第2章 Maple微积分运算

合集下载

积分和微分方程的MAPLE求解

积分和微分方程的MAPLE求解

x e
2 1
2
2 x

dx,

0
sin t dt , t


e
x2
dx
七 微分方程求解
> ?dsolve ode1:=t*diff(y(t),t) =y(t)*ln(t*y(t))-y(t);
> dsolve(ode1,y(t));
ode2:=diff(y(t),t,t)
+2*diff(y(t),t)+3*y(t)=a*sin(t);
> Int(exp(t)/t,t)=int(exp(t)/t,t);
定积分
Int(exp(-x),x=a..b);
int(exp(-x),x=a..b);
I1:=Int(exp(-x^2),x=0..1)
=int(exp(-x^2),x=0..1);
> ?erf > evalf(I1); ## 求近似值
课堂练习
1. y xy x e ,
2 2x
y (0) 2;
2. y 3 y 2 y x 2e x ; dx1 dt x2 x1 (0) 1 dx2 3. 4 x1 4 x2 2 x3 , x2 (0) 0 dt x3 (0) 1 dx3 2 x x x 1 2 3 dt
> dsolve(sys2, {f,g,h});
微分方程组的初值问题求解
> ######### solve the system of ODES with initial value conditions
> IC_1 := {x(a)=A,y(b)=B}; > ans1 := dsolve(sys1 union IC_1,{x(t),y(t)});

微分方程的maple求解

微分方程的maple求解

微分⽅程的maple求解1、常⽤函数1)求解常微分⽅程的命令dsolve.dsolve(常微分⽅程)dsolve(常微分⽅程,待解函数,选项)dsolve({常微分⽅程,初值},待解函数,选项)dsolve({常微分⽅程组,初值},{待解函数},选项)其中选项设置解得求解⽅法和解的表⽰⽅式。

求解⽅法有type=formal_series(形式幂级数解)、type=formal_solution(形式解)、type=numeric(数值解)、type=series(级数解)、method=fourier(通过Fourier变换求解)、method=laplace(通过Laplace变换求解)等。

解的表⽰⽅式有explicit(显式)、implicit(隐式)、parametric(参数式)。

当⽅程⽐较复杂时,要想得到显式解通常⼗分困难,结果也会相当复杂。

这时,⽅程的隐式解更为有⽤,⼀般也要简单得多。

dsolve为标准库函数。

2)求解⼀阶线性常微分⽅程的命令linearsol.在Maple中求解⼀阶线性⽅程既可以⽤dsolve函数求解,也可以⽤Detools函数包中的linearsol函数求解。

linearsol是专门求解线性微分⽅程的命令,使⽤格式为: linearsol(线性⽅程,待解函数)linearsol的返回值为集合形式的解。

3)偏微分⽅程求解命令pdsolve.pdsolve(偏微分⽅程,待解变量,选项)pdsolve(偏微分⽅程,初值或边界条件,选项)pdsolve为标准库函数,可直接使⽤。

如果求解成功,将得到⼏种可能结果:⽅程的通解;拟通解(包含有任意函数,但不⾜以构造通解);⼀些常微分⽅程的集合;2、⽅法1)⼀阶常微分⽅程的解法a 分离变量法 I 直接分离变量法。

如()()dyf xg y dx=,⽅程右端是两个分别只含x 或y 的函数因式乘积,其通解为()()dyf x dx Cg y =+?。

用Maple学习微积分2

用Maple学习微积分2

用Maple学习微积分理解导数函数f(x)在x处的导数☐“工具”→“Math Apps”→“Calculus”→“Derivative Definition”计算导数命令行☐单变元函数一阶导diff(f(x), x)☐单变元函数n阶导diff(f(x), x$n)☐右键→“Differentiate”→“With Respect To”→选择变量不支持高阶导计算导数命令行☐多变元函数f对x1,x2,x3依次求偏导diff(f, x1,x2,x3) ☐右键→“Differentiate”→“With Respect To”→选择变量☐连续对某个变元求偏导diff(f, x1,x2$2,x3)导数做图利用Student[Calculus1]软件包的DerivativePlot☐DerivativePlot(f,x=a..b)在区间[a,b]做出f及其导数的图像☐DerivativePlot(f,x=a..b,order=1..n)做出f及其直至n阶导数的图像注意:首先用with命令调用软件包导数做图利用plot函数☐设F=[f1,f2,f3]为函数序列,则plot(F,x=a..b)做出函数f1,f2和f3在区间[a,b]上的一幅图像☐:= :赋值语句☐for:循环语句☐op(S):返回集合或序列S中的所有元素☐“:”VS“;”用Maple 学习微积分:for 循环和if 语句for 循环☐变量i 以间隔c 从a 变至b ☐对于每个i ,执行“命令行”for i from a to b by cdo命令行end do:if 语句if 表达式then命令行1else命令行2end if:☐如果表达式成立则执行“命令行1”,否则执行“命令行2”利用for 循环和if 语句计算100内可以被3整除的奇数之和(mod 求模运算)泰勒展开利用泰勒级数f n近似函数f(x)☐“工具”→“Math Apps”→“Calculus”→“Taylor's Theorem”计算泰勒展开☐taylor(f,x=a,n)计算f在点a处的n阶泰勒展开☐convert(t,polynom)将泰勒展开转化为泰勒多项式convert命令可以实现各种数据格式的可行转换用Maple学习微积分:牛顿迭代法牛顿迭代法☐NewtonsMethodTutor()调用牛顿迭代法演示小程序☐NewtonsMethod(f,x=a,output=sequence)调用牛顿迭代法以初始点a计算方程f=0的一个解用Maple学习微积分小结☐导数的理解、计算与做图☐for循环与if语句☐泰勒展开☐牛顿迭代法自己试一试:1000000以内的素数有多少?并计算这些素数的和。

