国家坐标系与地方独立坐标系坐标转换方法与计算

合集下载

地方坐标系与国家坐标系转换方法探讨

地方坐标系与国家坐标系转换方法探讨

地方坐标系与国家坐标系转换方法探讨地方坐标系与国家坐标系是地理信息系统中常用的两种坐标系。

地方坐标系是一种局部坐标系统,通常在具体的地理区域内使用,以适应该区域的地理特征和测量要求。

而国家坐标系则是一种全局坐标系统,用于整个国家范围内的地理数据管理和分析。

地方坐标系与国家坐标系之间的转换方法是GIS数据集成、数据匹配和数据转换的基础。

1.地理坐标转国家坐标:地理坐标是基于地球椭球体的经纬度坐标,国家坐标通常是基于具体的地图投影系统的坐标。

地理坐标转国家坐标的方法包括从地理坐标到投影坐标的转换。

这通常涉及到地图投影参数的选择和计算,如投影中心经纬度、标准经度、假东原点等。

2.地方坐标转国家坐标:地方坐标通常是基于具体地区的局部坐标系统,比如UTM(通用横轴墨卡托投影)坐标系。

将地方坐标转换为国家坐标的方法包括地方坐标与国家坐标之间的几何转换,如旋转、平移和比例变换。

这要求在转换过程中具有可靠的控制点来识别和匹配地方坐标系和国家坐标系之间的关联。

3. 国家坐标转地理坐标:国家坐标转地理坐标通常是为了从国家坐标系中获取经纬度等地理坐标信息。

这种转换方法与地理坐标转国家坐标方法相反,通常涉及到逆投影的计算,如从Lambert投影转回地理坐标。

4.国家坐标转地方坐标:国家坐标转地方坐标的方法与地方坐标转国家坐标相反。

这也是通过几何转换来完成,需要通过控制点进行匹配和计算。

在实际应用中,地方坐标系与国家坐标系之间的转换并不总是简单和准确的。

由于不同地方坐标系和国家坐标系的定义和参数不尽相同,转换过程可能存在误差。

因此,进行坐标系转换时需要考虑误差控制和精度分析,通常需要依赖先进的GIS工具和算法来进行精确的转换。

总结起来,地方坐标系与国家坐标系之间的转换方法包括地理坐标转国家坐标、地方坐标转国家坐标、国家坐标转地理坐标、国家坐标转地方坐标等几种。

在进行坐标系转换时,需要注意选择合适的转换方法和算法,并进行误差控制和精度分析,以确保转换结果的准确性和可靠性。

地方坐标系与CGCS2000坐标系转换方法的研究

地方坐标系与CGCS2000坐标系转换方法的研究

地方坐标系与CGCS2000坐标系转换方法的研究摘要:本文提出了地方坐标系和国家大地坐标系(CGCS2000)的几种转换方法,结合使用Mapinfo坐标转换软件,并进一步分析转换方法的转换结果,并提出相应的结论。

关键词:地方坐标系;CGCS2000坐标系;转换方法;验证引言在新时期下,想要推动并发展数字地球、数字区域,必须要加强各类信息的统一整合,加强信息共享度,这就需要结合GIS技术展开多源信息集成,空间坐标系变换和统一则是实现多元数据统一管理、无缝集成的核心。

GIS最为重要的信息源就是地图(数字地图),在不同区域、不同时间段,其中的各类地图坐标系也存在着些许差异。

我国地图坐标系发展中,在上世纪90年代,我国基本比例尺地形图主要采用了北京54坐标系、1980西安坐标系两种。

而地方为了能够满足当地城市建设发展需求,通常会构建独立的坐标系(地方坐标系),部分地区甚至构建了两个及以上的独立坐标系。

而如何进行地方坐标系与CGCS2000坐标系相互转换是需要注意的问题。

下文通过CGCS2000坐标系、地方坐标系建立原理,分析二者的转换关系,并提出多种有效的转换方法。

1.地方坐标系与CGCS2000坐标系之间的关系我国地形图比例尺中,小比例尺采用了6°分带、大中比例尺采用了3°分带,均采用了高斯-克吕格投影。

构建国家坐标系是以高斯-克吕格投影分带为基础,并且每个分带都构建了直角坐标系,也就是高斯直角坐标系。

结合投影变换规律,投影变形越大证明离中央经线的距离越远。

绝大部分地区都难以精准的位于投影中央带,这就需要结合CGCS2000坐标系进行转换。

以黑龙江省大庆市为例,大庆市辖5区4县,市区所处位置是E124°19'至E125°12',位于6°分带中的21带,中央经线为E123°;在3°投影带上,主要为42带,中央经线为E126°,其中杜尔伯特蒙古族自治县还属于41带和42带两个投影带,中央经线为E123°、E126°。

国家坐标系与地方独立坐标系坐标转换方法与计算2(1)分解

国家坐标系与地方独立坐标系坐标转换方法与计算2(1)分解

国家坐标系与地方独立坐标系坐标转换方法与计算作者姓名:岳雪荣学号: 20142202001系(院)、专业:建筑工程学院、测绘工程14-12016 年 6 月 6 日国家坐标系与地方独立坐标系坐标转换方法与计算(建筑工程学院14测绘工程专业)摘要随着我国经济的发展的突飞猛进,对测量精度要求的建设也越来越高,就是以便满足实际运行要求。

但在一些城市或大型工程建设中可能刚好在两个投影带的交界处,布设控制网时如果按照标准的3度或者1.5度带投影,投影变形会非常大,给施工作业带来不便,此时需要建立地方独立坐标系。

认识国家坐标系的转换和地方独立坐标系统有一定的现实意义,如何实现两者的换算,一直是关注的工程建设中的热点问题。

因此,完成工程测量领域国家坐标定位成果与地方独立坐标成果的转换问题,以适应城市化和实际工程的需要。

关键词:国家坐标;独立坐标;坐标转换目录1绪论1.1背景和意义1.2主要内容1.3解决思路和方法2 建立独立坐标系的方法32.1常用坐标系统的方法介绍2.2确定独立坐标系的三大要素92.3减少长度变形的方法102.4建立独立坐标系的意义123 国家坐标系与地方坐标系的坐标转换13 3.1常用坐标系的坐标转换模型133.2投影面与中央子午线及椭球参数的确定14 3.3国家坐标与地方坐标的转换思路154算例分析17结论20参考文献错误!未定义书签。

