共模和差模信号与滤波器
共模滤波器和差模滤波
共模滤波器和差模滤波共模滤波器和差模滤波器是电子电路中常用的滤波器类型,用于处理信号中的共模干扰和差模信号。
共模滤波器主要用于抑制共模干扰,而差模滤波器主要用于增强差模信号。
本文将分别介绍这两种滤波器的原理、应用和特点。
一、共模滤波器共模滤波器是一种用于抑制共模干扰的滤波器。
在电子电路中,当信号传输过程中存在共模干扰时,会导致信号质量下降。
共模干扰是指在传输线上,两个信号相互干扰而产生的噪声。
共模干扰可以由电源波动、地线干扰等多种原因引起。
共模滤波器的工作原理是通过设计特定的电路结构和参数,将共模干扰信号滤除。
常见的共模滤波器包括电容耦合器、差分放大器和共模电感等。
其中,电容耦合器通过将信号的共模分量滤除,只传输差分信号,从而抑制共模干扰;差分放大器则是通过将信号的差模分量放大,相对于共模分量的增益较高,从而减小共模干扰的影响;共模电感则是利用电感元件的特性,在传输线上产生反向的磁场,抵消共模干扰。
共模滤波器的应用非常广泛,在各种电子设备中都有使用。
例如,在音频设备中,共模滤波器可以用于抑制电源干扰和地线干扰,提高音质;在通信设备中,共模滤波器可以用于抑制电磁干扰,提高信号传输质量。
共模滤波器的特点是可以有效地抑制共模干扰,提高信号质量。
但是,由于共模滤波器需要对共模干扰进行滤除或抵消,因此会引入一定的成本和复杂性。
此外,共模滤波器的性能受到电路参数和布局的影响,需要进行精确的设计和优化。
二、差模滤波器差模滤波器是一种用于增强差模信号的滤波器。
在很多应用中,差模信号是我们关注的主要信号,而共模信号则是噪声或干扰。
差模滤波器的作用是通过设计特定的电路结构和参数,将差模信号滤出,并增强其幅度。
差模滤波器的工作原理是通过放大差模信号,同时抑制或滤除共模信号。
常见的差模滤波器包括差分放大器和差分电感等。
差分放大器是差模滤波器中最常用的一种,它通过放大差模信号,同时抑制共模信号,从而提高差模信号的幅度。
差分电感则是利用电感元件的特性,在传输线上产生增强的磁场,增强差模信号。
emi滤波器共模差模等效电路
emi滤波器共模差模等效电路
EMI滤波器的共模和差模等效电路分别如下:
1. 共模等效电路:共模等效电路由电感L和电容C组成,其中电感L用于抑制共模噪声,而电容C则将共模噪声旁路到地。
2. 差模等效电路:差模等效电路由电阻R和电容C组成,其中电阻R表示信号源内阻,电容C则将差模噪声旁路到地。
在EMI滤波器的实际应用中,X电容器接在直流电源的正负极之间,它上面除了加有电源的额定电压之外,还会叠加上正负极之间的各种EMI信号的峰值电压。
总的来说,共模和差模等效电路在EMI滤波器中起到不同的作用。
如需了解更多信息,建议咨询相关专家或查阅专业书籍。
共模信号和差模信号定义
共模信号和差模信号定义
共模信号是指发射机和接收机之间传送的信号,这些信号是在同一台电路的两个端口上同时存在的。
共模信号有时也称为“共用信号”或“共享信号”。
共模信号有助于可靠地传输信息和数据,还能够帮助在微控制器芯片上实现行为同步。
差模信号是一种在发射机和接收机之间进行通信的信号,它以两个端口上不同的电位作为参考,其中一个端口的混频信号的差值是所要传送的信号。
由于这种发射信号的特殊形式,无论发射机还是接收机,都可以以一种可控的方式控制信号的传送。
差模信号可以通过对发射机和接收机进行更有效的控制,从而改善信号的品质和性能。
共模与差模抗干扰滤波器中电感材料的选择原则
共模与差模抗⼲扰滤波器中电感材料的选择原则摘要:从磁性材料的⾓度指出了共模与差模抗⼲扰滤波器中电感材料的选择原则。
指出必须根据⼲扰信号的类型(共模或差模)选取对应的磁性材料,并按照所需抑制频段研制该材料的磁性能,使之适合该抑制频段需要,只有这样才能得到最佳的抗⼲扰效果。
最后本⽂指出由于开关电源的微型化,促进抗⼲扰电感器件向⽚式化和薄式化的发展。
1引⾔随着开关电源类的数字电路的普及和发展,电⼦设备辐射和泄漏的电磁波不仅严重⼲扰其他电⼦设备正常⼯作,导致设备功能紊乱、传输错误、控制失灵,⽽且威胁着⼈类的健康与安全,已成为⼀种⽆形污染,并不逊⾊于⽔、空⽓、噪声等有形污染的危害。
因此降低电⼦设备的电磁⼲扰(EMI)已成为世界电⼦⾏业关注的问题。
为此欧洲共同体有关EMC委员会制定有关法令于1992年1⽉1⽇开始实施,历时4年后于1996年1⽉1⽇最终⽣效。
该法令指出凡不符合欧洲和国际EMC标准规定的产品⼀律不得进⼊市场销售,违者重罚,同时把EMC认证和电⽓安全认证作为⼀些产品认证的⾸要条件。
此举引起世界电⼦市场巨⼤的震动,EMC成为影响国际贸易⼀个重要的指标。
为了与国际接轨,我国也相继制定了有关EMC法规。
为此我国多次召开电磁兼容标准与论证会,建议⾃1997年1⽉1⽇起在市场上流通的电⼦设备必须制定、设计对⽆线电⼲扰的抑制措施,安置抑制元器件,使产⽣的电磁⼲扰不超过标准规定的电平。
