提公因式法(一)教学设计
提取公因式教案
●课 题 §2.2.1 提公因式法(一)白鹤九年制学校 刘良宇●教学目标(一)教学知识点让学生了解多项式公因式的意义,初步会用提公因式法分解因式.(二)能力训练要求通过找公因式,培养学生的观察能力.(三)情感与价值观要求在用提公因式法分解因式时,先让学生自己找公因式,然后大家讨论结果的正确性,让学生养成独立思考的习惯,同时培养学生的合作交流意识,还能使学生初步感到因式分解在简化计算中将会起到很大的作用.●教学重点能观察出多项式的公因式,并根据分配律把公因式提出来.●教学难点让学生识别多项式的公因式.●教学方法独立思考——合作交流法.●教具准备多媒体●教学过程一、回顾旧知,引入新知师:下面我们来看一道题,741872187118⨯+⨯+⨯ (板书展示该题,以及解题第一步步骤) 师:大家看一看,这个题有什么特点。
生:每一项都有18这个公因数。
师:那你认为用什么计算方法最简单,谁来告诉和我们大家一起分享一下你的方法。
生:)747271(18++⨯ 师:对,这样计算很简单,你能告诉我你这样做的依据是什么吗?生:乘法分配律的逆运算师:完全正确。
在这儿每一项都有因数18,所以把我们把公共的因数18从多项式里面提取出来,这样就让我们的计算更为得简单。
在我们学过的整式里面有具备同样特征的式子吗?(停顿,学生思考)大家先来看计算1、引入模型m (a +b +c )=ma +mb +mc (板书展示)师:这是一个单项式与多项式两个整式之间的乘法运算,大家观察一下计算结果的每一项有没有什么共同的特征。
生:每一项都有因式m 。
师:对,说的很好,像左边多项式ma+mb+mc 这样每一项都含有的公共的因式m ,我们就把因式m 叫做这个多项式的公因式。
(幻灯片出示)师:根据等式的可逆性可以得到ma +mb +mc =m (a +b +c )(板书展示),大家来看一看,从左到右的变形的过程叫做什么?生:分解因式。
师:大家再仔细观察一下,这样分解因式师如何进行的?师:就是把多项式中的公因式从式子中提取出来。
提公因式法1全国一等奖教学设计
1、自学课本mb;24-8;35 20 ;4 b-2a ab
找公因式的方法:
1公因式的系数应取各项系数的绝对值的最大公因数
2字母取各项的相同字母的最低次幂
新晃第二中学备课纸
教学过程与设计
自我创新
自学反馈二
1、什么叫提取公因式法
2、确定下列多项式的公因式,并解因式
=4a .2 4a .3bc
= 4a 2 3bc
教学
反
思
解: 8 12a c公因式:4a
=4a .2 4a .3bc
= 4a 2 3bc
六、巩固练习
1、下面的分解因式对吗如果不对,应怎样改正
2、选择(见幻灯片)
七、知识拓展
1、把多项式分解因式
2、学科王28页16题、17题
八、谈谈本节课的体会
板
书
设
计
例2:把8 12a c分解因式
解: 8 12a c公因式:4a
新晃第二中学备课纸
授课时间:最新年__2月____日(第___周第课时)总第课时
课题
提公因式法
课时安排
1
课型
新授
教学
目
标
知识
会初步用提公因式法进行因式分解
能力
树立学生全面认识问题、分析问题的思想,提高学生的观察能力、逆向思维能力
情感
在学习中体会乐趣,培养学生对生活的美好感情
教学重点
会初步用提公因式法进行因式分解
教学难点
找公因式,提公因式
教学方法
先学后教,当堂训练
教具
幻灯片
教学过程与设计
自我创新
一、复习引入
1、下列从左到右的变形是分解因式的有
初中八年级数学上册第一章《提公因式法》教案教学设计
知识与 技能
1.使学生了解因式分解的意义,了解因式分解和整式的乘法是整式的两种相反方向的变形。
2.让学生会确定多项式中各项的公因式,会用提公因式法进行因式分解。
过程与 方法
1、从分解因数到分解因式的类比过程,在类比分解因数与分解因式的过程中理解分解因式的概念。
2、历探索多项式各项的公因式的过程,以化归的思想进行因式分解。
提醒:(1)各项都含有的字母的最低次幂的积是公因式的字母部分;
(2)因式分解后括号内的多项式的项数与原多项式的项数是否相同;
(3)如果多项式的首项为“–”时,则先提取“–”号,然后提取其它公因式;
(4)将分解因式后的式子再进行单项式与多项式相乘,其积是否与原式相等.
1.强化训练:下列代数式变形中,哪些
第1、4(1)、6题
学生按照老师的提问总结。并相互补充。
学生记录
第2课时
教学内容
教学环节
教师活动
学生活动
教学媒体使用预期效果
(批注)
探索新知(例题讲解)
总结规律
例2a(x–3)+2b(x–3)
活动目的:引导学生通过类比将提取单项式公因式的方法与步骤推广应用于提取的多项式公因式.由于题中很显明地表明,多项式中的两项都存在着(x–3),通过观察,学生较容易找到第一题公因式是(x–3),而第二题公因式是y(x+1),并能顺利地进行因式分解.
教学过程
教学内容
教学环节
教师活动
学生活动
教学媒体使用预期效果
(批注)
巩固练习
2.强化训练:下列代数式变形中,哪些是因式分解?哪些不是?为什么?