1绪论1.1背景和意义随着社会的经济快速发展,尤其是近十多年来空间测量技术突飞猛进,得到了长足的发展,其精度也大幅提高。

从测量的发展史来看,从简单到复杂,从人工操作到测量自动化、一体化,从常规精度测量到高精度测量,促使大地坐标系有参心坐标系到大地坐标系的转化和应用。

大地测量工作已有传统的二维平面坐标向三位立体空间坐标转化,逐步形成四维空间坐标系统。

在测绘中,地方独立坐标系和国家坐标系为平面坐标系的两种坐标系统。

对于工程测量和城市建设过程,建设区域不可能都有合适的投影子午线,势必可能有所差异,这样一来作业区域的高程和坐标或者是工程关键区域的高程和坐标能够与国家大地基准的参考椭球有较大的出入,在这种情况下,根据不同的投影区国家坐标系统,可能就会出现投影变形导致严重错误。

国家坐标系向独立坐标系转化的方法与计算

国家坐标系向独立坐标系转化的方法与计算

国家坐标系向独立坐标系转化的方法与计算作者:(刘延龙)来源:《经济技术协作信息》 2017年第36期一、国家坐标系与工程独立坐标系1.坐标系的定义与分类。

在参照系中,为确定空间一点的位置,按规定方法选取的有次序的一组数据,这就叫做“坐标”。

在某一问题中规定坐标的方法,就是该问题所用的坐标系。

现今的坐标系主要有:大地坐标系、空间直角坐标系、WGS-84坐标系、平面直角坐标系。

2. 国家坐标系的建立。

(1)BJ_54坐标系。

1954北京坐标系依据的椭球是前苏联的克拉索夫斯基椭球(本文简称克氏椭球),大地原点在前苏联的普尔科沃。

1954北京坐标系实际上是前苏联普尔科沃坐标系在中国境内的延伸,它是一种参心坐标系。

(2)1980西安坐标系。

1978年我国决定重新对全国天文大地网施行整体平差,并且建立新的国家大地坐标系统。

将整体平差在新大地坐标系统中进行,这个坐标系统就是1980西安坐标系统。

1980年西安大地坐标系统采用的是地球椭球参数的4个几何参数和物理参数采用IAG1975年底推荐值。

(3)WGS_84坐标系。

WGS-84坐标系是目前GPS所采用的坐标系统,全称是WordGeodicalSystem-84,它是一个地心地固坐标系,坐标原点是地球的质心,Z轴指向BIH1984.0定义的协议地球极方向,X轴指向BIH1984.0的起始子午面和赤道的交点,Y轴与Z轴X轴构成右手直角坐标系。

3.地方独立坐标系的建立。

(1)地方坐标系。

地方独立坐标系是根据需要以本地区某国家控制点为原点(作为地方坐标系的起算点),而以过原点的经线为中央子午线,需要注意的是这个“原点”通常选择在区域的中部或者西南角。

4.不同坐标系转换方法。

(1)地心坐标系与参心坐标系之间的转化(以WGS-84坐标系转换北京54坐标系为例)WGS-84空间坐标系与北京54空间坐标系之间的三维坐标转换计算,经典方法是采用布尔萨七参数模型(即:三个平移参数Δx、Δy、Δz、三个旋转参数εzεxεy和一个尺度变形k)进行坐标转换。

国家坐标与地方坐标的转换方法研究

国家坐标与地方坐标的转换方法研究

() 3 认为椭球在城市平均纬度处的平均 曲率半径 的变化量等于抵偿投影面的高度 , △R’H, 即 再根据
公式 :
△。:( 一e s 2 1 2. i ).AR n /

( 一e s 2 1 2. i ). n
计 算椭球 长半 轴 的变化 量 。
根据新的椭球长半轴值 和扁率 ( 国家椭球 ) 计算
() 2 认为椭球在测区平均纬度处的卯酉圈曲率半
径 的 变化量 等 于抵 偿 投 影 面 的高 度 , △Ⅳ=H, 根 即 再
据 公式 :
2 国家坐标 与地 方坐标 的严密转换
在建 立地 方独 立 坐 标 系 时 , 常 是 在 国家 坐标 系 通
统相 应 的椭球 ( 西 安 8 , 京 5 ) 础 上 , 过 重 新 如 0北 4基 通
新椭 球各 项参 数 确 定 之 后 , 可 以根 据 国家 椭 球 就 与新 椭球 的参 数关 系计 算 国家坐 标在 独立 坐标 系 中 的
出了详细的计算方法 , 文主要讨论抵偿投影面重新 本 选择后 , 如何根据 国家坐标计算其新坐标 的问题。如
果 新 坐标 系统 同 时改 变 了 中央 子 午线 位 置 , 先 进 行 请 换 带计 算 。
结论。
60 8 ) 10 1
要: 讨论 了目前常用的几种 国家坐标与地方 坐标 的转换 方法 , 并对它们 的效果进行 了比较分析 , 出 了一些有益 得
关 键 词 : 偿 投 影 面 ; 方 椭 球 ; 标 转 换 抵 地 坐
l 概

2 1 地 方椭球 参数 的计 算 . 当重 新选 择抵 偿 投 影 面 时 , 的 投影 面与 国家 参 新
} 收稿 日期 :o 8 6 8 2o —0 —0