于2001年1⽉1⽇起凡进⼊市场产品必须有EMC标志。
这是我国电⼦产品参与国际市场竞争的第⼀步。
2抗⼲扰滤波器特征Rs ⼩⼤⼩⼤电路RL ⼩⼤⼤⼩表1RS,RL类别和⼤⼩抗⼲扰滤波器与通常的信号滤波器之间有着概念上的区别。
信号滤波器是在阻抗匹配的条件下⼯作,即通过滤波器要保持输⼊与输出信号振幅不变为前提,将其中部分频域作预期的处理和变换。
⽽EMI滤波器⽤于抑制进⼊设备与出⾃设备的电磁⼲扰,具有双向抑制性。
因此这就要求EMI滤波器的端⼝处与设备产⽣最⼤失配。
什么是差模干扰和共模干扰 该如何抑制
一.什么是差模信号和共模信号差模信号:大小相等,方向相反的交流信号;双端输入时,两个信号的相位相差180度。
共模信号:大小相等。
方向相同。
双端输入时,两个信号相同。
在差分放大电路中,有两个输入端,当在这两个端子上分别输入大小相等、相位相反的信号,(这指有效信号)放大器能产生很大的放大倍数,我们把这种信号叫做差模信号,这时的放大倍数叫做差模放大倍数。
如果在两个输入端分别输入大小相等,相位相同的信号,(这实际是上一级由于温度变化(温漂)而产生的信号,是一种有害的东西),为了形象化温漂而提出了共模信号,这时的放大倍数叫做共模放大倍数。
由于差分放大电路的构成特点,在差分放大电路中共模信号是不会被放大的,所以共模放大倍数很小(一般都小于1)。
计算公式又分为单端输出和双端输出,所以有四个共模信号和差模信号是指差动放大器双端输入时的输入信号。
二.什么是差模干扰和共模干扰任何两根电源线或通信线上所存在的干扰,均可用共模干扰和差模干扰来表示。
1.差模干扰差模干扰:差模干扰在两导线之间传输,属于对称性干扰,它定义为任何两个载流导体之间的不希望有的电位差。
各个信号间产生的相互干扰,一般使用电感电容就能过滤掉,就是我们经常使用的104,或者磁珠。
差模干扰幅度小、频率低、所造成的干扰较小。
差模干扰的电流大小相等,方向(相位)相反。
由于走线的分布电容、电感、信号走线阻抗不连续,以及信号回流路径流过了意料之外的通路等,差模电流会转换成共模电流。
2.共模干扰共模干扰:共模干扰在导线与地(机壳)之间传输,属于非对称性干扰,它定义为任何载流导体与参考地之间的不希望有的电位差;所有输出的波形都具有此属性,这个需要使用共模电感过滤。
在一般情况下,共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。
共模干扰一般来自电源。
共模干扰产生原因1. 电网串入共模干扰电压。
2. 辐射干扰(如雷电,设备电弧,附近电台,大功率辐射源)在信号线上感应出共模干扰,原因是交变的磁场产生交变的电流,地线-零线回路面积与地线-火线回路面积不相同,两个回路阻抗不同等原因造成电流大小不同。
共模差模的概念
共模差模的概念共模信号和差模信号,是电路中常见的两种信号类型,广泛应用在电路的信号传输和抗干扰等方面。
在理解这两种信号类型之前,我们需要先了解共模和差模的概念。
1.共模信号共模信号是指同时在两个输入端的信号,即两个信号具有相同的波形和振幅。
这种信号与设备外部环境中的电源噪声和其他交流干扰信号相关。
通常,这些信号产生的原因可能来自于电源干扰、接地回路噪声等。
2.差模信号差模信号是指两个输入端的信号之间具有一定差别的信号。
这种信号通常是需要传输或处理的信号。
例如,输入端分别与两个感应器连接,在两个输入端分别产生的电信号需要处理的差就是差模信号。
在实际应用中,常常需要提取差模信号,而忽略共模信号的影响。
因此,了解共模信号和差模信号的概念,有利于设计具有抗干扰性能的电路。
3.共模和差模的关系在电路中,共模和差模信号常位于同一传输线上,并会简单地相加或相减。
因此,了解两者的关系,对于正确、有效地提取差模信号至关重要。
在电路中,可以使用差分放大器进行差模信号的提取,同时忽略共模信号的影响。
差分放大器是由两个放大器级联形成的放大器电路,由于其采用两个输入端来输入差分信号,其可实现被动滤除共模信号。
当然,如果存在非line-to-line 的干扰,这种抑制效果所受的干扰,仍然是很容易被放大起来的。
在理解差分放大器后,我们就可以将电路信号分解成共模信号和差模信号:共模信号=(输入信号1+输入信号2)/2差模信号=(输入信号1-输入信号2)其中,共模信号相当于两个输入信号的平均值,而差模信号则表示两个输入信号的差异。
因此,对于差分放大器而言,对差模信号的放大,同时抑制共模信号的干扰十分重要。
在计算和设计电路时,提取差模信号需要特别注意并分析共模信号的影响,以确保最后输出的信号准确无误。
4.技术应用在电子电路应用中,共模差模信号的概念被广泛应用于电路的分析和设计工作中。
例如,在模拟信号处理中,差分放大器是一种常见的信号处理模块,其被广泛应用于传感器信号采集、分析、以及输出。
差模信号与共模信号
差模信号与共模信号
哎呀呀,这“差模信号”和“共模信号”可真是让我这个小脑袋瓜转了好久呢!