(1)x2-3x+1=x(x-3)+1 ;
初中数学_提公因式法教学设计学情分析教材分析课后反思
4.2 提公因式法(1)●学习目标分析(一)知识与技能1.了解公因式的意义,能准确的确定一个多项式各项的公因式;2.初步会用提公因式法分解因式,进一步理解因式分解与整式乘法的关系.(二)方法与过程经历探索寻找多项式各项的公因式的过程,培养合作探究的意识,积累合作的经验,进一步培养学生认真、严谨的科学态度.(三)情感态度价值观积极参与数学活动,养成独立思考的习惯,提高数学合作交流意识水平,加强学生的直觉思维并渗透化归的思想方法,进一步深化学生逆向思维能力.●教学重点能观察出多项式的公因式,并能利用提公因式法分解因式.●教学难点正确识别多项式各项的公因式.●教学方法独立思考、合作交流探究.●教具准备:多媒体课件●探究活动设计本节教学共设计了两个探究活动:一是探究如何确定公因式;二是探究如何提取公因式分解因式。
探究方法与步骤:1、创设问题情境,引发学生独立思考。
2、学生小组合作交流,共同探究。
3、交流展示讨论结果,归纳总结探究结论。
●教学过程设计:第一环节:温故知新1.因式分解的概念:把一个多项式化为___________的形式, 这种变形叫做把这个多项式因式分解,也叫分解因式。
2.下面由左到右的变形,哪个是分解因式?(1) 5x(2x -1)= 10x 2-5x(2) 10x 2-5x = 5x(2x -1)整式乘法与分解因式之间的关系是什么?【设计意图】 因式分解的概念及整式乘法与分解因式之间的关系两个知识点与本节课的学习紧密相关。
提公因式法分解因式实质上是逆用整式乘法中的单项式乘多项式将一个多项式化为两个整式乘积的形式。
第2题中设计的的两个等式也旨在渗透这一点。
加上课件动态演示互逆变形过程,增强了直观性。
通过分析因式分解与整式乘法之间的互逆过程学习因式分解的方法,以提高学生对知识间联系的认识。
第二环节:创设情境、导入新课近年来,我国土地沙漠化问题严重. 3月12日植树节到来之际,,学校组织了 “我参与、我奉献、我快乐”植树活动,要求每行种树15棵,其中初一年级种树27行,初二年级种树35行,初三年级种树38行,问完成这次植树活动学校共需要多少棵树苗?师:解决这个问题,你能列出怎样的算式?哪种算式计算起来较为简便?生:列式:①15×27+15×35+15×38②15×(27+35+38)15×27+15×35+15×38=15×(27+35+38)=15×100=1500师:这种运算方法的根据是什么?生:根据是乘法对加法的分配律师:为什么能逆用分配律呢?这个式子的各项有什么特点?生:这个式子的各项有相同的因数。
提公因式法教案设计
提公因式法教案设计一、教学目标:1. 让学生理解提公因式法的概念和意义。
2. 培养学生运用提公因式法进行因式分解的能力。
3. 培养学生解决实际问题时运用提公因式法的意识。
二、教学内容:1. 提公因式法的定义和原理。
2. 提公因式法的步骤和技巧。
3. 提公因式法在实际问题中的应用。
三、教学重点与难点:1. 教学重点:提公因式法的概念、步骤和应用。
2. 教学难点:提公因式法的灵活运用和解决实际问题。
四、教学方法:1. 采用问题驱动法,引导学生主动探究提公因式法的原理和应用。
2. 通过案例分析,让学生学会运用提公因式法解决实际问题。
3. 利用小组讨论,培养学生的合作能力和交流能力。
五、教学准备:1. 准备相关案例和练习题,用于引导学生进行实践操作。
2. 准备PPT课件,用于辅助教学。
【课堂导入】教师通过引入一个实际问题,引发学生对提公因式法的兴趣。
例如:“小明有一串珠子,每颗珠子都有相同的长度,但是珠子的颜色不同。
如果把相同颜色的珠子分成一组,这些珠子可以分成几组?”【新课讲解】1. 定义和原理解释提公因式法的概念:将一个多项式拆分成两个或多个多项式的乘积,其中一个多项式是其他多项式的公因式。
演示提公因式法的原理,例如:将多项式ax^2 + bx + c分解为(ax + m)(x + n)。
2. 步骤和技巧引导学生掌握提公因式法的四个步骤:确定公因式、提取公因式、验证结果、简化表达式。
教授如何找到多项式的公因式,例如:观察多项式的系数和变量。
【案例分析】提供几个案例,让学生运用提公因式法进行因式分解。
例如:1. 分解多项式x^2 + 4x + 4。
2. 分解多项式x^2 5x + 6。
【小组讨论】让学生分组讨论,分享各自的解题过程和答案,互相学习和交流。
【练习巩固】提供一些练习题,让学生独立完成,巩固提公因式法的应用。
例如:1. 分解多项式x^2 + 3x + 2。
2. 分解多项式x^2 4x + 1。
4.2 提公因式法 第1课时 教案
一、情境导入小华家买了一套新房,装修时打算在三室两厅的地面上贴相同规格的地板砖,为此小华的父亲要求小华测算出三室两厅的地面总面积.小华发现三室两厅的地面宽度相同,都是a米,大厅长度为c米,三室长度均为d米,其中a=3.6,b=5.6,c=2.8,d=4.2,那么怎样计算总面积比较简便呢?二、合作探究探究点一:确定公因式多项式6ab2c-3a2bc+12a2b2中各项的公因式是()A.abc B.3a2b2C.3a2b2c D.3ab解析:系数的最大公约数是3,相同字母的最低指数次幂是ab,可知公因式为3ab.故选D.方法总结:确定多项式中各项的公因式,可概括为三“定”:(1)定系数,即确定各项系数的最大公约数;(2)定字母,即确定各项的相同字母因式(或相同多项式因式);(3)定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.探究点二:用提公因式法进行因式分解(一)【类型一】用提公因式法因式分解因式分解:(1)8a3b2+12ab3c;(2)2a(b+c)-3(b+c);(3)(a+b)(a-b)-a-b.解析:将原式各项提取公因式即可得到结果.解:(1)原式=4ab2(2a2+3bc);(2)原式=(2a-3)(b+c);(3)原式=(a+b)(a-b-1).方法总结:提公因式法的基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式.【类型二】用因式分解简化运算计算:(1)39×37-13×91;(2)29×20.15+72×20.15+13×20.15-20.15×14.解析:(1)首先提取公因式13,进而求出即可;(2)首先提取公因式20.15,进而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法总结:在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便.三、板书设计1.公因式多项式各项都含有的相同因式叫这个多项式各项的公因式.2.提公因式法如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,这种因式分解的方法叫做提公因式法.。
