指数与指数函数练习题及答案
高三数学指数与指数函数试题
高三数学指数与指数函数试题1.若则的值为 ____ .【答案】2.【解析】因为,所以,故答案为:2.【考点】分段函数值的求法.2.已知,,则________.【答案】【解析】由得,所以,解得,故答案为.【考点】指数方程;对数方程.3.已知函数f(x)=2|2x-m|(m为常数),若f(x)在区间[2,+∞)上是增函数,则m的取值范围是________.【答案】(-∞,4]【解析】令t=|2x-m|,则t=|2x-m|在区间[,+∞)上单调递增,在区间(-∞,]上单调递减.而y=2t为R上的增函数,所以要使函数f(x)=2|2x-m|在[2,+∞)上单调递增,则有≤2,即m≤4,所以m的取值范围是(-∞,4].故填(-∞,4].4.已知,则下列关系中正确的是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【答案】A【解析】由已知得,,,,故a>b>c.【考点】指数函数的图象和性质.5.已知函数,若,且,则的最小值为(). A.B.C.2D.4【答案】B【解析】因为,所以,整理得,又,所以,解得,即,因此.故正确答案为B.【考点】1.指数函数;2.基本不等式.6.若为正实数,则.【答案】1【解析】设所以因此【考点】指对数运算7.若为正实数,则.【答案】1【解析】设所以因此【考点】指对数运算8.已知函数,且函数有且只有一个零点,则实数的取值范围是( )A. B.. D.【答案】B【解析】如图,在同一坐标系中分别作出与的图象,其中a表示直线在y轴上截距,由图可知,当时,直线与只有一个交点.故选B.【考点】分段函数图像数形结合9.函数y=a x-3+3恒过定点________.【答案】(3,4)【解析】当x=3时,f(3)=a3-3+3=4,∴f(x)必过定点(3,4).10.已知函数f(x)=则f(2+log23)=________.【答案】【解析】由3<2+log23<4,得3+log23>4,所以f(2+log23)=f(3+log23)=11.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]【答案】B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.12.设,,,则的大小关系是 .【答案】【解析】由题意可知:,,,,,∴,∴.【考点】1.指数函数、对数函数的性质;2.比较大小.13.已知函数,则 .【答案】.【解析】.【考点】1.分段函数;2.指数与对数运算.14.已知函数则()A.B.C.D.【答案】C【解析】.【考点】函数与指数运算.15.函数的零点个数为A.1B.2C.3D.4【答案】B.【解析】令f(x)=0得.画出两个函数. 图像即可得交点的个数为两个.所以原函数的零点有两个. 故选B.本题关键是的图像的画法是将函数在负y半轴的图像沿x轴翻折.【考点】1.函数的零点问题.2.对数函数图像,指数函数图像的画法.3.函数绝对值的图像的画法.16.设,则的大小关系为()A.B.C.D.【答案】A【解析】由分数指数幂与根式的关系知:,从而易知,故选A.【考点】1.分数指数幂与根式的互换;2.比较大小.17.函数的定义域为,若且时总有,则称为单函数.例如,函数是单函数.下列命题:①函数是单函数;②函数是单函数;③若为单函数,且,则;④函数在定义域内某个区间上具有单调性,则一定是单函数.其中的真命题是_________.(写出所有真命题的编号)【答案】③【解析】根据单函数的定义可知如果函数为单函数,则函数在其定义域上一定是单调递增或单调递减函数,即该函数为一一对应关系,据此分析可知①不是,因为该二次函数先减后增;②不是,因为该函数是先减后增;显然④的说话也不对,故真命题是③.【考点】新定义、函数的单调性,考查学生的分析、理解能力.18.设,则这四个数的大小关系是()A.B.C.D.【答案】D.【解析】是上的减函数,,又.【考点】指数函数、对数函数及幂函数单调性的应用.19.二次函数y=ax2+b x与指数函数y=()x的图象只可能是()A. B. C. D.【答案】A【解析】解:根据指数函数y=()x可知a,b同号且不相等,二次函数y=ax2+bx的对称轴-<0可排除B与D,,C,a-b>0,a<0,∴>1,则指数函数单调递增,故C 不正确,选:A【考点】指数函数图象与二次函数图象点评:本题考查了同一坐标系中指数函数图象与二次函数图象的关系,根据指数函数图象确定出a、b的正负情况是求解的关键.20.计算:_____________【答案】4【解析】因为21. .若,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【答案】A【解析】因为,,,因此选A22. .计算(1)(2)【答案】(1)2;(2) 0【解析】本试题主要是考查了指数幂的运算性质和对数式的运算法则的运用。
高一数学指数与指数函数试题答案及解析
高一数学指数与指数函数试题答案及解析1.设函数(x)=,则满足的的取值范围是().A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)【答案】D.【解析】当时,,,解得,因此,当时,,解得,因此,综上【考点】分段函数的应用.2.设函数则使得成立的的取值范围是()A.B.C.D.【答案】C【解析】当时,由,可得,即;当时,由,可得,即,综上.故选C【考点】函数的求值.3.已知定义在R上的函数满足,当时,,且.(1)求的值;(2)当时,关于的方程有解,求的取值范围.【答案】(1),(2)【解析】(1)由可知,代入表达式可求得的值.又,可求出的值;(2)由(1)可知方程为,对x进行讨论去绝对值符号,可得,据结合指数函数,二次函数的性质可求得的取值范围.试题解析:解:(1)由已知,可得又由可知 . 5分(2)方程即为在有解.当时,,令,则在单增,当时,,令,则,,综上: . 14分【考点】本题主要考查指数函数,二次函数求值域和分类讨论的数学思想方法.4.函数的图象必经过定点___________.【答案】【解析】∵指数函数过定点,∴函数过定点.【考点】函数图象.5.已知,,且,则与的大小关系_______.【答案】【解析】由,又由,所以,所以由可得,所以,,所以即.【考点】1.分数指数幂的运算;2.对数的运算;3.指数函数的单调性.6.函数在上的最大值比最小值大,则 .【答案】【解析】因为,根据指数函数的性质可知在单调递增,所以最大值为,最小值为,依题意有即,而,所以.【考点】指数函数的图像与性质.7.设,则的大小关系是()A.B.C.D.【答案】B【解析】把看成函数当时的函数值,因为,所以;把看成函数当时的函数值,因为,所以;把看成函数当时的函数值,因为 ,所以 .综上, ,故选B【考点】1、指数函数的性质;2、对数函数的性质.8.若,则__________.【答案】【解析】【考点】指数函数的运算法则9.已知,则的大小关系是.【答案】【解析】因为指数函数在R上单调递减,所以。
指数与指数函数练习及答案
指数与指数函数一、选择题:1、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( ) A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭2、44⎛⎛⎝⎝等于( ) A 、16aB 、8aC 、4aD 、2a3、若1,0a b ><,且b b a a -+=则b b a a --的值等于( ) A 、6B 、2±C 、2-D 、24、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( ) A 、1>a B 、2<a C、a < D、1a <<5、下列函数式中,满足1(1)()2f x f x +=的是( )A 、 1(1)2x + B 、14x +C 、2xD 、2x -6、已知,0a b ab >≠,下列不等式(1)22a b >;(2)22ab >;(3)ba 11<;(4)1133a b >;(5)1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( )A 、1个B 、2个C 、3个D 、4个 7、函数2121xx y -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 8、函数121xy =-的值域是( )A 、(),1-∞B 、()(),00,-∞+∞C 、()1,-+∞D 、()(,1)0,-∞-+∞ 9、已知01,1a b <<<-,则函数x y a b =+的图像必定不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限10、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]n a b -D 、(1%)n a b - 11、若103,104x y ==,则10x y -= 。
高三数学指数与指数函数试题答案及解析
高三数学指数与指数函数试题答案及解析1.若,,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】B【解析】如图可知,“”“”,而“”“”,因此“”是“”的必要不充分条件.故选B.【考点】指对两种基本初等函数的图像和充要条件的概念.2.________.【答案】【解析】原式=【考点】1.指对数运算性质.3.已知函数f(x)=()x,g(x)=x,记函数h(x)=,则不等式h(x)≥的解集为________.【答案】(0,],【解析】记f(x)与g(x)的图象交点的横坐标为x=x而f()==<1=,f(1)=()1=>0=1,∴x∈(,1),得h(x)的图象如图所示,而h()=f()=,∴不等式h(x)≥的解集为(0,].4.已知,那么的大小关系是()A.B.C.D.【答案】B【解析】,因为,即,所以.故B正确.【考点】1指数函数的单调性;2对数函数的单调性.5.函数y=x2的值域是________.【答案】(0,1]【解析】∵x2≥0,∴x2≤1,即值域是(0,1].6.如图,过原点O的直线与函数y=2x的图像交于A,B两点,过点B作y轴的垂线交函数y=4x的图像于点C,若AC平行于y轴,则点A的坐标是________.【答案】(1,2)【解析】设C(a,4a),则A(a,2a),B(2a,4a).又O,A,B三点共线,所以=,故4a=2·2a,所以2a=0(舍去)或2a=2,即a=1,所以点A的坐标是(1,2).7.当x∈[-2,2]时,a x<2(a>0且a≠1),则实数a的取值范围是________.【答案】∪(1,)【解析】当x∈[-2,2]时,a x<2(a>0且a≠1),当a>1时,y=a x是一个增函数,则有a2<2,可得-<a<,故有1<a<;当0<a<1时,y=a x是一个减函数,则有a-2<2,可得a>或a<- (舍),故有<a<1.综上可得,a∈∪(1,).8.已知,,,则()A.B.C.D.【答案】D【解析】∵,,,∴.【考点】利用函数图象及性质比较大小.9. (2014·嘉兴模拟)已知a=,b=0.3-2,c=lo2,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.c>b>a D.b>a>c【答案】D【解析】0<a=<=1,b=0.3-2>(0.3)0=1,c=lo2<0,所以b>a>c.10. (2014·郑州模拟)已知函数f(x)=e x+ax,g(x)=ax-lnx,其中a≤0.(1)求f(x)的极值.(2)若存在区间M,使f(x)和g(x)在区间M上具有相同的单调性,求a的取值范围.【答案】(1)f(x)的极小值为f(ln(-a))=-a+aln(-a);没有极大值(2)(-∞,-1)【解析】(1)f(x)的定义域为R,且f′(x)=e x+a.当a=0时,f(x)=e x,故f(x)在R上单调递增.从而f(x)没有极大值,也没有极小值.当a<0时,令f′(x)=0,得x=ln(-a).f(x)和f′(x)的情况如下:x(-∞,ln(-a))ln(-a)(ln(-a),+∞)故f(x)的单调递减区间为(-∞,ln(-a));单调递增区间为(ln(-a),+∞).从而f(x)的极小值为f(ln(-a))=-a+aln(-a);没有极大值.(2)g(x)的定义域为(0,+∞),且g′(x)=a-=.当a=0时,f(x)在R上单调递增,g(x)在(0,+∞)上单调递减,不合题意.当a<0时,g′(x)<0,g(x)在(0,+∞)上单调递减.当-1≤a<0时,ln(-a)≤0,此时f(x)在(ln(-a),+∞)上单调递增,由于g(x)在(0,+∞)上单调递减,不合题意.当a<-1时,ln(-a)>0,此时f(x)在(-∞,ln(-a))上单调递减,由于g(x)在(0,+∞)上单调递减,符合题意.综上,a的取值范围是(-∞,-1).x,y=a x,y=x+a的图象,可能正确的是() 11.在同一坐标系中画出函数y=loga【答案】D【解析】y=x+a在B,C,D三个选项中对应的a>1,只有选项D的图象正确.12.已知,,,则A.B.C.D.【答案】D【解析】由对数函数的性质知,,由幂函数的性质知,故有.【考点】对数、幂的比较大小13.设则的大小关系是()A.B.C.D.【答案】A【解析】因为,,所以,,选B.【考点】指数函数、对数函数的性质.14.已知函数,则=________.【答案】【解析】,故填.【考点】分段函数对数与指数15.已知函数,且函数有且只有一个零点,则实数的取值范围是( )A. B.. D.【答案】B【解析】如图,在同一坐标系中分别作出与的图象,其中a表示直线在y轴上截距,由图可知,当时,直线与只有一个交点.故选B.【考点】分段函数图像数形结合16.某驾驶员喝了mL酒后,血液中的酒精含量f(x)(mg/mL)随时间x(h)变化的规律近似满足表达式f(x)=《酒后驾车与醉酒驾车的标准及相应的处罚》规定为驾驶员血液中酒精含量不得超过0.02mg/mL,据此可知,此驾驶员至少要过________h后才能开车.(精确到1h)【答案】4【解析】当0≤x≤1时,≤5x-2≤,此时不宜开车;由≤0.02,得x≥4.17.已知+(0.5)-y< +(0.5)x,则实数x、y的关系为________.【答案】x+y<0【解析】由+(0.5)-y< +(0.5)x,得-(0.5)x< -(0.5)-y.设f(x)=-(0.5)x,则f(x)<f(-y),由于0< 0.5<1,所以函数f(x)是R上的增函数,所以x<-y,即x+y<018.设a>0,f(x)=是R上的偶函数.(1)求a的值;(2)判断并证明函数f(x)在[0,+∞)上的单调性;(3)求函数的值域.【答案】(1)a=1(2)f(x)在[0,+∞)上为增函数(3)[2,+∞)【解析】(1)因为f(x)为偶函数,故f(1)=f(-1),于是=+3a,即.因为a>0,故a=1.(2)设x2>x1≥0,f(x1)-f(x2)=(3x2-3x1)(-1).因为3x为增函数,且x2>x1,故3x2-3x1>0.因为x2>0,x1≥0,故x2+x1>0,于是<1,即-1<0,所以f(x1)-f(x2)<0,所以f(x)在[0,+∞)上为增函数.(3)因为函数为偶函数,且f(x)在[0,+∞)上为增函数,故f(0)=2为函数的最小值,于是函数的值域为[2,+∞).19.若xlog34=1,求的值.【答案】【解析】由xlog34=1,知4x=3,∴=20.设函数f(x)=x2-4x+3,g(x)=3x-2,集合M={x∈R|f(g(x))>0},N={x∈R|g(x)<2},则M∩N为() A.(1,+∞)B.(0,1)C.(-1,1)D.(-∞,1)【答案】D【解析】M:f(g(x))=(3x-2)2-4(3x-2)+3>0,令t=3x-2,则原不等式等价于t2-4t+3>0,解得t>3或t<1,∴3x-2>3或3x-2<1.∴3x>5或3x<3.∴x>log35或x<1.即M={x|x>log35或x<1}.N:3x-2<2⇒3x<4⇒x<log34,∴N={x|x<log34},∴M∩N={x|x<1},故选D.21.函数y=e|lnx|-|x-1|的图象大致是()【答案】D【解析】y=e|lnx|-|x-1|=当x≥1时,y=1,排除C,当x=时,y=,排除A,B,故选D.22.已知函数f(x)=2x+x,g(x)=x-,h(x)=log2x-的零点分别为x1,x2,x3,则x1,x 2,x3的大小关系是______________.【答案】x3>x2>x1【解析】x3>x2>x1[解析] 由f(x)=2x+x=0,g(x)=x-=0,h(x)=log2x-=0得2x=-x,x=,log2x=.在平面直角坐标系中分别作出y=2x与y=-x,y=x与y=,y=log2x与y=的图像,如图所示,由图像可知-1<x1<0,0<x2<1,x3>1,所以x3>x2>x1.23.已知函数f(x)=2x-2,则函数y=|f(x)|的图象可能是()【答案】B【解析】|f(x)|=|2x-2|=易知函数y=|f(x)|的图象的分段点是x=1,且过点(1,0),(0,1),又|f(x)|≥0,故选B.【误区警示】本题易误选A或D,出现错误的原因是误以为y=|f(x)|是偶函数.24.设函数f(x)=的最小值为2,则实数a的取值范围是.【答案】[3,+∞)【解析】当x≥1时,f(x)≥2,当x<1时,f(x)>a-1,由题意知,a-1≥2,∴a≥3.25.函数f(x)=的值域为________.【答案】(-∞,2)【解析】分段函数是一个函数,其定义域是各段函数定义域的并集,值域是各段函数值域的并集.当x≥1时,log x≤0,当x<1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2).26.设的定义域为D,若满足条件:存在,使在上的值域是,则称为“倍缩函数”.若函数为“倍缩函数”,则t的范围是()A.B.C.D.【答案】D【解析】因为函数在其定义域上是增函数,且函数为“倍缩函数”,且在上的值域是,所以,即,所以方程必有两个不等的实数根。