用Maple学习微积分2

用Maple学习微积分2

用Maple学习微积分理解导数函数f(x)在x处的导数☐“工具”→“Math Apps”→“Calculus”→“Derivative Definition”计算导数命令行☐单变元函数一阶导diff(f(x), x)☐单变元函数n阶导diff(f(x), x$n)☐右键→“Differentiate”→“With Respect To”→选择变量不支持高阶导计算导数命令行☐多变元函数f对x1,x2,x3依次求偏导diff(f, x1,x2,x3) ☐右键→“Differentiate”→“With Respect To”→选择变量☐连续对某个变元求偏导diff(f, x1,x2$2,x3)导数做图利用Student[Calculus1]软件包的DerivativePlot☐DerivativePlot(f,x=a..b)在区间[a,b]做出f及其导数的图像☐DerivativePlot(f,x=a..b,order=1..n)做出f及其直至n阶导数的图像注意:首先用with命令调用软件包导数做图利用plot函数☐设F=[f1,f2,f3]为函数序列,则plot(F,x=a..b)做出函数f1,f2和f3在区间[a,b]上的一幅图像☐:= :赋值语句☐for:循环语句☐op(S):返回集合或序列S中的所有元素☐“:”VS“;”用Maple 学习微积分:for 循环和if 语句for 循环☐变量i 以间隔c 从a 变至b ☐对于每个i ,执行“命令行”for i from a to b by cdo命令行end do:if 语句if 表达式then命令行1else命令行2end if:☐如果表达式成立则执行“命令行1”,否则执行“命令行2”利用for 循环和if 语句计算100内可以被3整除的奇数之和(mod 求模运算)泰勒展开利用泰勒级数f n近似函数f(x)☐“工具”→“Math Apps”→“Calculus”→“Taylor's Theorem”计算泰勒展开☐taylor(f,x=a,n)计算f在点a处的n阶泰勒展开☐convert(t,polynom)将泰勒展开转化为泰勒多项式convert命令可以实现各种数据格式的可行转换用Maple学习微积分:牛顿迭代法牛顿迭代法☐NewtonsMethodTutor()调用牛顿迭代法演示小程序☐NewtonsMethod(f,x=a,output=sequence)调用牛顿迭代法以初始点a计算方程f=0的一个解用Maple学习微积分小结☐导数的理解、计算与做图☐for循环与if语句☐泰勒展开☐牛顿迭代法自己试一试:1000000以内的素数有多少?并计算这些素数的和。

高中数学论文 Maple在微积分中的应用

高中数学论文 Maple在微积分中的应用

Maple 在微积分中的应用摘要:Maple 被称为当今世界上最流行的符号计算软件之一,它具有强大的交互式工程数学计算功能;其丰富的函数包能满足用户在各方面的需求;简单灵活的平面和立体作图技术使得它成为当前最普及的数学教学软件;它在统计学、经济结算方面的程序库被广泛应用于很多领域。

本文通过Maple9.5软件分六个部分:1. Maple 在极限中的应用;2.Maple 在求导中的应用;3. Maple 在积分中的应用;4.Maple 在级数中的应用;5.Maple 在积分变换中的应用;6.Maple 中通过菜单的工具选项操作实现相关微积分的功能对Maple 在微积分中应用进行了系统的研究与说明。

关键字:Maple ;微积分;应用研究一、Maple 在极限中的应用1 数列的极限 例1.设22211112n u n=+++,求lim n n u →∞。

首先可以通过Maple 绘制散点图得到这个数列是收敛的,如图1:> with(plots);> plot(sum('1/k^2','k'=1..n),n=1..1000);(图1 数列{}n u 散点图) 进一步用maple 计算得到该数列的极限为216π,其中命令为: > limit(sum('1/k^2','k'=1..n),n=infinity); 例2.10110,1,,lim 2n n n n n x x x x x x -+→∞+===设求。

这是一种迭代形式的数列,对于这种题目,我们一般有两种解答方法:1)先证明数列为单调,再证明其有上界或下界,从而根据单调有界定理得到数列的极限存在,最后,对数列的迭代式两边求极限;2)通过计算数列的通项公式,直接求极限。

