次月考数学文科试卷

2021-2022年高三第二次月考数学文科试卷

2021-2022年高三第二次月考数学文科试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题列出的四个选项中,选出符合题目要求的一项) 1、集合,,,则( )A. B. C. D. 2、复数的共轭复数为( ) A. B. C. D. 3、=( ) A. B. C.D.4、设函数))(22sin()(R x x x f ∈-=π,则是 ( )A. 最小正周期为的奇函数 B .最小正周期为的偶函数C. 最小正周期为的奇函数D. 最小正周期为的偶函数 5、已知实数a ,b ,c ,d 成等差数列,且曲线的极大值点的坐标为( b ,c ),则a+d= ( ) A. -1 B. 0 C. 1 D.2 6、已知,则 ( ) A. B. C. D. 7、已知命题033,:2≤+-∈∃x x R x p ,则 ( ) A. 033,:2>+-∈∃⌝x x R x p ,且为真命题 B .033,:2>+-∈∃⌝x x R x p ,且为假命题 C. 033,:2>+-∈∀⌝x x R x p ,且为真命题 D. 033,:2>+-∈∀⌝x x R x p ,且为假命题8、关于的方程实数根的个数是( ) A. 0 B. 1 C. 2 D. 无法确定 9、为了得到函数的图像,只需把函数的图像( ) A. 向右平移个单位长度 B .向左平移个单位长度C. 向右平移个单位长度D. 向左平移个单位长度10、已知函数,若0<a<b ,且,则a+2b 的取值范围是( ) A. B. C. D. 11、已知βαβαα,,1010)sin(,55sin -=-=均为锐角,则=( ) A. B. C. D.12、函数的图像在点出的切线与x 轴的交点的横坐标为,若,则=( ) A. 19 B. 20 C. 21 D. 22二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.若332tan tan ,3=+=+B A B A π,则= . 14.设函数,则函数图象在处的切线方程为 15.设2135,2ln ,2log -===c b a ,则a ,b ,c 的大小关系是 .16.已知)(21...2111)(*N n nn n n f ∈+++++=,那么吴忠回中xx 第一学期高三第二次月考数学答案卷(文科)一、选择题(本大题公12小题,每小题5分,共60分)二、填空题(本大题公4小题,每小题5分,共20分,把答案填在题中横线上) 13. 14. 15. 16. 三、解答题(共70分)17.(12分)已知函数的定义域上为增函数,且满足1)3(),()()(=+=f y f x f xy f (1)求,的值; (2)解不等式.18.(12分)已知向量)2,23(),cos 4sin 5,sin 2(),cos ,sin 3(ππαααααα∈-==,且 (1)求的值; (2)求的值.19. (12分)已知函数R x x x x x f ∈+-=,1)cos (sin cos 2)( (1)求函数的最小正周期记对称轴方程;(2)求函数的单调递增区间;(3)求函数在区间上的最大值和最小值.20.(12分)已知函数为二次函数,且x x x f x f 42)1()1(2-=-++ (1)求的解析式;(2)当时,求的最大值与最小值;(3)判断函数在的单调性,并给出证明.姓名: 班级: 考场: 考号:21.(12分)已知函数322231)(23---+=ax x a x x f . (1)当a=1是,求函数在区间上的最小值;(2)求函数的单调区间.22. (10分)已知极坐标系的极点在直角坐标系的原点O 出,极轴与x 轴的正半轴重合,直线L 的参数方程为(t 为参数,为直线L 的倾斜角),圆C 的极坐标方程为 (1)若直线L 与圆C 相切,求的值; (2)若直线L 与圆C 有公共点,求的取值范围.33675 838B 莋L 38756 9764 靤$ 39202 9922 餢22682 589A 墚30103 7597 疗}m27509 6B75 歵`3429185F3 藳35630 8B2E 謮。