提公因式法(1)教案和教学反思
4.2提公因式法(1)学习目标:1.了解公因式的定义,能确定多项式各项的公因式。
2.会用提公因式法把多项式因式分解。
教学重点:能确定多项式公因式,并用提公因式法把多项式因式分解。
教学难点:确定多项式的公因式。
教学过程:一、复习回顾,引入课题1.什么是因式分解?2.因式分解与整式乘法有什么关系?二、自主先学,感知设疑小组讨论自学的收获和困惑:1.什么是公因式?2.如何确定多项式各项的公因式?3.会用提公因式法把多项式因式分解吗?三、目标导学,情境引入(一)展示学习目标,让学生齐读。
学习目标:1.了解公因式的定义,能确定多项式各项的公因式。
2.会用提公因式法把多项式因式分解。
(二)情境引入多项式ab+bc各项都含有相同的因式吗?多项式3x2+x呢?多项式m b2+nb-b呢?尝试将这几个多项式分别写成几个因式的乘积,并与同伴交流。
这几个多项式的相同因式比较好找,学生容易找到,并逆用乘法分配律将他们写成几个因式的乘积的形式,让学生初步感受找公因式,并提公因式。
四、互助研学,探究解疑(一)探究活动一公因式的定义利用情境中提出的几个多项式让学生归纳出公因式的定义,并让学生齐读记忆。
培养学生的初步归纳能力。
一个多项式各项都含有的相同因式,叫做这个多项式各项的公因式。
(二)议一议:确定公因式的方法?多项式2x2+6x3中各项的公因式是什么?让学生分组讨论,教师可以点拨学生从系数,字母,指数三方面去考虑。
学生讨论后提问并归纳出确定公因式的方法:系数:公因式的系数是多项式各项系数的最大公因数;字母:字母取多项式各项中都含有的相同的字母;指数:相同字母的指数取各项中最小的一个,即取字母最低次幂。
简单的说就是:1.定系数;2.定字母;3.定指数。
(三)即学即练1.多项式8x2y-14x2y+4x y3各项的公因式是()A. 8xyB. 2xyC. 4xyD. 2y2.下列多项式的各项中,公因式是5a2b的是()A.15a2b−20a2b2B.30a2b3-15a b4-10a3b2C.10a2b2-20a2b3+50a4b5D.5a2b4-10a3b3+15a4b2(四)探究活动二提公因式分解因式你能将多项式2x2+6x3因式分解吗?指名上台讲解。
教学设计4:14.3.1提公因式法
14.3.1提公因式法一、教学目标、重难点1、教学目标(1)初步了解因式式分解的意义,知道因式分解与整式乘法是互逆运算。
(2)会找公因式(3)会用提取公因式法分解因式(4)体会数学知识之间是相互联系的,是可以相互转化的。
(5)进一步培养学生观察、分析、归纳的能力。
2、重点、难点、关键重点:提公因式法是因式分解最基本最常用的方法,因此它是本节重点。
难点关键:确定公因式。
二、教法构想1、教师是学生学习、发展的引导者。
教学中应根据学生的认知规律,引导学生通过对新旧知识的类比,了解因式分解的意义,通过问题和题组让学生操作、观察、比较、分析、交流、归纳从而得出确定公固式的步骤。
启发诱导应贯穿于教学过程始终。
2、充分地运用媒体、题组保证教学容量,提高教学效率。
三、学法引导在学生已有知识的基础上通过观察类比得到因式分解意义,根据由具体到一般的思维方式,通过操作,相互合作交流归纳确定公因式的步骤及提公因式方法。
积极倡导学生动脑、动手、动口,亲身经历体验数学学习的过程。
四、程序展望1、揭示课题(1)提出问题1:请同学们计算3.1×3.14+1.5×3.14+0.4×3.14=15.7(2)填空并观察、思考2×3=6m(a+b+c)=ma+mb+mc2×2×3=12(x+3)(x-3)= x2-92×3×3=18(a-3)(a-3)= a2-6a+9因数分解↔乘法运算(因式分解)↔整式乘法板书:因式分解(分解因式):把一个多项式化成几个整式积的形式叫做因式分解。
(3)设问:整式乘法和因式分解有什么关系?设计意图:通过一个学生能解决的问题,采用以旧引新方式方法得出课题。
在教师的引导下学生自己观察、思考、类比归纳出因式分解的意义Ⅱ.讲解新课因式分解就是将)()((方法对象化成多项式几个式的)((目标积 (1) 确定公因式观察:3.1×3.14+1.5×3.14+0.4×3.14=3.14×(3.1+1.5+0.4)ma+mb+mc =m (a +b +c )提出问题:两个等式的左边各项有何共同特点?(含有相同因式)引出公因式概念练习1:找出下列多项式的公因式(学生交流,师巡视指导)(1)ax +ay (2)6a +14b (3)2a 2+4a (4)4m 2-8mn (5)8a 2x +6ax 2-12a 3x 3【答案】(1)a (2)2 (3)2a (4)4m (5)2ax据此交流小结确定公因式的步骤:1、定系数:取各项系数的最大公约数;2、定字母:取各项都有的字母,其次数取最低次数。
数学教案提公因式法教学教案
数学教案提公因式法教学教案一、教学目标:1. 让学生理解提公因式法的概念和意义。
2. 培养学生运用提公因式法解题的能力。
3. 引导学生发现提公因式法在数学中的应用价值。
二、教学内容:1. 提公因式法的定义和原理。
2. 提公因式法的基本步骤。
3. 提公因式法在实际问题中的应用。
三、教学重点与难点:1. 教学重点:提公因式法的步骤和应用。
2. 教学难点:如何引导学生发现和运用提公因式法。
四、教学方法:1. 采用问题驱动法,引导学生主动探索和发现提公因式法的规律。
2. 通过案例分析和练习,让学生掌握提公因式法的应用。
3. 利用小组讨论和合作交流,提高学生的解题能力。
五、教学过程:1. 导入新课:通过一个实际问题,引导学生思考如何简化计算。
2. 讲解提公因式法的定义和原理,阐述其意义。
3. 演示提公因式法的基本步骤,让学生跟随操作。
4. 开展案例分析,让学生运用提公因式法解决问题。
5. 练习巩固:布置一些有关提公因式法的练习题,让学生独立完成。
6. 总结讲评:对学生的练习情况进行讲评,指出优点和不足。
7. 拓展提高:引导学生发现提公因式法在数学其他领域的应用。
8. 课堂小结:回顾本节课所学内容,加深学生对提公因式法的理解。
9. 布置作业:布置一些有关提公因式法的家庭作业,巩固所学知识。
10. 课后反思:教师对本节课的教学进行反思,为下一节课的教学做好准备。
