热学(李椿+章立源+钱尚武)习题解答_第二章 气体分子运动论的基本概念

合集下载

热学教程第二章习题答案

热学教程第二章习题答案

热学教程第二章习题答案热学教程第二章习题答案热学是物理学中的一个重要分支,研究物体的热力学性质和热传导现象。

在热学教程的第二章中,我们学习了一些基本的热力学概念和定律,以及一些与热力学相关的计算方法。

本文将为大家提供热学教程第二章习题的答案,帮助大家更好地理解和掌握这些知识。

1. 问题:一个物体的热容量为100 J/℃,它的温度从20℃升高到40℃,需要吸收多少热量?答案:根据热容量的定义,热容量等于物体吸收或释放的热量与温度变化的乘积。

因此,吸收的热量等于热容量乘以温度变化。

在这个问题中,热容量为100 J/℃,温度变化为40℃-20℃=20℃,所以吸收的热量为100 J/℃ × 20℃ = 2000 J。

2. 问题:一个物体的热容量为50 J/℃,它的温度从25℃升高到75℃,需要吸收多少热量?答案:同样地,根据热容量的定义,吸收的热量等于热容量乘以温度变化。

在这个问题中,热容量为50 J/℃,温度变化为75℃-25℃=50℃,所以吸收的热量为50 J/℃ × 50℃ = 2500 J。

3. 问题:一个物体的热容量为200 J/℃,它吸收了5000 J的热量,温度升高了多少℃?答案:根据热容量的定义,吸收的热量等于热容量乘以温度变化。

在这个问题中,吸收的热量为5000 J,热容量为200 J/℃,所以温度变化为5000 J / 200 J/℃ = 25℃。

4. 问题:一个物体的热容量为80 J/℃,它吸收了2000 J的热量,温度升高了多少℃?答案:同样地,根据热容量的定义,温度变化等于吸收的热量除以热容量。

在这个问题中,吸收的热量为2000 J,热容量为80 J/℃,所以温度变化为2000 J / 80 J/℃ = 25℃。

通过以上习题的解答,我们可以看到热容量和温度变化之间的关系。

当热容量增大时,物体吸收或释放的热量相对较大;而当温度变化增大时,物体吸收或释放的热量也相对较大。

热学(李椿+章立源+钱尚武)习题解答_第1章 温度

热学(李椿+章立源+钱尚武)习题解答_第1章 温度

第一章温度1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。

1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。

解:根据已知冰点。

1-4用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。

当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。

试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。

解:依题给条件可得则故1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。

设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。

解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

热学习题思考题解题指导第二章第1,2节

热学习题思考题解题指导第二章第1,2节

第二章分子动理论的平衡态理论§ 基本概念和基本要求(一)了解分子动理论的主要特点。

(二)掌握概率的基本性质和求平均值和基本方法。

知道什么是概率分布函数。

(三)麦克斯韦速率分布(1)初步了解验证麦克斯韦速率分布的分子射线束实验。

(2)掌握麦克斯韦速率分布函数,知道它的物理意义,知道它的分布曲线是如何的,知道它的分布曲线是如何分别随了温度或者气体分子质量而改变的。

(3)熟练掌握平均速率、方均根速率、最概然速率这 3 个公式。

(四)麦克斯韦速度分布(1)理解速度空间概念。

※(2)知道麦克斯韦速度分布是任一分子处在速度空间中任一体积为dv x dv y dv z 的小立方体中的概率。

(3)掌握麦克斯韦速度分布。

※(4)知道如何利用麦克斯韦速度分布导出麦克斯韦速率分布。

* (5)了解相对于最概然速率的麦克斯韦速度分布和速率分布。

※(五)了解气体分子碰壁数及其应用。

(六)外力场中自由粒子的分布玻耳兹曼分布(1)掌握等温大气压强公式。

※(2)了解旋转体中悬浮粒子径向分布及其应用。

※(3)了解玻耳兹曼分布。

(七)能量均分定理(1)理解自由度与自由度数。

(2)掌握能量均分定理,知道对于常见的双原子分子一般都有 3 个平动自由度、2个转动自由度。

探(3)知道能量均分定理的局限性。

§解题指导和习题解答2. 2. 1 在图中列出某量 x 的值的四种不同的概率分布函数的图线。

试 对于每一种图线求出常数 A 的值,使在此值下该函数成为归一化函数。

然后 x 平均值。

xa xf (x)dx1 a xdx 0a2a aa2x 2 f (x)dx1 a2 .x dx2aa2aa30 xf(x)dxaa 0xf (x) dx a/2(b )归一化条件:(2a 0) A a A 1/2a概率分布函数为:1/2a 0 x 2a0 x 0; x 2a2计算x 和x 的平均值,在图(a )情形下还应该求出[a ( 所以概率分布函数为:a)] A1,A 1/2af(x)1/2aa ;1。

热学答案第二版(完整版)解析_李椿_章立源等著

热学答案第二版(完整版)解析_李椿_章立源等著

第一章温度1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。

1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。

解:根据已知冰点。

1-4用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。

当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。

试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。

解:依题给条件可得则故1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。

设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。

解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

热学习题答案

热学习题答案

热学习题答案This manuscript was revised by the office on December 10, 2020.第二章 气体分子运动论的基本概念2-1 目前可获得的极限真空度为10-13mmHg 的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27℃。

解: 由P=n K T 可知n =P/KT=)27327(1038.11033.1101023213+⨯⨯⨯⨯⨯-- =×109(m –3) 注:1mmHg=×102N/m 22-2 钠黄光的波长为5893埃,即×10-7m ,设想一立方体长×10-7m ,试问在标准状态下,其中有多少个空气分子。

解:∵P=nKT ∴PV=NKT 其中T=273K P=×105N/m 2∴N=623375105.52731038.1)10893.5(10013.1⨯=⨯⨯⨯⨯⨯=--KT PV 个 2-3 一容积为11.2L 的真空系统已被抽到×10-5mmHg 的真空。

为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。

若烘烤后压强增为×10-2mmHg ,问器壁原来吸附了多少个气体分子。

解:设烘烤前容器内分子数为N 。

,烘烤后的分子数为N 。

根据上题导出的公式PV = NKT 则有:)(0110011101T P T P K V KT V P KT V P N N N -=-=-=∆ 因为P 0与P 1相比差103数量,而烘烤前后温度差与压强差相比可以忽略,因此00T P 与 11T P相比可以忽略 1823223111088.1)300273(1038.11033.1100.1102.11⨯≅+⨯⨯⨯⨯⨯⨯⨯=⋅=∆---T P K N N 个2-4 容积为2500cm 3的烧瓶内有×1015个氧分子,有×1015个氮分子和×10-7g的氩气。