浅谈2000国家大地坐标系向地方独立坐标系的转换

浅谈2000国家大地坐标系向地方独立坐标系的转换

换 区域 。
3.2转 换参数 计 算 。a.利 用选 取 的重合 点 和转换 模 型计算 转
换参数 .b.剔除残差大于 3倍点位 中误差 的重合点 ;c.重新计算
坐标转换参数 ,直到满足精度要求为止 ;d.禾U用最小二乘法计算
转换 参 数 。
3.3精 度评定 。坐 标转 换精 度 可采用 外符 合 精 度评 定 ,依 据
坐 标系进 行转 换 。 在该 市 范 围内共 选取 了 8个控 制点 ,表 1为 选 取控 制点 的
2.1 2000国家大 地坐标 系的建 立
2000国家 大地 坐标 和某 市地方 独 立坐标 。
2000国家大地坐标系是全球地心坐标 系在我 国的具体体
表 1 已知 控制 点坐标 表
单位 :m
定 位技 术在 各 领域 的广 泛 应用 ,是 我 国测 绘 基 准体 系现 代 化建
设 的重要工作 ,是提高我 国空间基准 自主性和安全性 、推进北
斗 卫星 导航 系统快 速 应用 的基 础 。
2.2地方 独立 坐标 系 的建立
在城市测量和工程测量 中,若直接在 国家坐标 系中建立控
制 网 ,有 时会 使 地 面长 度 的 投 影变 形 较 大 ,难 以满 足 实 际 或工
立地 方 独 立 坐标 系 。一 方 面是 基 础数 据 采用 2000国家 大 地坐 4 实例 分析
标 系 ,另一 方 面 是 实 际工 程 采 用 地 方独 立 坐 标 系 ,所 以经 常 遇 采用 上述 方 法 ,对 某市 的 2000国家 大地 坐标 系 和地 方 独立
到两 个 坐标 系下 数据 的转 换 问题 。 2 2000国家 大地 坐标 系及 地方 独立 坐标 系 的建立

浅谈2000国家大地坐标系向地方独立坐标系的转换

浅谈2000国家大地坐标系向地方独立坐标系的转换

浅谈2000国家大地坐标系向地方独立坐标系的转换摘要:大约在十年前,我国的国家级和省级的基础地理信息数据已经初步通过2000国家大地坐标系,然而通过国家坐标系统,在一些离中央子午线较远或者海拔较高的地区无法达到相关要求,这就需要将地方独立坐标系建立起来。

本文对2000国家大地坐标系向地方独立坐标系的转化进行分析和研究,以供参考。

关键词:2000国家大地坐标系;地方独立坐标系;转换1 2000国家大地坐标系与地方独立坐标系的建立1.1 2000国家大地坐标系的建立2000国家大地坐标系是全球地心坐标系在我国进行实践的具体体现,其原点主要是大地和海洋的质量中心,z轴是根据相关规定协议地级方向,x轴表示的是相关规定当中定义的协议赤道和子午面的交点,y轴是依照右手坐标系而建立起来的,通过2000国家大地坐标系能够加强定位系统的精确性,广泛应用于各个领域。

1.2地方独立坐标系的建立在工程测量及城市测绘过程中如果通过国家坐标系来进行控制网的建设,往往会出现地面长度投影变形量较大等问题,无法达到工程的实际操作需求,所以一定要建立起与实际情况相适应的地方独立坐标系。

地方独立坐标系的建立,主要是为了让高程归化和投影形变的情况造成的误差缩小,通过地方独立坐标系的建设可以保证达到所需要的精度,不会由于精度无法达到要求,而对工程建设产生影响。

2 2000国家大地坐标系与地方独立坐标系转换的理论基础某市在建设的过程中选取四参数转换模型,对坐标转换参数进行控制,把2000国家大地坐标系的成果向地方独立坐标系的成果进行转化。

2.1重合点选取在坐标系选用的过程中,两个坐标系都有坐标成果控制点,在选择的过程中,主要原则是覆盖整个转换区域,要求精度较高,而且具有较高的等级,分布均匀。

2.2转换参数计算首先通过转换模型和重合点的选择,对转换参数进行计算,将残差大于三倍的误差重合点剔除,对坐标转换参数进行重新计算,直到符合精度要求为止,通过最小二乘法来对参数进行计算。

wgs-84坐标系与地方坐标系转换方法_secret

wgs-84坐标系与地方坐标系转换方法_secret

目录摘要 (1)GPS概述 (2)一、引言 (2)二、多项式拟合法基本原理 (2)1.基本思路 (3)2.数学模型 (3)3.精度评定 (4)三、计算与精度分析 (5)1.工程简介 (5)2.数据处理 (6)3.转换方案 (6)4.精度分析 (7)四、结束语 (8)五、谢辞 (9)参考文献 (9)WGS-84坐标系与地方坐标系转换方法摘要WGS-84 坐标系与地方坐标系之间转换关系的确定是GPS 技术应用中的一个关键问题。

在分析经典三维坐标转换方法的基础上,给出一种采用多项式拟合法进行GPS 坐标转换的方法。

通过工程实例对三维坐标转换的精度和可靠性进行分析,从而验证了多项式拟合法是一种有效的三维坐标转换方法。

关键词:WGS-84 坐标系; 地方坐标系; 坐标转换; 多项式拟合法AbstractKey words: WGS-84 coordinate system; Place coordinate system; Coordinate transformation;Multinomial fitting lawGPS概述全球定位系统(Global positioning system-GPS)是美国从20世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。

经近10年我国测绘等部门的使用表明,GPS以全天候、高精度、自动化、高效益等显著特点,赢得了广大测绘工作者的信赖,并成功地应用于大地测量、工程测量、航空摄影测量、运载工具导航和管制、地壳运动监测、资源勘察、地球动力学等多种学科,从而给测绘领域带来一场深刻的技术革命。