咱先来说说这差模信号。
你看啊,就好像我们班跑步比赛,我和我的同桌一起跑,我俩速度不一样,这速度的差别就好比差模信号。
它是两个信号之间的差异部分。
比如说,一条线路上传了两个大小不同、方向相反的电流,这就是差模信号在“搞事情”啦!
那共模信号又是啥呢?这就好比全班同学一起做早操,大家动作差不多,方向也一样,这差不多一样的动作就像共模信号。
它是两个信号相同的部分。
比如说,一条线路上传了两个大小相同、方向相同的电流,这就是共模信号在“发挥作用”呢!
“这有啥用啊?”你可能会这么问。
嘿,用处可大啦!在电子电路里,如果差模信号和共模信号处理不好,那整个电路就可能乱套啦!就像我们做数学题,如果一开始就把公式用错了,那后面能得出正确答案吗?肯定不能呀!
老师给我们讲这些的时候,我周围的小伙伴们都一脸懵。
“这也太难懂了吧!”有的同学小声嘟囔着。
我也着急呀,心里想着:“这可怎么办,我一定要搞明白!”
后来,老师举了好多例子,还让我们做了实验。
慢慢地,我好像有点明白了。
我赶紧跟同桌说:“嘿,我好像懂了一点,你呢?”同桌摇摇头:“我还是不太清楚,你快给我讲讲。
”我就把自己的理解跟他说了一遍。
你说,这差模信号和共模信号是不是很像一对调皮的双胞胎,有时候让人分不清,但只要我们仔细观察,就能发现它们的不同之处。
总之,差模信号和共模信号虽然复杂,但只要我们用心去学,就能掌握它们的奥秘!。
共模滤波器和差模滤波
共模滤波器和差模滤波共模滤波器和差模滤波器是电子领域中常见的滤波器类型,用于处理信号中的共模干扰和差模干扰。
本文将介绍共模滤波器和差模滤波器的原理、应用以及设计要点。
一、共模滤波器共模滤波器是一种用于抑制共模干扰的滤波器。
共模干扰是指在信号传输过程中,由于环境电磁干扰、地线回路不良等原因引入的干扰信号。
共模信号是指两个输入信号的幅值和相位完全相同的信号。
共模滤波器的主要作用是从输入信号中滤除共模干扰。
共模滤波器的设计要点包括:选择合适的滤波器类型、确定滤波器的截止频率、选择合适的滤波器阶数、优化滤波器的频率响应等。
常见的共模滤波器有低通滤波器、带通滤波器和陷波滤波器等。
二、差模滤波器差模滤波器是一种用于抑制差模干扰的滤波器。
差模干扰是指由于信号源、传输线、接地回路等因素引入的不同的干扰信号。
差模信号是指两个输入信号的幅值和相位不完全相同的信号。
差模滤波器的主要作用是从输入信号中滤除差模干扰。
差模滤波器的设计要点与共模滤波器类似,包括选择合适的滤波器类型、确定滤波器的截止频率、选择合适的滤波器阶数、优化滤波器的频率响应等。
常见的差模滤波器有高通滤波器、带阻滤波器和陷波滤波器等。
共模滤波器和差模滤波器在电子系统中广泛应用于抑制干扰信号,提高信号传输的质量和可靠性。
它们常见的应用场景包括:1. 通信系统:在通信系统中,共模滤波器和差模滤波器用于抑制传输线上的共模干扰和差模干扰,提高通信信号的传输质量。
2. 音频系统:在音频系统中,共模滤波器和差模滤波器用于消除音频信号中的共模干扰和差模干扰,提高音频信号的清晰度和保真度。
3. 传感器系统:在传感器系统中,共模滤波器和差模滤波器用于抑制传感器信号中的共模干扰和差模干扰,提高传感器系统的测量精度和稳定性。
4. 电力系统:在电力系统中,共模滤波器和差模滤波器用于抑制电力信号中的共模干扰和差模干扰,提高电力系统的工作效率和稳定性。
四、共模滤波器和差模滤波器的设计要点1. 选择合适的滤波器类型:根据应用场景和需求,选择合适的共模滤波器或差模滤波器类型,如低通滤波器、高通滤波器、带通滤波器等。
减小共模辐射和差模辐射的方法
减小共模辐射和差模辐射的方法减小共模辐射和差模辐射是电磁兼容性(EMC)设计中的重要问题。
共模辐射是指信号和地线之间的电磁波辐射,差模辐射是指信号对之间的电磁波辐射。
这些辐射问题可能会导致设备之间的互相干扰和电磁波辐射对周围环境的干扰,因此需要有效地减小这些辐射。
以下是几种减小共模辐射和差模辐射的方法:1. 地线设计:通过合理设计地线布局,可以减小共模辐射。
地线应该尽可能接近信号线,并在设计中使用大面积的地面平面来提供良好的地接地。
2. 滤波器:使用滤波器可以有效地减小共模辐射和差模辐射。
共模滤波器可以用于抑制共模干扰,差模滤波器可以用于抑制差模干扰。
这些滤波器可以在信号源和接受器之间插入,以减小辐射。
3. 屏蔽设计:在电路板设计中使用屏蔽是减小共模辐射和差模辐射的有效方法。
屏蔽可以阻止电磁波通过屏蔽材料的传播,从而减小辐射。
屏蔽设计包括金属屏蔽罩、屏蔽线和屏蔽垫等。
4. 接地设计:良好的接地设计可以减小共模辐射和差模辐射。
接地系统应该是低阻抗的,且能够提供良好的地接地。
同时,应该避免共享接地回路,以减小辐射。
5. 信号布线:合理的信号布线可以减小共模辐射和差模辐射。
应该尽量减小信号线的长度,避免信号线与地线或其他信号线平行布线。
6. 电磁屏蔽材料:在敏感的电路板或设备上使用电磁屏蔽材料可以有效地减小共模辐射和差模辐射。
这些材料可以吸收和反射电磁波,从而减小辐射。
综上所述,通过合理的地线设计、滤波器、屏蔽设计、接地设计、信号布线和电磁屏蔽材料的使用,可以有效地减小共模辐射和差模辐射,提高设备的电磁兼容性。