2021-2022年高三第二次月考 文科数学 含答案

2021-2022年高三第二次月考 文科数学 含答案

2021年高三第二次月考 文科数学 含答案说明:1.本试卷分第І卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.2.请将选择题的答案填涂在答题卡上,填空题、解答题答在答题纸上.第І卷(选择题共40分)一.选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案填涂在答题卡上...........!) 1. 函数()()22lg 253f x x x =++-的定义域是( ) A . B . C . D .2. 已知命题:,则( )A .B .C .D .3. 设变量满足约束条件1,1,33,x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩则目标函数的最大值为 ( )A.4B.11C.12D.144. 函数在定义域内的零点的个数为( ) A .0 B .1 C .2 D .35. 设,,,则 ( ) A.B. C.D. 6. 已知函数是定义在上的偶函数,当时,,则函数的图象可以是( )A .B .C .D .7. 已知函数()sin(2),4f x x a ππ=-∈若存在(0,),使得恒成立,则=( ) A . B . C . D .8. 设函数是定义在上的以为周期的奇函数,若,,则的取值范围是( )第Ⅱ卷(非选择题共110分)二.填空题:(本大题共6小题,每小题5分,共30分.请将答案填在答题纸上..........!) 9. 已知向量,,且,则的值为_________.10. 已知正数满足,使得取最小值的实数对是 .11. 双曲线的左、右焦点分别为,是双曲线上一点,的中点在轴上,线段的长为,则双曲线的实轴长为 .12. 函数在上的最小值是________________.13. 已知函数()()()()12314,0log 0a x a x f x f x x ⎧-+<⎪=⎛⎫⎨≥ ⎪⎪⎝⎭⎩ , 若,则实数的取值范围是____. 14. 已知21(),()()2xf x xg x m ==-,若对,,,则实数的取值范围是 .三、解答题:(本答题共6小题,15至18小题每题13分,19至20小题每题14分,共80分.解答应写出文字说明、证明过程或演算步骤.)15. (本小题满分13分)已知.(Ⅰ)求的值;(Ⅱ)求的值.16. (本小题满分13分)已知向量,,函数.(1)求函数的最小正周期与值域;(2)已知,,分别为内角, ,的对边,其中为锐角,,,且,求,和的面积.17.(本小题满分13分)已知函数(1)若函数在时取到极值,求实数的值;(2)试讨论函数的单调性;(3)当时,在曲线上是否存在这样的两点A,B,使得在点A、B处的切线都与轴垂直,且线段AB与轴有公共点,若存在,试求的取值范围;若不存在,请说明理由.18.(本小题满分13分)已知函数,其中是常数.(1)当时,求曲线在点处的切线方程;(2)若存在实数,使得关于的方程在上有两个不相等的实数根,求的取值范围.19.(本小题满分14分)已知,若动点满足.(Ⅰ)求动点的轨迹的方程;(Ⅱ)设过点的直线交轨迹于,两点,若,求直线的方程.20.(本小题满分14分)已知抛物线,直线过点,且倾斜角为.(Ⅰ)若直线与抛物线交于两点,且有,求抛物线的方程;(Ⅱ)是否存在实数,使得抛物线上存在关于直线对称的不同的两点,若存在,求出p的取值范围,若不存在,请说明理由.南开中学xx 高三文科数学第二次月检测试卷参考答案(9)-3 (10) (11)6 (12) (13) (14)三、解答题:(本答题共6小题,15至18小题每题13分,19至20小题每题14分,共80分.解答应写出文字说明、证明过程或演算步骤.)15 解:(Ⅰ)由,得,222tan2242tan 1231tan 2xx x ⨯===---. (Ⅱ)原式22. 16.解: (Ⅰ) 2()()22f x a b a a a b =+⋅-=+⋅- 21sin 1cos 22x x x =+++- 1cos 21222x x -=+- 因为,所以值域为(Ⅱ) .因为5(0,),2(,)2666A A ππππ∈-∈-,所以, . 由,得,即.解得 故11sin 24sin 602322S bc A ==⨯⨯⨯=17. ( ) (1)∵函数在时取到极值∴ 解得经检验函数在时取到极小值∴实数的值-2(2)由得或①当时, , 由得 由得∴函数得单调增区间为,单调减区间为②当时,,同理可得函数得单调增区间为,单调减区间为(3)假设存在满足要求的两点A ,B ,即在点A 、B 处的切线都与y 轴垂直,则即解得或∴A,B又线段AB 与x 轴有公共点,∴,即 又,解得所以当时,存在满足要求的点A 、B .18. 解:(Ⅰ)由可得 .当时, ,.所以 曲线在点处的切线方程为,即.(Ⅱ) 令2'()e ((2))0x f x x a x =++=,解得或.当,即时,在区间上,,所以是上的增函数.所以 方程在上不可能有两个不相等的实数根.因为 函数是上的减函数,是上的增函数,且当时,有.所以 要使方程在上有两个不相等的实数根,的取值范围必须是.19.解:(Ⅰ)设,,,∴,,,∴,即,∴曲线的方程为:.(Ⅱ)(1)当直线的斜率不存在时,方程为,,解得,,,,,不合题意.(2)当直线的斜率存在时,设直线的方程为,设, ,,得()22223484120k x k x k +-+-=,∴,,,,()()()()()()212121212111111NA BN x x y y x x k x x ⎡⎤⋅=---=---+--⎣⎦()()2121211k x x x x =-+⎡-++⎤⎣⎦ ()22222412834134k k k k k --++=-++ 由,解得,,∴直线的方程是.20.解:(Ⅰ)的方程为,即.设,为方程组的解.化简得.∴,.()()2221284MN y y p p =-=+∴()()12121244241684AM AN y y y y y p ⋅=++=+++=+. ∴.∵, ∴.∴ 所求抛物线方程为.(Ⅱ)假设存在,设,是抛物线上关于对称的两点,线段的中点为. 垂直直线,故的方程为.由 得.∴ ,于是.∴ .∵ 点在直线上,故有.∴ ..由∆=,即,解得.∴当时,抛物线上存在关于直线对称的两点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高三第二次月考(数学文)2011年10月本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.选择题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题上.3.填空题的答案和解答题的解答过程直接写在答题卡Ⅱ上.4.考试结束,监考人将本试题和答题卡一并收回.第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合,则()A.{1} B.{0} C.{0,1} D.{– 1,0,1}2.,则()A.b > a > c B.a > b > c C.c > a > b D.b > c > a3.若曲线的一条切线l与直线垂直,则l的方程为()A.B.C.D.4.函数是()A.最小正周期是2的奇函数B.最小正周期是2的偶函数C.最小正周期是的奇函数D.最小正周期是的偶函数5.设等差数列{a n}的前n项和为S n,若,则S9等于()A.18 B.36 C.45 D.60实用文档6.已知向量1(11cos)(1cos)//2a b a bθθ=-=+,,,,且,则锐角等于()A.30°B.45°C.60°D.75°7.已知函数的图象上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心是()A.B.C.D.8.若,则()A.B.C.D.9.已知a > 0,b > 0,a、b的等差中项是,且,则x + y的最小值是()A.6 B.5 C.4 D.310.已知函数(b、c、d为常数),当时,只有一个实根,当时,有3个相异实根,现给出下列4个命题:①函数有2个极值点;②函数有3个极值点;③有一个相同的实根;④有一个相同的实根。

