最新光发射机与光接收机

合集下载

光接收机的应用与原理

光接收机的应用与原理

光接收机的应用与原理一、光接收机的概述光接收机是光通信系统中至关重要的组成部分,用于接收光信号并将其转换为电信号。

它在光纤通信、光无线通信等领域广泛应用,成为现代通信技术的重要支撑。

二、光接收机的原理光接收机的基本原理是利用光电二极管将光信号转换为电信号。

光电二极管是一种能够将光能转化为电能的器件,它的结构类似于半导体二极管。

当光子入射到光电二极管的PN结上时,会激发电子从价带跃迁到导带,产生电流。

这个电流的大小与入射光子的能量有关,所以可以借此将光信号转换为电信号。

三、光接收机的工作原理光接收机主要通过以下几个步骤将光信号转换为电信号:1.光接收:接收器接收到入射光信号,光子入射到光电二极管上;2.光电转换:光电二极管将光子能量转换为电子能量,激发电子从价带跃迁到导带;3.电荷放大:电荷放大器将产生的微弱电流放大为可以被检测的电信号;4.信号处理:经过信号处理电路,将电信号进行滤波、放大、整形等处理;5.输出:最终将处理后的电信号输出给其他设备进行处理或存储。

四、光接收机的应用光接收机在光通信、光无线通信等领域有着广泛的应用,具体包括以下几个方面:•光纤通信:光接收机作为光纤通信系统中的关键组件,用于将光信号转换为电信号,并完成信号处理和转发。

•光无线通信:光接收机在光无线通信系统中起到类似的作用,将光信号转换为电信号,并进行后续处理和传输。

•光传感器:光接收机可以用于制造各种光传感器,用于环境监测、光学测量等应用。

•光学测量:在科学研究和工程领域,光接收机可以用于精密光学测量,如激光测距、光谱分析等。

•光电子设备:光接收机也可以用于制造各种光电子设备,如光电开关、光电触发器等。

五、光接收机的发展趋势随着通信技术的不断发展,光接收机也在不断演进和创新,未来的发展趋势主要包括以下几个方面:1.高速化:随着通信速度的不断提升,光接收机需要具备更高的接收速度和处理能力。

2.多功能化:光接收机将不仅能够接收光信号,还能够进行信号处理、光谱分析等多种功能。

光发射机

光发射机

r
[ 1
sp ph
(
j jth
1)]1 2
o 2 sp
jth j
td
sp ln
j j jth
(4.1) (4.2) (4.3)
式中,τo是张弛振荡幅度衰减到初始值的1/e的时间,j和jth分别 为注入电流密度和阈值电流密度。τsp和τph分别为电子自发复合寿 命和谐振腔内光子寿命。在典型的激光器中,τsp≈10-9s, τph≈10-12s,
两个连“1”的现象
电流脉冲
光脉冲
当第一个电流脉冲过后,存储在有源区的电荷以指数形式衰减,回到 初始状态有一个时间过程sp,如果调制速率很高,脉冲间隔小于sp , 会使第二个电流脉冲到来时,前一个电流脉冲注入的电荷并没有完全 复合消失,有源区的存储电荷起到直流预偏置的作用,于是第二个光 脉冲延迟时间减小,输出光脉冲的幅度和宽度增加。
的性能。 电路的设计应以光源为依据,使输出光信号准确反映输入电信号。
输入 接口
电信号输入
线路 编码
调制 电路
光 源
光信号输出
图4.2 数字光发射机方框图

图4.2 数字光发射机方框图
光 源
控制电路
1. 线路编码电路
电端机输出的数字信号是适合电缆传输的双极性码, 而光源不能发射负脉冲,要变换为适合于光纤传输 的单极性码
“码型效应”的特点是:在脉冲序列中较长的连“0” 码后出现的“1”码,其脉冲明显变小,而且连“0”码 数目越多,调制速率越高,这种效应越明显。用适当的 “过调制”补偿方法,即补充一个负脉冲,可以消除码 型效应
2ns
通过LD速率方程组的瞬态解得到的张弛振荡频率ωr及其幅度衰减 时间τo和电光延迟时间td的表达式为:

光接收机的工作原理及应用

光接收机的工作原理及应用

光接收机的工作原理及应用1. 工作原理光接收机是一种用于接收光信号并将其转化为电信号的设备。

其工作原理基于光电效应和半导体器件的特性。

光电效应是指当光线照射到某些物质上时,会引发物质内部电子的运动。

光接收机中的光电二极管就是利用光电效应实现光信号转换的关键组件。

当光信号通过光纤或其他光传输介质传输到光接收机中时,光线会照射到光电二极管上。

这时,光子的能量会导致光电二极管内部的电子从价带跃迁到导带,产生电流。

接收到的光信号经过放大和处理后就可得到电信号。

除了光电二极管,光接收机还包括前置放大器、滤波器、放大器、数字处理器等组件。

前置放大器用于增加接收到的微弱光信号的强度,滤波器用于滤除杂散信号和不需要的频段。

放大器可以进一步增强信号强度,并提高信号质量。

数字处理器则用于对电信号进行采样、解调和误码校正等操作。

2. 应用领域光接收机具有高速、低噪声、大动态范围等优点,因此在许多领域具有广泛的应用。

2.1 光通信光接收机在光通信领域中扮演着重要的角色。

光纤通信系统中的光接收机能够将光信号转换为电信号,并经过解调处理,从而实现数据的传输和通信。

光接收机的高速度和低噪声特性使其在长距离光纤通信和高速数据传输中具有独特的优势。

2.2 光信号检测光接收机也广泛用于光信号的检测。

例如,在光电子学实验中,光接收机可用于检测光的强度、频率和偏振等信息。

此外,在光谱分析和光学传感器中,光接收机也可以用于检测光信号的特征和变化。

2.3 光电子设备光接收机还可以被应用于光电子设备中。

例如,在光纤传感器中,光接收机可用于接收传感器部件发出的光信号,并转化为电信号进行处理和分析。

在光存储器和光计算机中,光接收机也是必不可少的组成部分。

2.4 其他领域除了以上几个主要领域,光接收机还可以用于激光雷达、光学成像、光电测量等应用中。

在这些领域中,光接收机能够帮助我们获取到光信号中的有用信息,并实现相关的应用和功能。

3. 总结光接收机是一种将光信号转换为电信号的设备,其工作原理基于光电效应和半导体器件的特性。

光接收机的结构及原理

光接收机的结构及原理

光接收机的结构及原理光接收机是一种用于接收光信号并转换为电信号的设备。

它在光通信系统中起着至关重要的作用。

本文将详细介绍光接收机的结构和原理,以匡助读者更好地理解该设备的工作原理和性能。

一、光接收机的结构光接收机通常由以下几个主要组成部份构成:1. 光探测器:光探测器是光接收机的核心部件,用于将光信号转换为电信号。

常见的光探测器包括光电二极管(Photodiode)和光电导(Phototransistor)等。

光电二极管是一种半导体器件,当光照射到其PN结时,会产生电流。

光电导是一种具有放大功能的光电二极管,它可以将光信号转换为电流信号,并通过放大电路放大电流信号。

2. 光电转换电路:光电转换电路用于将光电二极管或者光电导输出的微弱电流信号转换为电压信号,并进行放大。

光电转换电路通常包括前置放大电路、滤波电路和放大器等。

前置放大电路用于提高光电二极管或者光电导的灵敏度,滤波电路用于滤除噪声和杂散信号,放大器用于放大电流信号,以便进一步处理和解析。

3. 接收电路:接收电路用于对光电转换电路输出的电压信号进行解码和处理。

它通常包括解调电路、解码电路和信号处理电路等。

解调电路用于将调制的光信号解调为基带信号,解码电路用于将基带信号解码为原始数据信号,信号处理电路用于对原始数据信号进行滤波、放大和整形等处理,以便进一步应用和分析。

4. 光纤连接器:光纤连接器用于将光接收机与光纤连接起来,以实现光信号的传输。

常见的光纤连接器有FC、SC、LC等不同类型,它们具有低插损、高耐用性和良好的光学性能,能够确保光信号的高质量传输。

二、光接收机的工作原理光接收机的工作原理可以简单概括为以下几个步骤:1. 光信号接收:光接收机首先接收来自光纤的光信号。

光信号通过光纤传输到光接收机的光探测器。

2. 光电转换:光探测器将接收到的光信号转换为电信号。

光电二极管或者光电导在光照射下产生电流,电流的大小与光信号的强度成正比。

3. 电信号放大:光电转换电路对光电二极管或者光电导输出的微弱电流信号进行放大。

光收发设备概述

光收发设备概述
44
1.半导体激光器(LD)的结构 和工作原理
• 半导体的能带分布。 ① 本征半导体的能带分布。 ② P型半导体和N型半导体的形成。 ③ 在重掺杂情况下,N型半导体和P型半导体的能
带分布。 ④ P-N结外加正偏压后的能带分布以及激光的产
生。
45
1.半导体激光器(LD)的结构 和工作原理
• 图3-14 N型半导体和P型半导体重掺杂能带图
3.光和物质的相互作用
(2)受激吸收 • 物质在外来光子的激发下,低能级上的电子吸收了外
来光子的能量,而跃迁到高能级上,这个过程叫做受 激吸收。 • 受激吸收的特点如下。 ① 这个过程必须在外来光子的激发下才会产生,因此是 受激跃迁。 ② 外来光子的能量要等于电子跃迁的能级之差。 ③ 受激跃迁的过程不是放出能量,而是消耗外来光能。
52
2.半导体激光器的工作特性
• 图3-18 激光器输出特性曲线
53
2.半导体激光器的工作特性
(2)光谱特性 • 半导体激光器的光谱随着激励电流的变化而变
化。 • 激光器产生的激光有多模和单模。
54
2.半导体激光器的工作特性
• 图3-20 GaAlAs/GaAs激光器的典型输出光谱
56
2.半导体激光器的工作特性
3
3.0.1 光发送机
光发送机作用:是把从电端机送来的电信号转变成 光信号,并送入光纤线路进行传输。对光发送机的要求:
(1)有合适的输出光功率 光发送机的输出光功率,是指耦合进光纤的功率,
亦称入纤功率。光源应有合适的光功率输出,一般为 0.01mW~5mW。
4
(2)有较好的消光比 消光比的定义为全“1”码平均发送光功率与全“0”
12
3.1 半导体光器件