这些方法需要在设计过程中充分考虑,并根据具体的应用需求进行调整。
差模滤波和共模滤波
差模滤波和共模滤波1 差模滤波低频滤波可以分为两类,差模滤波和共模滤波。
根据前面的讨论,差模滤波试图减小电源线中通过地线返回的噪声。
这就意味着电源线中的噪声首先会流出机壳再通过地线返回。
因此滤波的策略就是在噪声流出机壳之前先将电源线的噪声旁路到地线中去,这样,噪声形成回路而且不会被测量到。
可以在电源线中串联一个电感,阻止其流出,同时,在电源线和地线之间跨接一个电容,为噪声提供一个低阻抗回路。
商用与军用尽管在前面对商用滤波和军用滤波的讨论已经表明了两者密切相关,但在设计一个低频差模滤波器的时候仍然会有不同之处。
问题是设计一个电感在前电容在后的滤波器还是一个电感在后电容在前的滤波器(从电源内部向外部供电看)。
商业测试方法通常测量电压,而且阻抗源相对比较大(50Ω)。
可以利用这个阻抗源来阻断噪声,因此采用电感在前电容在后的滤波器更好,如图9-17所示。
在某些情况下,噪声的幅值很小,可能不需要电感,这个电容就与50Ω的电阻组成分压网络,电容阻抗通常很小,因此可以分流大部分的噪声。
为使电路正常工作,电容的ESR非常关键。
在这种应用场合,需要采用多层瓷片电容或金属化塑料电容。
针对军用测试时,相反地,阻抗源是个低阻抗(10μF电容),通过测量电流来测试噪声。
为防止噪声电流流过这个低阻抗,需要采用电容在前电感在后的滤波器(如图9-18所示)。
在这种情况下(与商业用途不一样),毫无疑问,这个电容作为输入电容,如大的电解电容已经存在,最好在这个电容上再并联一个1μF或100nF的瓷片电容(或者同时并联——一般1μF的电容在1MHz 以下有效而100nF的电容可以工作到10MHz)。
这个方法通常用来解决大电容在高频下特性差的问题。
参数选取设计L和C的值是非常直观。
在测试时,已经知道没有滤波之前的噪声频谱,设计的二阶滤波器在转折频率以后可以将噪声以40dB/十倍频的斜率衰减。
下面是设计滤波器转折频率的步骤。
实用提示首先找出超指标的噪声最低频率分量(如前面所述,最好采用单纯的测量差模的方法,而不是测量差模和共模混合的测量方法)。
差模信号与共模信号的计算
差模信号与共模信号的计算在电子学的世界里,有两个小家伙总是忙得不可开交,一个叫差模信号,另一个叫共模信号。
听起来很复杂对吧?但它们的故事就像我们日常生活中的那些琐事,轻松幽默,充满趣味。
差模信号就像你和朋友一起聊天,彼此之间传递的那些有趣的段子、秘密和八卦,只有你们能懂的那种。
每个人都有自己的声音,有的高,有的低,有的幽默,有的严肃。
可就是这些不同的声音让交流变得生动有趣,差模信号的关键就是把这些独特的“声音”传递出来。
而共模信号就像是大街上的那些杂音,汽车的喇叭声,行人的聊天声,混杂在一起,时不时还有个小孩子的哭声。
大家都在同一个环境里发出声音,但并没有什么特别的交流。
共模信号就是在同一条线上传递的那些共同成分,它们并不关心你们具体在说什么,只是在背景中默默存在。
想象一下,在一个喧闹的市场,虽然人们都在说话,但真正能够传达信息的却是那几个相对清晰的声音,其他的都是“背景噪音”。
如何计算这两种信号呢?其实就像我们平时算账一样,差模信号的计算就是要找到两个信号之间的差异。
比如说,有两个电压信号,一个是你朋友发的消息,另一个是你的回复。
你需要从你的回复中减去朋友的消息,得到的就是你们之间的真实互动。
简单来说,差模信号的计算就是用上面一个信号减去下面一个信号,得出的结果就是你们之间的“净交流”。
就像在朋友聚会中,大家分享各自的趣事,听完后你就知道哪一段更吸引人,哪一段则是“路人甲”的故事。
而共模信号的计算呢,其实就有点像是在统计大家的心情。
你可能会问,怎么统计?好吧,想象一下你和一群朋友一起聚会,大家的气氛都很轻松愉快,这就是共模信号。
你们在一起的感觉、气氛的传递,这些都可以被视为共模信号的成分。
计算的时候,我们就需要找到信号中所有共同的部分,找出它们的平均值。
就像你在看一场篮球比赛,虽然每个球员都有自己的风格,但最后的得分就是全队的合作结果。
差模信号和共模信号的计算有时候也像是一道数学题,脑筋急转弯,别太认真。
共模、差模电源线滤波器设计
切断电磁干扰传输途径——共模、差模电源线滤波器设计电源线干扰可以使用电源线滤波器滤除,开关电源EMI滤波器基本电路如图6所示。
一个合理有效的开关电源EMI滤波器应该对电源线上差模干扰和共模干扰都有较强的抑制作用。
在图6中CX1和CX2叫做差模电容,L1叫做共模电感,CY1和CY2叫做共模电容。
差模滤波元件和共模滤波元件分别对差模和共模干扰有较强的衰减作用。
共模电感L1是在同一个磁环上由绕向相反、匝数相同的两个绕组构成。
通常使用环形磁芯,漏磁小,效率高,但是绕线困难。
当市网工频电流在两个绕组中流过时为一进一出,产生的磁场恰好抵消,使得共模电感对市网工频电流不起任何阻碍作用,可以无损耗地传输。
如果市网中含有共模噪声电流通过共模电感,这种共模噪声电流是同方向的,流经两个绕组时,产生的磁场同相叠加,使得共模电感对干扰电流呈现出较大的感抗,由此起到了抑制共模干扰的作用。