热学(李椿+立源+钱尚武)习题解答_第四章气体内的输运过程

热学(李椿+立源+钱尚武)习题解答_第四章气体内的输运过程

热学(李椿+⽴源+钱尚武)习题解答_第四章⽓体内的输运过程第四章⽓体内的输运过程4-1.氢⽓在,时的平均⾃由程为×m,求氢分⼦的有效直径。

解:由=得:=代⼊数据得:(m)4-2.氮分⼦的有效直径为,求其在标准状态下的平均⾃由程和连续两次碰撞间的平均时间。

解:=代⼊数据得:-(m)=代⼊数据得:=(s)4-3.痒分⼦的有效直径为3.6×m,求其碰撞频率,已知:(1)氧⽓的温度为300K,压强为1.0atm;(2)氧⽓的温度为300K,压强为1.0×atm解:由=得==代⼊数据得:=6.3×()()4-4.某种⽓体分⼦在时的平均⾃由程为。

(1)已知分⼦的有效直径为,求⽓体的压强。

(2)求分⼦在的路程上与其它分⼦的碰撞次数。

解:(1)由得:代⼊数据得:(2)分⼦⾛路程碰撞次数(次)4-5.若在下,痒分⼦的平均⾃由程为,在什么压强下,其平均⾃由程为?设温度保持不变。

解:由得4-6.电⼦管的真空度约为HG,设⽓体分⼦的有效直径为,求时单位体积内的分⼦数,平均⾃由程和碰撞频率。

解:(2)(3)若电⼦管中是空⽓,则4-7.今测得温度为压强为时,氩分⼦和氖分⼦的平均⾃由程分别为和,问:(1)氩分⼦和氖分⼦的有效直径之⽐是多少?(2)时,为多⼤?(3)时,为多⼤?解:(1)由得:(2)假设氩分⼦在两个状态下有效直径相等,由得:(3)设氖⽓分⼦在两个状态下有效直径相等,与(2)同理得:4-8.在⽓体放电管中,电⼦不断与⽓体分⼦相碰撞,因电⼦的速率远远⼤于⽓体分⼦的平均速率,所以后者可以认为是静⽌不动的。

设电⼦的“有效直径”⽐起⽓体分⼦的有效直径来可以忽略不计。

(1)电⼦与⽓体分⼦的碰撞截⾯为多⼤?(2)证明:电⼦与⽓体分⼦碰撞的平均⾃由程为:,n为⽓体分⼦的数密度。

解:(1)因为电⼦的有效直径与⽓体分⼦的有效直径相⽐,可以忽略不计,因⽽可把电⼦看成质点。

⼜因为⽓体分⼦可看作相对静⽌,所以凡中⼼离电⼦的距离等于或⼩于的分⼦都能与电⼦相碰,且碰撞截⾯为:(2)电⼦与⽓体分⼦碰撞频率为:(为电⼦平均速率)4-9.设⽓体分⼦的平均⾃由程为试证明:⼀个分⼦在连续两次碰撞之间所⾛路程⾄少为x的⼏率是解:根据(4.6)式知在个分⼦中⾃由程⼤于x的分⼦占总分⼦数的⽐率为=由⼏率概念知:对于⼀个分⼦,⾃由程⼤于x的⼏率为,故⼀个分⼦连续两次碰撞之间所⾛路程⾄少为x的⼏率是。