六、教学策略与技巧:1. 采用循序渐进的教学策略,由浅入深地引导学生理解和掌握提公因式法。
2. 运用对比分析法,让学生区分提公因式法与其他解题方法的区别和联系。
3. 利用多媒体教学手段,生动形象地展示提公因式法的步骤和过程。
4. 注重个体差异,针对不同学生的学习情况,给予适当的指导和帮助。
5. 创设宽松和谐的学习氛围,鼓励学生提问、讨论和分享。
七、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答和合作交流情况。
2. 练习完成情况评价:检查学生完成练习题的正确率和解题思路。
八年级数学上册《提取公因式法》教案、教学设计
-例如:分解下列多项式:
(1)x^3 + 2x^2 - x
(2)3y^4 - 6y^3 + 9y^2
(3)4a^2b^2 - 8a^2b + 12ab^2
4.思考总结题:要求学生结合本节课的学习,总结提取公因式法的步骤和技巧,并用自己的话简要阐述提取公因式在实际问题中的应用价值。
-解决实际问题中提取公因式的应用。
(二)教学设想
1.教学方法:
-采用问题驱动法,引导学生主动探究提取公因式的规律;
-利用多媒体辅助教学,直观展示提取公因式的步骤和技巧;
-设计不同难度的例题和练习,分层次教学,满足不同学生的学习需求;
-组织小组合作,培养学生的团队协作能力和交流表达能力。
2.教学策略:
(2)8y^3 + 12y^2
(3)15a^4 - 20a^3
(4)4b^2c + 6bc^2
(5)10m^3n + 15m^2n^2 - 20mn^3
2.实践应用题:设计2道实际应用题目,让学生运用提取公因式法解决生活中的问题,培养学生的应用能力。
-例如:小芳去文具店购买文具,她购买了3支铅笔和4本练习本,铅笔的单价为2元,练习本的单价为3元。请用提取公因式法计算小芳购买文具的总价。
(五)总结归纳,500字
在总结归纳环节,我将引导学生完成以下任务:
1.回顾所学:让学生回顾本节课所学的内容,包括提取公因式的概念、方法和步骤。
2.总结规律:引导学生总结在提取公因式过程中应注意的问题,如识别公因式、确定提取顺序等。
3.归纳技巧:让学生分享在解决实际问题时,如何运用提取公因式法简化计算过程。
4.2 提公因式法 第1课时 北师大版数学八年级下册教案
4.2提公因式法(第1课时公因式是单项式的因式分解)教学目标1.学会确定多项式中各项的公因式,会用提公因式法进行因式分解.2.通过与因数分解的类比,感悟数学中数与式的共同点,体验数学的类比思想.教学重点难点重点:理解公因式的意义.难点:会用提公因式法因式分解.教学过程复习巩固1.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解.因式分解也可称为分解因式.2. 因式分解与整式乘法的关系:因式分解与整式乘法是相反方向的变形,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.导入新课活动1(学生交流,教师点评)【问题1】观察下列各算式有什么共同的特点?(1)5×3+5×(-6)+5×2;(2)2πR+2πr;(3)ma+mb;(4)cx-c y+cz.公共特点:各式中的各项都含有一个公共的因数或因式.教师:多项式ab+bc各项都含有相同的因式吗?多项式3x2+x呢?多项式mb2+nb-b呢?学生:都含有相同的因式依次为b, x,b.探究新知探究点一公因式的定义把多项式各项都含有的相同的因式,叫做这个多项式的各项的公因式.活动2(学生交流,教师点评)【问题2】(师生互动)教师:尝试将这几个多项式分别写成几个因式的乘积.学生:ab+bc=b(a+c),3x2+x=x(3x+1),mb2+nb-b=b(mb+n-1).【思考】如何找3x 2– 6 xy的公因式分析:系数:3,6的最大公约数是3.字母:相同的字母x.指数:相同字母x的最低次幂.解:3x 2– 6 xy的公因式是3x.探究点二确定公因式的方法活动3(学生交流,教师点评)确定多项式中各项的公因式,可概括为三“定”:(1)定系数,即确定各项系数的最大公约数;(2)定字母,即确定各项的相同字母因式(或相同多项式因式);(3)定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.【例1】多项式6ab2c-3a2bc+12a2b2中各项的公因式是()A.abcB.3a2b2C.3a2b2cD.3ab解析:系数的最大公约数是3,相同字母的最低指数次幂是ab,可知公因式为3ab.故选D.答案:D【即学即练】多项式6ab2-8a4b3c中各项的公因式是_________.答案:2ab2探究点三提公因式法活动4(学生交流,教师点评)【例2】因式分解:(1)8a3b2+12ab3c;(2)-24x3-12x2+28x .分析:将原式各项提取公因式即可得到结果.解:(1) 8a3b2+12ab3c=4ab2(2a2+3bc).(2)-24x3-12x2+28x=-(24x³+12x²-28x)=-(4x·6x²+4x·3x-4x·7)=-4x(6x²+3x-7).【题后总结】(学生总结,老师点评)提公因式法的基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式.【总结】提公因式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.【思考】提公因式法因式分解的步骤?(小组交流,教师点评)【总结】第一步,找出公因式;第二步,提取公因式,即用公因式去除这个多项式,所得的商式作为另一个因式,将多项式化为两个因式的积.【即学即练】计算:(1)39×37-13×91;(2)29×20.15+72×20.15+13×20.15-20.15×14.分析:(1)首先提取公因式13,进而求出即可;(2)首先提取公因式20.15,进而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.【方法总结】在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便.课堂练习1.多项式−9x2y+3xy2−6xyz各项的公因式是()A.−3xyB.3yzC.3xzD.−3x2.多项式mx+n可分解为m(x−y),则n表示的整式为()A.mB.myC.−yD.−my3.将3x(a−b)−9y(a−b)因式分解,应提的公因式是()A.3x−9yB.3x+9yC.a−bD.3(a−b)4.(−2)2 017+(−2)2 018的值为()A.2B.−2C.−22 017D.22 0175.