L1的电感量与EMI滤波器的额定电流I有关,具体关系参见表1所列。
[4]实际使用中共模电感两个电感绕组由于绕制工艺的问题会存在电感差值,不过这种差值正好被利用作差模电感。
所以,一般电路中不必再设置独立的差模电感了。
共模电感的差值电感与电容CX1及CX2构成了一个∏型滤波器。
这种滤波器对差模干扰有较好的衰减。
除了共模电感以外,图6中的电容CY1及CY2也是用来滤除共模干扰的。
共模滤波的衰减在低频时主要由电感器起作用,而在高频时大部分由电容CY1及CY2起作用。
电容CY的选择要根据实际情况来定,由于电容CY接于电源线和地线之间,承受的电压比较高,所以,需要有高耐压、低漏电流特性。
计算电容CY漏电流的公式是ID=2πfCYVcY式中:ID为漏电流;f为电网频率。
一般装设在可移动设备上的滤波器,其交流漏电流应<1mA;若为装设在固定位置且接地的设备上的电源滤波器,其交流漏电流应<3.5mA,医疗器材规定的漏电流更小。
由于考虑到漏电流的安全规范,电容CY的大小受到了限制,一般为2.2~33nF。
电源共模差模滤波
电源共模差模滤波
电源共模和差模滤波是在电路中常用的技术,目的是消除电源中的干扰信号对电路的影响。
电源共模滤波主要是对电源引入的共模噪声进行滤波处理,而电源差模滤波则是对电源的差模噪声进行处理。
共模噪声是指同时出现在两个不同信号引脚上的噪声信号,而差模噪声是指同时出现在两个信号引脚之间的噪声信号。
在电路中,这些噪声信号会引起测量误差、信号质量下降和系统故障等问题。
电源共模滤波主要是通过电容滤波器将共模噪声滤除,常使用的电容值为0.1uF至10uF。
另外,也常使用抑制电源中共模噪声的变压器和滤波电路。
电源差模滤波则需要使用差模滤波器来消除差模噪声,差模滤波器通常由一个差模放大器和滤波网络组成,可以有效地滤除差模噪声。
同时,在设计电路时,还要考虑到地线的布局和接地的质量,可以有效地降低共模和差模噪声的影响。
电源共模和差模滤波在电路设计中起着重要的作用,可以提高电路的稳定性和可靠性,保证信号的准确性和质量。
因此,在设计电路时,需要充分考虑电源共模和差模滤波的问题,以保证电路的正常运行。
- 1 -。
差模信号与共模信号的定义
差模信号与共模信号的定义差模信号和共模信号,这听上去像是两个在电路里打架的小家伙,其实背后大有文章。
想象一下吧,咱们的电器就像人一样,有些人喜欢独来独往,偶尔展现点个性,有些人则乐于融入大家庭,和谐共处。
差模信号就是那个特立独行的家伙,哎,他最爱的是将有用的信号从噪声中分离出来,像是一位艺术家在嘈杂的市场中寻找灵感。
他总是想尽办法把自己传达的信息清晰地送到终端设备,努力让我们听得懂、看得见,不受干扰。
想想吧,当你听音乐的时候,那些细腻的乐器声和清晰的人声,都是差模信号在努力工作。
他不怕噪声的侵扰,反而像是个斗士,勇敢地把有用的信息捞出来。
就像在一场热闹的聚会上,你总能找到一个在大声喧哗中依然能清晰讲笑话的人,这就是差模信号。
他把信息传递得明明白白,让我们听得更清楚,体验更好。
再来聊聊共模信号,这家伙就有点像是那个老好人,喜欢和大家打成一片,没什么特别的主见。
共模信号是指那些在电路中同时出现的相同信号,噪声和干扰也是如此,统统都一股脑地涌过来。
想象一下,电路就像是一个大派对,每个人都在同一个节奏下摇摆,不分你我。
共模信号的存在,虽然让我们觉得热闹,但有时却带来了些麻烦。
因为这些杂音,可能会把我们的信号搞得模糊不清,就像在聚会上聊得火热,突然有人插嘴,让原本清晰的话题变得复杂。
这两者之间的关系就像是江湖中的朋友,虽然有时意见不合,但总有互补之处。
差模信号在风中独舞,共模信号则在群体中寻找归属,他们共同存在,却又时常博弈。
咱们需要差模信号去提升信息的质量,而共模信号则在背后静静守护,确保电路的稳定性。
说到这里,我不禁想起一句话,“风雨同舟,齐心协力”,这不正是它们之间的关系吗?在实际应用中,我们往往要用一些技巧来平衡这两者。
有时候我们需要把差模信号放大,让它更加清晰;而有时,我们又需要抑制共模信号,减少那些干扰。
就像在生活中,我们需要找到自己的声音,但也得学会在嘈杂中找到安宁。
想要达到这个“终极目标”,我们就得依靠一些电路设计中的技术,比如差模放大器,来更好地处理这些信号。
共模和差模信号的定义及产生机理
共模和差模信号的定义及产生机理、电缆、绞线、变压器和扼流圈电磁干扰产生及其的抑制1 引言了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。
变压器、共模扼流圈和自耦变压器的端接法,对在局域网(LAN)和通信接口电路中减小共模干扰起关键作用。
共模噪音在用无屏蔽对绞电缆线的通信系统中,是引起射频干扰的主要因素,所以了解共模噪音将有利于更好地了解我们关心的磁性界面的电磁兼容论点。
本文的主要目的是阐述差模和共模信号的关键特性和共模扼流圈、自耦变压器端接法主要用途,以及为什么共模信号在无屏蔽对绞电缆线上会引起噪音发射。
在介绍这些信号特点的同时,还介绍了抑制一般噪音常用的方法。
2 差模和共模信号我们研究简单的两线电缆,在它的终端接有负载阻抗。
每一线对地的电压用符号V1和V2来表示。