李椿热学答案及部分习题讲解部分习题的参考答案

李椿热学答案及部分习题讲解部分习题的参考答案

“热学”课程第一章作业习题说明:“热学”课程作业习题全部采用教科书(李椿,章立源,钱尚武编《热学》)里各章内的习题。

第一章习题:1,2,3[1],4,5,6,8,10,11,20,24[2],25[2],26[2],27,28,29,30,31,32,33. 注:[1] 与在水的三相点时[2] 设为等温过程第一章部分习题的参考答案1.(1) –40;(2) 574.5875;(3) 不可能.2.(1) 54.9 mmHg;(2) 371 K.3. 0.99996.4. 400.574.5. 272.9.6. a = [100/(X s–X i)]⋅(︒C/[X]), b = –[100 X i/(X s–X i)]︒C, 其中的[X]代表测温性质X的单位.8. (1) –205︒C;(2) 1.049 atm.10. 0.8731 cm, 3.7165 cm.11. (1) [略];(2) 273.16︒, 273.47︒;(3) 不存在0度.20. 13.0 kg⋅m-3.24. 由教科书137页公式可得p = 3.87⨯10-3 mmHg.25. 846 kg⋅m-3.26. 40.3 s (若抽气机每旋转1次可抽气1次) 或40.0 s (若抽气机每旋转1次可抽气2次, 可参阅教科书132页).27. 28.9, 1.29 kg⋅m-3.28. 氮气的分压强为2.5 atm, 氧气的分压强为1.0 atm, 混合气体的压强为3.5 atm.29. 146.6 cm-3.30. 7.159⨯10-3 atm, 71.59 atm, 7159 atm; 4.871⨯10-4 atm, 4.871 atm, 487.1 atm.31. 341.9 K.32. 397.8 K.33. 用范德瓦耳斯方程计算得25.39 atm, 用理想气体物态方程计算得29.35 atm.“热学”课程第二章作业习题第二章习题:1,3,4,5,6,7,8,9[3],10,11,12,13[4],16,17,18,19,20.注:[3] 设为绝热容器[4] 地球和月球表面的逃逸速度分别等于11.2 km⋅s-1和2.38 km⋅s-1第二章部分习题的参考答案1. 3.22⨯103 cm-3.3. 1.89⨯1018.4. 2.33⨯10-2 Pa.5. (1) 2.45⨯1025 m-3;(2) 1.30 kg⋅m-3;(3) 5.32⨯10-26 kg;(4) 3.44⨯10-9 m;(5) 6.21⨯10-21 J.6. 3.88⨯10-2 eV,7.73⨯106 K.7. 301 K.8. 5.44⨯10-21 J.9. 6.42 K, 6.87⨯104Pa (若用范德瓦耳斯方程计算) 或6.67⨯104 Pa (若用理想气体物态方程计算).10. (1) 10.0 m⋅s-1;(2) 7.91 m⋅s-1;(3) 7.07 m⋅s-111. (1) 1.92⨯103 m⋅s-1;(2) 483 m⋅s-1;(3) 193 m⋅s-1.12. (1) 485 m⋅s-1;(2) 28.9, 可能是含有水蒸气的潮湿空气.13. 1.02⨯104 K, 1.61⨯105 K; 459 K, 7.27⨯103 K.16. (1) 1.97⨯1025 m-3 或2.00⨯1025 m-3;(2) 由教科书81页公式可得3.26⨯1027m-2或3.31⨯1027 m-2;(3) 3.26⨯1027 m-2或3.31⨯1027 m-2;(4) 7.72⨯10-21 J, 6.73⨯10-20 J.17. 由教科书81页公式可得9.26⨯10-6 g⋅cm-2⋅s-1.18. 2.933⨯10-10 m.19. 3.913⨯10-2 L, 4.020⨯10-10 m, 907.8 atm.20. (1) (V1/3 -d)3;(2) (V1/3 -d)3 - (4π/3)d3;(3) (V1/3 -d)3 - (N A - 1) ⋅(4π/3)d3;(4)因V1/3>>d,且N A>>1, 故b = V - (N A/2)⋅{(V1/3 -d)3 +[(V1/3 -d)3 - (N A - 1)⋅(4π/3)d3]}⋅(1/N A) ≈ 4N A(4π/3)(d/2)3.“热学”课程第三章作业习题第三章习题:1,2,4,5[5],6,7,9,10,11,12,13,15,16,17,18,19,20[6],22[7],23,24,25[8],26,27,28,29,30.注:[5] 设p0 = 1.00 atm[6] 分子射线中分子的平均速率等于[9πRT/(8μ)]1/2[7] 设相对分子质量等于29.0[8] f(ε)dε = 2π-1/2(kT)-3/2ε1/2e-ε/kT dε第三章部分习题的参考答案1. (1) 3.18 m⋅s-1;(2) 3.37 m⋅s-1;(3) 4.00 m⋅s-1.2. 395 m⋅s-1, 445 m⋅s-1, 483 m⋅s-1.4. 3π/8.5. 4.97⨯1016个.6. 0.9534.7. (1) 0.830 %;(2) 0.208 %;(3) 8.94⨯10-7 %.9. [2m/(πkT)]1/2.10. (1) 198 m⋅s-1;(2) 1.36⨯10-2 g⋅h-1.11. [略].12. (1) [略];(2) 1/v0;(3) v0/2.13. (1) 2N/(3v0);(2) N/3;(3) 11v0/9.15. [略].16. [略].17. 0.24 %.18. (1) 0.5724N;(2) 0.0460N.19. n[kT/(2πm)]1/2⋅[1 + (mv2/2kT)]⋅exp[ –(mv2/2kT)]或[nv p /(2π1/2)] ⋅[1 + (v2/v p2)]⋅exp[ –(v2/v p2)].20. 0.922 cm, 1.30 cm.22. 2.30 km.23. 1955 m.24. kT/2.25. f(ε)dε = 2(π)-1/2(kT)-3/2ε1/2exp[ -ε/(kT)]dε, kT/2.26. 3.74⨯103 J⋅mol-1, 2.49⨯103 J⋅mol-1.27. 6.23⨯103 J⋅mol-1, 6.23⨯103 J⋅mol-1; 3.09⨯103 J⋅g-1, 223 J⋅g-1.28. 5.83 J⋅g-1⋅K-1.29. 6.61⨯10-26 kg和39.8.30. (1) 3, 3, 6;(2) 74.8 J⋅mol-1⋅K-1.“热学”课程第四章作业习题第四章习题:1,2,4,6[7],7,8,10,11,13[2],14,15,17,18[9],19,21.注:[2] 设为等温过程[7] 设相对分子质量等于29.0[9] CO2分子的有效直径等于4.63×10-10 m第四章部分习题的参考答案1. 2.74⨯10-10 m.2. 5.80⨯10-8 m, 1.28⨯10-10 s.4. (1)5.21⨯104 Pa; (2) 3.80⨯106 m-1.6. (1) 3.22⨯1017 m-3;(2) 7.77 m (此数据无实际意义);(3) 60.2 s-1 (此数据无实际意义).7. (1) 1.40;(2) 若分子有效直径与温度无关, 则得3.45⨯10-7 m;(3) 1.08⨯10-7 m.8. (1) πd2/4;(2) [略].10. (1) 3679段;(2) 67段;(3) 2387段;(4) 37段;(5) 不能这样问.11. 3.11⨯10-5 s.13. (1) 10.1 cm;(2) 60.8 μA.14. 3.09⨯10-10 m.15. 2.23⨯10-10 m.17. (1) 2.83;(2) 0.112;(3) 0.112.18. (1) –1.03 kg⋅m-4;(2) 1.19⨯1023 s-1;(3) 1.19⨯1023 s-1;(4) 4.74⨯10-10 kg⋅s-1.19. [略].21. 提示:稳定态下通过两筒间任一同轴柱面的热流量相同.“热学”课程第五章作业习题第五章习题:1,2,3,5,7,8,10,12,13,15,16,17,18,19,21,22[10],23,24[11],25,26,27,28,29,31,33[12],34,35.注:[10] 使压强略高于大气压(设当容器中气体的温度与室温相同时其压强为p1)[11] γp0A2L2/(2V)[12] 设为实现了理想回热的循环第五章部分习题的参考答案1.(1) 623 J, 623 J, 0;(2) 623 J, 1.04⨯103 J, –416 J;(3) 623 J, 0, 623 J.2.(1) 0, –786 J, 786 J;(2) 906 J, 0, 906 J;(3) –1.42⨯103 J, –1.99⨯103 J, 567 J.3.(1) 1.50⨯10-2 m3;(2) 1.13⨯105 Pa;(3) 239 J.4.(1) 1.20;(2) –63.3 J;(3) 63.3 J;(4) 127 J.7. (1) 265 K;(2) 0.905 atm;(3) 12.0 L.8. (1) –938 J;(2) –1.44⨯103 J.10. (1) 702 J;(2) 507 J.12. [略].13. [略].15. 2.47⨯107 J⋅mol-1.16. (1) h = CT + v0p + bp2;(2) C p = C, C V= C + (a2T/b)–ap.17. –46190 J⋅mol-1.18. 82.97 %.19. [略].21. 6.70 K, 33.3 cal, 6.70 K, 46.7 cal; 11.5 K, 80.0 cal, 0, 0.22. γ = ln(p1/p0)/ln(p1/p2).23. (1) [略];(2) [略];(3) [略].24. (1) [略];(2) [略].25. (1) p0V0;(2) 1.50 T0;(3) 5.25 T0;(4) 9.5 p0V0.26. (1) [略];(2) [略];(3) [略].27. 13.4 %.28. (1) A→B为吸热过程, B→C为放热过程;(2) T C = T(V1/V2)γ– 1, V C = V2;(3) 不是;(4) 1 – {[1 – (V1/V2)γ– 1]/[(γ– 1)ln(V2/V1)]}.29. [略].31. 15.4 %.33. [略].34. [略].35. [略].“热学”课程第六章作业习题第六章习题:2,3,5,9,10,11,12[13],13,15,16,19.注:[13] 设为一摩尔第六章部分习题的参考答案2. 1.49⨯104 kcal.3. (1) 473 K;(2) 42.3 %.5. 93.3 K.9. (1) [略];(2) [略];(3) [略].10. [略].11. [略].12. [略].13. [略].15. ∆T = a (v2-1–v1-1)/C V = –3.24 K.16. [略].19. –a(n A–n B)2/[2C V V(n A+ n B)].“热学”课程第七章作业习题第七章习题:8.第七章部分习题的参考答案8. 提示:在小位移的情况下, exp[ -(cx2-gx3-fx4)/(kT)]≈ exp[ -cx2/(kT)]⋅{1 + [gx3/(kT)]}⋅{1 + [fx4/(kT)]}≈ exp[ -cx2/(kT)]⋅{1 + [gx3/(kT)] + [fx4/(kT)]}.“热学”课程第八章作业习题第八章习题:1,2,3,4,6,7[14],8,10.注:[14] 设θ= 0第八章部分习题的参考答案1. 2.19⨯108 J.2. 7.24⨯10-2 N⋅m-1.3. 1.29⨯105 Pa.4. 1.27⨯104 Pa.6. f = S[α(R1-1 + R2-1) – (ρgh/2)]= {Sα⋅[2cos(π–θ)]/[2(S/π)1/2 ⋅cos(π–θ) + h–h sin(π–θ)]} +{Sα⋅[2cos(π–θ)]/h} – (Sρgh/2)≈Sα⋅[2cos(π–θ)/h]= 25.5 N.7. 0.223 m.8. 2.98⨯10-2 m.10. (1) 0.712 m; (2) 9.60⨯104 Pa; (3) 2.04⨯10-2 m.“热学”课程第九章作业习题第九章习题:1,2,4[15],6[5],7,8,9[16],11,12,13[17].注:[5] 设p0 = 1.00 atm[15] 水蒸气比体积为1.671 m3/kg[16] 100℃时水的饱和蒸气压为1.013×105Pa,而汽化热为2.38×106 J⋅kg -1,由题8中的[17] 23.03 - 3754/T第九章部分习题的参考答案1. 3.21⨯103 J.2. (1) 6.75⨯10-3 m3;(2) 1.50⨯10-5 m3;(3) 液体体积为1.28⨯10-5 m3, 气体体积为9.87⨯10-4 m3.4. 373.52 K.6. 1.36⨯107 Pa.7. [略].8. [略].9. 1.71⨯103 Pa.11. 4.40⨯104 J⋅mol-1.12. (1) 52.0 atm;(2) 157 K.13. (1) 44.6 mmHg, 195 K;(2) 3.121⨯104 J⋅mol-1, 2.547⨯104 J⋅mol-1, 5.75⨯103 J⋅mol-1.。