将多项式−6a3b2−3a2b2+12a2b3因式分解时,应提取的公因式是()A.−3a2b2B.−3abC.−3a2bD.−3a3b3参考答案:1.A解析:因为−9x2y=−3xy·3x,3xy2=−3xy·(−y),−6xyz=−3xy·2z,所以多项式−9x2y+3xy2−6xyz各项的公因式为−3xy.2.D解析:∵m(x−y)=mx−my,∴n=−my.故选D.3.D解析:各项系数的最大公约数是3,相同的因式是a−b,所以应提的公因式是3(a−b).4.D解析:(−2)2 017+(−2)2 018=(−2)2 017×(1−2)=22 017.故选D.5. A解析:各项系数的最大公约数是−3,相同字母的最低指数次幂是a2b2,所以应提取的公因式是−3a2b2.故选A.课堂小结(学生总结,老师点评)一、公因式把多项式各项都含有的相同的因式,叫做这个多项式的各项的公因式.二、确定公因式的方法三、提公因式法的定义:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.布置作业教材第96页习题4.2板书设计2提公因式法第1课时公因式是单项式的因式分解一、公因式的定义【问题1】观察下列各算式有什么共同的特点?(1)5×3+5×(-6)+5×2;(2)2πR+2πr;(3)ma+mb;(4)cx-c y+cz.例1多项式6ab2c-3a2bc+12a2b2中各项的公因式是() A.abc B.3a2b2 C.3a2b2c D.3ab例2因式分解:(1)8a3b2+12ab3c;(2)-24x3-12x2+28x .二、提公因式法1.定义2.步骤。
4.2-提取公因式法公开课(1)
第六章第2节《提取公因式法》【教学背景】“提取公因式法”是“浙江版七年级数学(下)”第六章第二节内容。
本课安排在“整式的乘法”后,明确了因式分解与整式乘法的联系,起到知识的链结开拓作用。
提取公因式法是因式分解的基础,也为学习因式分解的其他方法及利用因式分解解整式方程(如一元二次方程)打下结实的基础,从而也为学生的运算能力拓展了道路。
(老教材本小节是分两个课时上的)【教学内容分析】“提取公因式法”是因式分解的最基本、最常用的方法。
它的理论依据是逆用分配律,因此,学生接受起来并不难,但因题目各有其特点,形式变化多,所以需要学生具有观察、分析能力和应变能力,这就需要在教学中加以指导、训练。
例题讲授及练习题的匹配都要由浅入深,形式多样化。
利用这个方法,首先对要分解的多项式进行考察,发现特点及多项式各项之间的内在联系,适当变形。
(可利用计算机辅助教学手段,增大教学的容量和教学质量,改变传统的言传身教的方式。
)能力目标:⑴树立学生“化零为整”、“化归”的数学思想,培养学生完整地、辨证地看问题的思想。
⑵树立学生全面分析问题,认识问题的思想,提高学生的观察能力,分析问题及逆向思想能力。
情感目标:在观察、对比、交流和讨论的数学活动中发掘知识,并使学生体验到学习的乐趣和数学的探索性。
【教学重点、难点】1.教学重点∶掌握公因式的概念,会使用提取公因式法进行因式分解,理解添括号法则。
⒉.教学难点∶正确地找出公因式【教学方法】理论与实例相结合(采用设问式、启发式)【教学工具】应用投影仪(计算机)【教学过程】㈠创设情境,提出问题如图8-1,一块菜园由两个长方形组成,这些长方形的长分别是3.8m,6.2m,宽都是3.7 m,如何计算这块菜园的面积呢?列式:3.7×3.8+3.7×6.2 (学生思考后列式)3.7 有简便算法吗?=3.7×(3.8+6.2)3.7 =3.7×10=37(m2)在这一过程中,把3.7换成m,3.8换成a,6.2换成b,于是有:ma+mb =m(a+b)利用整式乘法验证: m(a+b)=ma+mb可能有学生会提出把两个小的长方形补成一个大的长方形,那就更好,或其他的方法,教师都应该及时肯定学生思维中的闪光点.(使学生初步意识到因式分解可以使运算简便,同时起到使知识进行迁移化归.)【以问题引入能引起学生的学习兴趣,符合学生的认知规律。
提公因式法教案
4.2提公因式法(一)•教学目标(一)教学知识点让学生了解多项式公因式的意义,初步会用提公因式法分解因式.(二)能力训练要求通过找公因式,培养学生的观察能力.•教学重点能观察出多项式的公因式,并根据分配律把公因式提出来.•教学难点让学生识别多项式的公因式.•教学过程I•创设问题情境,引入新课3371一块场地由三个矩形组成,这些矩形的长分别为4,一,4,宽都是-,求这块场地的面积.131317337解法一:S=一x——+——+—x—=_+_+_=24———4848131********解法二:S=—x-+—x-+—x-二一(—+—-) =一x4=24———4—4—4—从上面的解答过程看,解法一是按运算顺序:先算乘,再算和进行的,解法二是先逆用分配律算和,再计算一次乘,由此可知解法二要简单一些.这个事实说明,有时我们需要将多项式化为积的形式,而提取公因式就是化积的一种方法.II.新课讲解1.公因式与提公因式法分解因式的概念.若将刚才的问题一般化,即三个矩形的长分别为a、b、c,宽都是m则这块场地的面积为ma+mb+mc,或m(a+b+c),可以用等号来连接.ma+mb+mc=m(a+b+c)从上面的等式中,大家注意观察等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?等式左边的每一项都含有因式m,等式右边是m与多项式(a+b+c)的乘积,从左边到右边是分解因式.由于m是左边多项式ma+mb+mc的各项ma、mb、mc的一个公共因式,因此m叫做这个多项式的各项的公因式.由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m 从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法.2.例题讲解[例1]将下列各式分解因式:(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.分析:首先要找出各项的公因式,然后再提取出来.解:(1)3x+6=3x+3X2=3(x+2);(2)7X2—21X=7X・X—7X・3=7X(X—3);(3)8a3b2-12ab3c+abc=8a2b•ab—12b2c•ab+ab•c=ab(8a2b—12b2c+c)(4)—24x3—12x2+28x=—4x(6x2+3x—7)3.议一议通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.