光发射和光接收

光发射和光接收
2>.受激吸收,外来光照射下,低能级 E的1 电子吸收外 来光能量,跃迁到高能级 上E2。
4
3>.受激辐射:处于高能级 的电子,受到外来光的激发 ( f E2), 电E1子从高能级到低能级跃迁,发出与入
h
射光频率、相位、偏振方向完全一样的光子(全同光 子)
5
➢ 2.粒子数反转分布
1>.粒子数正常分布:热平衡状态(物质与外界无能量交换,能量处于平
影响光纤的耦合效率
15
四.半导体激光二极(LED)
➢1.结构上与LD相似,没有光学谐振腔 ➢2.特点:输出荧光,输出特性线性较好,无阈值
电流,光谱宽度较宽(35-60nm) ➢3.适用于短距离小容量的光纤传输系统
16
第2节 光光源发的射调机制和
调制:将电信息变换为光信息,目前采用强度调制 按照光源和调制器的关系分为内调制和外调制 本节主要包括: ➢ 一.内调制(直接调制) ➢ 二.外调制(间接调制) ➢ 三.目前常用的外调制器 ➢ 四.光数字发射机
量子限制激光器(量子阱激光器) 特点:低阈值,窄线谱,高微分增益,温度灵敏度低,调制速度快.
11
三.半导体激光器的特性
➢ 1.P-I特性 1>阈值电流Ith:激光器开始产生激光时对应的注入电流 2>输出光功率P,规定注入电流值下(例如I=Ith+20ma)的输出光
功率 3>Ith随温度升高而增加
12
➢ 2.光谱特性
P 1
1 2
P
LED
P
P
MLM
P
0dB
-20dB
P
SLM
13
1>中心波长 0,光源的光谱范围内辐射强度最大值所对应的波长

实验二 光发射机与光接收机实验

实验二 光发射机与光接收机实验

实验二光发射机与光接收机实验学号:XXX 姓名:XXX一、实验目的1.了解光源的调制的原理2.学习光发送模块的电路原理3.了解光接收机的组成4.了解光收端机灵敏度的指标要求二、实验内容1.介绍光源的调制方法2.介绍光发射电路的框图3.了解光接收机的组成三、实验仪器1.光纤通信实验系统1 台2.示波器1台3.光纤跳线1根4.万用表5.光功率计四、实验原理1、光发射机、光调制。

根据调制与光源的关系,光调制可以分为直接调制和间接调制两大类。

直接调制方法仅适用于半导体光源(LD和LED),这种方法是把要传送的信息转变为电信号注入LD或LED,从而获得相应的光信号,所以是采用电源调制方法。

直接调制后的光波电场振幅的平方与调制信号成一定比例关系,是一种光强度调制(IM)的方法。

间接调制是利用晶体的光电效应、磁光效应、声光效应等性质来实现对激光辐射的调制,这种调制方式既适应于其他类型的激光器。

间接调制最常用的外调制的方法,即在激光形成以后加载调制信号。

对某些类型的激光器,间接调制也可以采用内调制的方法,即在激光器的谐振腔内放置调制元件,用调制信号控制调制元件的物理性质,将改变谐振腔的参数,从而改变激光输出特芯以实现其调制。

光源的调制方法及所利用的物理效应如下表所示。

光源的各种调制方法本实验系统采用的是直接调制的方法。

2、模拟信号调制与数字信号调制模拟信号调制是直接用连续的模拟信号(如话音、电视等信号)对光源进行调制从而使LED 或LD的输出光功率跟随模拟信号变化,如下图所示:由于光源,尤其是激光器的非线性比较严重,所以目前模拟光纤通信系统仅仅用于对线性要求较低的地方,要实现大容量的频分复用还比较困难,仅自一些小系统中使用。

对一些容量较大、通信距离较长的系统,多采用对半导体激光器进行数字调制的方式。

数字调制主要是用数字信号的“1”和“0”来控制激光的“有”和“无”,如下图所示:与LED 相比,LD 的调制问题要复杂得多。

光接收机

光接收机

滤波器
滤波器
作用:对已发生畸变和有严重码间干扰的信号进 行均衡,使其尽可能地恢复原来的状况,以利于 定时判决。
我们最不能消除码间干扰,但我们能做到不管输入波 形如何变化,只要经过均衡滤波器后,采用时间点上干扰 为零,就可以消除码间干扰。
H out(
f
)