大学热学(李椿+章立源+钱尚武)习题解答第二章气体分子运动论基本概念

大学热学(李椿+章立源+钱尚武)习题解答第二章气体分子运动论基本概念

第二章 气体分子运动论的基本概念2-1目前可获得的极限真空度为10-13mmHg 的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27℃。

解: 由P=n K T 可知n =P/KT=)27327(1038.11033.1101023213+⨯⨯⨯⨯⨯-- =3.21×109(m –3) 注:1mmHg=1.33×102N/m 22-2钠黄光的波长为5893埃,即5.893×10-7m ,设想一立方体长5.893×10-7m , 试问在标准状态下,其中有多少个空气分子。

解:∵P=nKT ∴PV=NKT 其中T=273K P=1.013×105N/m 2∴N=623375105.52731038.1)10893.5(10013.1⨯=⨯⨯⨯⨯⨯=--KT PV 个 2-3 一容积为11.2L 的真空系统已被抽到1.0×10-5mmHg 的真空。

为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。

若烘烤后压强增为1.0×10-2mmHg ,问器壁原来吸附了多少个气体分子。

解:设烘烤前容器内分子数为N 。

,烘烤后的分子数为N 。

根据上题导出的公式PV = NKT 则有:)(0110011101T P T P K V KT V P KT V P N N N -=-=-=∆ 因为P 0与P 1相比差103数量,而烘烤前后温度差与压强差相比可以忽略,因此T P 与11T P 相比可以忽略 1823223111088.1)300273(1038.11033.1100.1102.11⨯≅+⨯⨯⨯⨯⨯⨯⨯=⋅=∆---T P K N N 个2-4 容积为2500cm 3的烧瓶内有1.0×1015个氧分子,有4.0×1015个氮分子和3.3×10-7g的氩气。

设混合气体的温度为150℃,求混合气体的压强。

热学(李椿+章立源+钱尚武)习题解答_第1章 温度知识分享

热学(李椿+章立源+钱尚武)习题解答_第1章 温度知识分享

热学(李椿+章立源+钱尚武)习题解答_第1章温度第一章温度1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。

1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。

解:根据已知冰点。

1-4用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。

当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。

试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。

解:依题给条件可得则故1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。

设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。

解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

热学(李椿+章立源+钱尚武)习题解答-第-三-章--气体分子热运动速率和能量统计分布律

热学(李椿+章立源+钱尚武)习题解答-第-三-章--气体分子热运动速率和能量统计分布律

第 三 章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。

解:s m RTV P /395103230031.8223=⨯⨯⨯==-μs m RTV /446103214.330031.8883=⨯⨯⨯⨯==-πμs m RTV/483103230031.83332=⨯⨯⨯==-μ3-3 计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和10000K 。

解:μRTV P 2=代入数据则分别为:T=100K 时 s m V P /1028.22⨯= T=1000K 时 s m V P /1021.72⨯= T=10000K 时 s m V P /1028.23⨯=3-4 某种气体分子在温度T 1时的方均根速率等于温度T 2时的平均速率,求T 2/T 1。

解:因μRTV32=πμ28RT V =由题意得:μRT3πμ28RT =∴T 2/T 1=83π3-5 求0℃时1.0cm 3氮气中速率在500m/s 到501m/s 之间的分子数(在计算中可将dv 近似地取为△v=1m/s )解:设 1.0cm 3氮气中分子数为N ,速率在500~501m/s 之间内的分子数为△N ,由麦氏速率分布律:△ N=V V e KTmN V KT m∆⋅⋅⋅-22232)2(4ππ∵ V p2=2KTm,代入上式 △N=VV V ppe V V VN∆--⋅⋅222214ρπ因500到501相差很小,故在该速率区间取分子速率V =500m/s , 又s m V P /402102827331.823≅⨯⨯⨯=- △V=1m/s (vv p =1.24)代入计算得:△N=1.86×10-3N 个3-6 设氮气的温度为300℃,求速率在3000m/s 到3010m/s 之间的分子数△N 1与速率在1500m/s 到1510m/s 之间的分子数△N 2之比。