GPS单点定位的坐标以及相对定位中解算的基线向量属于WGS-84大地坐标系,因为GPS广播星历是以WGS-84坐标系为根据而提供的。

而实用的测量成果往往是属于某一国家坐标系或地方坐标系(或局部的、参考坐标系)。

国家坐标系与地方独立坐标系坐标转换方法与计算

国家坐标系与地方独立坐标系坐标转换方法与计算

国家坐标系与地方独立坐标系坐标转换方法与计算国家坐标系与地方独立坐标系是地理信息系统中常用的两种坐标系统。

国家坐标系是一种基于国家统一测量实施的坐标系,用于整个国家范围内的测量和定位。

而地方独立坐标系是一种基于地方特定测量实施的坐标系,用于一些特定的地方范围内的测量和定位。

本文将介绍国家坐标系到地方独立坐标系的坐标转换方法和计算过程。

1.坐标转换方法:参数法是通过确定一组坐标转换参数来进行坐标转换的方法。

这些参数包括平移参数、旋转参数和尺度参数。

平移参数用于将其中一点的国家坐标系坐标转换到地方独立坐标系下的坐标;旋转参数用于调整坐标系之间的旋转关系;尺度参数用于调整坐标系之间的尺度关系。

点法是通过确定一组共同控制点的坐标,在这些点上进行观测,然后通过最小二乘法来计算坐标转换的参数。

这种方法适用于国家坐标系和地方独立坐标系之间的坐标转换精度要求较高的情况。

2.坐标转换计算过程:坐标转换的计算过程可以分为以下几步:Step 1:确定共同控制点首先,需要确定国家坐标系和地方独立坐标系之间存在共同的控制点。

这些控制点必须在两个坐标系下均已知其坐标。

Step 2:建立转换模型根据参数法或点法的选择,建立坐标转换的数学模型。

根据模型选择合适的坐标转换参数,包括平移参数、旋转参数和尺度参数。

Step 3:观测控制点在共同控制点上进行测量或观测,得到它们在国家坐标系和地方独立坐标系下的坐标值。

Step 4:计算转换参数根据观测得到的控制点坐标,利用最小二乘法或其他适用的计算方法,计算坐标转换的参数。

Step 5:坐标转换对于任意一点的国家坐标系坐标,根据转换参数,可以通过计算得到该点在地方独立坐标系下的坐标。

3.注意事项:在进行坐标转换时,需要注意以下事项:-坐标转换的精度:坐标转换的精度要求取决于具体应用的需求。

对于高精度测量和定位,需要使用更精确的参数和方法。

-坐标转换的准确性:坐标转换的准确性取决于共同控制点的准确性,因此在选择共同控制点时需要考虑控制点的可靠性和密度。

浅谈地方独立坐标系测量成果向2000国家大地坐标系转换的理论与方法

浅谈地方独立坐标系测量成果向2000国家大地坐标系转换的理论与方法
GC 2 0 1 5 年 北京坐标系采用了三角锁联测的方法将起 始坐标从前苏 C S 0 0坐 标 系 94 从 C C 0 0 G S2 0 的实现来看, 的 C C 0 点 G S2 0坐标 与点的 IR 9 0 T F7 联普尔科沃天文台的大地基点传递过来 . 采用 了苏联克拉索夫斯基椭 2 0 0 0 过 A I 球体。它实质上 是以原苏联普尔科沃为原点 的 14 年坐标 系的一种 框架 . 0 .历元坐标是一致的 . G M T相对定位方法或者精密单 92 点定位 ( P ) P P 的方法都 可以获取 点位的 IR T F框架下 的坐标 , 时获 此 延伸。其参数 为 : 半轴 为 6 7 2 5 . 长 3 8 4 米 扁率为 1 9 .n 1 8 t 2 3。 取的点位坐标 的基准与解算使用的精密星历的基准是一致 的. 这个基 1 . 1 8 安坐 标 系 . 2 90西 2 准包括其所在 的框架 和历 元 . 例如 。 前 精密星历采用 的是 IS2 0 目 G 0 5 18 90西安坐标 系是在 15 9 4年北京坐标 系基础上 对天文 大地 网 历元为观测 当天 的瞬时历元 . 因此 利用前面所述 的方法计算的 进行整 体平差后建立 的。 大地原点在 西安市泾 阳县永乐镇 。 椭球参数 框架 . T F 20 观测 当天的历元 . 此时只需要 通过框 采用的是国际大地测量 与地球物理学联合会 ( G )9 5 I G 17 年推荐 的椭 结果将是基于 IR 0 5框架 . U 架转换 和历元 转换将 IR 0 5 T F2 0 框架观测 当天历元坐标转换 到 I R TF 球参数 。 该坐标系采用 的地球椭球基本参数包括几何参 数和物理参数 1 9 架 .0 00历元 . 以认为转换 后的坐标就是属 于 C S2 0 9 7框 20 . 可 GC 0 0 共计 4 个 大地坐标 系

城市地方坐标系与国家坐标系的转换方法探讨

城市地方坐标系与国家坐标系的转换方法探讨

城市地方坐标系与国家坐标系的转换方法探讨摘要:本文介绍了地方坐标系向CGCS2000坐标系进行转换的数学模型,在用实例对各模型的转换精度及转换中应注意的问题进行了分析,对影响转换精度的因素进行了深入的探讨。

关键词:地方坐标系;CGCS2000;坐标转换Abstract: This paper describes the management of electrical and mechanical equipment maintenance, maintenance work, the use of advanced maintenance concept, to extend the life of mechanical and electrical equipment, and electrical and mechanical equipment to maintain certain requirements.Keywords: mechanical and electrical equipment; maintenance; maintenance; life 0引言目前,城市测绘的各类成果,是基于1980西安坐标系或1954年北京坐标系或是与以上两种坐标系建立联系的相对独立的坐标系统,在使用2000国家大地坐标系的过渡期内,可采用坐标转换的方法,将目前城市坐标系统下的控制点成果转换至2000国家大地坐标系下,建立城市坐标系和2000国家大地坐标系的联系。

同时,为了能使数据转换与控制点转换应用同一套参数,转换模型要同时适用于控制点的转换和城市数字地图的转换。

在进行坐标转换时,应综合考虑城市大小、原有控制网的精度、坐标性质(二维或三维)等因素,选取适当的坐标转换模型。

1转换模型1) 二维七参数转换模型二维七参数转换模型的转换公式为+ (1)式中:,为同一点位在两个坐标系下的纬度差、经度差(单位为弧度);,为两坐标系使用的椭球的长半轴差(单位米)、扁率差;,,平移参数(单位米);,,为旋转参数(单位弧度);m为尺度参数。