1 [1 2
cos (f
B)]
H p ( f ) Bsin(f B) f
滤波器传输函数为:
HT ( f ) H out( f ) H p ( f ) (f
2B)(1 cosf )
B
sin f
B
时钟恢复和判决电路
任务:把线性通道输出的余弦波形恢复成数字信号
确定是“1”或是“0”, 需要对某时刻的码元
作出判决。若判决结 果为“1”,则由再生 电路产生一个矩形“1” 脉冲;若判决结果为 “0”,则由再生电路 重新输入一个“0”。
erfc
I1
1
ID 2


erfc
ID
0
I0 2

2、Q参数
BER主要取决于判决阀值ID,
为使BER最小,应对ID进行优化,
在实际中,当ID满足下式关系时,
BER最小。
Q I1 ID ID I0 I1 I0
1
0
1 0
判 输出 决 器
时钟恢复
为了精确地确定“判决 时刻”,需要从信号码 流中提取准确的时钟信 息作为标定,以保证与 发送端一致。
判决再生
若信号电平超过判决门限电平,则判为“1”码; 低于判决门限电平,则被判为“0”码。
光接收机噪声分析
1.散粒噪声 散粒噪声是电子数目的随机涨落引起电流的随机

光发射机及回传光接收机的测试方法

光发射机及回传光接收机的测试方法

光发射机及回传光接收机的测试方法光发射机及回传光接收机的测试方法光发射机及回传光接收机的测试是用于通信系统中的高精度检测,主要检测其能力和性能。

光发射机及回传光接收机的测试方法有多种,根据不同的需求而定,主要分为现场测试、室内测试和实验室测试三种,以下简要介绍一下这三种测试方法。

一、现场测试现场测试是在实际环境中进行的,可以及时发现实际环境中出现的问题,反映实际环境下系统的性能。

对光发射机及回传光接收机的现场测试主要检测其发送功率、接收功率、接收灵敏度以及温度、电压等环境参数的变化情况。

在现场测试中,首先应检查光发射机及回传光接收机的状态,包括外观状况、连接端子、安装位置是否正确等,并确保其工作正常,如果出现异常现象,应及时采取纠正措施。

接着,将应用于现场测试的仪器设备连接好,使其能与光发射机及回传光接收机相连接,并依据操作规程进行设置,然后开始测试。

在现场测试中,应检测光发射机及回传光接收机的发射功率、接收功率以及接收灵敏度等,并随机测试其在不同环境中的温度、电压等参数的变化情况,确保其具有良好的稳定性。

二、室内测试室内测试也是对光发射机及回传光接收机性能进行检测,其优点是不受外界环境影响,能获得较准确的测试结果。

室内测试主要检测光发射机及回传光接收机的发射功率、接收功率、接收灵敏度以及光纤损耗等性能指标。

在室内测试中,首先应将检测设备连接好,然后将光发射机及回传光接收机连接到设备上,确保其与设备正确连接,并依据操作规程进行设置,然后开始测试。

室内测试要求测试设备、光发射机及回传光接收机均在室内,环境条件保持稳定,在测试过程中不受外界环境影响,以确保测试结果的准确性。

在室内测试中,应检测光发射机及回传光接收机的发射功率、接收功率以及接收灵敏度等,并确保光纤损耗等指标符合规定要求。

三、实验室测试实验室测试是在专业的实验室中进行的,可以获得较准确的测试结果。

实验室测试主要检测光发射机及回传光接收机的发射功率、接收功率、接收灵敏度以及光纤损耗等性能指标。

光接收机的结构及原理(精)

光接收机的结构及原理(精)

光接收机的结构及原理一、光接收机的概述光接收机(Optical Receiver)是指把光信号转换成电信号的装置,常用于光纤通信等场合。

光接收机又称为光检测器,光探测器(photo-detector)或光电转换器(Optical-to-Electrical Converter,OEC)。

光接收机必须能够快速、准确地将光信号转换为相应的电信号,而且要具备良好的稳定性和抗干扰能力。

二、光接收机的结构光接收机通常由以下五个部分组成:•光纤接收头•光电转换器•前置放大器•滤波器•后置放大器2.1 光纤接收头光纤接收头是光接收机的入口部分,主要功能是把光纤中传输的光信号转换成电信号,进一步进行处理。