热学第二章课后答案

热学第二章课后答案

热学第二章课后答案
1. 什么是热力学第一定律?它的表述方式是什么?
热力学第一定律是能量守恒定律,表述为:能量不会自发消失
或产生,只会转化为其他形式或从一个物体传递到另一个物体。

2. 什么是“内能”?它的符号是什么?
内能是指一个物体分子或原子微观热运动所带的能量总和,符
号为E。

3. 什么是“功”,它的符号是什么?以及什么情况下它的值为正,什么情况下它的值为负?
功是指一个力在物体上产生的位移,并且力和位移在同一方向上,符号为W。

当物体受到的力和移动方向相同时,功就是正的;当物体受到的力和移动方向相反时,功就是负的。

4. 什么情况下物体的内能增加?
当物体受到外部做功的作用,或通过吸收热能,其内能会增加。

5. 什么是外界对物体做功所需的最小力?
外界对物体做功所需的最小力,是物体承受的重力和加速度所
决定的。

6. 什么是“焓变”,以及它常用的符号是什么?
焓变指的是在等压过程中,系统由初态到末态时,因吸收或放
出能量所引起的焓值的变化,符号为ΔH。

7. 什么是“焦耳定律”?
焦耳定律是热力学中的基本定律,指的是物体所吸收的热量正
比于物体的质量,以及其温度的变化。

8. 什么是“热容”?
热容指的是物体在温度变化下,需要吸收或释放的热量与温度变化的比例。

9. 什么是“定容热容”?
定容热容指的是物体在定容状态下,吸收或释放的热量与温度变化的比例。

10. 什么是“定压热容”?
定压热容是指在恒定压力下,物体吸收或释放的热量与温度变化的比例。

以上是热学第二章的课后答案,希望可以帮助大家更好地掌握课程知识。

秦允豪《热学》答案+思考题答案

秦允豪《热学》答案+思考题答案

(2)设 解:根据
,当摩尔体积增大到 时,气体的温度是多高?
理想气体状态方程
和过程方程

(1)
(2) 而
,则
1-24 图 1-24 为测量低气压的麦克劳压力计的示意图,使压力计与待测容器相连,把贮有水 银的瓶R缓缓上提,水银进入容器B,将B中的气体与待测容器中的气体隔开。继续上提瓶R,
水银就进入两根相同的毛细管 和 内,当 中水银面的高度差
降到
,忽略抽气过程中压强的变化而近似认为 ,
当抽气机转过两转后,压强为
当抽气机转过n转后,压强 设当压强降到 时,所需时间为 分,转数
1-27 按重量计,空气是由
的氮,
的氧,约 的氩组成的(其余成分很少,
可以忽略),计算空气的平均分子量及在标准状态下的密度。
解:设总质量为M的空气中,氧、氮、氩的质量分别为
,密度为 ,
的氧气的温度,已知氧气的范德瓦耳斯常数 。
解:设氧气的质量为 ,所占的体积为 ,则有
根据范氏方程 则有
代入数据得:
1-33 用范德瓦耳斯方程计算密闭于容器内质量
的二氧化碳的压强。已知容器的
容积
,气体的温度
。试计算结果与用理想气体状态方程计算结果相比较。
已知二氧化碳的范德瓦斯常数为


解:(1)应用范氏方程计算:
(1)用温度计测量 300K 的温度时,气体的压强是多少?
(2)当气体的压强为 68mmHg 时,待测温度是多少?
解:对于定容气体温度计可知:
(1)
(2)
1-3 用定容气体温度计测得冰点的理想气体温度为 273.15K,试求温度计内的气体在冰点时 的压强与水的三相点时压强之比的极限值。

热学(李椿章立源钱尚武)习题解答第三章气体分子热运动速率和能量的统计分布律.doc

热学(李椿章立源钱尚武)习题解答第三章气体分子热运动速率和能量的统计分布律.doc

第 三 章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:粒子数 N 24682 i速率 V i ( m/s ) 1.00 2.00 3.00 4.005.00试求 (1) 平均速率 V ;(2)方均根速率V2Vp3解:(1)平均速率:2 1.00 4 2.006 3.00 8 4.002 5.00(m/s)V4 6823.18 2(2) 方均根速率2N i V i 2V3. 37 (m/s)N i3-2 计算 300K 时,氧分子的最可几速率、平均速率和方均根速率。

解:2 RT2 8 . 31300m / sV P3210 3 395V8 RT8 8.31 300446 m / s3 .143210323 RT3 8 .31 300 483 m / sV321033-3计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和 10000K 。

解:V P2 RT代入数据则分别为:T=100K 时 V P 2.28 10 2 m / s T=1000K 时 V P 7 .21 10 2 m / s T=10000K 时V P2.28 10 3 m / s3-4 某种气体分子在温度 T 1 时的方均根速率等于温度 T 2 时的平均速率,求 T 2/T 1。

解:因23 RT8RT 2VV由题意得:3 RT 8RT 2∴T 2/T 1=383-5 求 0℃时 1.0cm 3 氮气中速率在 500m/s 到 501m/s 之间的分子数(在计算中可将 dv 近似地取为△ v=1m/s )解:设 1.0cm 3 氮气中分子数为 N ,速率在 500~501m/s 之间内的分子数为△ N ,由麦氏速率分布律:m 3 m V2△N 4 () 2 e 2 KT V 2V2 KT2KT∵ V p2= m ,代入上式△N=4 NV1V22eV pV2 VV p2因 500 到 501 相差很小,故在该速率区间取分子速率 V =500m/s ,28 .31 273 402 m / s△V=1m/s又 V P2810 3v- 3(v p =1.24 )代入计算得:△ N=1.86×10 N 个3-6 设氮气的温度为 300℃,求速率在 3000m/s 到 3010m/s 之间的分子数△ N 1与速率在 1500m/s 到 1510m/s 之间的分子数△ N 2 之比。

李椿 热学 思考题答案

李椿 热学 思考题答案

部分思考题解答1、气体的平衡状态有何特征?当气体处于平衡状态时还有分子热运动吗?与力学中所指的平衡有何不同?实际上能不能达到平衡态?答;系统处于平衡状态时,系统和外界没有能量交换,内部也没有化学变化等任何形式的能量转换,系统的宏观性质不随时间变化。