其中正确命题的个数是()A.1 B.2 C.3 D.4第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每题5分,共25分.各题答案必须填写在答题卡II上(只填结果,不要过程)11.______________.12.不等式的解集是________________.13.在等比数列{a n}中,,则______________.14.,则______________.15.函数是定义在R上的奇函数,且满足对一切都成立,又当时,,则下列四个命题:①函数是以4为周期的周期函数②当时,③函数的图象关于x = 1对称④函数的图象关于点(2,0)对称其中正确命题序号是_______________.三、解答题:本题共6小题,共75分.各题解答必须答在答题卡II上(必须写出必要的文字实用文档说明、演算步骤或推理过程).16.(本小题满分13分)求的值.17.(本小题满分13分)已知三点A(3,0),B(0,3),C,.(1)若,求角;(2)若,求的值.18.(本小题满分12分)设函数,已知是奇函数.(1)求b、c的值;(2)求的单调区间与极值.19.(本小题满分13分)已知,函数.(1)求函数的最小正周期;(2)求函数的单调减区间;(3)当时,求函数的值域.20.(本小题满分12分)设a > 1,函数.(1)求的反函数;(2)若在[0,1]上的最大值与最小值互为相反数,求a的值;(3)若的图象不经过第二象限,求a的取值范围.21.(本小题满分12分)实用文档已知函数,数列,满足条件:.(1)求证:数列为等比数列;(2)令,T n是数列的前n项和,求使成立的最小的n值.实用文档实用文档西南大学附属中学高xx 级第二次月考数学试题参考答案(文)一、选择题:本大题共10小题,每题5分,共50分.1.A 2.B 3.A 4.D 5.C 6.B 7.D 8.C 9.B 10.C二、填空题:本大题共5小题,每题5分,共25分.11. 12.– 13.240 14. 15.①②③④三、解答题:本题共6小题,共75分.16.解:原式 ································································································································· 6分 ································································································································· 9分 ······························································································································· 11分 ······························································································································· 13分17.解:(1) ∵ (cos 3sin )(cos sin 3)AC BC αααα=-=-,,, ················································· 2分由得 ··························································································································· 4分 整理得∴ ······························································································································ 6分 ∵ ∴ ············································································································ 7分(2) ∵∴ ······························································································································· 8分 即 ······························································································································· 9分 ∴∴ ··························································································································· 10分∴ 22sin sin 22sin (sin cos )52sin cos sin cos 1tan 9cos ααααααααααα++===-++ ························· 13分 18.解:(1) ∵ ································································································································1分∴ 32()()'()(3)(2)g x f x f x x b x c b x c =-=+-+-- ··············································3分 ∵ 是奇函数 ∴ 恒成立即 3232(3)(2)(3)(2)x b x c b x c x b x c b x c -+----=-----+∴ ∴ ··················································································································7分(2) ∵∴由由∴ 的递增区间为 ······································································································11分 的递减区间为·····························································································································13分19.解:22sin cos 2cos sin 4cos x x x x x x =+++ ·················································2分····································································································································5分 ····································································································································6分实用文档 ····································································································································7分(1) 的最小正周期 ··············································································································8分(2) 由得∴ 的单调减区间为 ································································································10分(3) ∵∴∴ ∴ 即的值域为 ·····················································12分20.解:(1) 由∴∴ ···························································································································· 4分(2) ∵ a > 1 ∴ 在[0,1]上递增∴ ,∴ 即∴ ···························································································································· 8分(3) 在y 轴上的截距为要使的图象不过第二象限,只需∴∴因此,a 的取值范围为 ·························································································· 12分21.解:(1) 证明:由题意得,∴ ·················································································································· 3分又 ∵∴ ·················································································································· 4分故数列{b n + 1}是以1为首项,2为公比的等比数列 ································· 5分(2) 由 (1) 可知,,∴ ·································································································· 7分故1112211(21)(21)2121n n n n n n n n n C a a +++===----- ············································ 9分 ∴ 11111111(1)()()1337212121n n n ++=-+-++-=---- ··························· 10分 由,得 ∴ 满足条件的n 的最小值为10 ········································································· 12分。

相关文档
最新文档