高一数学指数与指数幂的计算题及答案解析
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函 数又不是偶函数,称为非奇非偶函数。
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得 函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分 别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递 增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过(0,1)这点。 (8)显然指数函数无界。 奇偶性
高一数学指数与指数函数试题答案及解析
高一数学指数与指数函数试题答案及解析1.函数的图像过一个定点,则定点的坐标是【答案】(2,2)【解析】当x=2时,f(2)=a2-2+1=a0+1=2,∴函数y=a x-2+1的图象一定经过定点(2,2).故答案为:(2,2).【考点】含有参数的函数过定点的问题.2.函数的图象与函数的图象所有交点的横坐标之和等于()A.4B.6C.8D.10【答案】C【解析】由数形结合可知,两函数图像在直线两侧各有4个交点,其两两关于对称。
不妨令。
则所有交点横坐标之和为。
故C正确。
【考点】1函数图像;2余弦函数的周期;3数形结合思想。
3.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算4.(1)计算.(2)若,求的值.【答案】(1);(2).【解析】(1)利用对数恒等式、换底公式、对数的运算性质进行计算;(2)首先对已知等式进行平方求得的值,再对其平方可求得的值,最后代入所求式即可求得结果.试题解析:(1)原式=.(2)∵,∴,∴,∴,∴,∴原式.【考点】1、对数的运算性质;2、对数的换底公式;3、指数的运算性质.5.已知函数,则=.【答案】【解析】根据题题意:,,故.【考点】1.分段函数;2.指数、对数运算.6.三个数,,的大小顺序是 ( )A.B.C.D.【答案】C【解析】因为,,,所以,故选C.【考点】1.指数函数的单调性;2.对数函数的单调性.7.计算的值为_________.【答案】2【解析】原式【考点】根式、指数、对数的运算8.三个数大小的顺序是()A.B.C.D.【答案】A【解析】由题意得,.,,,,故选A【考点】考察指数函数,和对数函数,分别与1和0的之对比.9.若实数,满足,则关于的函数的图象形状大致是()【答案】B【解析】由等式,可得,根据指数函数的图像可知(或者根据函数的奇偶性、单调性、特殊值来判断),正确答案为B.【考点】1.对数式与指数式的互化;2.指数函数图像、奇偶性、单调性.10.若a<0,>1,则( )A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<0【答案】D【解析】是上的增函数,由,所以是上的减函数, 由,所以故选D【考点】指数函数,对数函数的单调性.11.三个数的大小关系为()A.B.C.D.【答案】D【解析】判断几个数的大小多用构造函数单调性来解题.因为是上的减函数,所以因为是上的减函数,所以因为是上的增函数,所以故选D【考点】用指数函数与对数函数单调性比较大小,转化思想应用.12.若,则函数的图象一定过点_______________.【答案】【解析】由函数过定点,令,即时,恒等于-3,故函数图像过定点;故答案为:.【考点】指数函数的图像和性质.13.设,,,则的大小关系是()A.B.C.D.【答案】D【解析】由对数函数的性质知:,所以答案选.【考点】1.指数大小比较;2.对数函数的性质.14.计算:(1);(2)【答案】(1)6;(2).【解析】(1)直接采用换底公式计算即可;(2)利用指数幂的运算性质逐个运算即可.试题解析:(1)原式=(2)原式=【考点】1.换底公式的应用;2.指数幂的化简求值.15.函数的图象一定过点()A.B.C.D.【答案】B【解析】根据题意,由于函数,令x-1=0,x=1,可知函数值为2,故可知函数一定过点,选B.【考点】指数函数点评:本试题主要是考查了指数函数恒过(0,1)点的运用,属于基础题。
高一数学指数运算及指数函数试题(有答案)
高一数学指数运算及指数函数试题一.选择题1.若xlog 23=1,则3x+9x的值为(B)A.3B.6C.2D.解:由题意x=,所以3x==2,所以9x=4,所以3x+9x=6故选B2.若非零实数a、b、c满足,则的值等于(B)A.1B.2C.3D.4解答:解:∵,∴设=m,a=log5m,b=log2m,c=2lgm,∴==2lgm(log m5+log m2)=2lgm•log m10=2.故选B.3.已知,则a等于()A.B.C. 2 D. 4解:因为所以解得a=4故选D4.若a>1,b>1,p=,则a p等于()A.1B.b C.l og b a D.a log b a解:由对数的换底公式可以得出p==log a(log b a),因此,a p等于log b a.故选C.5.已知lg2=a,10b=3,则log125可表示为(C)A.B.C.D.解:∵lg2=a,10b=3,∴lg3=b,∴log125===.故选C.6.若lgx﹣lgy=2a,则=(C)A.3a B.C.a D.解:∵lgx﹣lgy=2a,∴lg﹣lg=lg﹣lg=(lg﹣lg)=lg=(lgx﹣lgy)=•2a=a;故答案为C.7.已知函数,若实数a,b满足f(a)+f(b﹣2)=0,则a+b= A.﹣2 B.﹣1 C.0D.2解:f(x)+f(﹣x)=ln(x+)+ln(﹣x+=0∵f(a)+f(b﹣2)=0∴a+(b﹣2)=0∴a+b=2故选D.8.=()A.1B.C.﹣2 D.解:原式=+2×lg2+lg5=+lg2+lg5=+1=,故选B.9.设,则=()A.1B.2C.3D.4解:∵,∴==()+()+()==3故选C10.,则实数a的取值区间应为(C)A.(1,2)B.(2,3)C.(3,4)D.(4,5)解:=log34+log37=log328∵3=log327<log328<log381=4∴实数a的取值区间应为(3,4)故选C.11.若lgx﹣lgy=a,则=(A)A.3a B.C.a D.解:=3(lgx﹣lg2)﹣3(lgy﹣lg2)=3(lgx﹣lgy)=3a故选A.12.设,则()A.0<P<1 B.1<P<2 C.2<P<3 D.3<P<4 解:=log112+log113+log114+log115=log11(2×3×4×5)=log11120.∴log1111=1<log11120<log11121=2.故选B.13.已知a,b,c均为正数,且都不等于1,若实数x,y,z满足,则abc的值等于(A)A.1B.2C.3D.4解:∵a,b,c均为正数,且都不等于1,实数x,y,z满足,∴设a x=b y=c z=k(k>0),则x=log a k,y=log b k,z=log c k,∴=log k a+log k b+log k c=log k abc=0,∴abc=1.故选A.14.化简a2•••的结果是(C)A.a B.C.a2D.a3解:∵a2•••=a2•••==a2,故选C15.若x,y∈R,且2x=18y=6xy,则x+y为()A.0B.1C.1或2 D.0或2解:因为2x=18y=6xy,(1)当x=y=0时,等式成立,则x+y=0;(2)当x、y≠0时,由2x=18y=6xy得,xlg2=ylg18=xylg6,由xlg2=xylg6,得y=lg2/lg6,由ylg18=xylg6,得x=lg18/lg6,则x+y=lg18/lg6+lg2/lg6=(lg18+lg2)/lg6=lg36/lg6=2lg6/lg6=2.综上所述,x+y=0,或x+y=2.故选D.16.若32x+9=10•3x,那么x2+1的值为(D)A.1B.2C.5D.1或5解:令3x=t,(t>0),原方程转化为:t2﹣10t+9=0,所以t=1或t=9,即3x=1或3x=9所以x=0或x=2,所以x2+1=1或5故选Dx x2A.﹣2<a<2 B.C.D.解;令t=2x,则t>0若二次函数f(t)=t2﹣at+a2﹣3在(0,+∞)上有2个不同的零点,即0=t2﹣at+a2﹣3在(0,+∞)上有2个不同的根∴解可得,即故选D18.若关于x的方程=3﹣2a有解,则a的范围是(A)A.≤a<B.a≥C.<a<D.a>解:∵1﹣≤1,函数y=2x在R上是增函数,∴0<≤21=2,故0<3﹣2a≤2,解得≤a<,故选A.二.填空题19.,则m=10.解:由已知,a=log2m,b=log5m.∴+=log m2+log m5=log m10=1∴m=10故答案为:10.20.已知x+y=12,xy=9,且x<y,则=.解:由题设0<x<y∵xy=9,∴∴x+y﹣2==12﹣6=6x+y+2==12+6=18∴=,=∴=故答案为:21.化简:=(或或).解:====.故答案为:(或或).22.=1.解:===1.故答案为:1.23.函数在区间[﹣1,2]上的值域是[,8].解:令g(x)=x2﹣2x=(x﹣1)2﹣1,对称轴为x=1,∴g(x)在[﹣1,1]上单调减,在[1,8]上单调递增,又f(x)=2g(x)为符合函数,∴f(x)=2g(x)在[﹣1,1]上单调减,在[1,,2]上单调递增,∴f(x)min=f(1)==;又f(﹣1)==23=8,f(2)==1,∴数在区间[﹣1,2]上的值域是[,8].故答案为:[,8].24.函数的值域为(0,8].解:令t=x2+2|x|﹣3==结合二次函数的性质可得,t≥﹣3∴,且y>0故答案为:(0,8].25.函数(﹣3≤x≤1)的值域是[3﹣9,39],单调递增区间是(﹣2,+∞)..解:可以看做是由y=和t=﹣2x2﹣8x+1,两个函数符合而成,第一个函数是一个单调递减函数,要求原函数的值域,只要求出t=﹣2x2﹣8x+1,在[1,3]上的值域就可以,t∈[﹣9,9]此时y∈[3﹣9,39]函数的递增区间是(﹣∞,﹣2],故答案为:[3﹣9,39];(﹣2,+∞)三.解答题26.计算:(1);(2).解:(1)==(2)===2+2﹣lg3+lg2+lg3﹣lg2+2=627.(1)若,求的值;(2)化简(a>0,b>0).解:(1)∵,∴x+x﹣1=9﹣2=7,x2+x﹣2=49﹣2=47,∴==3×6=18,∴==.(2)∵a >0,b >0,∴====.28.已知函数f (x )=4x ﹣2x+1+3. (1)当f (x )=11时,求x 的值;(2)当x ∈[﹣2,1]时,求f (x )的最大值和最小值.解:(1)当f (x )=11,即4x ﹣2x+1+3=11时,(2x )2﹣2•2x ﹣8=0 ∴(2x ﹣4)(2x +2)=0 ∵2x >02x +2>2,∴2x ﹣4=0,2x =4,故x=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分) (2)f (x )=(2x )2﹣2•2x +3 (﹣2≤x ≤1) 令∴f (x )=(2x ﹣1)2+2当2x =1,即x=0时,函数的最小值f min (x )=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)当2x =2,即x=1时,函数的最大值f max (x )=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)29.已知函数||22)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于]2,1[∈t 恒成立,求实数m 的取值范围。
高中数学:指数与指数函数练习