地方坐标系向2000国家大地坐标系转换方法的研究

地方坐标系向2000国家大地坐标系转换方法的研究

地方坐标系向2000国家大地坐标系转换方法的研究一、背景介绍地方坐标系是一种根据实际需要而建立的局部坐标系统,一般由当地的测量数据和标准坐标系转换函数确定。

而2000国家大地坐标系是以国家为单位建立的坐标系统,可以用于全国范围的空间数据表示和分析。

为了实现地方坐标系向2000国家大地坐标系的转换,需要找到合适的转换方法。

二、转换方法1.参数转换法参数转换法是通过一系列的转换参数来实现坐标系之间的转换。

在地方坐标系和2000国家大地坐标系之间的转换中,可以通过测量控制点的坐标,计算出两个坐标系之间的转换参数,然后将地方坐标系的数据通过转换参数转换为2000国家大地坐标系。

2.大地坐标转换法大地坐标转换法是基于大地测量和大地坐标系理论的转换方法。

在这种方法中,通过测量控制点的经纬度和高程,计算出地方坐标系和2000国家大地坐标系之间的转换参数,然后根据转换参数将地方坐标系的数据转换为2000国家大地坐标系。

3.源数据转换法源数据转换法是将地方坐标系的数据直接转换为2000国家大地坐标系的方法。

在这种方法中,需要根据地方坐标系和2000国家大地坐标系之间的变换关系,通过一定的数学方法将地方坐标系的数据转换为2000国家大地坐标系。

三、应用案例1.地理信息系统在地理信息系统中,往往需要将不同地方坐标系的数据进行统一,以便进行空间数据的表示和分析。

将地方坐标系的数据转换为2000国家大地坐标系可以实现不同地方数据的整合和统一2.地图制作在地图制作过程中,往往需要将地方坐标系的数据转换为2000国家大地坐标系,以便将地方区域的地图与全国范围的地图进行对比和整合。

3.土地管理在土地管理工作中,往往需要将地方坐标系的地籍数据转换为2000国家大地坐标系,以便实现土地资源的统一管理和利用。

四、总结地方坐标系向2000国家大地坐标系转换是地理信息系统中的一个重要问题。

本文通过研究转换方法和应用案例,探讨了该问题的解决方案。

地方坐标系与CGCS2000坐标系转换方法的研究

地方坐标系与CGCS2000坐标系转换方法的研究

地方坐标系与CGCS2000坐标系转换方法的研究摘要:本文提出了地方坐标系和国家大地坐标系(CGCS2000)的几种转换方法,结合使用Mapinfo坐标转换软件,并进一步分析转换方法的转换结果,并提出相应的结论。

关键词:地方坐标系;CGCS2000坐标系;转换方法;验证引言在新时期下,想要推动并发展数字地球、数字区域,必须要加强各类信息的统一整合,加强信息共享度,这就需要结合GIS技术展开多源信息集成,空间坐标系变换和统一则是实现多元数据统一管理、无缝集成的核心。

GIS最为重要的信息源就是地图(数字地图),在不同区域、不同时间段,其中的各类地图坐标系也存在着些许差异。

我国地图坐标系发展中,在上世纪90年代,我国基本比例尺地形图主要采用了北京54坐标系、1980西安坐标系两种。

而地方为了能够满足当地城市建设发展需求,通常会构建独立的坐标系(地方坐标系),部分地区甚至构建了两个及以上的独立坐标系。

而如何进行地方坐标系与CGCS2000坐标系相互转换是需要注意的问题。

下文通过CGCS2000坐标系、地方坐标系建立原理,分析二者的转换关系,并提出多种有效的转换方法。

1.地方坐标系与CGCS2000坐标系之间的关系我国地形图比例尺中,小比例尺采用了6°分带、大中比例尺采用了3°分带,均采用了高斯-克吕格投影。

构建国家坐标系是以高斯-克吕格投影分带为基础,并且每个分带都构建了直角坐标系,也就是高斯直角坐标系。

结合投影变换规律,投影变形越大证明离中央经线的距离越远。

绝大部分地区都难以精准的位于投影中央带,这就需要结合CGCS2000坐标系进行转换。

以黑龙江省大庆市为例,大庆市辖5区4县,市区所处位置是E124°19'至E125°12',位于6°分带中的21带,中央经线为E123°;在3°投影带上,主要为42带,中央经线为E126°,其中杜尔伯特蒙古族自治县还属于41带和42带两个投影带,中央经线为E123°、E126°。

国家坐标系和地方独立坐标系坐标转换方法和计算

国家坐标系和地方独立坐标系坐标转换方法和计算

国家坐标系和地方独立坐标系坐标转换方法和计算国家坐标系和地方独立坐标系是地理坐标系统中常用的两种表示方法。

国家坐标系一般是一种标准的坐标系统,用于整个国家的地图测绘和地理空间数据处理;而地方独立坐标系是根据具体地区的实际需要,采用局部坐标系来描述该地区的地理位置。

在实际应用中,需要进行国家坐标系和地方独立坐标系之间的转换,这涉及到坐标系的参数计算和坐标转换方法。

一、国家坐标系和地方独立坐标系的概念及特点地方独立坐标系是根据特定地区的需要,采用局部坐标系来描述该地区的地理位置,例如UTM投影坐标系、Gauss-Kruger坐标系等。

地方独立坐标系可以根据地区的经纬度范围、中央经线、投影方式等参数进行定义,适用于该地区内的测绘和地理信息处理。

二、国家坐标系和地方独立坐标系的参数计算1.坐标系原点计算:国家坐标系采用统一的坐标系原点,如WGS84的原点是地球的质心;而地方独立坐标系的原点则根据具体情况来确定,例如UTM投影坐标系的原点是维度为0度的经线。