首先找各项系数的最大公约数,如8和12的最大公约数是4.其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最低的.III.课堂练习(一)随堂练习1.写出下列多项式各项的公因式.(1)ma+mb(m)(2)4kx—8ky(4k)(3)5y3+20y2(5y2)(4)a2b—2ab2+ab(ab)2.把下列各式分解因式(1)8x—72=8(x—9)(2)a2b—5ab=ab(a—5)(3)4m3—6m2=2m2(2m—3)(4)a2b—5ab+9b=b(a2—5a+9)(5)—a2+ab—ac=—(a2—ab+ac)=—a(a—b+c)(6)—2x3+4x2—2x=—(2x3—4x2+2x)=—2x(x2—2x+1)(二)补充练习把3x2—6xy+x分解因式解:3x2—6xy+x=x(3x—6y)大家同意这种做法吗?改正:3x2—6xy+x=x(3x—6y+1)后面的解法是正确的,出现错误的原因是受到1作为项的系数通常可以省略的影响,而在本题中是作为单独一项,所以不能省略,如果省略就少了一项,当然不正确,所以多项式中某一项作为公因式被提取后,这项的位置上应是1,不能省略或漏掉.在分解因式时应如何减少上述错误呢?将x写成x・1,这样可知提出一个因式x后,另一个因式是1.W.课时小结1.提公因式法分解因式的一般形式,如:ma+mb+mc=m(a+b+c).这里的字母a、b、c、m可以是一个系数不为1的、多字母的、幕指数大于1的单项式.2.提公因式法分解因式,关键在于观察、发现多项式的公因式.3.找公因式的一般步骤(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.4.初学提公因式法分解因式,最好先在各项中将公因式分解出来,如果这项就是公因式,也要将它写成乘1的形式,这样可以防范错误,即漏项的错误发生.5•公因式相差符号的,如(x—y)与(y—x)要先统一公因式,同时要防止出现符号问题.V.活动与探究利用分解因式计算:(1)32004—32003;(2)(—2)101+(—2)100.解:(1)32004—32003=32003X(3—1)=32003X2=2X32003(2)(—2)101+(—2)100=(—2)100X(—2+1)=(—2)100X(—1)=—(—2)100 =—2100信息化教学设计模板【预习单】观潮班级:姓名:一、抄一抄:难读的字:难记的字:难理解的字词:二、读一读:文中第()自然段的描写让我印象深刻。
数学教案提公因式法教学教案
数学教案提公因式法教学教案第一章:提公因式法概述1.1 教学目标了解提公因式法的概念和作用掌握提公因式法的基本步骤1.2 教学内容提公因式法的定义提公因式法在解题中的应用1.3 教学方法讲解提公因式法的概念和步骤举例讲解提公因式法在解题中的应用1.4 教学活动引入提公因式法的概念,引导学生思考其作用通过举例讲解提公因式法的步骤和应用1.5 练习题完成课后练习题,巩固提公因式法的基本概念和应用第二章:提公因式法的步骤2.1 教学目标掌握提公因式法的基本步骤2.2 教学内容提公因式法的第一步:确定公因式提公因式法的第二步:提取公因式提公因式法的第三步:验证结果2.3 教学方法讲解提公因式法的每个步骤举例演示每个步骤的应用2.4 教学活动通过举例引导学生了解并掌握提公因式法的每个步骤进行小组讨论,让学生互相交流和学习2.5 练习题完成课后练习题,巩固提公因式法的每个步骤的应用第三章:提公因式法的应用3.1 教学目标学会运用提公因式法解决实际问题3.2 教学内容提公因式法在因式分解中的应用提公因式法在解方程中的应用3.3 教学方法讲解提公因式法在因式分解和解方程中的应用举例演示提公因式法在实际问题中的应用3.4 教学活动通过举例引导学生了解提公因式法在因式分解和解方程中的应用进行小组讨论,让学生互相交流和学习提公因式法的应用3.5 练习题完成课后练习题,巩固提公因式法在实际问题中的应用第四章:提公因式法的拓展4.1 教学目标掌握提公因式法的拓展应用4.2 教学内容提公因式法在多项式乘法中的应用提公因式法在解不等式中的应用4.3 教学方法讲解提公因式法在多项式乘法和解不等式中的应用举例演示提公因式法在实际问题中的应用4.4 教学活动通过举例引导学生了解提公因式法在多项式乘法和解不等式中的应用进行小组讨论,让学生互相交流和学习提公因式法的拓展应用4.5 练习题完成课后练习题,巩固提公因式法在实际问题中的应用第五章:提公因式法的综合应用5.1 教学目标能够将提公因式法应用于复杂的数学问题中5.2 教学内容提公因式法在解决多项式方程中的应用提公因式法在解决代数表达式简化中的应用5.3 教学方法讲解提公因式法在解决复杂问题时的应用步骤提供实际例子,让学生通过练习掌握提公因式法综合应用的方法5.4 教学活动引导学生通过小组合作解决复杂的数学问题,运用提公因式法组织学生进行讨论,分享各自解决问题的过程和经验5.5 练习题完成课后练习题,巩固提公因式法在综合应用中的知识第六章:提公因式法的练习与提高6.1 教学目标提高学生运用提公因式法解决实际问题的能力6.2 教学内容提供一系列练习题,让学生通过独立完成练习提高提公因式法的技能分析学生练习中的常见错误,进行讲解和指导6.3 教学方法引导学生独立完成练习题,通过练习提高提公因式法的应用能力对学生练习中的错误进行分析和讲解,帮助学生理解和掌握提公因式法的要点6.4 教学活动组织学生进行练习,鼓励学生积极思考和解决问题对学生的练习结果进行点评和指导,帮助学生提高解题技巧6.5 练习题完成课后练习题,通过独立练习进一步提高提公因式法的应用能力第七章:提公因式法在实际问题中的应用培养学生将提公因式法应用于实际问题的能力7.2 教学内容结合实际问题,讲解提公因式法在解决问题中的应用提供实际问题案例,让学生通过提公因式法解决问题7.3 教学方法引导学生通过分析实际问题,识别问题中的公因式提供案例,让学生通过练习掌握提公因式法在实际问题中的应用7.4 教学活动组织学生进行小组讨论,探讨如何将提公因式法应用于实际问题学生通过实际问题案例进行练习,分享解题过程和经验7.5 练习题完成课后练习题,巩固提公因式法在实际问题中的应用能力第八章:提公因式法的评价与反思8.1 教学目标培养学生对提公因式法的自我评价和反思能力8.2 教学内容让学生通过自我评价,反思提公因式法的应用过程和结果引导学生讨论提公因式法的优缺点,以及如何改进和提高8.3 教学方法引导学生进行自我评价,反思提公因式法的应用过程和结果组织学生进行小组讨论,分享对提公因式法的看法和经验学生进行自我评价和反思,讨论提公因式法的应用和改进方法教师对学生的评价和反思进行点评和指导8.5 练习题完成课后练习题,通过自我评价和反思提高提公因式法的应用能力第九章:提公因式法的拓展与延伸9.1 教学目标培养学生对提公因式法的拓展和延伸能力9.2 教学内容讲解提公因式法在其他数学领域的应用,如代数、几何等引导学生思考提公因式法的延伸,如何应用于解决更复杂的问题9.3 教学方法引导学生了解提公因式法在其他数学领域的应用提供相关案例,让学生通过练习拓展和延伸提公因式法的应用9.4 教学活动学生进行小组讨论,探讨提公因式法在其他数学领域的应用学生通过相关案例进行练习,分享解题过程和经验9.5 练习题完成课后练习题,巩固提公因式法的拓展和延伸能力第十章:提公因式法的总结与复习10.1 教学目标帮助学生总结和复习提公因式法的知识回顾和总结提公因式法的概念、步骤和应用复习提公因式法在实际问题中的应用和解题技巧10.重点解析本文主要介绍了提公因式法在数学教学中的概念、步骤、应用以及拓展。