高中数学:指数与指数函数练习(时间:30分钟)1.函数y=a x-(a>0,且a≠1)的图象可能是( D )解析:若a>1时,y=a x-是增函数;当x=0时,y=1-∈(0,1),A,B不满足;若0<a<1时,y=a x-在R上是减函数;当x=0时,y=1-<0,C错,D项满足.故选D.2.(湖南永州第三次模拟)下列函数中,与函数y=2x-2-x的定义域、单调性与奇偶性均一致的是( B )(A)y=sin x (B)y=x3(C)y=()x (D)y=logx2解析:y=2x-2-x在(-∞,+∞)上是增函数且是奇函数,y=sin x不单调,y=logx定义域为(0,+∞),y=()x是减函数,三者不满足,只有y=x3的定2义域、单调性、奇偶性与之一致.3.函数f(x)=a x-1(a>0,a≠1)的图象恒过点A,下列函数中图象不经过点A的是( A )(A)y= (B)y=|x-2|(2x)(C)y=2x-1 (D)y=log2解析:由题意,得点A(1,1),将点A(1,1)代入四个选项,y=的图象不过点A(1,1).4.设x>0,且1<b x<a x,则( C )(A)0<b<a<1 (B)0<a<b<1(C)1<b<a (D)1<a<b解析:因为x>0时,1<b x,所以b>1.因为x>0时,b x<a x,所以x>0时,()x>1.所以>1,所以a>b.所以1<b<a.5.函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是( D )(A)a>1,b<0(B)a>1,b>0(C)0<a<1,b>0(D)0<a<1,b<0解析:由f(x)=a x-b的图象可以观察出,函数f(x)=a x-b在定义域上单调递减,所以0<a<1.函数f(x)=a x-b的图象是在f(x)=a x的基础上向左平移得到的,所以b<0.6.已知f(x)=2x+2-x,f(m)=3,且m>0,若a=f(2m),b=2f(m),c=f(m+2),则a,b,c的大小关系为( D )(A)c<b<a (B)a<c<b(C)a<b<c (D)b<a<c解析:因为f(m)=2m+2-m=3,m>0,所以2m=3-2-m>2,b=2f(m)=2×3=6,a=f(2m)=22m+2-2m=(2m+2-m)2-2=7,c=f(m+2)=2m+2+2-m-2=4·2m+·2-m>8,所以b<a<c.故选D.7.下列说法正确的序号是.①函数y=的值域是[0,4);②(a>0,b>0)化简结果是-24;③+的值是2π-9;④若x<0,则=-x.解析:由于y=≥0(当x=2时取等号),又因为4x>0,所以16-4x<16得y<,即y<4,所以①正确;②中原式====-24,正确;由于+=|π-4|+π-5=4-π+π-5=-1,所以③不正确.由于x<0,所以④正确.答案:①②④8.不等式<4的解集为.解析:因为<4,所以<22,所以x2-x<2,即x2-x-2<0,解得-1<x<2.答案:{x|-1<x<2}9.(鸡西模拟)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b= . 解析:若a>1,则f(x)=a x+b在[-1,0]上是增函数,所以则a-1=0,无解.当0<a<1时,则f(x)=a x+b在[-1,0]上是减函数,所以解得因此a+b=-.答案:-能力提升(时间:15分钟)10.若函数f(x)=a|2x-4|(a>0,且a≠1),满足f(1)=,则f(x)的单调递减区间是( B )(A)(-∞,2] (B)[2,+∞)(C)[-2,+∞) (D)(-∞,-2]解析:由f(1)=,得a2=,解得a=或a=-(舍去),即f(x)=()|2x-4|.由于y=|2x-4|在(-∞,2]上递减,在[2,+∞)上递增,所以f(x)在(-∞,2]上递增,在[2,+∞)上递减.11.(湖南郴州第二次教学质量检测)已知函数f(x)=e x-,其中e是自然对数的底数,则关于x的不等式f(2x-1)+f(-x-1)>0的解集为( B )(A)(-∞,-)∪(2,+∞) (B)(2,+∞)(C)(-∞,)∪(2,+∞) (D)(-∞,2)解析:易知f(x)=e x-在R上是增函数,且f(-x)=e-x-=-(e x-)=-f(x),所以f(x)是奇函数.由f(2x-1)+f(-x-1)>0,得f(2x-1)>f(x+1),因此2x-1>x+1,所以x>2.12.(衡阳三中模拟)当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是( D )(A)(-2,1) (B)(-4,3)(C)(-3,4) (D)(-1,2)解析:因为(m2-m)·4x-2x<0在x∈(-∞,-1]上恒成立,所以(m2-m)<在x∈(-∞,-1]上恒成立,由于f(x)=在x∈(-∞,-1]上单调递减,所以f(x)≥2,所以m2-m<2,所以-1<m<2.故选D.13.设偶函数g(x)=a|x+b|在(0,+∞)上单调递增,则g(a)与g(b-1)的大小关系是. 解析:由于g(x)=a|x+b|是偶函数,知b=0,又g(x)=a|x|在(0,+∞)上单调递增,得a>1.则g(b-1)=g(-1)=g(1),故g(a)>g(1)=g(b-1).答案:g(a)>g(b-1)14.已知函数f(x)=a x(a>0,a≠1)在区间[-1,2]上的最大值为8,最小值为m.若函数g(x)=(3-10m)是单调增函数,则a= .解析:根据题意,得3-10m>0,解得m<;当a>1时,函数f(x)=a x在区间[-1,2]上单调递增,最大值为a2=8,解得a=2,最小值为m=a-1==>,不合题意,舍去;当0<a<1时,函数f(x)=a x在区间[-1,2]上单调递减,最大值为a-1=8,解得a=,最小值为m=a2=<,满足题意.综上,a=.答案:15.函数f(x)=x2-bx+c满足f(x+1)=f(1-x),且f(0)=3,则f(b x)与f(c x)的大小关系是.解析:由f(x+1)=f(1-x)知y=f(x)的图象关于x=1对称,所以b=2.又f(0)=3,得c=3.则f(b x)=f(2x),f(c x)=f(3x).当x≥0时,3x≥2x≥1,且f(x)在[1,+∞)上是增函数,所以f(3x)≥f(2x).当x<0时,0<3x<2x<1,且f(x)在(-∞,1]上是减函数,所以f(3x)>f(2x),从而有f(c x)≥f(b x).答案:f(c x)≥f(b x)。
指数与指数函数高考复习题与答案详细解析
指数及指数函数高考复习题1若点(a,9)在函数y =3x的图象上,则tana π6的值为( )A .0 B.33C .1 D. 3 2函数164x y =-的值域是 ( )(A )[0,)+∞ (B )[0,4] (C )[0,4) (D )(0,4)3设232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是( )(A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a4下列四类函数中,个有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是 ( )(A )幂函数 (B )对数函数 (C )指数函数 (D )余弦函数5.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 6B .a -C .a 9-D .29a6已知函数()f x 满足:x ≥4,则()f x =1()2x;当x <4时()f x =(1)f x +,则2(2log 3)f +=( )A.124 B.112 C.18 D.387. 不等式4x-3·2x+2<0的解集是( ) A .{x |x <0} B .{x |0<x <1} C .{x |1<x <9} D .{x |x >9}8.若关于x 的方程|a x-1|=2a (a >0,a ≠1)有两个不等实根,则a 的取值范围是( )A .(0,1)∪(1,+∞)B .(0,1)C .(1,+∞)D .(0,12)9(理)函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( )A .(-1,+∞)B .(-∞,1)C .(-1,1)D .(0,2)10(理)若函数y =2|1-x |+m 的图象与x 轴有公共点,则m 的取值范围是( )A .m ≤-1B .-1≤m <0C .m ≥1D .0<m ≤111.函数f (x )=x 12 -(12)x的零点个数为( )A .0B .1C .2D .312(理)已知函数⎩⎨⎧>≤--=-7,7,3)3()()6(x ax x a x f x 若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .[94,3)B .(94,3) C .(2,3) D .(1,3)13.设函数f (x )=|2x-1|的定义域和值域都是[a ,b ](b >a ),则a +b 等于( )A .1B .2C .3D .414.已知函数⎪⎩⎪⎨⎧>-≤=1),1(log 1,)21()(2x x x x f x,则f (x )≤12的解集为________.15.若函数⎪⎪⎩⎪⎪⎨⎧>≤=0,10,)31()(x xx x f x则不等式|f (x )|≥13的解集为________. 16.函数y =a x +2012+2011(a >0且a ≠1)的图象恒过定点________.17.设f (x )是定义在实数集R 上的函数,满足条件y =f (x +1)是偶函数,且当x ≥1时,f (x )=2x-1,则f (23)、f (32)、f (13)的大小关系是________.18.若定义运算a *b =⎩⎪⎨⎪⎧a a <b ,ba ≥b ,则函数f (x )=3x *3-x的值域是________.19.定义区间[x 1,x 2]的长度为x 2-x 1,已知函数f (x )=3|x |的定义域为[a ,b ],值域为[1,9],则区间[a ,b ]的长度的最大值为______,最小值为______.20.设函数f(x)=,求使f(x)≥2 的x 的取值范围.21.(文)(2011·上海吴淞中学月考)已知函数f (x )=a ·2x +a -22x+1是奇函数.(1)求a 的值;(2)判断函数f (x )的单调性,并用定义证明;(3)求函数的值域.22.(文)已知f (x )是定义在R 上的奇函数,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在(-1,1)上的解析式; (2)证明:f (x )在(0,1)上是减函数.[]的值,求实数上的最大值是在函数且设a a a y a a x x 141,1-12,10.232-+=≠24.已知f (x )=aa 2-1(a x -a -x)(a >0且a ≠1). (1)判断f (x )的奇偶性; (2)讨论f (x )的单调性; (3)当x ∈[-1,1]时,f (x )≥b 恒成立,求b 的取值范围.指数及指数函数高考复习题答案1[答案] D[解析] 由点(a,9)在函数y =3x图象上知3a=9,即a =2,所以tan a π6=tan π3= 3. 2解析:[)40,0164161640,4x x x >∴≤-<∴-∈3.A 【解析】25y x =在0x >时是增函数,所以a c >,2()5xy =在0x >时是减函数,所以c b >。
高一数学指数运算及指数函数试题(有答案).doc
«—数学指数运算及指数函数试题一. 选择题1. 若 xlog 23=l,则 3X +9X 的值为(B )A. 3B. 6C. 2解:由题意 x=—-—=logo 2^ log 23 °所以 3x =3lGg 32=2, 所以9X =4,所以3X +9X =6 故选B2. 若非零实数a 、b 、c 满足5^2b^^,则£^^的值等于 3L b A. 1B. 2C. 3解:•’ 5a :2b :VlO c ,•••设 5;a = 2b -VlO c=m,a=log5m ,b=log2m» c=21gm ,._c z: 21 gm + 21 gm a bloggin log 2in=21gm (log m 5+log m 2) =21grn<log m 10=2.故选B.3. 已知l 0g a 8=^,则a 等于( )A. _1B. \C. 22解:因为log a s=|所以 解得a=4 故选Dlogv (log k a) 4. -------------------------------------- 若 a 〉l, b 〉l ,p=: ,贝1Ja p 等于( )A. 1B. bC. log b aD. a k )g baB )D. 4D. 4log blog, ( log E a)解:由对数的换底公式可以得出P= ---------- : ---------------- =loga ( logba )因此,a p 等于logba. 故选c.解:•••lg2=a ,10b =3,•••lg3=b ,•••logi25= 1 的lgl2_ l-lg2 21g2+lg3 1-a 2a+b 故选c.解:...lgx - lgy=2a ,(lgx - lgy)2 y 2 故答案为C.7.己知函数f (x) =ln (x+J x 2+l),若实数 a ,b 满足 f (a) +f (b - 2) =0,则 a+b=角早:f(x)+f(-x) =ln (x+V y 2+i) +ln (- x+J ( - x) 2+i=0 •••f (a) +f (b -2) =0 •••a+ (b -2) =0 •••a+b=2故选D.log b a5.已知 lg2=a ,10b =3,贝1J logi25 可表示为(C )A. 1+aB. 1+aC. 1 一 a2a+ba+2b2a+bD. 1 - a a+2bA. 3a6.若 lgx - lgy=2a , (C )2 aC. aD. a 12a=a ;( )A. - 2B. - 1C. 0D. 2xl+2lgx ' l+4lgx ' l+8lgx ' 1+ 2 —lgx l+4~lgx 1+82+2lgx + 2~lgx 2+4lgx + 4~lsx 2+8lgx + 8~lsx2+2lgx + 2"lgX 2+4lgx + 4~lgX 2+8lgx + 8~lgX=3故选CA. (1, 2)B.(2, 3)C.(3, 4)D. (4, 5)解:a:_, 1 o=log34+log37=log328log 43 log 73••• 3=log 327 < log 328< log 381 =4•••实数a 的収值区间应为(3, 4) 故选c.11.若 lgx-lgy=a ,则 lg (^) 3 - lg (^)10. 3L— 1—,则实数a 的取值区间应为(C )log 43 log ?3A. 1B. _4 1C. - 2D. _21解:原式=2lDS “2x ilg 2+1g 5: 故选B.i+49•设f (xA. 11+21+41+8B. 2 贈⑴+f 4)C. 3D. 4解:Yf (xI^+'l4-4lgx "k l +8lsx•••f (x) +f (丄)(H2lsx + l+2~lgx )+1+(7^+I^)l+4lsx ,l+4"lgx3.B. 2C.A. aA. 3aB. 3C. aD. a"2a "233解:lg (^) - 1§ (^)=3 (lgx-lg2) -3 (lgy - lg2) =3 (lgx - lgy) =3a故选A.=log 112+logn 3+logn 4+logn5 =logn (2x3x4x5) =lognl20.•••logii 11 = 1 <logi 1120<logn 121=2. 故选B.13. 已知a, b, c 均为正数,且都不等于1,若实数x, y, z 满足=x y z则abc 的值等于(A )A. 1B. 2C. 3D. 4解.• Ya ,b, c 均为正数,Il 都不等于1, 实数 x ,y ,z 满足 a x :b 》:c Z ,■=0, x y z•••设 a x =b y =c z =k ( k 〉0), 贝ij x=log a k ,y=logbk ,z=log c k ,4-^ -^=logka+logkb+logkC=logkabc=0, x y z•••abc=l. 故选A.5 514. 化简(丄)的结果是(C ) a 12.设 P:11 1,则(5A. O<P<1C. 2<P<3D. 3<P<4B. 1<F<2 解:P?11155 5解:Va2-V?- C1) 2. J a_5 5a2=a ,故选C15.若x,yER,且2x=18y=6xy,贝ij x+y 为( )A. 0B. 1C. 1 或2D. 0或2解:因为2x=18y=6xy,(1)当x=y=O时,等式成立,则x+y=O;(2)当x、y*0 时,由2x=18y=6xy得,xlg2=ylgl 8=xylg6,由xlg2=xylg6,得y=lg2/lg6,由ylg 18=xylg6,得x=lg 18/lg6,则x+y=lgl8/lg6+lg2/lg6= (Igl8+lg2) /lg6 =lg36/lg6=21g6/lg6=2.综上所述,x+y=O:或x+y=2.故选D.16.若32X+9=10.3X,那么x2+l 的值为(D )A. 1B. 2C. 5D. 1 或5解:令3x=t, (t>0),原方程转化为:t2 - 10t+9=0,所以t=l 或t=9,即3X=1 3X=9 所以x=0或x=2,所以x2+l=l或5 故选D17.已知函数f (x) =4x-a*2x+a2-3,则函数f (x)有两个相异零点的充要条件是(DA. -2<a<2B. V3<a<2C. V3<^<2D. V3<a<2解;令t=2x,则t〉()若二次函数f (t) =t2 - at+a2 - 3在(0, +oo)上有2个不同的零点,即0=t2 - at+a2 - 3在(0,+°°)上有2个不同的根A=a2 - 4 ( a2- 3)>0 人,a>0a2 - 3>0-2<a<2解可得,j a>0 即^<a<2~ V3L故选D18.若关于x的方程21—士=3-2a有解则a的范围是(AA. B. a 42 2 2解:VI - Vx<I,函数>,=2"在尺上是增函数,/.0<21_^<2'=2,故0<3 - 2a<2,解得-i<a<-?,2 2故选A.二.填空题19. 