对气体来说,系统状态的宏观参量有确定数值,系统内部不再有扩散、导热、电离或化学反应等宏观物理过程发生。

气体处于平衡态时,组成系统的分子仍在不停地运动着,只不过分子运动的平均效果不随时间变化,表现为宏观上的密度均匀,温度均匀和压强均匀。

与力学中的平衡相比较,这是两个不同的理想概念。

力学中的平衡是指系统所受合外力为零的单纯静止或匀速运动问题。

而热力学中的平衡态是指系统的宏观性质不随时间变化。

但组成系统的分子却不断地处于运动之中,只是与运动有关的统计平均量不随时间改变,所以这是一种热动平衡。

平衡态是对一定条件下的实际情况的概括和抽象。

实际上,绝对的完全不受外界条件变化影响的平衡状态并不存在。

2、一金属杆一端置于沸水中,另一端和冰接触,当沸水和冰的温度维持不变时,则金属杆上各点的温度将不随时间而变化。

试问金属杆这时是否处于平衡态?为什么?答:金属杆就是一个热力学系统。

根据平衡态的定义,虽然杆上各点的温度将不随时间而改变,但是杆与外界(冰、沸水)仍有能量的交换。

一个与外界不断地有能量交换的热力学系统所处的状态,显然不是平衡态。

3、水银气压计中上面空着的部分为什么要保持真空?如果混进了空气,将产生什么影响?能通过刻度修正这一影响吗?答:只有气压计上面空着的部分是真空,才能用气压计水银柱高度直接指示所测气体的压强。

如果气压计内混进了一些空气,则这种气体也具有一定的压强。

这时,水银柱高度所指示的压强将小于所测气体的真实压强,而成了待测气体与气压计内气体的压强之差。

能否在刻度时扣除漏进气体的压强,而仍由水银柱的高度来直接指示待测气体的压强呢?也不行。

因为水银气压计内部气体的压强随着温度和体积的变化而变化,对不同压强和不同温度的待测气体测量时,内部气体的压强是不同的。

热学(李椿+章立源+钱尚武)习题解答_第 三 章 气体分子热运动速率和能量的统计分布律

热学(李椿+章立源+钱尚武)习题解答_第 三 章  气体分子热运动速率和能量的统计分布律

第 三 章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。

解:s m RTV P /395103230031.8223=⨯⨯⨯==-μs m RTV /446103214.330031.8883=⨯⨯⨯⨯==-πμs m RTV/483103230031.83332=⨯⨯⨯==-μ3-3 计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和10000K 。

解:μRTV P 2=代入数据则分别为:T=100K 时 s m V P /1028.22⨯= T=1000K 时 s m V P /1021.72⨯= T=10000K 时 s m V P /1028.23⨯=3-4 某种气体分子在温度T 1时的方均根速率等于温度T 2时的平均速率,求T 2/T 1。

解:因μRTV32=πμ28RT V =由题意得:μRT3πμ28RT =∴T 2/T 1=83π3-5 求0℃时1.0cm 3氮气中速率在500m/s 到501m/s 之间的分子数(在计算中可将dv 近似地取为△v=1m/s )解:设1.0cm 3氮气中分子数为N ,速率在500~501m/s 之间内的分子数为△N ,由麦氏速率分布律:△ N=V V e KTm N V KTm∆⋅⋅⋅-22232)2(4ππ ∵ V p2= 2KTm ,代入上式△N=VV V ppe V V VN∆--⋅⋅222214ρπ因500到501相差很小,故在该速率区间取分子速率V =500m/s , 又s m V P /402102827331.823≅⨯⨯⨯=- △V=1m/s (vv p =1.24)代入计算得:△N=1.86×10-3N 个3-6 设氮气的温度为300℃,求速率在3000m/s 到3010m/s 之间的分子数△N 1与速率在1500m/s 到1510m/s 之间的分子数△N 2之比。

热学第二章

热学第二章

范德瓦尔斯由于在研 究气态和液态方程方 面的贡献, 面的贡献, 获1910 年诺贝尔物理学奖。 年诺贝尔物理学奖。 范德瓦尔斯 (1837-1923) 荷兰人
2 p = nε 3
微观量的统计平均值
分子平均平动动能
1 mv2 ε = k 2
压强是大量分子对时间、 压强是大量分子对时间、对面积的统计平均结果 .
§3. 温度的微观解释
一、温度的微观解释
P = n kT
ε=
3 kT 2
平均平动动能只与温度有关
k=R/NA,玻尔兹曼常数 温度是统计概念,只能用于大量分子, 温度是统计概念,只能用于大量分子,温度标 志物体内部分子无规运动的剧烈程度。 志物体内部分子无规运动的剧烈程度。
液体扩散现象: 清水中滴入红墨水, 液体扩散现象 清水中滴入红墨水,一 段时间后全部变红. 段时间后全部变红 扩散现象 固体扩散: 两金属板压在一起, 固体扩散 两金属板压在一起,经过较 长时间接触面彼此有各自的成份. 长时间接触面彼此有各自的成份 扩散现象: 扩散现象:说明了物体内的分子在永 不停息地作无规则运动; 不停息地作无规则运动 扩散现象和温度有关,温度越高, 扩散现象和温度有关,温度越高,扩 散进行得越快。 散进行得越快。 布朗运动: 布朗运动:证实分子作无规则运动的 著名实验。 著名实验。
∞ r
dE p dr
r0
Ep0
r
•一种理解指分子的大小 一种理解指分子的大小 •两分子质心的最短距离 两分子质心的最短距离--两分子质心的最短距离 分子的有效直径
分子互作用势能曲线
分子直径
§5. 范德瓦耳斯气体的压强
理想气体: 理想气体: T 较高,p较小时,满足理想气体的物态方程; 较高, 较小时 满足理想气体的物态方程; 较小时, 真实气体: 真实气体: T较低 p较大时 不满足理想气体的物态方程。 T较低,p较大时,不满足理想气体的物态方程。 较低, 较大时, 找真实气体物态方程的途径: 找真实气体物态方程的途径: 从实验中总结出经验的或半经验的公式; 从实验中总结出经验的或半经验的公式; 修改理想气体模型,在理论上导出物态方程。 修改理想气体模型,在理论上导出物态方程。 1873年,范德瓦尔斯用简洁的物理模型导出了真实气体 年 的物态方程 :范德瓦尔斯方程

热学课后习题答案

热学课后习题答案

第一章温度1—1 定容气体温度计得测温泡浸在水得三相点槽内时,其中气体得压强为50mmHg。

(1)用温度计测量300K得温度时,气体得压强就是多少?(2)当气体得压强为68mmHg时,待测温度就是多少?解:对于定容气体温度计可知:(1)(2)1—3用定容气体温度计测量某种物质得沸点。

原来测温泡在水得三相点时,其中气体得压强;当测温泡浸入待测物质中时,测得得压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点得理想气体温度。