光纤接收头由透镜、滤波器、光电转换器等部分组成,一般都是具有高精度、高质量、高稳定性的组件。

2.2 光电转换器光电转换器是光接收机的核心组件,它是将光信号转换成电信号的装置。

光电转换器通常采用半导体材料,如硅、锗、InGaAs等材料制造而成。

光电转换器有两个电极,当光照射在光电转换器上时,产生光电效应,使电子加速并跃迁,进而导致电流的流动,从而将光信号转换成电信号。

2.3 前置放大器前置放大器是光接收机的信号前置放大器,主要功能是将弱电信号进行放大,增强信号的强度,减少噪声对信号的影响。

前置放大器一般采用低噪声放大器,能提高信噪比,保证信号的传输质量。

2.4 滤波器滤波器是光接收机中的重要组成部分,主要通过选择特定的频率范围内的电信号,剔除掉干扰信号,使得输出信号更加纯净。

滤波器的种类有很多,如低通滤波器、高通滤波器、带通滤波器等。

根据需要选择不同的滤波器,进行信号的处理和滤波。

2.5 后置放大器后置放大器是光接收机的信号后置放大器,主要作用是对放大信号进行进一步的增强,以达到输出信号的高质量、高精度和高效率。

三、光接收机的原理光接收机的原理是光电转换技术,即把光信号转换为电信号。

它的基本原理是:在光电转换器中,光束在达到光电转换器表面后,被半导体吸收产生电子-空穴对,使电子加速并跃迁,进而导致电流的流动,从而将光信号转换成电信号。

光端机和光纤收发器的区别

光端机和光纤收发器的区别

光端机和光纤收发器的区别
光端机和光纤收发器的区别
光纤收发器和光端机的相同之处都是要进行光电转换,不同之处在于光纤收发器仅进行光电转化,不改变编码,不对数据进行处理,主要应用于银行、教育等组网中;光端机处理光电转换工作以外,还要对数据信号进行处理,主要应用于安防监控、远程教育、视频会议等对视频传输要求适时性比较高的领域。

光猫光端机和光纤收发器的区别
1、光纤收发器纯粹是物理层的转换,用来把光纤信号转换成网线的电信号;
2、光端机是用来拆分合并SHD时隙的,电信经常用它;
3、协议转换器是把光端机的同步信号应用的某种协议转换为以太或者其他路由器或者交换机可以接受的协议的一个东西,后两者通常组合起来用,一个光端机可以连接好多个协议转换器。

光发射机与光接收机

光发射机与光接收机
增益,把来自前置放大器的输出信号放大到判决电路所需的信号 电平。并通过它实现自动增益控制(AGC),以使输入光信号在 一定范围内变化时,输出电信号应保持恒定输出。
主放大器和AGC决定着光接收机的动态范围。
26
光纤通信原理与设备
4.4数字接收机的组成及技术指标
3.均衡器 均衡器的作用是对已畸变(失真)和有码间干扰的电信号进
行均衡补偿,减小误码率。
4. 时钟提取电路:用来恢复采样所需的时钟
钳位:钳位是以一定的电压或电流幅度为参考值,对输入 的电信号进行整形,即大于参考值的所有幅度归于一个幅度值, 小于参考值的幅度归于另一个幅度值。波形图如下。
光纤通信原理与设备
光端机的组成及工作原理; 光端机的性能指标; 光纤通信系统基本构成; PDH、SDH两种传输体制;
1
光纤通信原理与设备
掌握发射机和接收机的框图和工作原理 掌握发射机和接收机的性能指标 掌握光纤通信系统基本构成; 理解PDH、SDH两种传输体制。
2
光纤通信原理与设备
4.1 光发射机原理 4.2 线路编码 4.3光发射机的主要技术指标 4.4数字接收机的组成及技术指标 4.5光-电-光中继器的原理 4.6PDH 传输体制及长途光缆系统的构成
(2)双相码 双相码又称分相码。也是一种1B2B码。其变换规则是原码 的“0”码用“01”码代替,原码的“1”码用“10”代替。
16
光纤通信原理与设备
4.2 光线路编码
(3)DMI码 DMI码又称不同模式反转码,它是一种1B2B码。其变换规
则是原码的“1”码用“00”或“11”交替代替。原码的“0” 码,若前二个码为“01”,“11”时用“01”代替,前二个码 为“10”,“00”时用“10”代替。

光发射机和光接收机工作原理

光发射机和光接收机工作原理

光发射机和光接收机工作原理光发射机和光接收机是光通信系统中的重要组成部分,它们通过光信号的发送和接收实现了光通信的功能。

下面我将从工作原理的角度来详细解释光发射机和光接收机的工作原理。

首先,让我们来看看光发射机的工作原理。

光发射机通常由激光二极管或者激光器组成。

当电流通过激光二极管或激光器时,它们会产生光子。

这些光子被激发到一个能量级别,然后被释放出来,形成了光信号。

这个光信号经过光纤或者空气传输到远端的光接收机。

接下来,让我们来看看光接收机的工作原理。

光接收机通常由光探测器组成,光探测器可以是光电二极管或者光电探测器。

当光信号到达光接收机时,光信号被光探测器接收,然后被转换成电信号。

这个电信号经过放大和处理后,就可以被解码成原始的数据信号。

总的来说,光发射机的工作原理是将电信号转换成光信号,而光接收机的工作原理是将光信号转换成电信号。

这样就实现了光通信系统中的信号发送和接收功能。

这种光通信系统具有传输速度快、抗干扰能力强等优点,因此在现代通信系统中得到了广泛的应用。

除此之外,光发射机和光接收机的工作原理还涉及到光学器件的选择、电路设计、信号处理等方面的知识。

例如,光发射机需要考虑激光二极管或激光器的工作参数选择,光接收机则需要考虑光探测器的灵敏度和带宽等参数。

同时,光通信系统中的光纤传输、光信号调制解调等技术也是光发射机和光接收机工作原理的重要组成部分。

综上所述,光发射机和光接收机是光通信系统中的重要组成部分,它们通过光信号的发送和接收实现了光通信的功能。

光发射机将电信号转换成光信号,而光接收机将光信号转换成电信号,从而实现了光通信系统中的信号发送和接收功能。

希望这个回答能够全面地解释了光发射机和光接收机的工作原理。

WDM系统结构与设备(光纤通信课件)