2a=5b=m,丄+丄=1,则nr= 10.a b解:rfl 己知,a=log2m, b=log5m.••• l+^=log m2+log m5=log m 10= 1a b... m=10 故答案为:1().20. 己知x+y=12, xy=9,且x<y,解:由题设0<x<y•••xy=9,«*.Vxy-3J. A 2•••x+y - 2y/~^y= (x2_y2) =12 - 6=61 A 2x+y+2Vxy= (y2 + y2) =12+6=18A J 1 1••• x 2 - y2= - V6, x 2 + y 2= 5^2x2 + y 故荇案为: SV2 3 32i.化简:為恥解:上a ~ a26a •14故答案为:J (或(V?,士)1 女诉22.-------------- -- ------- --------------- = 1解:(V7,|)—7,心,诉62(a3,bJ. 1 J,b3a 1.A 1 Ua *b 2 1故答案为:1.23. 函数f (x )二2X ‘_2x在区间l-丨,21上的值域是|+,81解:令 g (x) =x 2 - 2x= (x - 1) 2 - 1,对称轴为 x=l ,•••g (x)在[-1,1]上单调减,在[1,8]上单调递增,又f (x) =2g(x>为符合函数,•••f(x) =2§(~在[-1,1]上单调减,在[1,,2]上单调递增I 2 一 2><1=丄 2又f ( - 1) =2I 2+2><1=23=8, f (2) =22“2X2=1,•••数f (x)二2X: _2X 在区间卜丨,2j 上的值域是8J. 2故答案为:[1, 81.224. 函数尸(丄)X +2,X| 3的值域为 (0, 81 2结合二次函数的性质可得,t>-33=8,且 y 〉o故答案为:(0, 8].25.函数尸(j) —( -hxSl)的倌域是_ LV 9, 391,单调递增区间是2,+°°) •.1-2x 2-8x+l解:y= (?)可以看做是由y=(丄)土和t=-2x 2-8x+l ,两个函数符合而成, 第一个函数是一个单调递减函数,要求原函数的值域,只要求出t=-2x 2-8x+l ,在[1,3]上的值域就可以, tEf-9, 91 此时 y€[3 _9, 39]函数的递增区间是(-2],故答案为:[3-9, 39]; ( -2, +oo)minin =f (l) =2 解:令 t=x 2+2|x| - 3=<x 2+2x - 3, x 2 - 2x - 3,x^Ox<0(x+1) 2 - 4,x>0 (x-1) 2 _ 4, x<0三. 解答题26. 计算:(1)3b —2(-3a 2b 1)—2 —39a b(2) |l+lgO. 001 |+.Jig 2-|- 41g3+4+lg6-lgO. 02.3b —2(-3a 2b 1)o _ 11 _ 3 -3ab—9 一 3 9a Z b 1 "3 (2) |l+lg0.001 ll-31+Jlg2J. 41g3+4+l§6 - l§0. 02(2X3) -lg (2X0.01)2|+|lg|+2|+lg2+lg3 - (lg2+lg0.01)=2+2 - Ig3+lg2+lg3 - lg2+2 =627. (1)若 X I +X 〒二3,求2 , 2 _ o 2,-2_nX +x乙的值(2)化简'b 2Vab(a 〉0, b>0).(aVa解:⑴•••x 2+x2•••x+x -1=9 - 2=7, X 2+X'2=49 - 2=47, 3_3•••X D(x 2 + x2) (x +-11) =3x6=183 _2 .X 了+X 了_3_18_3_1 • \2^-2-2_^2'1(2) Va>0, b 〉0,3b 2^/a b 53 A 2a 2b ,[ (ab 2) 3]31 1"6,3s b — s b - a b 1046 k 3 ab 2 7 3k ^ a b_a« b28.己知函数 f (x) =4x -2x+1+3.(1) 当f (x) = 11时,求x 的值;(2) 当X E[-2: 1]时,求f (x)的最大值和最小值.解:(1)当 f (X) =11,即 4X -2X+1+3=11 时,(2X ) 2-2*2X -8=0••• (2x -4) (2x +2) =0 •••2x 〉02x +2〉2,•••2X - 4=0,2X =4,故 x=2 - - -- -- -- -- -- -- -- (4 分)(2) f (x) = (2X ) 2 - 2*2x +3 (- 2<x<l)令Af (x) = (2X - 1) 2+2当2X =1,即x=0时,函数的最小值f min (x) =2 ----------------------------------------------------- (1() 分)当 2X =2,即 x=1 时,函数的® 大值 f max (x) =3 - - -- -- -- -- -- -- (12 分) 29. 己知函数/(X) = 2x —(1)若/(又)=2,求x 的值;(2)若2y(2z) + m/(Z)2 0对于ze [l ,2]恒成立,求实数m 的取值范围(1)当%<0时,/(x) = 0;当时,f(x) = 2x2X1 J (a 4b 2aab 2,由条件可知2"--L二2,即22x-2-2A -1=0,2X解得2X=1±V2.••• 2' >0, ••• x = log2(l +V2 ).(2)当/e l1,2J时,2’(2。
(完整版)指数和指数函数练习题及答案(可编辑修改word版)
2 62 指数和指数函数一、选择题 1.(3 6 a 9)4( 6 3 a 9)4 等于( )(A )a 16(B )a 8(C )a 4(D )a 22. 若 a>1,b<0,且 a b+a -b=2,则 a b -a -b 的值等于( )(A ) (B ) ± 2(C )-2(D )23. 函数 f (x )=(a 2-1)x在 R 上是减函数,则 a 的取值范围是()(A ) a > 1 (B ) a < 2 (C )a< (D )1< a < 14. 下列函数式中,满足 f(x+1)= f(x)的是() 21 1 (A)(x+1)(B)x+(C)2x(D)2-x245.下列 f(x)=(1+a x )2⋅ a-x 是( )(A )奇函数 (B )偶函数(C )非奇非偶函数(D )既奇且偶函数1 1 11 1 16.已知 a>b,ab ≠ 0 下列不等式(1)a 2>b 2,(2)2a>2b,(3) < ,(4)a 3 >b 3 ,(5)( )a <( )ba b 3 3中恒成立的有( ) (A )1 个(B )2 个 (C )3 个 (D )4 个2 x - 17. 函数 y=是( )2 x+ 1 (A )奇函数(B )偶函数(C )既奇又偶函数(D )非奇非偶函数18. 函数 y=的值域是( )2 x- 1(A )(- ∞,1)(B )(- ∞, 0) ⋃ (0,+ ∞ )(C )(-1,+ ∞ ) (D )(- ∞ ,-1) ⋃ (0,+ ∞ )9. 下列函数中,值域为 R +的是( )1(A )y=5 2-xe x - e - x1(B )y=( )1-x(C )y= 3(D )y= 10. 函数 y= 的反函数是()2(A )奇函数且在 R +上是减函数(B )偶函数且在 R +上是减函数(C )奇函数且在 R +上是增函数 (D )偶函数且在 R +上是增函数11.下列关系中正确的是( )1 2 1 2 1 11 1 12 1 2(A )( ) 3 <( ) 3 <( ) 3(B )( ) 3 <( ) 3 <( ) 32 5 21 2 1 1 1 22 2 51 2 1 2 1 1(C )( ) 3 <( ) 3 <( )3 (D )( ) 3 <( ) 3 <( ) 3 5 2 25 2 22 ( 1 ) x - 1 21 -2 xx 12. 若函数 y=3+2x-1的反函数的图像经过 P 点,则 P 点坐标是()(A )(2,5) (B )(1,3) (C )(5,2) (D )(3,1)13. 函数 f(x)=3x +5,则 f -1(x)的定义域是( ) (A )(0,+ ∞ ) (B )(5,+ ∞ ) (C )(6,+ ∞ ) (D )(- ∞ ,+ ∞ )14. 若方程 a x-x-a=0 有两个根,则 a 的取值范围是( ) (A )(1,+ ∞ ) (B )(0,1) (C )(0,+ ∞ ) (D )15. 已知函数 f(x)=a x+k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数 f(x)的表达式是( )(A)f(x)=2x +5 (B)f(x)=5x +3 (C)f(x)=3x+4(D)f(x)=4x+316. 已知三个实数 a,b=a a,c=a aa,其中 0.9<a<1,则这三个数之间的大小关系是()(A )a<c<b (B )a<b<c (C )b<a<c (D )c<a<b17.已知 0<a<1,b<-1,则函数 y=a x+b 的图像必定不经过( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 二、填空题31.若 a2 <a 2 ,则 a 的取值范围是 。
指数与指数函数练习题含答案
指数与指数函数练习题(1)1. 化简的结果是()A.−2B.−2C.−2D.−22. 下列各函数中,值域为(0, +∞)的是()A.y=2−x2 B.y=√1−2x C.y=x2+x+1 D.y=31x+13. 函数y=1sin x−x的一段大致图象是()A. B.C. D.4. 函数f(x)=(12)x的值域是()A.(0, +∞)B.(−∞, +∞)C.(0, 1)D.(1, +∞)5. 若函数f(x)=a|2x−4|(a>0, a≠1),满足f(1)=19,则f(x)的单调递减区间是()A.(−∞, 2] B.[2, +∞) C.[−2, +∞) D.(−∞, −2]6. 如图是二次函数f(x)=x 2−bx +a 的部分图象,则函数g(x)=ln x +f′(x)的零点所在的区间是( )A.(14,12) B.(1, 2)C.(12,1)D.(2, 3)7. 奇函数f(x)在(−∞, 0)上单调递减,且f(2)=0,则不等式f(x)>0的解集是( ) A.(−∞, −2)∪(0, 2) B.(−∞, 0)∪(2, +∞) C.(−2, 0)∪(0, 2)D.(−2, 0)∪(2, +∞)8. 若2x =7,2y =6,则4x−y 等于( )A. B. C. D.9. 已知a >0,则2√a⋅√a 23=( )A.a 65B.a 56C.a −56D.a 5310. 下列运算结果中,一定正确的是( ) A.a 3⋅a 4=a 7 B.(−a 2)3=a 6C.√a 88=aD.√(−π)55=−π11. 若函数(a >0,且a ≠1)是指数函数,则下列说法正确的是( )A.a =8B.f(0)=−3C.D.a =4E.f(2)=1612. 若a =log 20.5,b =20.5,c =0.52,则a ,b ,c 三个数的大小关系是( )A.a <b <cB.b <c <aC.a <c <bD.c <a <b13. 若函数f(x)=(a −1)x 是指数函数,则实数a 的取值范围是________.14. 函数f(x)=a x +3的图象一定过定点P ,则P 点的坐标是________.15. =________;=________.16. 函数y =−a x−2+1(a >0且a ≠1)的图象必经过点________;17. 已知函数f(x)=a⋅2x −12x +1的图象经过点(1,13).(1)求a 的值;(2)求函数f(x)的定义域和值域.18. 求值:(1);(2)已知2a =5b =m ,且,求实数m 的值.19. (1)计算:0.064−13−(−57)0+[(−2)3]−43+16−0.75; 19.(2)化简:•(a 23−1−12−12⋅b13√a⋅b 5620. 请根据给出的函数图象指出函数的极值点和最大(小)值点.21. 已知(a>0,且a≠1).(1)讨论函数f(x)和g(x)的单调性.(2)如果f(x)<g(x),那么x的取值范围是多少?22. 已知函数y=a()|x|+b的图象过原点,且无限接近直线y=2但又不与该直线相交.(1)求该函数的解析式,并画出图象;(2)判断该函数的奇偶性和单调性.参考答案与试题解析 指数与指数函数练习题(1)一、 选择题 (本题共计 9 小题 ,每题 5 分 ,共计45分 ) 1.【答案】 B【考点】有理数指数幂的运算性质及化简求值 【解析】 此题暂无解析 【解答】 此题暂无解答 2.【答案】 A【考点】指数函数的定义、解析式、定义域和值域 【解析】 此题暂无解析 【解答】 解:对于A ,y =2−x 2=(√22)x的值域为(0, +∞);对于B ,因为1−2x ≥0, 所以2x ≤1,x ≤0,y =√1−2x 的定义域是(−∞,0], 所以0<2x ≤1, 所以0≤1−2x <1,所以y =√1−2x 的值域是[0,1).对于C ,y =x 2+x +1=(x +12)2+34的值域是[34,+∞); 对于D , 因为1x+1∈(−∞,0)∪(0,+∞),所以y =31x+1 的值域是(0,1)∪(1,+∞). 故选A . 3.【答案】 A【考点】函数的图象与图象的变换 【解析】根据函数的奇偶性和特殊值即可判断. 【解答】f(−x)=−1sin x−x=−f(x),∴y=f(x)为奇函数,∴图象关于原点对称,∴当x=π时,y=−1π<0,4.【答案】A【考点】指数函数的定义、解析式、定义域和值域【解析】根据指数函数的图象与性质,即可得出f(x)的值域是什么.【解答】解:∵函数f(x)=(12)x是指数函数,定义域是R,∴f(x)的值域是(0, +∞).故选:A.5.【答案】B【考点】指数函数的单调性与特殊点【解析】由f(1)=19,解出a,求出g(x)=|2x−4|的单调增区间,利用复合函数的单调性,求出f(x)的单调递减区间.【解答】由f(1)=19,得a2=19,于是a=13,因此f(x)=(13)|2x−4|.因为g(x)=|2x−4|在[2, +∞)上单调递增,所以f(x)的单调递减区间是[2, +∞).故选:B.6.【答案】C【考点】二次函数的性质函数零点的判定定理【解析】由二次函数图象的对称轴确定b的范围,据g(x)的表达式计算g(12)和g(1)的值的符号,从而确定零点所在的区间.【解答】解:∵f(x)=x2−bx+a,结合函数的图象可知,二次函数的对称轴,12<x =b2<1 ∴ 1<b <2∴ f ’(x)=2x −b∴ g(x)=ln x +f′(x)=ln x +2x −b 在(0, +∞)上单调递增且连续 ∵ g(12)=ln 12+1−b <0, g(1)=ln 1+2−b =2−b >0,∴ 函数g(x)=ln x +f′(x)的零点所在的区间是(12,1).故选C . 7.【答案】 A【考点】其他不等式的解法 函数单调性的性质【解析】根据奇函数的性质求出f(−2)=0,由条件画出函数图象示意图,结合图象即可求出不等式的解集. 【解答】解:∵ f(x)为奇函数,且f(2)=0,在(−∞, 0)是减函数, ∴ f(−2)=−f(2)=0,f(x)在(0, +∞)内是减函数, ∴ 在(−∞,0)上,f(x)>0的解为(−∞,2), 在(0,+∞)上,f(x)>0的解为(0,2).∴ 不等式f(x)>0的解集为(−∞, −2)∪(0, 2). 故选A . 8. 【答案】 D【考点】有理数指数幂的运算性质及化简求值 【解析】 此题暂无解析 【解答】 此题暂无解答 9.【答案】 B【考点】有理数指数幂的运算性质及化简求值 【解析】利用有理数指数幂的运算性质求解. 【解答】2√a⋅√a23=a 2a 12⋅a 23=a 2a 76=a 56,二、 多选题 (本题共计 3 小题 ,每题 5 分 ,共计15分 ) 10.【答案】 A,D【考点】有理数指数幂的运算性质及化简求值 【解析】根据有理数指数幂的运算法则计算. 【解答】A 选项a 3⋅a 4=a 3+4=a 7,正确;B 选项(−a 2)3=−a 6,错误;C 选项当a ≥0时,√a 88=a ,当a <0时,√a 88=−a ,错误; D 选项√(−π)55=−π,正确. 11.