差模信号分量是VDIFF,共模信号分量是VCOM,电缆和地之间存在的寄生电容是Cp。
其电路如图1所示,其波形如图2所示。
2.1 差模信号纯差模信号是:V1=-V2 (1)大小相等,相位差是180°VDIFF=V1-V2 (2)因为V1和V2对地是对称的,所以地线上没有电流流过。
所有的差模电流(IDIFF)全流过负载。
在以电缆传输信号时,差模信号是作为携带信息“想要”的信号。
局域网(LAN)和通信中应用的无线收发机的结构中安装的都是差模器件。
两个电压(V1+V2)瞬时值之和总是等于零。
2.2 共模信号纯共模信号是:V1=V2=VCOM (3)大小相等,相位差为0°V3=0 (4)共模信号的电路如图3所示,其波形如图4所示。
因为在负载两端没有电位差,所以没有电流流过负载。
所有的共模电流都通过电缆和地之间的寄生电容流向地线。
在以电缆传输信号时,因为共模信号不携带信息,所以它是“不想要”的信号。
两个电压瞬时值之和(V1+V2)不等于零。
相对于地而言,每一电缆上都有变化的电位差。
这变化的电位差就会从电缆上发射电磁波。
共模,差模 频段
共模和差模是信号传输中的两种方式,而频段则描述了信号传输的频率范围。
以下为您解释两者之间的区别:
1. 共模(Common Mode) 和差模(Differential Mode)
* 共模:当两个信号线以相同的幅度和相位变化时,这种传输方式被称为共模。
共模信号通常是由于电磁干扰(EMI) 引起的。
* 差模:当两个信号线以相反的幅度和相位变化时,这种传输方式被称为差模。
在数据线中,差模信号是由于实际数据变化引起的。
2. 频段:频段通常描述的是信号传输的频率范围。
例如,低频(LF)、中频(MF)、高频(HF)、甚高频(VHF)、特高频(UHF) 等,都是不同频率范围的描述。
这些频段可能会被用于不同的通信和数据传输系统。
例如,通信系统中的传输线可以设计为对差模信号有较低的阻抗,而对共模信号有较高的阻抗。
这样,差模信号可以更容易地通过传输线进行传输,而共模信号则会被抑制。
了解不同频段的特性和优势对于设计和优化通信系统是至关重要的。
在实际情况中,可能会有不同的信号模式和频段的具体要求或标准。
对于这些情况,通常需要根据相关的标准或规范进行设计和实施。
差模信号和共模信号和滤波器在电子技术中的应用
差模信号和共模信号和滤波器在电子技术中的应用1概述随着微电子技术的发展和应用,电磁兼容已成为研究微电子装置安全、稳定运行的重要课题。
抑制电磁干扰采用的技术主要包括滤波技术、布局与布线技术、屏蔽技术、接地技术、密封技术等。
而干扰源的传播途径分为传导干扰和辐射干扰。
传导噪声的频率范围很宽,从10kHz~30MHz,仅从产生干扰的原因出发,通过控制脉冲的上升与下降时间来解决干扰问题未必是一个好方法。
为此了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。
在抑制电磁干扰的各项技术中,采用滤波技术对局域网(LAN)、通信接口电路、电源电路中减少共模干扰起着关键作用。
所以掌握滤波器的工作原理和其实用电路的结构及其正确的应用,是微电子装置系统设计中的一个重要环节。
2差模信号和共模信号差模信号又称为常模、串模、线间感应和对称信号等,在两线电缆传输回路,每一线对地电压用符号V1和V2来表示。
差模信号分量是VDIFF。
纯差模信号是:V1=-V2;其大小相等,相位差180°;VDIFF=V1-V2,因为V1和V2对地是对称的,所以地线上没有电流流过,差模信号的电路如图1所示。
所有的差模电流(IDIFF)全流过负载。
差模干扰侵入往返两条信号线,方向与信号电流方向一致,其一种是由信号源产生,另一种是传输过程中由电磁感应产生,它和信号串在一起且同相位,这种干扰一般比较难以抑制。
共模信号又称为对地感应信号或不对称信号,共模信号分量是VCOM,纯共模信号是:VCOM=V1=V2;大小相等,相位差为0°;V3=0。
共模信号的电路如图2所示。
干扰信号侵入线路和接地之间,干扰电流在两条线上各流过二分之一,以地为公共回路;原则上讲,这种干扰是比较容易消除的。
在实际电路中由于线路阻抗不平衡,使共模信号干扰会转化为不易消除的串扰干扰。
共模、差模信号详解
传导式EMI技术(一)差模和共模传导式(conducted)EMI是指部分的电磁(射频)能量透过外部缆线(cable)、电源线、I/O互连介面,形成「传导波(propagation wave)」被传送出去。
本文将说明射频能量经由电源线传送时,所产生的「传导式杂讯」对PCB的影响,以及如何测量「传导式EMI」和FCC、CISPR的EMI限制规定。
差模和共模杂讯「传导式EMI」可以分成两类:差模(Differential mode;DM)和共模(Common mode;CM)。
差模也称作「对称模式(symmetric mode)」或「正常模式(normal mode)」;而共模也称作「不对称模式(asymmetric mode)」或「接地泄漏模式(ground leakage mode)」。
图一:差模和共模杂讯由EMI产生的杂讯也分成两类:差模杂讯和共模杂讯。