提公因式法第一课时教学设计
《15.4.1因式分解——提公因式法》教学设计一、教学目标㈠、知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
㈡、过程与方法:(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。
㈢、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
二、教学重点和难点重点:因式分解的概念及提公因式法。
难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。
三、教学过程(一)新课导入1、出示多媒体课件,引用牛顿因为一个苹果掉落而展开的遐想,从而开启了他传奇一生的故事,激发学生去观察和发现周围的事物,从平凡中发现不平凡的事。
2、知识导入:让学生观察右边的图形,用不同的方法求出图形的面积,ma b c求出来后让学生同桌之间互相讨论,从而得出这样的结果:ma+mb+mc=m(a+b+c)让大家思考并讨论等式的左边和右边是如何转化的。
从而得到初步的提公因式的概念。
3、温故知新计算下列各式:x (x +1)=(x +1)(x -1)=请把下列式子写成整式相乘的形式:(1)x 2+x =___________;(2)x 2 – 1=__________由这两个小练习让学生注意观察,小组讨论,从而发现因式分解的概念: 把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.提示: 因式分解与整式乘法是相反方向的变形(二 )新课讲解1、概念因式分解:把一个多项式转化为几个整式积的形式(也称分解因式)2、概念的巩固试一试:判断下列各式是不是因式分解1、 2、 3、 4、 提示:因式分解:就是把一个多项式转变成几个整式的乘积的形式探索发现:如何把一个多项式分解因式呢?因式分解:ma+mb+mcma+mb+mc=m(a+b+c) 多项式中各项都含有的相同因式,称之为公因式把公因式提出来,多项式ma+mb+mc 就可以分解成两个因式m 和(a+b+c)的乘积。
《提公因式法(1)》教学设计
第一章 因式分解2.提公因式法(一)教学目标(一) 教学知识点让学生了解多项式公因式的意义,初步会用提公因式法分解因式(二) 能力训练要求通过找公因式,培养学生的观察能力(三) 情感与价值观要求在用提公因式法分解因式时,先让学生自己找公因式,然后大家讨论结果的正确性,让学生养成独立思考的习惯教学重点能观察出多项式的公因式,并根据分配律把公因式提出来教学难点让学生识别多项式的公因式教学方法独立思考 -----合作交流教学过程分析本节课设计了七个教学环节:算一算——想一想——议一议——试一试——做一做——反馈练习——学生反思.第一环节 算一算活动内容:计算:(1)2976971397⨯+⨯-⨯ 学生回答:你是用什么方法计算的?这个式子的各项有相同的因数吗? 活动目的:引入这一步的目的旨在让学生通过乘法分配律的逆运算(因数分解)这一特殊算法,使学生通过类比的思想方法很自然地过渡到正确理解提公因式法的概念上,从而为提公因式法的掌握扫清障碍.教学效果:学生对于利用乘法的分配律进行逆运算的方法很熟悉,能很快找到这个式子各项有的相同因数92,在提出公因数92后,很快得出这一题的计算结果是7. 第二环节 想一想活动内容:多项式 ab+ac 中,各项有相同的因式吗?多项式 x 2+4x 呢?多项式mb 2+nb –b 呢?结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式. 活动目的:在学生能顺利地寻找数的简便运算中的公因数之后,再深一步引导学生采用类比的方法由寻找相同的因数过渡到在多项式中寻找相同的因式.教学效果:由于有了第一环节的铺垫,再从数过渡到式,学生能很快用类比的方法找到这些式子中相同的因式.第三环节 议一议活动内容:多项式2x 2y+6x 3y 2中各项的公因式是什么?结论:(1)各项系数是整数,系数的最大公约数是公因式的系数;(2)各项都含有的字母的最低次幂的积是公因式的字母部分;(3)公因式的系数与公因式字母部分的积是这个多项式的公因式. 活动目的:由于第二环节提供的几个多项式比较简单,不能反映公因式的全部特征,而通过本环节中寻找多项式2x 2y+6x 3y 2中各项的公因式,则可很顺利的归纳出确定多项式各项公因式的方法,培养学生的初步归纳能力教学效果:每一个多项式都由两部分组成:系数部分与字母部分,因此,有必要将系数部分与字母部分分开讨论.在教师的引导下,学生能分别找出公因式的系数部分与字母部分,最后找到这个多项式的公因式.在学生具备初步的判断能力之后,应该将学生的能力进一步升华,引导他们归纳出确定多项式各项公因式的方法,培养学生的初步归纳能力.第四环节 试一试活动内容:将以下多项式写成几个因式的乘积的形式:(1)ab+ac (2)x2+4x (3)mb2+nb–b如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.活动目的:让学生尝试着使用因式分解的意义以及提公因式法的定义进行几个简单的多项式的分解,为过渡到较为复杂的多项式的分解提供必要的准备.教学效果:由于有了因数分解的基础以及对提公因式法的正确理解和运用,学生能较快地从数的分解过渡到字母的因式分解.第五环节做一做活动内容:将下列多项式进行分解因式:(1)3x+x3 (2)7x3-21x2(3)8a3b2–12ab3c+ab学生归纳:提取公因式的步骤:(1)找公因式;(2)提公因式.