【答案】 A,C【考点】指数函数的定义、解析式、定义域和值域 【解析】 此题暂无解析 【解答】 此题暂无解答 12.【答案】a =log 20.5<0,b =20.5>1,0<c =0.52<1,则a <c <b ,则选:C 【考点】指数函数的图象与性质 【解析】根据对数函数以及指数函数的性质求出a ,b ,c 的大小即可. 【解答】a =log 20.5<0,b =20.5>1,0<c =0.52<1, 则a <c <b , 则选:C .三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 ) 13.【答案】(1, 2)∪(2, +∞) 【考点】指数函数的定义、解析式、定义域和值域 【解析】根据指数函数的定义,底数大于0且不等于1,求出实数a 的取值范围. 【解答】解:∵ 函数f(x)=(a −1)x 是指数函数, ∴ {a −1>0a −1≠1,解得a>1且a≠2;∴实数a的取值范围是(1, 2)∪(2, +∞).故答案为:(1, 2)∪(2, +∞).14.【答案】(0, 4)【考点】指数函数的单调性与特殊点【解析】此题暂无解析【解答】解:f(x)=a x+3的图象可以看作把f(x)=a x的图象向上平移3个单位而得到,且f(x)=a x一定过点(0, 1),则f(x)=a x+3应过点(0, 4).故答案为:(0, 4).15.【答案】6,【考点】有理数指数幂的运算性质及化简求值【解析】此题暂无解析【解答】此题暂无解答16.【答案】(2, 0)【考点】指数函数的图象与性质【解析】结合指数函数过(0,1)点,结合题目条件,即可得出答案.【解答】令x−2=0,解得x=2当x=2时,y=−a2−2+1=0∴函数y=−a x−2+1(a>0且a≠1)图象过的定点为(2,0)答案:(20)四、解答题(本题共计 6 小题,每题 11 分,共计66分)17.【答案】【考点】函数的定义域及其求法函数的值域及其求法【解析】此题暂无解析【解答】 此题暂无解答 18. 【答案】原式===99;因为2a =5b =m ,所以a =log 2m ,b =log 5m ,所以,所以.【考点】有理数指数幂的运算性质及化简求值 【解析】(1)直接利用有理数指数幂及根式的运算性质求解即可;(2)先利用指数式和对数式的互化,表示出a ,b 的值,然后利用对数的运算性质求解即可. 【解答】原式===99;因为2a =5b =m ,所以a =log 2m ,b =log 5m ,所以,所以.19. 【答案】原式=0.4−1−1+2−4+2−3=52−1+116+18=2716. 原式=a−13b 12⋅a −12⋅b 13a 16⋅b 56=a−13−12−16⋅b12+13−56=a −1=1a .【考点】有理数指数幂的运算性质及化简求值【解析】(1)利用指数幂的运算性质即可得出.(2)利用指数幂的运算性质即可得出.【解答】原式=0.4−1−1+2−4+2−3=52−1+116+18=2716.原式=a −13b 12⋅a −12⋅b 13a 16⋅b 56=a −13−12−16⋅b 12+13−56=a −1=1a . 20.【答案】A .函数的极大值点为x 2,极小值点为x 1,x 3,最大值点为a ,x 2,最小值点为x 3,B .函数的极大值点为x 1,x 3极小值点为x 2,最大值点为x 1,最小值点为b ,C .函数的极大值点为x 1,极小值点为x 2,最大值点为b ,最小值点为a【考点】函数的图象与图象的变换【解析】根据函数极值,最值与图象的关系进行判断即可.【解答】A .函数的极大值点为x 2,极小值点为x 1,x 3,最大值点为a ,x 2,最小值点为x 3,B .函数的极大值点为x 1,x 3极小值点为x 2,最大值点为x 1,最小值点为b ,C .函数的极大值点为x 1,极小值点为x 2,最大值点为b ,最小值点为a 21.【答案】 当0<a <1时,>1,则f(x)=a x 在R 上单调递减,g(x)=.当a >2时,0<,则f(x)=a x 在R 上单调递增,g(x)=.因为f(x)<g(x),即a x <,即a x <a −x ,当0<a <7时,不等式即为x >−x ;当a >1时,不等式即为x <−x ,综上,当0<a <3时,+∞),当a >1时,不等式的解集为(−∞.【考点】函数单调性的性质与判断利用导数研究函数的单调性【解析】此题暂无解析【解答】此题暂无解答22.【答案】根据题意,函数y=a()|x|+b的图象过原点,则有7=a+b,则a=−b,又由f(x)的图象无限接近直线y=−2但又不与该直线相交,则b=2,又由a+b=6,则a=−2,则f(x)=−2×()|x|+2,其图象如图:根据题意,f(x)=−7×()|x|+3,其定义域为R,有f(−x)=−2×()|x|+2=f(x),则f(x)是偶函数,又由f(x)=,f(x)在(0, +∞)上为增函数,0)上为减函数.【考点】函数的图象与图象的变换函数奇偶性的性质与判断分段函数的应用【解析】此题暂无解析【解答】此题暂无解答。
高二数学指数与指数函数试题答案及解析
高二数学指数与指数函数试题答案及解析1.已知∈R,若,则=.【答案】【解析】因为所以,即【考点】指数函数的幂运算.2.设,则的大小关系是()A.B.C.D.【答案】A【解析】,,即,,.【考点】函数的比较大小.3.已知集合,,则()A.B.(1,3)C.(1,)D.(3,)【答案】D【解析】由题知,解得,所以>2+1=3,所以(3,),故选D.考点:对数函数的定义域,指数函数图像与性质,集合交集运算4.已知函数的定义域为集合,关于的不等式的解集为,若,求实数的取值范围.【答案】.【解析】根据对数函数真数大于0可求得集合A,再根据指数函数的单调性可求得B={}因为所以可求得a的范围.试题解析:要使有意义,则,解得,即 4分由,解得,即 4分∴解得故实数的取值范围是 12分【考点】1,对数函数的性质2,指数函数的性质3,集合的关系5.已知函数,且函数有且只有一个零点,则实数的取值范围是( )A. B.. D.【答案】B【解析】由已知,画出函数的图像如图,根据题意函数有且只有一个零点,就是的图象与的图象有且只有一个交点,如图:显然当时,两个函数有且只有一个交点,故选:B.【考点】根的存在性和根的个数的判断,6.三个数的大小顺序是( )A.B.C.D.【答案】D【解析】,,,所以.【考点】用指数,对数函数特殊值比较大小.7.已知,函数,若实数满足,则的大小关系为 .【答案】【解析】由题意可得:函数f(x)=a x在R上是单调减函数,又f(m)>f(n),可得:m<n.解:因为∈(0,1),所以函数f(x)=a x在R上是单调减函数,因为f(m)>f(n),所以根据减函数的定义可得:m<n.故答案为:m<n.【考点】指数函数的单调性点评:解决此类问题的关键是熟练掌握指数函数的单调性与定义,以及单调函数的定义,属于基础题.8.已知函数若存在,则实数的取值范围为()A.B.C.D.【答案】D【解析】因为,若存在,则,即,解得,,故选D。
高中数学-指数与指数函数练习题及答案
高中数学-指数与指数函数练习题1、已知 1.22a =,0.81()2b -=,52log 2c =,则,,a b c 的大小关系为( ) A.c b a <<B.c a b <<C.b a c <<D.b c a <<2、不论a 为何值时,函数(1)22x a y a =--恒过定点,则这个定点的坐标是( ) A.1(1,)2-B.1(1,)2C.1(1,)2--D.1(1,)2-3、已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为log 26a +,则a 的值为( ) A.12B.14C.2D.44、若函数()(1)(0,1)x x f x k a a a a -=-->≠在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是下图中的( )5、已知函数,0()(3)4,0x a x f x a x a x ⎧<=⎨-+≥⎩,满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立,则a 的取值范围是________.6、若函数2,0()2,0xx x f x x -⎧<⎪=⎨->⎪⎩,则函数[()]y f f x =的值域是________.7、已知2()f x x =,1()()2x g x m =-,若对1[1,3]x ∀∈-,2[0,2]x ∃∈,12()()f x g x ≥,则实数m 的取值范围是________.8、已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1)求,a b 的值; (2)解关于t的不等式22(2)(21)0f t t f t -+-<.9、定义在[1,0)(0,1]-⋃上的奇函数()f x ,已知当[1,0)x ∈-时,1()()42x xaf x a R =-∈.(1)求()f x 在(0,1]上的最大值;(2)若()f x 是(0,1)上的增函数,求实数a 的取值范围.10、已知定义在R 上的函数||1()22x x f x =-.(1)若3()2f x =,求x 的值;(2)若2(2)()0t f t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围.答案——指数与指数函数1、已知 1.22a =,0.81()2b -=,52log 2c =,则,,a b c 的大小关系为( ) A.c b a <<B.c a b <<C.b a c <<D.b c a <<解:a =21.2>2,而b =⎝ ⎛⎭⎪⎫12-0.8=20.8,所以1<b <2,c =2log 52=log 54<1,所以c <b <a .答案 A2、不论a 为何值时,函数(1)22x a y a =--恒过定点,则这个定点的坐标是( ) A.1(1,)2-B.1(1,)2C.1(1,)2--D.1(1,)2-解:y =(a -1)2x -a 2=a ⎝ ⎛⎭⎪⎫2x -12-2x ,令2x -12=0,得x =-1,则函数y =(a -1)2x-a 2恒过定点⎝ ⎛⎭⎪⎫-1,-12.答案 C3、已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为log 26a +,则a 的值为( ) A.12B.14C.2D.4解:由题意知f (1)+f (2)=log a 2+6,即a +log a 1+a 2+log a 2=log a 2+6,a 2+a -6=0,解得a =2或a =-3(舍). 答案 C4、若函数()(1)(0,1)x x f x k a a a a -=-->≠在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是下图中的( )解:函数f (x )=(k -1)a x -a -x 为奇函数,则f (0)=0,即(k -1)a 0-a 0=0,解得k =2,所以f (x )=a x -a -x ,又f (x )=a x -a -x 为减函数,故0<a <1,所以g (x )=log a (x +2)为减函数且过点(-1,0). 答案 A5、已知函数,0()(3)4,0x a x f x a x a x ⎧<=⎨-+≥⎩,满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立,则a 的取值范围是________. 解:对任意x 1≠x 2,都有1212()()0f x f x x x -<-成立,说明函数y =f (x )在R 上是减函数,则0<a <1,且(a -3)×0+4a ≤a 0,解得0<a ≤14. 答案 ⎝ ⎛⎦⎥⎤0,146、若函数2,0()2,0x x x f x x -⎧<⎪=⎨->⎪⎩,则函数[()]y f f x =的值域是________.解:当x >0时,有f (x )<0;当x <0时,有f (x )>0.故f (f (x ))=⎩⎨⎧ 2f x ,f x <0,-2-f x ,f x >0=⎩⎨⎧2-2-x ,x >0,-2-2x,x <0. 而当x >0时,-1<-2-x<0,则12<2-2-x <1.而当x <0时,-1<-2x <0,则-1<-2-2x <-12. 则函数y =f (f (x ))的值域是⎝ ⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫12,1答案 ⎝ ⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫12,17、已知2()f x x =,1()()2x g x m =-,若对1[1,3]x ∀∈-,2[0,2]x ∃∈,12()()f x g x ≥,则实数m 的取值范围是________.解:x 1∈[-1,3]时,f (x 1)∈[0,9],x 2∈[0,2]时,g (x 2)∈⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫122-m ,⎝ ⎛⎭⎪⎫120-m ,即g (x 2)∈⎣⎢⎡⎦⎥⎤14-m ,1-m ,要使∀x 1∈[-1,3],∃x 2∈[0,2],f (x 1)≥g (x 2),只需f (x )min ≥g (x )min ,即0≥14-m ,故m ≥14. 答案 ⎣⎢⎡⎭⎪⎫14,+∞8、已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1)求,a b 的值;(2)解关于t 的不等式22(2)(21)0f t t f t -+-<.解:(1)因为f (x )是奇函数,所以f (0)=0,即-1+b 2+a =0,解得b =1,所以f (x )=-2x +12x +1+a .又由f (1)=-f (-1)知-2+14+a =--12+11+a .解得a =2.(2)由(1)知f (x )=-2x +12x +1+2=-12+12x +1.由上式易知f (x )在(-∞,+∞)上为减函数(此外可用定义或导数法证明函数f (x )在R 上是减函数).又因为f (x )是奇函数,所以不等式f (t 2-2t )+f (2t 2-1)<0等价于f (t 2-2t )<-f (2t 2-1)=f (-2t 2+1).因为f (x )是减函数,由上式推得t 2-2t >-2t 2+1,即3t 2-2t -1>0,解不等式可得⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫t ⎪⎪⎪t >1或t <-13. 9、定义在[1,0)(0,1]-⋃上的奇函数()f x ,已知当[1,0)x ∈-时,1()()42x xaf x a R =-∈. (1)求()f x 在(0,1]上的最大值;(2)若()f x 是(0,1)上的增函数,求实数a 的取值范围. 解:(1)设x ∈(0,1],则-x ∈[-1,0), f (-x )=14-x -a 2-x =4x-a ·2x , ∵f (-x )=-f (x ),∴f (x )=a ·2x -4x ,x ∈(0,1].令t =2x,t ∈(1,2],∴g (t )=a ·t -t 2=-⎝ ⎛⎭⎪⎫t -a 22+a24,当a2≤1,即a ≤2时,g (t )max 不存在;当1<a 2<2,即2<a <4时,g (t )max =g ⎝ ⎛⎭⎪⎫a 2=a 24;当a2≥2,即a ≥4时,g (t )max =g (2)=2a -4.综上,当a ≤2时,f (x )的最大值不存在;当2<a <4时,f (x )的最大值为a 24;当a ≥4时,f (x )的最大值为2a -4. (2)∵函数f (x )在(0,1)上是增函数,∴f ′(x )=a ln 2×2x -ln 4×4x =2x ln 2·(a -2×2x )≥0, ∴a -2×2x ≥0恒成立, ∴a ≥2×2x .∵2x ∈(1,2),∴a ≥4. 10、已知定义在R 上的函数||1()22x x f x =-. (1)若3()2f x =,求x 的值;(2)若2(2)()0t f t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围. 解:(1)当x <0时, f (x )=0,无解; 当x ≥0时,f (x )=2x -12x ,由2x-12x =32,得2·22x -3·2x -2=0,看成关于2x 的一元二次方程,解得2x =2或-12, ∵2x >0,∴x =1.(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t -1)≥-(24t -1), ∵22t -1>0,∴m ≥-(22t +1),∵t ∈[1,2],∴-(22t +1)∈[-17,-5],故m 的取值范围是[-5,+∞).。