2.椭球体参数计算:不同坐标系采用不同的椭球体参数来描述地球的形状,如长半轴、短半轴、扁率等。

这些参数对于坐标转换是非常重要的,通过这些参数可以确定椭球体的形状及其在坐标转换中的应用。

3.投影方式计算:地方独立坐标系的常用投影方式包括正轴等积圆柱投影、高斯投影、横轴等积圆柱投影等。

根据具体地区的情况选择合适的投影方式,并计算相应的投影参数,如中央经线、标准纬度等。

三、国家坐标系和地方独立坐标系的坐标转换方法1.两参数法:这种方法适用于具有相同椭球体参数的国家坐标系和地方独立坐标系之间的转换。

通过计算坐标点的经度和纬度差值,并根据差值和坐标系的比例关系进行转换。

2.四参数法:这种方法适用于具有相同椭球体参数和相同投影方式的国家坐标系和地方独立坐标系之间的转换。

通过计算坐标点的平移和旋转参数,并根据参数对坐标点进行转换。

3.七参数法:这种方法适用于具有不同椭球体参数和投影方式的国家坐标系和地方独立坐标系之间的转换。

地方独立坐标系到国家大地坐标系数据转换试验研究

地方独立坐标系到国家大地坐标系数据转换试验研究

r e s u l t s me e t r e q u i r e m e n t .T h r o u g h t h i s p r o j e c t ,s o f t w a r e i s d e v e l o p e d ,t e c h n o l o g y i s m a s t e r e d , e x p e r i e n c e i s a c c u m u l a t e d a n d g o o d
坐标 转 换 辅 助 程 序 , 实现 了 3 D 产 品在 地 方 独 立 坐标 系和 国 家大地 坐标 系之 间的 转换 , 成 果满足要求。通过本 项
目研 发 了软 件 、 沉 淀 了技 术 、 积 累 了经 验 , 取 得 了 良好 的 效 果 。 关键 词 : 地 方 独 立 坐标 系 ; 国 家 大地 坐标 系 ;数 据 转 换 ; 试 验
L I S h e n g ,WA N G T i e— j u n ,Z H E N G F u—h a i , Z HA N G Y u ( 1 . B a s i c Ge o g r a p h i c I n f o r ma t i o n C e n t e r o f Z h o n g s h a n C i t y , Z h o n g s h a n 5 2 8 4 0 3, C h i n a ; 2 . He l f o n g j i a n g I n s t i t u t e o f Ge o ma t i c s E n g i n e e r i n g , H a r b i n 1 5 0 0 8 1 ,C h i n a )
e f f e c t s a r e a c hi e v e d.

cass独立坐标系转换2000国家坐标系

cass独立坐标系转换2000国家坐标系

cass独立坐标系转换2000国家坐标系在GIS(地理信息系统)领域中,我们经常会遇到将数据在不同的坐标系之间转换的问题。

其中,CASS(Coordinate And Support System)独立坐标系和2000国家坐标系是常见的坐标系。

本文将详细介绍如何将数据从CASS独立坐标系转换为2000国家坐标系,并提供一步一步的操作指引。

第一步:了解CASS独立坐标系和2000国家坐标系的特点和参数CASS独立坐标系是由中国测绘地理信息局(National Administration of Surveying, Mapping and Geoinformation)独立设计和采用的坐标系,用于提供全国各区域的统一坐标系统。

2000国家坐标系则是在国家测绘地理信息局发布的《中国大地坐标系量正算法》中定义的一套以WGS-84为基准的坐标系。

在进行坐标转换前,我们需要了解这两个坐标系的参考椭球体和投影方式。

第二步:准备坐标转换工具和数据源为了完成CASS独立坐标系到2000国家坐标系的转换,我们需要使用专业的GIS软件或者编程语言中的相应库,并准备好CASS独立坐标系和2000国家坐标系的数据源。