WDM系统结构与设备(光纤通信课件)
基于单个波长,同一WDM系统内1:n保护
同一WDM系统内1:n保护是指在同一WDM系统内,有n 个波长通道作为工作波长,1个波长通路作为保护系统。但是 考虑到实际系统中,光纤、光缆的可靠性比设备的可靠性要 差,只对系统保护,而不对线路保护,实际意义不是太大。
三、 WDM组网与网络保护
2 光复用段保护
两个OTM背靠背组成的OADM信号流向图
二、 WDM系统设备
(四)电中继器
电中继器无 业务上/下, 只是为了延 伸传输距离。
电中继器(REG)的信号流向图
三、 WDM组网与网络保护
(一)WDM组网
WDM系统最基本的组网方式为点到点组网、链形组网和环形组网,如图所示。
WDM的基本组网示意图
三、 WDM组网与网络保护
(二)WDM网络保护
点到点线路保护的方式
一种是基于单个波长、在SDH层实施的1+1 或1:n的保护;
一种是基于光复用段上保护,在光路上同时 对合路信号进行保护,这种保护也称光复用段保 护(OMSP)。
还有基于环网的保护。
三、 WDM组网与网络保护
1 基于单个波长的保护
基于单个波长, 在SDH层实施的1+1保护
二、 WDM系统设备
(三)光分插复用器
用于分插本地业务通道, 其他业务通道穿通。 静态OADM(32/2)信号 流向如图所示。
静态OADM(32/2)信号流向图
二、 WDM系统设备
用两个OTM背靠背 的方式也可组成一个 可上/下波长的 OADM,这种方式较 之用一块单板进行波 长上/下的静态 OADM要灵活,可任 意上/下1到16或32个 波长,更易于组网。
二、 WDM系统设备
WDM设备按用途可分为光终端复用器(OTM)、光线路放大器 (OLA)、光分插复用器(OADM)和电中继器(REG)几种类型。

光接收机的组成

光接收机的组成

光接收机的组成光接收机是一种将光信号转换为电信号的设备,它是光通信系统中不可或缺的组成部分。

光接收机的主要功能是将光信号转换为电信号,以便于后续的处理和传输。

下面将从光接收机的组成部分来详细介绍光接收机的工作原理。

1. 光探测器光探测器是光接收机的核心部件,它的作用是将光信号转换为电信号。

光探测器的种类有很多,常见的有光电二极管、PIN光电二极管和APD光电二极管等。

其中,APD光电二极管具有较高的灵敏度和增益,适用于长距离高速传输。

2. 放大器由于光信号在传输过程中会受到衰减,因此需要在光接收机中加入放大器来放大电信号。

放大器的种类有很多,常见的有前置放大器和后置放大器。

前置放大器一般放置在光探测器前面,用于放大光信号;后置放大器一般放置在光探测器后面,用于放大电信号。

3. 滤波器滤波器的作用是滤除杂散信号和噪声,保证信号的纯净性。

常见的滤波器有低通滤波器、高通滤波器和带通滤波器等。

在光接收机中,一般采用带通滤波器,以保证信号的频率范围在合理的范围内。

4. 信号处理电路信号处理电路的作用是对电信号进行处理,以便于后续的传输和处理。

常见的信号处理电路有限幅电路、时钟恢复电路和误码率测试电路等。

限幅电路用于限制电信号的幅度,以避免过大或过小的信号对后续处理的影响;时钟恢复电路用于恢复信号的时钟信息,以便于后续的同步处理;误码率测试电路用于测试信号的误码率,以评估系统的性能。

5. 控制电路控制电路的作用是对光接收机进行控制和管理。

常见的控制电路有自动增益控制电路、自动偏置控制电路和温度控制电路等。

自动增益控制电路用于自动调节放大器的增益,以保证信号的稳定性;自动偏置控制电路用于自动调节光探测器的偏置电压,以保证信号的灵敏度;温度控制电路用于控制光接收机的温度,以保证系统的稳定性。