高中数学高考总复习指数与指数函数习题及详解
高中数学高考总复习指数与指数函数习题及详解一、选择题1.(2010·陕西文)下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是( )A .幂函数B .对数函数C .指数函数D .余弦函数[答案] C[解析] ∵(x +y )α≠x α·y α,log a (x +y )≠log a x +log a y ,a x +y =a x ·a y ,cos(x +y )=cos x cos y -sin x sin y ≠cos x cos y ,∴选C.2.(2010·南充市)若A ={x ∈Z |2≤22-x <8},B ={x ∈R ||x -1|>1},则A ∩(∁R B )的元素个数为( )A .0B .1C .2D .3[答案] C[解析] 由2≤22-x <8得,1≤2-x <3,∴-1<x ≤1,∵x ∈Z ,∴x =0或1,∴A ={0,1}; 由|x -1|>1得,x >2或x <0,∴B ={x |x >2或x <0},∴∁R B ={x |0≤x ≤2}, ∴A ∩∁U B ={0,1}.3.(文)(2010·北京崇文区)设a =⎝⎛⎭⎫120.5,b =0.30.5,c =log 0.30.2,则a 、b 、c 的大小关系是( )A .a >b >cB .a <b <cC .b <a <cD .a <c <b[答案] C[解析] y =x 0.5在(0,+∞)上是增函数,1>12>0.3,∴1>a >b ,又y =log 0.3x 在(0,+∞)上为减函数, ∴log 0.30.2>log 0.30.3=1,即c >1,∴b <a <c .(理)(2010·重庆诊断)设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B.12<⎝⎛⎭⎫12a <⎝⎛⎭⎫12b C .a 2<ab <1D .log 12b <log 12a <0[答案] B[解析] 依题意得ab -b 2=b (a -b )>0,∴ab >b 2,因此A 不正确;同理可知C 不正确;由函数y =⎝⎛⎭⎫12x 在R 上是减函数得,当0<b <a <1时,有⎝⎛⎭⎫120>⎝⎛⎭⎫12b >⎝⎛⎭⎫12a >⎝⎛⎭⎫121,即12<⎝⎛⎭⎫12a <⎝⎛⎭⎫12b ,因此B 正确;同理可知D 不正确.综上所述,选B.[点评] 可利用a ,b 取值的任意性取特值检验,令b =14,a =12可得,14>18>116,∴a 2>ab >b 2,排除A 、C ;log 1214=2,log 1212=1,∴log 12b >log 12a ,排除D ,故选B.4.(文)(2010·泰安质检)某钢厂的年产量由1990年的40万吨增加到2000年的50万吨,如果按照这样的年增长率计算,则该钢厂2010年的年产量约为( )A .60万吨B .61万吨C .63万吨D .64万吨[答案] C[解析] 设年增长率为x ,则由题意知40(1+x )10=50,∴(1+x )10=54,∴2010年的年产量为40(1+x )20=40×⎝⎛⎭⎫542=2504≈63万吨.(理)(2010·安徽安庆联考)如图是一个算法的程序框图,当输入x 的值为3时,输出y 的结果恰好为13,则?处的关系式是( )A .y =log 9xB .y =3xC .y =3-xD .y =x 13[答案] B[解析] 输入x =3≤0不成立,故x =3-2=1,1≤0不成立,故x =1-2=-1,-1≤0成立,执行?后输出y =13,故选B.5.(2010·安徽理,6)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )[答案] D[解析] 若a <0,则只能是 A 或B 选项,A 中-b2a <0,∴b <0,从而c >0与A 图不符;B 中-b2a >0,∴b >0,∴c <0与B 图也不符;若a >0,则抛物线开口向上,只能是C 或D 选项,则当b >0时,有c >0与C 、D 不符.当b <0时,有c <0,此时-b2a >0,且f (0)=c <0,故选D.6.(文)(2010·山东理,4)设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=( )A .3B .1C .-1D .-3[答案] D[解析] ∵f (x )是奇函数,∴f (0)=0,即0=20+b ,∴b =-1,故f (1)=2+2-1=3,∴f (-1)=-f (1)=-3.(理)(2010·辽宁省实验中学)已知函数f (x )=2x -1,对于满足0<x 1<x 2<2的任意实数x 1,x 2,给出下列结论:(1)(x 2-x 1)[f (x 2)-f (x 1)]<0; (2)x 2f (x 1)<x 1f (x 2); (3)f (x 2)-f (x 1)>x 2-x 1; (4)f (x 1)+f (x 2)2>f⎝⎛⎭⎫x 1+x 22. 其中正确结论的序号是( ) A .(1)(2) B .(1)(3) C .(2)(4)D .(3)(4)[答案] C[解析] ∵f (x )为增函数,x 1<x 2,∴f (x 1)<f (x 2),∴(x 2-x 1)[f (x 2)-f (x 1)]>0,故(1)错; 排除A 、B ;A (x 1,f (x 1)),B (x 2,f (x 2))是f (x )=2x -1在(0,2)上任意两点,则k AB =f (x 2)-f (x 1)x 2-x 1不总大于1,故(3)错,排除D ,选C.7.(文)(2010·重庆南开中学)已知f (x )=a x ,g (x )=b x ,当f (x 1)=g (x 2)=3时,x 1>x 2,则a 与b 的大小关系不可能成立.....的是( ) A .b >a >1 B .a >1>b >0 C .0<a <b <1D .b >1>a >0[答案] D[解析] ∵f (x 1)=g (x 2)=3,∴ax 1=bx 2=3, ∴x 1=log a 3,x 2=log b 3,当b >1>a >0时,x 1<0,x 2>0不满足x 1>x 2.(理)(2010·辽宁文,10)设2a =5b =m ,且1a +1b =2,则m =( )A.10 B .10 C .20D .100[答案] A[解析] ∵2a =5b =m ∴a =log 2m b =log 5m ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2 ∴m =10 选A.8.(文)(2010·吉林市质检、上海松江市模拟)若函数f (x )=(k -1)a x -a -x (a >0且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是( )[答案] A[解析] ∵f (x )为奇函数,∴f (0)=0,∴k =2,f (x )=a x -a -x ,又f (x )为减函数,∴0<a <1, ∴g (x )=log a (x +2)的图象为A.(理)(2010·烟台中英文学校质检、海淀期中)在同一坐标系中画出函数y =log a x ,y =a x ,y =x +a 的图象,可能正确的是( )[答案] D[解析] 对于A ,y =x +a 中,0<a <1,故y =log a x 单减,与图象不符,排除A ;对于B 、C 由y =x +a 知,a >1,∴y =log a x 单调增,与图象不符,排除B 、C ,因此选D.9.(2010·深圳市调研)已知所有的点A n (n ,a n )(n ∈N *)都在函数y =a x (a >0,a ≠1)的图象上,则a 3+a 7与2a 5的大小关系是( )A .a 3+a 7>2a 5B .a 3+a 7<2a 5C .a 3+a 7=2a 5D .a 3+a 7与2a 5的大小关系与a 的值有关 [答案] A[解析] 因为所有的点A n (n ,a n )(n ∈N *)都在函数y =a x (a >0,a ≠1)的图象上,所以有a n=a n ,故a 3+a 7=a 3+a 7,由基本不等式得:a 3+a 7>2a 3·a 7=2a 10=2a 5,∴a 3+a 7>2a 5(因为a >0,a ≠1,从而基本不等式的等号不成立),故选A.10.(文)(2010·青岛市质检)过原点的直线与函数y =2x 的图象交于A ,B 两点,过B 作y 轴的垂线交函数y =4x 的图象于点C ,若直线AC 平行于y 轴,则点A 的坐标是( )A .(1,2)B .(2,4)C .(12,2)D .(0,1) [答案] A[解析] 设A (x 0,y 0),则y 0=2x 0,由条件知C (x 0,4x 0),∴y B =4x 0=22x 0,∴B (2x 0,22x 0),∵直线AB 过原点,∴k OA =k OB ,∴22x 02x 0=2x 0x 0,∴x 0=1,∴A (1,2).(理)(2010·湖南八校联考)已知函数f (x )=log 12(4x -2x +1+1)的值域是[0,+∞),则它的定义域可以是( )A .(0,1]B .(0,1)C .(-∞,1]D .(-∞,0] [答案] A[解析] 由题意知,log 12(4x -2x +1+1)≥0,则有0<4x -2x +1+1≤1,解得x ≤1且x ≠0,排除C 、D.经检验,当x ∈(0,1]时,f (x )的值域是[0,+∞).故选A.[点评] 由函数f (x )的值域为[0,+∞)知,令u =4x -2x +1+1,则log 12u ≥0,∴0<u ≤1,而u =(2x -1)2,∴x ≤1且x ≠0,而当x =1时,u =1,当x =0时,u =0,故0<x ≤1时,0<u ≤1,因此集合{x |x ≤1且x ≠0}的所有包含{x |0<x ≤1}的子集都可以取作该函数的定义域.二、填空题11.(文)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫13x x ∈[-1,0]3x x ∈(0,1],则f ⎝⎛⎭⎫log 312=________. [答案] 2[解析] ∵-1<log 312<0,∴f (log 312)=⎝⎛⎭⎫13log 312=(3log 312)-1=2. (理)(2010·北京东城区)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧21-x x ≤0f (x -1)-f (x -2) x >0,则f (-1)=______,f (33)=________.[答案] 4,-2 [解析] f (-1)=21-(-1)=4,f (33)=f (32)-f (31)=f (31)-f (30)-f (31)=-f (30),同理f (30)=-f (27),∴f (33)=f (27),∴f (33)=f (3)=-f (0)=-2.12.(文)(2010·常德市检测)定义区间[x 1,x 2]的长度为x 2-x 1,已知函数f (x )=3|x |的定义域为[a ,b ],值域为[1,9],则区间[a ,b ]的长度的最大值为________,最小值为________.[答案] 4 2[解析] 由3|x |=1得x =0,由3|x |=9得x =±2,故f (x )=3|x |的值域为[1,9]时,其定义域可以为[0,2],[-2,0],[-2,2]及[-2,m ],0≤m ≤2或[n,2],-2≤n ≤0都可以,故区间[a ,b ]的最大长度为4,最小长度为2.(理)(2010·柳州市模考)已知⎝⎛⎭⎫2x -229的展开式的第7项为214,则x 的值为________.[答案] -13[解析] T 7=C 96(2x )3·⎝⎛⎭⎫-226=212×8x =214, ∴3x =-1,∴x =-13.13.已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x x ≤1log 2(x -1) x >1,则f (x )≤12的解集为________.[答案] [1,2+1] [解析] 由f (x )≤12得,⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ≤12x ≤1或⎩⎪⎨⎪⎧log 2(x -1)≤12x >1, ∴x =1或1<x ≤2+1,∴1≤x ≤2+1,故解集为[1,2+1].14.函数f (x )的定义由程序框图给出,程序运行时,输入h (x )=⎝⎛⎭⎫12x ,φ(x )=log 2x ,则f (12)+f (4)的值为________.[答案] -1516[解析] 由程序框图知f (x )=⎩⎪⎨⎪⎧φ(x ) h (x )>φ(x )h (x ) h (x )≤φ(x ),∵h ⎝⎛⎭⎫12=⎝⎛⎭⎫1212=22,φ⎝⎛⎭⎫12=-1,∴f ⎝⎛⎭⎫12=-1, ∵h (4)=116,φ(4)=2,∴f (4)=116,∴f ⎝⎛⎭⎫12+f (4)=-1+116=-1516. 三、解答题15.已知f (x )是定义在R 上的奇函数,且当x ∈(0,1)时,f (x )=2x 4x +1.(1)求f (x )在(-1,1)上的解析式; (2)证明:f (x )在(0,1)上是减函数.[解析] (1)∵f (x )是R 上的奇函数,∴f (0)=0, 又当x ∈(-1,0)时,-x ∈(0,1), ∴f (-x )=2-x4-x +1=2x1+4x,∵f (-x )=-f (x ),∴f (x )=-2x1+4x ,∴f (x )在(-1,1)上的解析式为f (x )=⎩⎨⎧2x4x +1x ∈(0,1)-2x 4x+1 x ∈(-1,0)0 x =0.(2)当x ∈(0,1)时,f (x )=2x4x +1.设0<x 1<x 2<1, 则f (x 1)-f (x 2)=2x 14x 1+1-2x 24x 2+1=(2x 2-2x 1)(2x 1+x 2-1)(4x 1+1)(4x 2+1),∵0<x 1<x 2<1,∴2x 2-2x 1>0,2x 1+x 2-1>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故f (x )在(0,1)上是减函数.16.已知关于x 的方程9x -2×3x +(3k -1)=0有两个实数根,求实数k 的取值范围. [解析] 令3x =t ,则方程化为t 2-2t +(3t -1)=0,①要使原方程有两个实数根,方程①必须有两个正根 所以⎩⎪⎨⎪⎧Δ=(-2)2-4(3k -1)≥0t 1t 2=3k -1>0t 1+t 2=2>0解得13<k ≤23.[点评] ∵t =3x >0,∴原方程有两个实数根x 1、x 2,则对应的方程①应有两个正根t 1=3x 1,t 2=3x 2,而不是两个任意实数根.17.(文)(2010·辽宁省锦州市通考)已知函数f (x )=m ·2x +t 的图象经过点A (1,1),B (2,3)及C (n ,S n ),S n 为数列{a n }的前n 项和.