易出现的问题:第(3)题中的最后一项提出ab后,漏掉了“+1”;矫正对策:(1)因式分解后括号内的多项式的项数与原多项式的项数是否相同;(2)将分解因式后的式子再进行单项式与多项式相乘,其积是否与原式相等.活动目的:根据用提公因式法进行因式分解时出现的问题,在教师的启发与指导下,学生自己归纳出提公因式的步骤及怎样预防提取公因式时出现类似问题,为提取公因式积累经验.教学效果:第(1)(2)两小题是简单题,对学生的要求不高,学生能很快完成这两小题,但当多项式的项数多了,部分同学会产生思维上的困难,此时,教师有必要引导学生分步进行分解,并提醒学生在完成分解后,应再用整式的乘法进行逆向检查,查出错误予以纠正.第六环节反馈练习活动内容:1、找出下列各多项式的公因式:(1)4x+8y (2)am+an (3)48mn–24m2n3(4)a2b–2ab2+ab 2、将下列多项式进行分解因式:(1)8x–72 (2)a2b–5ab (3)4m3–8m2(4)a2b–2ab2+ab(5)–48mn–24m2n3(6)–2x2y+4xy2–2xy活动目的:通过学生的反馈练习,使教师能全面了解学生对公因式概念的理解是否到位,提取公因式的方法与步骤是否掌握,以便教师能及时地进行查缺补漏.教学效果:从学生的反馈情况来看,学生对公因式概念的理解基本到位,提取公因式的方法与步骤基本掌握,但依然有部分同学出现第五环节中的问题,如对首项出现负号时不能正确处理,此时,需要老师进一步引导.第七环节学生反思活动内容:从今天的课程中,你学到了哪些知识?你认为提公因式法与单项式乘多项式有什么关系?活动目的:通过学生的回顾与反思,强化学生对确定公因式的方法及提公因式法的步骤的理解,进一步清楚地了解提公因式法与单项式乘多项式的互逆关系,加深对类比的数学思想的理解,对矛盾对立统一的哲学观点有一个初步认识.教学效果:学生对确定公因式的方法及提公因式法的步骤有了进一步的理解,更清楚地了解提公因式法与单项式乘多项式的互逆关系,但对化归、类比等数学思想方法的认识较模糊,当然,这种认识也是需要长期的培养,而不是一朝一夕可以做到的.巩固练习:课本第6页习题1.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 因式分解
2.提公因式法(一)教学设计
指导教师:于智军
授课教师:闫聪
课时安排:1课时
教学目标:
1.经历探索、认识多项式各项公因式的过程,并在具体的问题中,能确定多项式各项的公因式。
2.会用提公因式法对多项式进行因式分解。
3.通过与因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想。
教学重点:怎样用提公因式法因式分解
教学难点:如何正确找出多项式中各项的公因式并提取公因式
教学方法:探究 讨论 讲练结合
教学工具:多媒体
教学过程:
一、复习回顾
1.因式分解的概念
2.整式的乘法和因式分解的关系
3.因式分解的注意事项
二、新课讲授
1、计算:28
59851585⨯+⨯⨯- (问:你是用什么方法计算的?这个式子的各项有相同的因数吗? )
目的是在让学生通过乘法分配律的逆运算这一特殊算法,使学生通过类比的思想自然地过渡到理解提公因式法的概念上,从而为提公因式法的掌握埋下伏笔。
2、想一想:
(1)多项式 ab+bc 中,各项有相同的因式吗?多项式 3x 2+x 呢?多项式mb2+nb-b 呢? 公因式与多项式的各项有什么关系?
总结:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式。
(2)你能尝试将这几个多项式分别写成几个因式的乘积吗?
总结:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法。
3、议一议
多项式2x 2 + 6 x3中各项的公因式是什么?多项式3x2y+9x3z呢?
如何确定公因式:定系数:公因式的系数是多项式各项系数的最大公约数;
定字母:字母取多项式各项中都含有的相同的字母;
定指数:相同字母的指数取各项中最小的一个,即字母最低次幂.
公因式的系数与公因式字母部分的积就是这个多项式各项的公因式.
考考你:确定下列多项式中各项的公因式:
(1)a c+ b c(2)3 x2 +x(3)30 m b2 + 5n b(4)3x+6
(5)a2 b –2a b2 + ab (6)7 ( a–3 ) –b ( a–3)
4、例题:(例题中公因式都是单项式,被分解的多项式由两项逐步增加到三项)
(1)3a2-9ab(2)9x2–6xy+3xz(学生尝试完成,教师指导)(3)–24x3 +12x2–28x 解:3a2-9ab
=3a•a-3a•3b
=3a(a-3b)
解:–24x3 +12x2–28x
= –(24x3–12x2+28x)
= –(4x·6x2–4x·3x+4x·7)
= –4x(6x2–3x+7)
讨论:小颖解的有误吗?(要求学生讨论完成,强化本节课的知识学习)
把8 a 3 b2–12ab 3 c + ab因式分解.
解:8 a3b2–12ab3c + ab
= ab(8a2b - 12b2c)
总结:提取公因式的注意事项
1、提公因式时用多项式的每一项与公因式作除法,所得的商为这项余下的因式。
2、余下的因式中不能再有公因式,余下因式的项数与原多项式的项数相同。
3、当多项式的某一项和公因式相同时提公因式后剩余的项是1。
4、一般情况下当多项式第一项系数是负数,通常先提出“-”号,使括号内第一项系数变为正数,此时括号内各项都要变号。
5、想一想:提公因式法分解因式与单项式乘多项式有什么关系?
三、练习:
1、填空(1) 2πR+2πr=_____(R+r)(2) 3x3+6x2=____(x+2)
(3) 7a2-21a=7a(_______)(4) 2gt12+2gt22=2g(_________)
2.P96随堂练习
四、小结:
1、确定公因式的方法:
(1)公因式的系数是多项式各项系数的最大公约数。
(2)字母取多项式各项中都含有的相同的字母。
(3)相同字母的指数取各项中最小的一个,即最低次幂。
(4)公因式的系数与公因式字母部分的积就是这个多项式各项的公因式.
2、提公因式法分解因式:
分两步:第一步,找出公因式;第二步,提取公因式;(用多项式除以公因式,即将多项式化为两个因式的乘积)
五、布置作业:
1、习题4.2 第1,2,题
2、已知a+b=3,ab=2,求代数式a2 b + 2 a2 b2 +a b2的值。
3. 思考:公因式可能是多项式吗?如果可能,那又当如何分解因式呢?
因式分解:5(x-y)3+10(x-y)2
六、板书设计(略)。