简言之,差模杂讯是当两条电源供应线路的电流方向互为相反时发生的,如图1(a)所示。
而共模杂讯是当所有的电源供应线路的电流方向相同时发生的,如图1(b)所示。
一般而言,差模讯号通常是我们所要的,因为它能承载有用的资料或讯号;而共模讯号(杂讯)是我们不要的副作用或是差模电路的「副产品」,它正是EMC的最大难题。
从图一中,可以清楚发现,共模杂讯的发生大多数是因为「杂散电容(stray capacitor)」的不当接地所造成的。
这也是为何共模也称作「接地泄漏模式」的原因。
图二:差模和共模杂讯电路在图二中,L是「有作用(Live)」或「相位(Phase)」的意思,N是「中性(Neutral)」的意思,E是「安全接地或接地线(Earth wire)」的意思;EUT是「测试中的设备(Equipment Under Test)」之意思。
在E下方,有一个接地符号,它是采用「国际电工委员会(International Electrotechnical Commission;IEC)」所定义的「有保护的接地(Protective Earth)」之符号(在接地线的四周有一个圆形),而且有时会以「PE」来注明。
共模和差模信号与滤波器
共模和差模信号与滤波器山东莱芜钢铁集团动力部周志敏(莱芜271104)1概述随着微电子技术的发展和应用,电磁兼容已成为研究微电子装置安全、稳定运行的重要课题。
抑制电磁干扰采用的技术主要包括滤波技术、布局与布线技术、屏蔽技术、接地技术、密封技术等。
而干扰源的传播途径分为传导干扰和辐射干扰。
传导噪声的频率范围很宽,从10kHz~30MHz,仅从产生干扰的原因出发,通过控制脉冲的上升与下降时间来解决干扰问题未必是一个好方法。
为此了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。
在抑制电磁干扰的各项技术中,采用滤波技术对局域网(LAN)、通信接口电路、电源电路中减少共模干扰起着关键作用。
所以掌握滤波器的工作原理和其实用电路的结构及其正确的应用,是微电子装置系统设计中的一个重要环节。
2差模信号和共模信号差模信号又称为常模、串模、线间感应和对称信号等,在两线电缆传输回路,每一线对地电压用符号V1和V2来表示。
差模信号分量是VDIFF。
纯差模信号是:V1=-V2;其大小相等,相位差180°;VDIFF=V1-V2,因为V1和V2对地是对称的,所以地线上没有电流流过,差模信号的电路如图1所示。
所有的差模电流(IDIFF)全流过负载。
差模干扰侵入往返两条信号线,方向与信号电流方向一致,其一种是由信号源产生,另一种是传输过程中由电磁感应产生,它和信号串在一起且同相位,这种干扰一般比较难以抑制。
共模信号又称为对地感应信号或不对称信号,共模信号分量是VCOM,纯共模信号是:VCOM=V1=V2;大小相等,相位差为0°;V3=0。
共模信号的电路如图2所示。
干扰信号侵入线路和接地之间,干扰电流在两条线上各流过二分之一,以地为公共回路;原则上讲,这种干扰是比较容易消除的。
在实际电路中由于线路阻抗不平衡,使共模信号干扰会转化为不易消除的串扰干扰。
3滤波器滤波器可以抑制交流电源线上输入的干扰信号及信号传输线上感应的各种干扰。
共模滤波器 原理
共模滤波器原理
共模滤波器是一种用于滤除信号中的共模干扰的电子滤波器。
共模干扰是指同时作用于信号源和接收器之间的噪声或干扰,其幅度和相位对两个信号线都具有相同的影响。
共模滤波器的原理是通过在信号线上添加一个滤波网络,将共模信号与差模信号进行分离。
滤波网络通常由电容、电感和电阻组成,其参数可以根据需要进行调整。
在共模滤波器中,相位和幅度差异较大的共模信号被滤波网络中的电感和电容吸收和衰减,而相位和幅度差异较小的差模信号则能够顺利地传输到接收器中。
具体而言,共模滤波器可以通过以下两种方式来工作:
1. 高频共模滤波器:这种滤波器主要用于滤除高频干扰信号。
它通过在信号线上添加电容和电感,形成一个高频回路,使高频共模信号能够通过回路而不被传输到接收器中。
2. 低频共模滤波器:这种滤波器主要用于滤除低频干扰信号。
它通过在信号线上添加电容和电阻,形成一个低频回路,使低频共模信号能够通过回路而不被传输到接收器中。
共模滤波器的设计取决于所需滤除的共模干扰频率范围和幅度,在设计过程中需要考虑滤波器的带宽、截止频率等参数。
总之,共模滤波器通过使用滤波网络来滤除共模干扰信号,以
提高信号质量和抑制干扰。
它在电子设备中的应用十分广泛,例如在通信系统、音频系统和计算机接口中常常会用到共模滤波器来提高信号的可靠性和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共模和差模信号与滤波器
山东莱芜钢铁集团动力部周志敏(莱芜271104)
1概述
随着微电子技术的发展和应用,电磁兼容已成为研究微电子装置安全、稳定运行的重要课题。
抑制电磁干扰采用的技术主要包括滤波技术、布局与布线技术、屏蔽技术、接地技术、密封技术等。
而干扰源的传播途径分为传导干扰和辐射干扰。
传导噪声的频率范围很宽,从10kHz~30MHz,仅从产生干扰的原因出发,通过控制脉冲的上升与下降时间来解决干扰问题未必是一个好方法。