(1)求a n 及S n ;(2)若数列{c n }满足c n =6na n -n ,求数列{c n }的前n 项和T n . [解析] (1)∵函数f (x )=m ·2x +t 的图象经过点A 、B ,∴⎩⎪⎨⎪⎧ 2m +t =14m +t =3,∴⎩⎪⎨⎪⎧m =1t =-1,∴f (x )=2x -1, ∴S n =2n -1,∴a n =2n -1.(2)c n =3n ·2n -n ,T n =c 1+c 2+…+c n =3×(1×2+2×22+3×23+…+n ·2n )-(1+2+…+n ),令P n =1×2+2×22+…+n ·2n ① 则2P n =1×22+2×23+…+n ·2n +1② ①-②得-P n =2+22+…+2n -n ·2n +1 =2×(2n -1)2-1-n ·2n +1=2n +1-2-n ·2n +1,∴P n =(n -1)2n +1+2, ∴T n =3(n -1)2n +1+6-n (n +1)2.(理)(2010·浙江台州模拟)定义在D 上的函数f (x ),如果满足:对任意x ∈D ,存在常数M >0,都有|f (x )|≤M 成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界.已知函数f (x )=1+a ·⎝⎛⎭⎫12x +⎝⎛⎭⎫14x . (1)当a =1时,求函数f (x )在(-∞,0)上的值域,并判断函数f (x )在(-∞,0)上是否为有界函数,请说明理由;(2)若函数f (x )在[0,+∞)上是以3为上界的有界函数,求实数a 的取值范围. [解析] (1)当a =1时,f (x )=1+⎝⎛⎭⎫12x +⎝⎛⎭⎫14x . 因为f (x )在(-∞,0)上递减,所以f (x )>f (0)=3,即f (x )在(-∞,0)上的值域为(3,+∞).故不存在常数M >0,使|f (x )|≤M 成立. 所以函数f (x )在(-∞,0)上不是有界函数. (2)由题意知,|f (x )|≤3在[0,+∞)上恒成立. ∴-3≤f (x )≤3,即-4-⎝⎛⎭⎫14x≤a ·⎝⎛⎭⎫12x ≤2-⎝⎛⎭⎫14x , ∴-4·2x -⎝⎛⎭⎫12x≤a ≤2·2x-⎝⎛⎭⎫12x 在[0,+∞)上恒成立, 设2x =t ,h (t )=-4t -1t ,p (t )=2t -1t ,由x ∈[0,+∞)得t ≥1,设1≤t1<t2,h(t1)-h(t2)=(t2-t1)(4t1t2-1)t1t2>0p(t1)-p(t2)=(t1-t2)(2t1t2+1)t1t2<0所以h(t)在[1,+∞)上递减,p(t)在[1,+∞)上递增,h(t)在[1,+∞)上的最大值为h(1)=-5,p(t)在[1,+∞)上的最小值为p(1)=1,所以实数a的取值范围为[-5,1].。
高一数学指数与指数函数试题答案及解析
高一数学指数与指数函数试题答案及解析1.设,则的大小关系是().A.B.C.D.【解析】,,,因此.【考点】指数函数和对数函数的性质.2.若点在函数的图象上,则的值为.【答案】【解析】由点在函数的图象上得,所以,故应填入.【考点】指数函数及特殊角的三角函数.3.设,则下列不等式成立的是()A.若,则B.若,则C.若,则D.若,则【答案】A【解析】对于A,B考查函数f(x)=2x+2x,g(x)=2x+3x的单调性与图象:可知函数f(x)、g(x)在R上都单调递增,若2a+2a=2b+3b,则a>b,因此A正确;对于C,D分别考查函数u(x)=2x-2x,v(x)=2x-3x单调性与图象:当时,u′(x)<0,函数u(x)单调递减;当时,u′(x)>0,函数u(x)单调递增.故在x=取得最小值.当0<x<时,v′(x)<0,函数v(x)单调递减;当x>时,v′(x)>0,函数v (x)单调递增.故在x=取得最小值,据以上可画出图象.据图象可知:当2a-2a=2b-3b,a>0,b>0时,可能a>b或a<b.因此C,D不正确.综上可知:只有A正确.故答案为A.【考点】用导数研究函数的单调性和图象;命题的真假判断与应用.4.若,则()A.B.C.D.【答案】D【解析】由得,所以.【考点】指对数式的互化,指数运算法则.5.若函数的图像与轴有公共点,则的取值范围是()A.B.C.D.【答案】B【解析】函数与轴有公共点,即设函数,,有交点,函数如图: ,即,故选B.【考点】函数图像6.三个数的大小关系为()A.B.C.D.【答案】D【解析】;;。
所以,故D正确。
【考点】指数对数函数的单调性。
7.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算8.如图,在平面直角坐标系中,过原点O的直线与函数的图象交于A,B两点,过B作y轴的垂线交函数的图象于点C,若AC平行于y轴,则点A的坐标是.【答案】【解析】设,则,因为AC平行于y轴,所以,因此.又三点三点共线,所以由得,因此.【考点】指数函数运算,向量共线.9.已知指数函数(且)的图像过点,则实数___________.【答案】【解析】因为指数函数(且)的图像过点,则,得.【考点】指数函数的定义.10.我国大西北某地区荒漠化土地面积每年平均比上一年增长,专家预测经过年可能增长到原来的倍,则函数的图像大致为()【答案】D【解析】设初始年份的荒漠化土地面积为,则1年后荒漠化土地面积为,2年后荒漠化土地面积为,3年后荒漠化土地面积为,所以年后荒漠化土地面积为,依题意有即,,由指数函数的图像可知,选D.【考点】1.指数函数的图像与性质;2.函数模型及其应用.11.若,则下列结论正确的是()A.B.C.D.【答案】C【解析】指数函数、对数函数的底数大于1 时,函数为增函数,反之,为减函数,对于幂函数而言,当时,在上递增,当时,在上递减,而,所以,故选C.【考点】1.指数函数;2.对数函数;3.幂函数的性质.12.设函数,如果,求的取值范围.【答案】【解析】对分段函数需分情况讨论,再解指数及对数不等式时,需将实数转化为同底的指数或对数,然后根据指数、对数的单调性解不等式。
2-6第六节 指数与指数函数练习题(2015年高考总复习)
第六节 指数与指数函数时间:45分钟 分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.下列等式36a 3=2a ;3-2=6(-2)2;-342=4(-3)4×2中一定成立的有( )A .0个B .1个C .2个D .3个解析 36a 3=36a ≠2a ;3-2=-32<0, 6(-2)2=622=32>0,∴3-2≠6(-2)2; -342<0,4(-3)4×2>0,∴-342≠4(-3)4×2. 答案 A2.下列函数中值域为正实数的是( ) A .y =-5x B .y =(13)1-x C .y =(12)x-1D .y =1-2x答案 B3.(2013·浙江卷)已知x ,y 为正实数,则( ) A .2lg x +lg y =2lg x +2lg yB .2lg(x +y )=2lg x ·2lg yC .2lg x ·lg y =2lg x +2lg yD .2lg(xy )=2lg x ·2lg y解析 由对数的运算性质得2lg(xy )=2(lg x +lg y )=2lg x ·2lg y . 答案 D4.设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)解析 若a <0,则由f (a )<1得⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8=⎝ ⎛⎭⎪⎫12-3,∴-3<a <0;若a ≥0,则由f (a )<1得a <1,∴0≤a <1.综上a 的取值范围是-3<a <1,选C.答案 C5.(2014·佛山模拟)不论a 为何值时,函数y =(a -1)2x -a2恒过定点,则这个定点的坐标是( )A.⎝ ⎛⎭⎪⎫1,-12B.⎝ ⎛⎭⎪⎫1,12C.⎝⎛⎭⎪⎫-1,-12D.⎝⎛⎭⎪⎫-1,12解析 y =a (2x-12)-2x ,令2x-12=0, 得x =-1,y =-12, ∴这个定点是(-1,-12). 答案 C6.(2014·烟台模拟)已知f (x )=a x -2,g (x )=log a |x |(a >0,a ≠1),若f (4)·g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是( )解析 由f (4)·g (-4)<0知a 2·log a 4<0, ∴log a 4<0.∴0<a <1.∴f (x )为减函数,因此可排除A 、C ,而g (x )在x >0时也为减函数,故选B.答案 B二、填空题(本大题共3小题,每小题5分,共15分)解析答案 -238.若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是________.解析 f (1)=a 2=19,a =13,f (x )=⎩⎪⎨⎪⎧(13)2x -4,x ≥2,(13)4-2x,x <2.∴单调递减区间为[2,+∞). 答案 [2,+∞)9.(2014·杭州模拟)已知0≤x ≤2,则y =4x -12-3·2x +5的最大值为________.解析 令t =2x ,∵0≤x ≤2,∴1≤t ≤4. 又y =22x -1-3·2x +5, ∴y =12t 2-3t +5=12(t -3)2+12. ∵1≤t ≤4,∴t =1时,y max =52. 答案 52三、解答题(本大题共3小题,每小题10分,共30分) 10.求下列函数的定义域和值域.(1)y =⎝ ⎛⎭⎪⎫122x -x 2;(2)y =32x -1-19.解 (1)显然定义域为R , ∵2x -x 2=-(x -1)2+1≤1,且y =⎝ ⎛⎭⎪⎫12x 为减函数.∴⎝ ⎛⎭⎪⎫122x -x 2≥⎝ ⎛⎭⎪⎫121=12.故函数y =⎝ ⎛⎭⎪⎫122x -x 2的值域为⎣⎢⎡⎭⎪⎫12,+∞. (2)由32x -1-19≥0,得32x -1≥19=3-2,∵y =3x为增函数,∴2x -1≥-2,即x ≥-12.此函数的定义域为⎣⎢⎡⎭⎪⎫-12,+∞, 由上可知32x -1-19≥0,∴y ≥0. 即函数的值域为[0,+∞).11.(2014·西安模拟)已知函数f (x )=a -12x +1:(1)求证:无论a 为何实数f (x )总是增函数; (2)确定a 的值,使f (x )为奇函数; (3)当f (x )为奇函数时,求f (x )的值域. 解(3)由(2)知f (x )=12-12x +1.∵2x +1>1,∴0<12x +1<1.∴-12<12-12x +1<12.∴f (x )的值域为(-12,12).12.(2014·汕头一模)已知函数f 1(x )=e |x -a |,f 2(x )=e bx .(1)若f (x )=f 1(x )+f 2(x )-bf 2(-x ),是否存在a ,b ∈R ,y =f (x )为偶函数.如果存在,请举例并证明你的结论;如果不存在,请说明理由;(2)若a =2,b =1,求函数g (x )=f 1(x )+f 2(x )在R 上的单调区间. 解 (1)存在a =0,b =-1使y =f (x )为偶函数.证明如下:当a =0,b =-1时,f (x )=e |x |+e -x +e x ,x ∈R , ∴f (-x )=e |-x |+e x +e -x =f (x ),∴y =f (x )为偶函数. (注:a =0,b =0也可以)(2)∵g (x )=e |x -2|+e x=⎩⎪⎨⎪⎧e x -2+e x(x ≥2),e 2-x +e x (x <2),①当x ≥2时,g (x )=e x -2+e x ,∴g ′(x )=e x -2+e x >0. ∴y =g (x )在[2,+∞)上为增函数. ②当x <2时,g (x )=e 2-x +e x ,则g ′(x )=-e 2-x +e x ,令g ′(x )=0得到x =1.(ⅰ)当x <1时,g ′(x )<0,∴y =g (x )在(-∞,1)上为减函数; (ⅱ)当1≤x <2时,g ′(x )>0,∴y =g (x )在[1,2)上为增函数. 综上所述:y =g (x )的增区间为[1,+∞),减区间为(-∞,1).。
高中 指数与指数函数知识点+例题+练习 含答案
教学过程④负分数指数幂:a n m-=a n m1=1na m(a>0,m,n∈N,且n>1);⑤0的正分数指数幂等于0,0的负分数指数幂无意义.(2)有理数指数幂的性质①a r a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).3.指数函数的图象与性质y=a x a>10<a<1图象定义域R值域(0,+∞)性质过定点(0,1)当x>0时,y>1;x<0时,0<y<1当x>0时,0<y<1;x<0时,y>1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数辨析感悟1.指数幂的应用辨析(1)(4-2)4=-2.( )(2)(教材探究改编)(na n)=a.( )2.对指数函数的理解(3)函数y=3·2x是指数函数.( )(4)y=⎝⎛⎭⎪⎫1ax是R上的减函数.( )教学效果分析教学过程(5)指数函数在同一直角坐标系中的图象的相对位置与底数的大小关系如图,无论在y轴的左侧还是右侧图象从上到下相应的底数由大变小.( )(6)(2013·金华调研)已知函数f(x)=4+a x-1(a>0且a≠1)的图象恒过定点P,则点P的坐标是(1,5).( )[感悟·提升]1.“na n”与“⎝⎛⎭⎫na n”的区别当n为奇数时,或当n为偶数且a≥0时,na n=a,当n为偶数,且a<0时,na n=-a,而(na)n=a恒成立.如(1)中4-2不成立,(2)中6-22=32≠3-2. 2.两点注意一是指数函数的单调性是底数a的大小决定的,因此解题时通常对底数a按0<a<1和a>1进行分类讨论,如(4);二是指数函数在同一直角坐标系中的图象与底数的大小关系,在y轴右侧,图象从上到下相应的底数由大变小,在y轴左侧,图象从上到下相应的底数由小变大.如(5).考点一指数幂的运算【例1】(1)计算:+(-2)2;(2)若=3,求的值.规律方法进行指数幂运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.需注意下列问题:(1)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示;(2)应用平方差、完全平方公式及a p a-p=1(a≠0)简化运算.(2)教学效果分析教学过程考点二指数函数的图象及其应用【例2】(1)(2014·泰安一模)函数f(x)=a x-b的图象如图,其中a,b为常数,则下列结论正确的是________.①a>1,b<0;②a>1,b>0;③0<a<1,b>0;④0<a<1,b<0.(2)比较下列各式大小.①1.72.5______1.73;②0.6-1______0.62;③0.8-0.1______1.250.2;④1.70.3______0.93.1.规律方法(1)对指数型函数的图象与性质(单调性、最值、大小比较、零点等)的求解往往利用相应指数函数的图象,通过平移、对称变换得到其图象,然后数形结合使问题得解.(2)一些指数方程、不等式问题的求解,往往利用相应指数型函数图象数形结合求解.【训练2】已知实数a,b满足等式2 011a=2 012b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系式有________.教学效果分析教学过程1.判断指数函数图象的底数大小的问题,可以先通过令x=1得到底数的值再进行比较.2.对和复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成.3.画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),⎝⎛⎭⎪⎫-1,1a.4.熟记指数函数y=10x,y=2x,y=⎝⎛⎭⎪⎫110x,y=⎝⎛⎭⎪⎫12x在同一坐标系中图象的相对位置,由此掌握指数函数图象的位置与底数大小的关系.