光接收机是由光探测器、放大器、滤波器、信号处理电路和控制电路等组成的。

它的主要作用是将光信号转换为电信号,并对电信号进行处理和控制,以保证系统的稳定性和性能。

光发射机与光接收机

光发射机与光接收机

高速调制技术
01
02
03
外调制技术
利用外部调制器对光信号 进行调制,实现高速率、 高效率的光信号传输。
直接调制技术
通过直接改变光源的驱动 电流或电压来实现光信号 的调制,具有简单、易实 现的优点。
先进调制格式
采用高阶调制格式如 QAM、OFDM等,提高 光信号的频谱效率和传输 性能。
灵敏度提升技术
移动通信
在5G和未来的6G移动通信网络 中,光发射机和光接收机可用于 实现高速、大容量的数据传输,
提升网络性能。
数据中心互联
随着云计算、大数据等技术的快 速发展,数据中心之间需要大容 量、低时延的数据传输,光发射 机和光接收机是实现这一目标的
关键技术之一。
广播电视领域应用
有线电视网络
光发射机和光接收机可用于有线 电视网络中的信号传输和接收, 提供高清、稳定的电视信号。
光接收机的灵敏度、动态范围等性能对接收到的 光信号进行准确解调至关重要。
光发射机与光接收机需相互匹配,以确保信号在 传输过程中的稳定性和可靠性。
性能指标对比
光发射机主要性能指标
输出光功率、消光比、光谱宽度、波 长稳定性等。
光接收机主要性能指标
灵敏度、动态范围、误码率、接收带 宽等。
04
关键技术与挑战
工作过程
光信号接收
光电转换
信号放大与处理
时钟提取与数据再 生
输出电信号
光接收机首先接收来自 光纤的光信号。
光信号经过光电转换器 件转换为电流信号。
电流信号经过前置放大 器和主放大器进行放大 ,以提高信号的幅度和 信噪比。同时,可能还 需要进行波形整形、均 衡等处理,以优化信号 质量。
从经过处理的信号中提 取时钟信息,并用于数 据再生,以确保数据的 准确性和可靠性。

光发射机、接收机指标测试

光发射机、接收机指标测试

实验一 光发射机指标测试一、实验内容:1.测试数字光发端机的平均光功率2.测试数字光发端机的消光比3.绘制数字光发端机的P-I 特性曲线二、实验目的:1.了解数字光发端机平均输出光功率的指标要求2.掌握数字光发端机平均输出光功率的测试方法3.了解数字光发端机的消光比的指标要求4.掌握数字光发端机的消光比的测试方法三、实验仪器:LTE-GX-02E 型光纤通信实验系统、示波器、光功率计、万用表、FC-FC 光跳线。

四、实验原理:光发射机的指标包括:半导体光源的P-I 特性曲线、消光比(EXT )和平均光功率。

1.半导激光器的P-I 特性曲线测试半导体激光器的输出光功率与驱动电流的关系如下图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用Ith 表示。

当输入电流小于Ith 时,其输出光为非相干的荧光,类似于LED 发出光,当电流大于Ith 时 ,则输出光为激光,且输入电流和输出光功率成线性关系,该实验就是对该线性关系进行测量,以验证P-I 的线性关系.图 1 半导体激光器P-I 曲线示意图2.消光比(EXT )的测试光比定义为: ,式中00P 是光发射机输入全“0”时输出的平均光功率即无输入信号时的输出光功率。

是光发射机输入全“1”时输出的平均光功率。

当输入信号为“0”时,光源的输出光功率为00P ,它将由直流偏置电流b I 来确定。

无信号时光源输出的光功率对接收机来说是一种噪声,将降低光接收机的灵敏度。

因此,从接收机角度考虑,希望消光比越小越好。

但是,应该指出,当b I 减小时,光源的输出功率将降低,光源的谱线宽度增加,同时,还会对光源的其他特性产生不良影响,因此,必须全面考虑b I 的影响,一般取b I =~Ith (Ith 为激光器的阈值电流)。