这些数据源通常以坐标系参数文件(.prj文件)的形式提供。

第三步:加载数据和设置坐标系在GIS软件中,我们首先需要加载CASS独立坐标系的数据源,并设置其坐标系为CASS独立坐标系。

这可以通过在软件的工具栏或菜单中选择相应的功能来完成。

第四步:进行坐标系转换在加载了CASS独立坐标系数据的同时,我们还需要加载2000国家坐标系的数据源,并将其坐标系设置为2000国家坐标系。

接下来,我们可以通过选择坐标转换工具或编写代码来进行坐标系转换。

常见的转换方法包括参数转化和坐标转化两种。

参数转化是将CASS独立坐标系的参数转化为2000国家坐标系的参数。

这种方法适用于数据量较小且需要高精度转换的场景。

通过打开坐标转换工具,选择CASS独立坐标系和2000国家坐标系的参数文件,然后进行转换即可。

2000转独立坐标

2000转独立坐标

2000转独立坐标独立坐标是地理坐标系中的一种坐标系统,它以一个点或地物自身作为坐标原点,以该点或地物作为参考,确定其他点的位置。

而2000转独立坐标则是指将2000坐标系下的点转换为独立坐标系下的点,从而方便地进行地理分析和计算。

2000年国家测绘局制定了国家2000年地理坐标系,也称为CGCS2000坐标系。

这是我国自主研制的新一代地理坐标系,旨在提高我国的定位精度,并实现与国际上常用的GPS坐标系的统一。

其中,2000转独立坐标就是将CGCS2000坐标系下的坐标点转换为独立坐标系下的坐标点。

独立坐标系一般是由一个基准点和一组坐标轴来确定的。

基准点通常选择地物或水文特征上的明显点位,如高程点、路口、建筑物等。

以基准点为原点建立三维直角坐标系,确定X、Y、Z三个坐标轴,从而形成独立坐标系。

通过测量和计算,可以获得其他点相对于该基准点的坐标。

进行2000转独立坐标的步骤如下:1. 确定基准点:选择一个地理特征上的明显点位作为基准点,可以是标志性的地物或水文特征。

2. 建立独立坐标系:以基准点为原点,建立三维直角坐标系,确定X、Y、Z三个坐标轴。

3. 测量2000坐标系下的点:使用GPS或其他测量仪器,测量需要转换的点在CGCS2000坐标系下的坐标。

4. 计算2000点相对于基准点的坐标:根据测量数据,使用坐标转换计算方法,计算出需要转换点相对于基准点的坐标。

5. 转换为独立坐标:将计算得到的相对坐标转换为独立坐标系下的坐标。

确定点在独立坐标系中的X、Y坐标。

通过以上步骤,可以将2000坐标系下的点转换为独立坐标系下的点。

这样就可以在独立坐标系下方便进行地理分析、测量和计算。

独立坐标系的特点是以点为原点,具有很高的空间定位精度和较低的系统误差,能够满足大部分地理测量和工程测量的要求。

2000转独立坐标在实际应用中具有广泛的意义。

它可以应用于土地测量、建筑工程、地质勘探、地下水资源调查等领域。

通过将2000坐标系下的点转换为独立坐标系下的点,可以更好地解决实际问题,提高测量和定位的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国家坐标系与地方独立坐标系坐标转换方法与计算作者姓名:岳雪荣学号: 20142202001系(院)、专业:建筑工程学院、测绘工程14-12016 年 6 月 6 日国家坐标系与地方独立坐标系坐标转换方法与计算(建筑工程学院14测绘工程专业)摘要随着我国经济的发展的突飞猛进,对测量精度要求的建设也越来越高,就是以便满足实际运行要求。

但在一些城市或大型工程建设中可能刚好在两个投影带的交界处,布设控制网时如果按照标准的3度或者1.5度带投影,投影变形会非常大,给施工作业带来不便,此时需要建立地方独立坐标系。

认识国家坐标系的转换和地方独立坐标系统有一定的现实意义,如何实现两者的换算,一直是关注的工程建设中的热点问题。

因此,完成工程测量领域国家坐标定位成果与地方独立坐标成果的转换问题,以适应城市化和实际工程的需要。

关键词:国家坐标;独立坐标;坐标转换目录1绪论1.1背景和意义1.2主要内容1.3解决思路和方法2 建立独立坐标系的方法32.1常用坐标系统的方法介绍2.2确定独立坐标系的三大要素92.3减少长度变形的方法102.4建立独立坐标系的意义123 国家坐标系与地方坐标系的坐标转换13 3.1常用坐标系的坐标转换模型133.2投影面与中央子午线及椭球参数的确定14 3.3国家坐标与地方坐标的转换思路154算例分析17结论20参考文献错误!未定义书签。

1绪论1.1背景和意义随着社会的经济快速发展,尤其是近十多年来空间测量技术突飞猛进,得到了长足的发展,其精度也大幅提高。

从测量的发展史来看,从简单到复杂,从人工操作到测量自动化、一体化,从常规精度测量到高精度测量,促使大地坐标系有参心坐标系到大地坐标系的转化和应用。

大地测量工作已有传统的二维平面坐标向三位立体空间坐标转化,逐步形成四维空间坐标系统。

在测绘中,地方独立坐标系和国家坐标系为平面坐标系的两种坐标系统。

对于工程测量和城市建设过程,建设区域不可能都有合适的投影子午线,势必可能有所差异,这样一来作业区域的高程和坐标或者是工程关键区域的高程和坐标能够与国家大地基准的参考椭球有较大的出入,在这种情况下,根据不同的投影区国家坐标系统,可能就会出现投影变形导致严重错误。

建立地方独立坐标系统来降低高程归化影响和是归化投影变形,误差控制在一个小范围的数据计算和实际大致相符,不需要任何修改,从而可以满足工程建设和实际应用。

就当前而言,测量工作重要的触及应用三种常用的大地坐标系统,即为地方独立坐标系,地心坐标系,参心坐标系 [1]。

地心坐标系:以地球质心为根据建立的坐标系,包括CGCS2000国家大地坐标系,GPS平差后的WGS-84坐标系等。

参心坐标系:参心坐标系是以参考椭球为基准的大地坐标系,包括54北京坐标系和80西安坐标系等。

独立坐标系:以自己情况而定的独立坐标,采用新椭球,投影到高斯平面上,计算参数,在结合相关数据解算得到,如城市建设坐标系。

它们统称为地固坐标系统。

有机结合在一起对于整个坐标系统来说具有很大的应用价值,解决了实际生活中各种的工程测量问题,如土地申报工程,矿产调查工程,全国土地调查工程等等。

根据现在的经济建设情况,我们应该结合实际,展开建立国家大地坐标与地方独立坐标的研究工作是非常必要的。

这一点也是目前需要解决的问题。

为了更方面的需求和发展,也使得更好地创建国家坐标系与地方独立坐标系的关系。

在这里引入了”GPS坐标”这个概念。

在这里我们用以工程测量,成为大型工程建设控制网和城建控制网的主要手段。

基以GPS坐标系建立的精度高的独立坐标系,将方便于GPS较高精确的、高效的获取城建坐标和高程需求,有利于GPS与GIS的有机结合,进一步提升城市的综合能力,加速城市的现代化建设,对工程建设具有巨大的辅助作用[2]。

根据GPS坐标系建立的地方独立坐标系是未来的希望。

1.2主要内容本论文在国家坐标系(1980国家坐标系)的特点和技术要求和地方独立坐标系统,有以下几种类型的研究工作:1.简要阐述独立坐标系的工程意义,系统的介绍独立坐标系的建立方法,进而分析影响独立坐标系的关键因素,对现有的国家坐标系进行介绍;2. 分析坐标转换模型的原理,对高斯正行投影进行了详细阐述,对转换参数的求解方法进行了总结和说明,提出减少测量控制网引起变形的方法;3. 研究了独立坐标系和国家坐标系相互转换的原理和方法,和影响坐标转换的因素进而系统分析,在此简要说明了国家坐标系和地方坐标系转换的核心公式;4.根据工程实例,结合试算分析,验证转换模型。

1.3论文的解决思路和方法对于在三维空间中,不同的坐标系统所表示的同样一点会根据选取不同坐标系就出现不同的坐标点。

例如在我国,在有关测绘工程中主要采用1980年国家大地坐标系、1954年北京坐标系以及地方独立坐标系。

以及各个坐标系相互转换和计算,以满足建设应用和实际要求。

国家坐标系统和地方独立坐标系统两者之间的转换主要取决于三方面因素:投影面,中央子午线,还有地方椭球参数的计算。

追其本质都是不同空间直角坐标系的计算与转换。

一般需要转换参数,和相应的转换模型。

针对参数和模型应根据具体情形而定[5]。

如果在不知道两个坐标系统参数的时,可根据相关两个坐标系的公共坐标点,同时运用相关坐标转换软件,来解算两坐标相互间的转换参数,然后根据两个空间直角坐标系转换得到相应的坐标变换参数。