解:根据从理想气体温标得定义:依以上两次所测数据,作T—P图瞧趋势得出时,T约为400、5K亦即沸点为400、5K.题1-4图1-6水银温度计浸在冰水中时,水银柱得长度为4.0cm;温度计浸在沸水中时,水银柱得长度为24.0cm。

(1)在室温时,水银柱得长度为多少?(2)温度计浸在某种沸腾得化学溶液中时,水银柱得长度为25.4cm,试求溶液得温度。

解:设水银柱长与温度成线性关系:当时,代入上式当,(1)(2)1-14水银气压计中混进了一个空气泡,因此它得读数比实际得气压小,当精确得气压计得读数为时,它得读数只有。

此时管内水银面到管顶得距离为。

问当此气压计得读数为时,实际气压应就是多少、设空气得温度保持不变。

题1—15图解:设管子横截面为S,在气压计读数为与时,管内空气压强分别为与,根据静力平衡条件可知,由于T、M不变根据方程有,而1-25一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器得容积,问经过多少时间后才能使容器得压强由降到。

解:设抽气机每转一转时能抽出得气体体积为,则当抽气机转过一转后,容器内得压强由降到,忽略抽气过程中压强得变化而近似认为抽出压强为得气体,因而有,当抽气机转过两转后,压强为当抽气机转过n转后,压强设当压强降到时,所需时间为分,转数1-27把得氮气压入一容积为得容器,容器中原来已充满同温同压得氧气。

热学(李椿 章立源 钱尚武)习题解答_第 三 章 气体分子热运动速率和能量的统计分布律分析

热学(李椿 章立源 钱尚武)习题解答_第 三 章  气体分子热运动速率和能量的统计分布律分析

第 三 章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。

解:s m RTV P /395103230031.8223=⨯⨯⨯==-μs m RTV /446103214.330031.8883=⨯⨯⨯⨯==-πμs m RTV/483103230031.83332=⨯⨯⨯==-μ3-3 计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和10000K 。

解:μRTV P 2=代入数据则分别为:T=100K 时 s m V P /1028.22⨯= T=1000K 时 s m V P /1021.72⨯= T=10000K 时 s m V P /1028.23⨯=3-4 某种气体分子在温度T 1时的方均根速率等于温度T 2时的平均速率,求T 2/T 1。

解:因μRTV32=πμ28RT V =由题意得:μRT3πμ28RT =∴T 2/T 1=83π3-5 求0℃时1.0cm 3氮气中速率在500m/s 到501m/s 之间的分子数(在计算中可将dv 近似地取为△v=1m/s )解:设1.0cm 3氮气中分子数为N ,速率在500~501m/s 之间内的分子数为△N ,由麦氏速率分布律:△ N=V V e KTm N V KTm∆⋅⋅⋅-22232)2(4ππ∵ V p2= 2KTm ,代入上式△N=VV V ppe V V VN∆--⋅⋅222214ρπ因500到501相差很小,故在该速率区间取分子速率V =500m/s , 又s m V P /402102827331.823≅⨯⨯⨯=- △V=1m/s (vv p =1.24)代入计算得:△N=1.86×10-3N 个3-6 设氮气的温度为300℃,求速率在3000m/s 到3010m/s 之间的分子数△N 1与速率在1500m/s 到1510m/s 之间的分子数△N 2之比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 气体分子运动论的基本概念2-1目前可获得的极限真空度为10-13mmHg 的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27℃。

解: 由P=n K T 可知n =P/KT=)27327(1038.11033.1101023213+⨯⨯⨯⨯⨯-- =3.21×109(m –3) 注:1mmHg=1.33×102N/m 22-2钠黄光的波长为5893埃,即5.893×10-7m ,设想一立方体长5.893×10-7m , 试问在标准状态下,其中有多少个空气分子。

解:∵P=nKT ∴PV=NKT 其中T=273K P=1.013×105N/m 2∴N=623375105.52731038.1)10893.5(10013.1⨯=⨯⨯⨯⨯⨯=--KT PV 个 2-3 一容积为11.2L 的真空系统已被抽到1.0×10-5mmHg 的真空。

为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。

若烘烤后压强增为1.0×10-2mmHg ,问器壁原来吸附了多少个气体分子。

解:设烘烤前容器内分子数为N 。

,烘烤后的分子数为N 。

根据上题导出的公式PV = NKT 则有:)(0110011101T P T P K V KT V P KT V P N N N -=-=-=∆ 因为P 0与P 1相比差103数量,而烘烤前后温度差与压强差相比可以忽略,因此T P 与11T P 相比可以忽略 1823223111088.1)300273(1038.11033.1100.1102.11⨯≅+⨯⨯⨯⨯⨯⨯⨯=⋅=∆---T P K N N 个2-4 容积为2500cm 3的烧瓶内有1.0×1015个氧分子,有4.0×1015个氮分子和3.3×10-7g的氩气。

设混合气体的温度为150℃,求混合气体的压强。

解:根据混合气体的压强公式有 PV=(N 氧+N 氮+N 氩)KT其中的氩的分子个数:N 氩=15231001097.410023.640103.3⨯=⨯⨯⨯=-N M 氩氩μ(个)∴ P=(1.0+4.0+4.97)10152231033.225004231038.1--⨯=⨯⨯⋅Pa 41075.1-⨯≅mmHg2-5一容器内有氧气,其压强P=1.0atm,温度为t=27℃,求 (1) 单位体积内的分子数:(2) 氧气的密度; (3) 氧分子的质量; (4) 分子间的平均距离; (5) 分子的平均平动能。

解:(1) ∵P=nKT∴n=252351045.23001038.110013.10.1⨯=⨯⨯⨯⨯=-KT P m -3(2) l g RTP /30.1300082.0321=⨯⨯==μρ(3)m 氧=23253103.51045.2103.1-⨯≅⨯⨯=n ρg(4) 设分子间的平均距离为d ,并将分子看成是半径为d/2的球,每个分子的体积为v 0。

V 0=336)2(34d d ππ= ∴71931028.41044.266-⨯=⨯⨯==ππn d cm (5)分子的平均平动能ε为:ε 14161021.6)27273(1038.12323--⨯=+⨯⨯==KT (尔格)2-6 在常温下(例如27℃),气体分子的平均平动能等于多少ev?在多高的温度下,气体分子的平均平动能等于1000ev?解:(1)21231021.63001038.12323--⨯=⨯⨯==KT ε(J ) ∵leV=1.6×10-19J∴219211088.3106.11021.6---⨯=⨯⨯=ε(ev) (2)T=K K 623193107.71038.13106.110232⨯≅⨯⨯⨯⨯⨯=--ε2-7 一摩尔氦气,其分子热运动动能的总和为3.75×103J,求氦气的温度。