为此了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。
在抑制电磁干扰的各项技术中,采用滤波技术对局域网(LAN)、通信接口电路、电源电路中减少共模干扰起着关键作用。
所以掌握滤波器的工作原理和其实用电路的结构及其正确的应用,是微电子装置系统设计中的一个重要环节。
2差模信号和共模信号
差模信号又称为常模、串模、线间感应和对称信号等,在两线电缆传输回路,每一线对地电压用符号V1和V2来表示。
差模信号分量是VDIFF。
纯差模信号是:V1=-V2;其大小相等,相位差180°;VDIFF=V1-V2,因为V1和V2对地是对称的,所以地线上没有电流流过,差模信号的电路如图1所示。
所有的差模电流(IDIFF)全流过负载。
差模干扰侵入往返两条信号线,方向与信号电流方向一致,其一种是由信号源产生,另一种是传输过程中由电磁感应产生,它和信号串在一起且同相位,这种干扰一般比较难以抑制。
共模信号又称为对地感应信号或不对称信号,共模信号分量是VCOM,纯共模信号是:VCOM=V1=V2;大小相等,相位差为0°;V3=0。
共模信号的电路如图2所示。
干扰信号侵入线路和接地之间,干扰电流在两条线上各流过二分之一,以地为公共回路;原则上讲,这种干扰是比较容易消除的。
在实际电路中由于线路阻抗不平衡,使共模信号干扰会转化为不易消除的串扰干扰。
3滤波器
滤波器可以抑制交流电源线上输入的干扰信号及信号传输线上感应的各种干扰。
滤波器可分为交流电源滤波器、信号传输线滤波器和去耦滤波器。
交流电源滤波器大量应用在开关电源的系统中,既可以抑制外来的高频干扰,还可以抑制开关电源向外发送干扰。
来自工频电源或雷击等瞬变干扰,经电源线侵入电子设备,这种干扰以共模和差模方式传播,可用电源滤波器滤除。
在滤波电路中,有很多专用的滤波元件(如铁氧体磁环),它们能够改善电路的滤波特性,恰当地设计和使用滤波器是抗干扰技术的重要手段。
例如开关电源通过传导和辐射出的噪声有差模和共模之分,差模噪声采用π型滤波器抑制,如图3(a)所示。
图3(a)中,LD为滤波扼流圈。
若要对共模噪声有抑制能力,应采用如图3(b)所示的滤波电路。
图3(b)中,LC为滤波扼流圈。
由于LC的两个线圈绕向一致,当电源输入电流流过LC时,所产生的磁场可以互相抵消,相当于没有电感效应,因此,它使用磁导率高的磁芯。
LC对共模噪声来说,相当于一个大电感,能有效地抑制共模传导噪声。
开关电源输入端分别对地并接的电容CY对共模噪声起旁路作用。
共模扼流圈两端并联的电容CX对共模噪声起抑制作用。
R为CX 的放电电阻,它是VDE 0806和IEC 380安全技术标准所推荐的。
图3(b)中各元件参数范围为:CX=0.1μF~2μF;
CY=2.0nF~33nF;LC=几~几十mH,随工作电流不同而取不同的参数值,如电流为25A时LC=1.8mH;电流为0 3A时,LC=47mH。
另外在滤波器元件选择中,一定要保证输入滤波器的谐振频率低于开关电源的工作频率。
图1差模信号
图2共模信号
图3 滤波器结构图
图4改进后的滤波器
图4所示的滤波器可进一步提高对差模噪声的抑制能力。
CX上除加有电源电压外,还会叠加上相线和零线之间存在的各种电磁干扰峰值电压。
为保证电容器失效后,不危及人身安全,并考虑到应用中最坏的情况,CX安全等级分为两类,即X1和X2类,X1等级用于设备的峰值电压大于1 2kV场合,X2类用于设备峰值电压小于1.2kV的一般场合。
另外,通过限制CY 的容量可达到控制在规定电压频率作用下,流过该电容器漏电流的大小。
若为装设在可移动设备上的滤波器,其交流漏电流应低于1mA,若为装设在位置固定且接地的设备上的滤波器的交流漏电流应小于3 5mA,再根据漏电流Ii的要求计算CY 的容量,其关系式为:
Ii=2πfCYU
式中:f——电源频率;
U——电源供电电压。
LD是用来进一步抑制差模噪声的差模扼流圈。
因为LD的引入将使电容CX充电电流减少,达到了抑制差模噪声的目的。
4滤波器的安装与布线
交流滤波器的安装及布线直接影响滤波器的性能,在其安装布线中应注意以下几点:
(1)滤波器应安装在机柜底部离设备电源入口尽量近的部位,并加以绝缘,不要让未经过滤波器的电源线在机柜内迂回,如果交流电源进入机柜内到电源滤波器之间有较长的距离时,则这段线应加以屏蔽。
(2)电源滤波器的外壳必须用截面积大的导线以最短的距离与机壳连为一体,并尽量使电源滤波器的接地点与机壳接地点保持最短的距离,输入输出线应靠近机壳底部布线以减少耦合,并将输入输出线严格分开,绝不允许将滤波器的输入线和输出线捆扎在一起或靠得很近,否则,当干扰频率达到数兆Hz以上时,这时输入输出线会相互耦合而降低其对高频干扰信号的衰减效果。
插座式交流电源滤波器从结构上实现了输入输出的隔离,对某些直接用机壳做屏蔽的电子设备来说,是一种较理想的抗干扰元件。
滤波器输出线应采用双绞线或屏蔽线,其屏蔽应可靠接地。
(3)机壳内的其它用电器(照明灯、信号灯等)或电磁开关等应从滤波器前端引线接到负载,或为这些干扰源单独加装滤波器。