易错辨析2——忽略讨论及验证致误【典例】(2012·山东卷)若函数f(x)=a x(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)x在[0,+∞)上是增函数,则a=________.[防范错施] (1)指数函数的底数不确定时,单调性不明确,从而无法确定其最值,故应分a>1和0<a<1两种情况讨论.(2)根据函数的单调性求最值是求函数最值的常用方法之一,熟练掌握基本初等函数的单调性及复合函数的单调性是求解的基础.【自主体验】当x∈[-2,2]时,a x<2(a>0,且a≠1),则实数a的范围是________.教学效果分析课堂巩固一、填空题1.(2014·郑州模拟)在函数①f (x )=1x ;②f (x )=x 2-4x +4;③f (x )=2x ;④f (x )=中,满足“对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)<f (x 2)”的是________.2.函数y =a x -1a (a >0,a ≠1)的图象可能是________.3.a 3a ·5a 4(a >0)的值是________.4.设2a =5b =m ,且1a +1b =2,则m 等于________.5.函数y =a x -b (a >0且a ≠1)的图象经过第二、三、四象限,则a b 的取值范围为________.6.(2014·济南一模)若a =30.6,b =log 30.2,c =0.63,则a 、b 、c 的大小关系为________.7.(2014·盐城模拟)已知函数f (x )=a -x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是________.8.函数f (x )=a x (a >0,a ≠1)在[1,2]中的最大值比最小值大a2,则a 的值为________.9.函数f (x )=a x -3+m (a >1)恒过点(3,10),则m =________. 10.(2014·杭州质检)已知函数f (x )=⎩⎨⎧(1-3a )x +10a ,x ≤7,a x -7,x >7是定义域上的递减函数,则实数a 的取值范围是________. 11.(2014·惠州质检)设f (x )=|3x -1|,c <b <a 且f (c )>f (a )>f (b ),则关系式3c +3a ________2(比较大小).二、解答题12.设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值.。
(完整版)幂函数、指数函数、对数函数专练习题(含答案)
精心整理1.函数f(x)= . 1 2x的定义域是A. ( —x, 0]B.[0,+x)C. ( —X, 0)D. (―^,+呵2•函数y . log2 x的定义域是A. (0,1]B.(0,+x)C.(1,+x)D.[1,+x)3. 函数y Jog2 ^2的定义域是A.(3,+x )B.[3,+x )C.(4,+x )D.[4,+x)4. 若集合M {y | y 2x}, N {y | y . x 1},贝"M NA.{y|y 1}B.{y|y 1} C{y|y 0}D.{y|y 0}5. 函数y二-1的图象是x 16. 函数y=1 ——,则下列说法正确的是x 1A.y在(—1,+x)内单调递增B.y在(—1,+x)内单调递减Cy在(1,+x)内单调递增 D.y在(1,+x)内单调递减7. 函数y Jog°.5(3 x)的定义域是A.(2,3)B.[2,3) C[2, )D.( ,3)8. 函数f(x) x 在(0,3]上是xA.增函数B.减函数C在(0,1]上是减函数,[1,3]上是增函数。
.在(0,1]上是增函数,[1,3]上是减函数9. 函数y \ lg (2 x)的定义域是A.(-x, +X)B.(-x, 2)C.(-x, 0]D(-x, 1]— 2 x1,(x 0)10. 设函数f(x) 若f(X o) 1,则X o的取值范围是V x (x 0)11. 函数y |x|2A.是偶函数,在区间(-x ,0)上单调递增B.是偶函数,在区间(-x ,0)上单调递减C是奇函数,在区间(0,+x)上单调递增D.是奇函数,在区间(0,+x)上单调递减精心整理12. 函数y "―1)—的定义域是13. 函数y log i (3x 2)的定义域是A.[1, )B.(3, )C.[|,1]D.(3,1]14. 下列四个图象中,函数f(x) x 1的图象是x15. 设A、B是非空集合,定义A X B={x| x € A U B且x A A B}.已知A={x| y= 2x x2},B={y| y=2x,x>0},则A X B 等于A. :0,1)U (2,u)B. :0,1]U[ 2,+乂)C. :0,1]D. :0,2]16. 设a=20.|,b=0.32,c=log2.|,则Aa> c> bB.a> b> cC.b> c> aD.c> b> a17. 已知点「八3)在幕函数y f(x)的图象上,贝S f(x)的表达式是3 9「J-i 广一”:八, /■/1A. f(x) 3xB. f(x) x3C.f (x) x 2D. f (x)(一厂218. 已知幕函数f(x) x的部分对应值如下表:则不等式f (|x) 1的解集是A. x0 x 42B. x|o x 4C. 弋2 x V2D. x 4 x 419.已知函数f(x) x ax 3a 9的值域为[0,),则f (1)的值为A.3B.4C.5D.6I I \ 、指数函数习题一、选择题1. 定义运算a?b= ?a< b?,b?a>b?)),则函数f(x) =1?2x的图象大致为()2 .函数f (x) = x2- bx+ c 满足f (1 + x) = f (1 —x)且f (0) = 3,则f ( b x)与f (c x)的大小关系是()A. f(b x) <f (c x) 精心整理精心整理B. f(b x) >f(c x)C. f(b x)>f(c x)D. 大小关系随x的不同而不同3. 函数y = |2x- 1|在区间(k —1, k +1)内不单调,则k的取值范围是()A. ( —1,+切B.(―汽1)C. ( —1,1)D. (0,2)4. 设函数f(x) =ln[( x —1)(2 —x)]的定义域是A,函数g(x) = lg( —1)的定义域是B. 若A?B,则正数a的取值范围()A. a>3B. a>3C. a>D. a>5. 已知函数f (x)=若数列{a n}满足a n = f(n)( n€ N*),且{a n}是递增数列,则实数a 的取值范围是()A. [ , 3)B. (, 3)C. (2,3)D. (1,3)6. 已知a>0且a z 1, f (x) = x2—a x,当x € ( —1,1)时,均有f (x)v,则实数a的取值范围是()A. (0 , ] U [2 ,+乂)B. [ , 1) U (1,4]C. [ , 1) U (1,2]D. (0 , ) U [4 ,+ = )二、填空题7. ___________________________________________________________________ 函数y=a x( a>0,且a z 1)在[1,2]上的最大值比最小值大,则a的值是__________________ .8. _____________________________________________________________ 若曲线|y| = 2x+ 1与直线y= b没有公共点,则b的取值范围是 ____________________ .9. (2011 •滨州模拟)定义:区间[X1, X2](X1«2)的长度为X2—心已知函数y = 2|x|的定义域为[a, b],值域为[1,2],则区间[a, b]的长度的最大值与最小值的差为6、1、已知3a 2,那么log 3 8 2log 3 6用a 表示是()A 、 a 2B 、 2、 2叽(皿 5a 2C 3a (1 a)2D 3a a 2Iog a N ,则M的值为() 2N) log a MA 、 3、 丄B 4C 1D 4 或 14已知 x 2 y 21,x 0, yA ,0,且 log a (1 x)m,log a ----------- n,则 log a y 等于()1 xA 、m n B m n C 、1 m 24、 A 、如果方程 lg 2x (Ig5 Ig 7)lg x丄35Ig5gg7 B 、lg35 C 35D 5、 A 、 1一 m n2lg5 clg 7 0的两根是,,贝卩g 的值是()1已知 Iog 7【log 3(log 2 x )] 0,那么 x 2 等于()1B > LC LD 1一3 2 ; 3 2.2 3*3 函数y Ig 2 1的图像关于()x 轴对称B 、y 轴对称C 、原点对称D 直线y x 对称 精心A 、11. (2011 •银川模拟)若函数y = a 2^2a x — 1(a >0且1)在x € [ —1,1]上的最大值 为14,求a 的值.12.已知函数 f (x ) = 3x , f (a + 2) = 18, g (x ) = X ・3ax — 4x 的定义域为[0,1]. (1)求a 的值;⑵ 若函数g (x )在区间[0,1]上是单调递减函数,求实数 入的取值范围.对数与对数函数同步练习、选择题 三、解答题 10.求函数y = 2x 3x4的定义域、值域和单调区间.7、函数y log(2x 1) .3r~2的定义域是()2 1A -,1 U 1, B、,1 U 1,3 2C、2, D !,3 2&函数y log1 (x26x 17)的值域是()2A、R B 8, C , 3 D 3,9、若log m9 log n9 0,那么m,n满足的条件是()A、m n 1B、n m 1C、0 n m 1D 0 m n 110、log a2 1,则a的取值范围是()3A、0, — U 1,B、2,C、—,1 D> 0,—U -2,3 3 3 3 311、下列函数中,在0,2上为增函数的是()A、y log1 (x 1)B、y log2、x2121 2C、y log2—D y log 1 (x 4x 5)x忑12、已知g(x) log a|x+1| (a 0且a 1)在1,0 上有g(x) 0,则f(x)是()A、在,0上是增加的B、在,0上是减少的C、在,1上是增加的D在,0上是减少的二、填空题13、若log a 2 m,log a 3 n,a2m n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
!
2.1指数与指数函数习题
一、选择题(12*5分) 1.(
36
9a )4(6
3
9a )4等于( )
(A )a 16 (B )a 8
(C )a 4
(D )a 2
2.函数f (x )=(a 2-1)x
在R 上是减函数,则a 的取值范围是( ) (A )1>a (B )2<a (C )a<2 (D )1<2<a
3.下列函数式中,满足f(x+1)=2
1
f(x)的是( ) (A)
21(x+1) (B)x+4
1 (C)2x (D)2-x
¥
4.已知a>b,ab 0≠下列不等式(1)a 2
>b 2
,(2)2a
>2b
,(3)b
a 1
1<,(4)a 31
>b 31
,(5)(31)a <(31)b
中恒成立的有( )
(A )1个 (B )2个 (C )3个 (D )4个 5.函数y=
1
21
-x 的值域是( ) (A )(-1,∞) (B )(-,∞0)⋃(0,+∞) (C )(-1,+∞) (D )(-∞,-1)⋃(0,+∞) 6.下列函数中,定义域为R 的是( ) (A )y=5
x
-21 (B )y=(
3
1)1-x
.
(C )y=1)2
1(-x (D )y=x
2
1-
7.下列关系中正确的是( )
(A )(21)32<(51)32<(21)31 (B )(21)31<(21
)32<(51)32
(C )(51)32<(21)31<(21)32 (D )(51)32<(21)32<(2
1
)31
8.若函数y=3·2x-1
的反函数的图像经过P 点,则P 点坐标是( )
(A )(2,5) (B )(1,3) (C )(5,2) (D )(3,1)
9.函数f(x)=3x +5,则f -1
(x)的定义域是( ) (A )(0,+∞) (B )(5,+∞) )
(C )(6,+∞) (D )(-∞,+∞)
10.已知函数f(x)=a x
+k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是( )
(A)f(x)=2x +5 (B)f(x)=5x +3 (C)f(x)=3x +4 (D)f(x)=4x
+3
11.已知0<a<1,b<-1,则函数y=a x
+b 的图像必定不经过( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
12.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b%,则n 年后这批设备的价值为( )
(A )na(1-b%) (B )a(1-nb%) (C )a(1-(b%)n ) (D )a(1-b%)n
"
二、填空题(4*4分) 13.若a 2
3<a
2
,则a 的取值范围是 。
14.若10x
=3,10y
=4,则10x-y
= 。
15.化简⨯5
3
x
x 3
5
x
x
×
3
5
x
x = 。
16.函数y=32
32x -的单调递减区间是 。
三、解答题
17.(1)计算:3
1
2
2726141-⎪⎭⎫ ⎝⎛+⎪⎭
⎫ ⎝⎛- (2)化简:243
3221---÷⎪
⎪⎭
⎫ ⎝⎛⋅a b b a
[
,
18.(12分)若1122
3x x -+=,求
332
2
22
3
2
x x x x -
-+-+-的值.
,
19.(12分)设0<a<1,解关于x 的不等式a 1
322+-x x >a
5
22-+x x .
…
20.(12分)已知x ∈[-3,2],求f(x)=12
141+-x x 的最小值与最大值。
!
【
21.(12分)已知函数y=(3
1)522++x x ,求其单调区间及值域。
$
22.(14分)若函数4323x
x
y =-+的值域为[]1,7,试确定x 的取值范围。
!
指数与指数函数答案
一、 选择题1—6 CDDBDB 7——12 DDBDAD 二、填空题 @
13.0<a<1 14.4
3
16.(0,+∞) 三、解答题 17.(1)14 (2) 1
a - 18.
1
211122222213113333
222
2
22
2
()2,7,()2,47()33,18
x x x x x x x x x x x x x x x x x x x x
-
------
-
-
-
+=++∴+=+=++∴+=+=+++∴+=
原式=13
19.∵0<a<1,∴ y=a x
在(-∞,+∞)上为减函数,∵ a 1
322+-x x >a
5
22-+x x , ∴2x 2-3x+1<x 2
+2x-5,
解得2<x<3 (x)=
43)212(12124121412+
-=+=+-=+-----x
x x x x
x ,∵x ∈[-3,2], ∴824
1≤≤-x .则当2-x =21,即x=1时,f(x)有最小值43
;当2-x =8,即x=-3时,f(x)有最大值
57。
21.令y=(
3
1)U ,U=x 2
+2x+5,则y 是关于U 的减函数,而U 是(-∞,-1)上的减函数,[-1,+∞]上的增函数,∴ y=(3
1)5
22++x x 在(-∞,-1)上是增函数,而在[-1,+∞]上是减函数,又
∵U=x 2+2x+5=(x+1)2
+4≥4, ∴y=(31)522++x x 的值域为(0,(3
1)4]。
22.Y=4x
-33232
322+⋅-=+⋅x x
x ,依题意有
⎪⎩⎪⎨⎧≥+⋅-≤+⋅-1323)2(7323)2(22x x x x 即⎪⎩⎪⎨⎧≤≥≤≤-1
222421x
x x 或,∴ 2,12042≤<≤≤x
x 或 由函数y=2x
的单调性可得x ]2,1[]0,(⋃-∞∈。