:解:KT N E A 23==ε ∴K R E KN E T A 30131.831075.3232323≅⨯⨯⨯===2-8质量为10Kg 的氮气,当压强为1.0atm,体积为7700cm 3时,其分子的平均平动能是多少? 解: ∵MRPV T μ=而 kt 23=ε ∴242340104.510022.610228770010013.132323--⨯≅⨯⨯⨯⨯⨯⨯⨯===MN PV MRKPV μμεJ2-9 质量为50.0g ,温度为18.0℃的氦气装在容积为10.0L 的封闭容器内,容器以v=200m/s 的速率作匀速直线运动。

若容器突然静止,定向运动的动能全部转化为分子热运动的动能,则平衡后氦气的温度和压强将各增大多少? 解:由于容器以速率v 作定向运动时,每一个分子都具有定向运动,其动能等于221mv ,当容器停止运动时,分子定向运动的动能将转化为分子热运动的能量,每个分子的平均热运动能量则为12232123KT mv KT +=∴△T=KR v K mv T T 42.631.8310410433432212=⨯⨯⨯⨯===--μ 因为容器内氦气的体积一定,所以TP T T P P T P T P ∆∆=--==12121122 故△P=T T P ∆11,又由11RT M V P μ= 得:V RT MP /11μ=∴△P=131058.61010442.6082.005.0--⨯≅⨯⨯⨯⨯=∆V T MR μ(atm )2-10 有六个微粒,试就下列几种情况计算它们的方均根速率:(1)六个的速率均为10m/s ;(2) 三个的速率为5m/s,另三个的为10m/s ; (3) 三个静止,另三个的速率为10m/s 。

解:(1)s m V/10610622=⨯=(2)s m V/9.7653103222=⨯+⨯=(3)s m V/1.7610322=⨯=2-11 试计算氢气、氧气和汞蒸气分子的方均根速率,设气体的温度为300K ,已知氢气、氧气和汞蒸气的分子量分别为2.02、32.0和201。

解:sm RTV H H /109.110371002.230081.333353222⨯≅⨯=⨯⨯⨯==-μ232021083.4103230031.83⨯≅⨯⨯⨯=-V m/s s m V Hg /1093.11020130031.83232⨯≅⨯⨯⨯=-2-12 气体的温度为T = 273K,压强为 P=1.00×10-2atm,密度为ρ=1.29×10-5g(1) 求气体分子的方均根速率。

(2) 求气体的分子量,并确定它是什么气体。

解:(1)s m PRTV/485332===ρμ(2)mol g mol kg PRTn PN A /9.28/109.283=⨯===-ρμ m=28.9该气体为空气2-13 若使氢分子和氧分子的方均根速率等于它们在月球表面上的逃逸速率,各需多高的温度?解:在地球表面的逃逸速率为 V 地逸=s m gR /1012.11063708.92243⨯≅⨯⨯⨯=地在月球表面的逃逸速率为 V 月逸=sm R g R g /104.210370.627.08.917.0227.017.02235⨯≅⨯⨯⨯⨯⨯=⨯⨯=地地月月又根据μRTV32=∴Rv T 32μ=当s m V/1012.142⨯=时,则其温度为T H2=KRv H 4243221001.131.831012.11023⨯≅⨯⨯⨯⨯=⋅-)(地逸μ T O2=KRv O 524322106.131.831012.110323⨯≅⨯⨯⨯⨯=⋅-)(地逸μ 当s m V/104.232⨯=时T H2=KR v H 223322106.431.83104.21023⨯=⨯⨯⨯⨯=⋅-)(月逸μ T O2=KRv O 323322104.731.83104.210323⨯≅⨯⨯⨯⨯=⋅-)(月逸μ2-14 一立方容器,每边长1.0m ,其中贮有标准状态下的氧气,试计算容器一壁每秒受到的氧分子碰撞的次数。

设分子的平均速率和方均根速率的差别可以忽略。

解:按题设46110322733.83332=⨯⨯⨯===-μRTVv 米/秒设标准状态下单位容器内的分子数为n ,将容器内的分子按速度分组,考虑速度为v i的第i 组。

说单位体积内具有速度v i 的分子数为n i ,在时间内与dA 器壁相碰的分子数为n i ·v ix dt ·dA ,其中v ix 为速度v i 在X 方向上的分量,则第i 组分子每秒与单位面积器壁碰撞次数为n i ·v ix ,所有分子每秒与单位面积器壁碰撞次数为:223222121/21v n v n v n nv n n v n n vn D xx iiiixi ixii iixi ======∑∑∑∑即μRTn D 332=在标准状态下n=2.69×1025m -3∴)(1058.3103227381.831069.2321127325--⨯≅⨯⨯⨯⨯⨯⨯=s D2-15 估算空气分子每秒与1.0cm 2墙壁相碰的次数,已知空气的温度为300K ,压强为1.0atm ,平均分子量为29。

设分子的平均速率和方均根速率的差别可以忽略。

解:与前题类似,所以每秒与1cm 2的墙壁相碰次数为:1231059.33321332-⨯≅⨯⨯⨯==S S RTKTPS RTn D μμ2-16 一密闭容器中贮有水及饱和蒸汽,水的温度为100℃,压强为1.0atm ,已知在这种状态下每克水汽所占的体积为1670cm 3,水的汽化热为2250J/g (1) 每立方厘米水汽中含有多少个分子? (2) 每秒有多少个水汽分子碰到水面上?(3) 设所有碰到水面上的水汽分子都凝结为水,则每秒有多少分子从水中逸出? (4) 试将水汽分子的平均动能与每个水分子逸出所需能量相比较。

解:(1)每个水汽分子的质量为:0N m μ=每cm 3水汽的质量v M 1=则每cm 3水汽所含的分子数3260102-⨯===m v N m Mn μ(2)可看作求每秒与1cm 2水面相碰的分子数D ,这与每秒与1cm 2器壁相碰的分子数方法相同。

在饱和状态n 不变。

个)(1015.43321321232⨯=⋅==μRTsn s v n D(3)当蒸汽达饱和时,每秒从水面逸出的分子数与返回水面的分子数相等。

(4)分子的平均动能)(1072.72321J KT-⨯≅=∈ 每个分子逸出所需的能量)(1073.62250200J N Lm E -⨯≅⨯==μ显而易见E ∈〉,即分子逸出所需能量要大于分子平均平动能。

2-17 当液体与其饱和蒸气共存时,气化率和凝结率相等,设所有碰到液面上的蒸气分子都能凝结为液体,并假定当把液面上的蒸气分子迅速抽去时液体的气化率与存在饱和蒸气时的气化率相同。

相关文档
最新文档