根据不同程度所产生的误差,得进而用平差处理,以此来减小误差,最终满足精确的要求。

2建立独立坐标系的方法2.1常用坐标系统的介绍地面上同一点的位置,可以用各种不同的坐标系统来表示。

就目前而言,世界上存在着许多不同的坐标系统。

但总体上可以确分为两大类别:球面坐标系统和直角坐标系统,最常用的坐标系有参心坐标系、地心坐标系。

如下图(2-1)所示,国家坐标系是一种参心坐标系。

图 2-1 常用坐标系示意图WGS-84坐标系WGS-84几何定义是[11]: 1984年美国国防部世界大地坐标系WGS-84是一个协议参考系(CTS)WGS-84坐标系如图2-2所示:图 2-2 WGS-84大地坐标系WGS-84椭球基本参数以及主要几何和物理常数如下:(1)地球椭球基本参数:长半径b=6378147m地球引力常数(含大气层) gm=3986005×108 m3s-210-正常化二阶带谐系数c=-484.16475×6地球自转角速度¢=7294115×1011-rads/s(2)主要几何和物理常数:短半径a=6356749.4162 m扁率&=1/298.259723563第一偏心率平方@2=0.006488379990 13第二偏心率平方@′2=0.006739493842227m s-椭球正常重力位0U=626370.849722ms-赤道正常重力@=9.970327871422.国家大地坐标系我国当前而言常用的两个国家大地坐标系为1980年国家大地坐标系(80西安坐标系)和1954年北京坐标系(BJ54)。

⑴1980年国家大地坐标系(80年西安坐标系):为了满足我国工程测量的需求和发展,针对大地网平差要求。

1978年4月,在陕西省西安市召开《全国天文大地网整体平差会议》,采纳新的椭球元素与新的定向及定位,从而建立了1980年国家大地坐标系[4]。

陕西省西安市泾县永乐镇----1980国家大地坐标系的坐标原点在中国西安市。

80坐标系属参心坐标系,其椭球参数采纳的是1975年第十六届国际大地测量与地球物理联合会给出的四个基础常数:长半径b=6378150m10m s-地球引力常数(含大气层) gm=3947004×832二阶带谐系数K2=l.08234×10-3地球自转角速度¢=7296715×1011-rads/s由如上四个参数可得出:赤道正常重力@=9.78032m/s2扁率&=1/298.2571980年国家大地坐标系有如下几个特点:a: 大地高程采用的是1956年黄海高程系统;b: 椭球面接近大地水准面,它在我国国土面积内为最密合,称之为多点定位;c: 1980年国家大地坐标系椭球短轴平行于地球质心并且指向于极地原点JYD1968.0,格林尼治平均天文台的子午面平行于大地起始子午面;d: 椭球定位参数的求解是根据高程异常平方和即是最小为基本解得的;⑵1954年北京坐标系(BJ54):在第二十世纪50年代中后期,大地测量学在中国进入了一个发展的高峰期,展开了全方位的形式,大地测量工作全面进行,天文大地网成立时期,根据实际情况建立一个参心坐标系。

根据当时的历史条件,于是就采取了克拉索夫斯基椭球参数(n=637856m,m=1/286.4),并且和前苏联1942年坐标系进行联测,通过计算后于是建立了适合我国的大地坐标系,以此命名为1954年北京坐标系[6]。

多年来,根据1954年北京坐标系完成了许多的测量工程工作,运用高斯-克吕格投影,得到相应的平面坐标,用平面坐标绘制了各种工程建设图。

这个坐标在国民经济建设和国防建设中起到巨大的作用,就目前而言,该坐标仍为一些单位或部门使用。

但根据我国最新测量新理论,加上技术的持续更新加完善,此坐标系统有下列几个缺点[7]:a.参考椭球面与我国大地水准面存在着自西向东的系统性倾斜,水准差异距离高达68 m ;b.椭球参数包含较大的偏差;c.定向不清楚;d.物理大地测量和几何大地测量参考面不统一;鉴于如此多的的误差,在根据我国空间测量技术的快速发展,结合多方面的资料,又建立了新的北京1954年坐标系(BJ54新),以此满足实际的需求。

3.地方独立坐标系地方独立坐标系通常采纳的是高斯克吕格正行投影平面直角坐标系。

把独立测量的工程控制网建立在当地地海拔高程面,并与当地子午线为中央子午线投影变换的平面坐标。

地方独立坐标系包括三种坐标系:a: 任意带坐标系:不与国家坐标体系一致,它的中央子午线是根据具体情况而定,不再是统一的中央子午线,其长度高程面解算扔就是国家参考椭球面;b: 抵偿坐标系:是采取高斯投影长度变形的而选用的抵偿高程面,用其作为投影面。

虽然中央子午线与国家坐标系统相一致,但其归责的长度是高斯平面;c: 投影补偿高程面的任意坐标系:长度高程归算面和中央子午线都和国家坐标系有很大的异议。

该坐标系是结合任意带和抵偿面的优点总结出来的新坐标系,以获得更高精度要求来满足规范要求。

综合三种坐标系可以发现都有自己的原点,自己的定向。

换句话说明控制网便是独立坐标系作为参考。

下面介绍一下国家参考椭球的长半轴与地方参考椭球的长半轴的关系[8]。

设某一地方独立坐标系置于海拔高程H 的曲面中,该地方的大地水准面差距为t ,则该曲面离国家参考椭球的高度为dN H t =+(2-1) 因为两椭球的中心一致,轴向一致,扁率相等,设其长半轴的差值为da ,有,dN da N a = (2-2)可得:dN da a N = (2-3)其中a 为国家参考椭球长半轴,N 为相应于该椭球的地方独立坐标系原点的卯酉圈曲率半径N = (2-4)其中:e 为第一偏心率。

相关文档
最新文档