3.平均光功率光发送机的平均输出光功率被定义为当发送机送伪随机序列时,发送端输出的光功率值。

001110lgP EXT P 11P bI五、实验步骤:实验步骤参见《光纤通信综合实验系统》。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10章 光发射机与光接收机
在热平衡状态下,半导体材料中同时存在以上三 种物理过程,其中自发辐射的概率远大于受激辐射的概
率,并且受激辐射的概率与导带上的电子总数NC成正 比,受激吸收的概率与价带上的电子总数NV成正比。
所以,若要受激辐射占有主导地位,就必须使导带上的
电子总数NC 远大于价带上的电子总数NV ,这称为粒
在这种情况下, 各个光子在时间上及方向上都不相同,这种 光称为自发光, 该发光器件叫做发光管。 其发光机理如图 10.1 所示。
第10章 光发射机与光接收机
图 10.1 发光机理示意图 (a) 光的自发发射; (b) 光的受激发射
第10章 光发射机与光接收机
另一种光称为激光,是利用谐振腔产生振荡的原理而获得 的。在P-N结的两端加工出两个平行光洁的反射镜面。此镜面 垂直于P-N结的平面,和它的长度方向形成一个谐振腔。当施 加正向电压于P-N结时,P-N结内首先发出自发光,其中部分光 子沿着与反射面垂直的方向前进,这一部分光子受反射镜面的 反射,在谐振腔内来回反射。 同时,激光腔内的电子与空穴复 合,即激发电子从导带跃迁至价带而产生新的光子。 部分新产 生的光子也同样在谐振腔内来回反射。只要外加的电压和电流 足够大,那么光子的来回反射将激发更多的光子,产生正反馈 作用,使受激发光大为加强,遂产生激光。反射镜面是半透明 的,既可使部分光子反射回腔内,也可让部分光子辐射出去。 这种发光器件叫做激光器。
例如:GaAlAs/GaAs单异质结LD,发光波长为0.85μm。
小。
InGaAsP/InP双异质结LD,发光波长为1.31μm或1.55μm,损耗
异质结LD结构示意图
第10章 光发射机与光接收机
半导体光源的发光机理
半导体发光器件是通过电子在能级之间的跃迁而发光的。 在构成半导体晶体的原子内部各个电子都占有所规定的能级。
第10章 光发射机与光接收机
能满足上述基本要求的光源是半导体光源。
最常用的光源
半导体激光器(LD)
中、长距离
大容量(高码速)系统
半导体发光二极管(LED)。
短距离、低容量系统
模拟系统。
第10章 光发射机与光接收机 10.1.1 激光二极管(LD)
1.基本结构
激光二极管的基本结构框图
第10章 光发射机与光接收机
2.LD的工作原理
(1)半导体材料的能级结构 半导体材料中的电子处于分立能级上,高能级称为导带,低能级称为价
带,高、平衡状态下,价带能级上的电子总数目NV远多于导带能级上的电子总数 目NC,即NVNC。
半导体材料电子能级示意图
第10章 光发射机与光接收机
光发射机与光接收机
第10章 光发射机与光接收机 10.1 光源
光源的作用——把要传输的电信号转换成光信号发射去。 一、对光源的基本要求 (1)发射的光功率应足够大,而且稳定度要高 (2)调制方法简单 (3)光源发光峰值波长应与光纤低损耗窗口相匹配 (4)光源与光纤之间应有较高的耦合效率 (5)光源发光谱线宽度要窄,即单色性要好 (6)可靠性要高,必须保证系统能24h连续运转 (7)光源应该是低功率驱动[低电压、低电流),而且电光转 换效率要高
子数反转状态。
第10章 光发射机与光接收机
(3)PN结的能带和电子分布
在热平衡状态下,能量为E的能级被一个电子占据的概率遵循
费米(Fermi)分布,即
P(E)
1
1exp[(EEf)/kBT]
在通常室温下,本征半导体、N型半导体和P型半导体都是大 多数电子占据低能级位置,没有形成粒子数反转分布,不能对光产 生放大作用。
(2)半导体材料中电子能态的变化
① 自发辐射 发出的光子彼此不相干(即传播方向、相位和偏振不同),称为非相干
光。 ② 受激辐射
发出的光子彼此相干(即其传播方向、频率、相位、偏振都与外来光子 相同),称为相干光。激光二极管输出的就是这种相干光。 ③ 受激吸收
在外来入射光的作用下,处在低能级上的电子可以吸收入射光子的能量 而跃迁到高能级上 。
第10章 光发射机与光接收机
第10章 光发射机与光接收机
光子能量E和波长λ之间的变换关系如下:
E(eV)1.2398m
(10.2)
例如, 砷化镓半导体的带隙为1.36 eV,则砷化镓发光二极 管的辐射波长λ=1.2398/1.36=0.91μm。该波长处于近红外区, 在掺入铝后可改变波长。因此, 短波长光源采用GaAlAs, 而长 波长光源用InGaAsP。目前,光纤通信使用的光源,短波长的 有GaAlAs激光器(LD)和GaAlAs发光二极管(LED);长波长的 有InGaAsP激光器(LD)和InGaAsP发光二极管(LED)。
第10章 光发射机与光接收机
3.LD的类型结构 (1)同质结LD
由同一种半导体材料经不同掺杂构成单层PN结,称为同质结 LD。
例如:砷化镓(GaAs)同质结LD。
GaAs同质结LD结构示意图
第10章 光发射机与光接收机
(2)异质结LD
由不同的半导体材料经掺杂构成单层PN结或多层PN结。前者称为单异质 结LD,后者称为多异质结LD。
如果让占据较高能级Ei的电子跃迁到较低能级Ej上,就会 以光的形式放出等于能级差的能量,这时能级差Eg和光的振荡 频率f之间的关系为
Eg=hf
(10.1)
式中,h为普朗克常数(h=6.626×10-34 J·s)。
第10章 光发射机与光接收机
半导体发光器件由适当的P型材料和N型材料所构成,两种材 料的交界区形成P-N结,如果在P-N结上加上正向电压,则N型区 的电子及P型区的空穴源源不断地流向P- N 结区。在那里电子与 空穴自发地复合,复合时电子从高能级的导带跃迁至低能级价带 而产生与跃迁所释放的能量相等的光子。
第10章 光发射机与光接收机
(4)电激励 其作用是使半导体PN结产生一个增益区,使其中的导带电子数远大于价
带电子数,形成粒子数反转状态,成为光放大的媒质。 (5)光学谐振腔
前、后镜面之间夹有处于粒子数反转状态的PN结半导体材料,构成了光 学谐振腔。
其作用是使轴向(垂直于镜面方向)运动的光子在腔内来回多次反射形 成光振荡,并激励已处于粒子数反转的半导体材料,不断地产生受激辐射, 使放出的光子数目雪崩式地增加。
相关文档
最新文档