在本题中,显然,第一种方法是行不通的,因此,我们尝试用第二种方法来解。

Maple 可以通过命令容易的解决此种迭代形式的数列,其中命令为: > rsolve({x(n+1)=(x(n)+x(n-1))/2,x(0)=0,x(1)=1},x(n));得到数列的通项公式为221332nn x -⎛⎫=- ⎪⎝⎭,这样,就得到了这个数列的极限是23。

第二章 Maple微积分运算

第二章 Maple微积分运算

1 函数的极限和连续
1.1 函数和表达式的极限
在 Maple 中, 利用函数 limit 计算函数和表达式的极限. 如果要写出数学表达式, 则 用惰性函数 Limit. 若 a 可为任意实数或无穷大时, 求 lim f ( x) 命令格式为: limit(f,x=a);
xa
f ( x ) 时的命令格式为 limit(f, x=a, right); 求 lim f ( x ) 时的命令格式为 limit(f, 求 lim
- 37 -
x 2 y 20 otherwise
4 2 2 4 x 6 x y y 3 ( x 2 y 2 ) 0
x 2 y 20 otherwise
函数 diff 求得的结果总是一个表达式, 如果要得到一个函数形式的结果, 也就是求 导函数, 可以用 D 算子. D 算子作用于一个函数上, 得到的结果也是一个函数. 求 f 的导 数的命令格式为: D(f); 值得注意的是, f 必须是一个可以处理为函数的代数表达式, 它可以包含常数、已知 函数名称、未知函数名称、箭头操作符、算术和函数运算符. 复 合 函 数 表 示 为 f@g, 而 不 是 f(g), 因 此 D(sin(y)) 是 错 误 的 , 正 确 的 应 该 是 D(sin@y). D 运算符也可以求高阶导数, 但此时不用$, 而用两个@@. D 运算符并不局限于单变量函数, 一个带指标的 D 运算符 D[i](f)可以用来求偏导函 数, D[i](f)表示函数 f 对第 i 个变量的导函数, 而高阶导数 D[i,j](f)等价于 D[i](D[j](f)). > g:=x->x^n*exp(sin(x));
2 x 2 y
> f(x,y):=piecewise(x^2+y^2<>0,x*y/(x^2+y^2));

Maple基础教程

Maple基础教程

目录第二章MAPLE基础 (1)2.1与M APLE对话 (1)2.2使用命令和函数包 (18)2.3微积分 (23)2.4线性代数 (28)2.5微分方程 (35)2.6优化 (45)2.7动态系统 (53)2.8基础编程知识 (58)2.9M APLE使用中常犯的错误 (78)第二章Maple基础Maple是目前应用非常广泛的科学计算软件之一,具有非常强大的符号计算和数值计算功能。

Maple 提供智能界面求解复杂数学问题和创建技术文件,用户可在易于使用的智能文件环境中完成科学计算、建模仿真、可视化、程序设计、技术文件生成、报告演示等,从简单的数字计算到高度复杂的系统,满足各个层次用户的需要。

与传统工程软件不同,甚至有别于旧版本的Maple,新版本Maple为工程师提供了大量的专业计算功能,庞大的数学求解器可用于各种工程领域,如微分方程、矩阵、各种变换包括FFT、统计、小波、等等,超过5000个计算命令让用户通常只需要一个函数就可以完成复杂的分析任务。

本章主要介绍Maple的基本功能,包括:数值和符号计算计算、求解方程、微积分计算、向量及矩阵计算、微分方程求解等。

Maple是一个全面的系统,提供多种方式完成同一个任务。

在本章中,我们将通过简单、易于重复的方式求解常见的问题,但它不是唯一的操作方式。

当用户熟悉本章中的各种操作方式后,用户可以通过帮助系统了解如何使用相似的技术完成各种任务。

2.1 与Maple对话2.1.1 Maple环境Maple的用户界面是一个典型的Windows或Mac风格的操作环境。

工作环境界面如图2-1所示。

图2-1:Maple工作界面在图2-1的工作界面中,窗体的主要部分包括:●主文档,即主工作区。

事实上,用户大可以把它想象成包含有各种数学和绘图工具的Microsoft Word。

●面板区。

汇集了数学工具和特殊的数学符号,用户可以将它们直接拖拽到工作区中使用。

面板区中最重要的面板当属Expressions,Matrix,Common Symbols和Greek。

Maple中的微分代数方程求解

Maple中的微分代数方程求解

Part10:Maple中的微分代数方程求解西希安工程模拟软件(上海)有限公司,200810.0 Maple中的微分方程求解器介绍Maple中微分方程求解器使用领先的算法求解以下问题:常微分方程 (ODEs): dsolve 命令用于求解线性和非线性ODEs, 初始值问题 (IVP), 以及边界值问题 (BVP),可以通过参数项选择求符号解 (解析解) 或数值解。

ODE Analyzer Assistant 微分方程分析器助手提供一个交互式用户界面方便用户求解 ODE 以及显示结果的图形。

了解更多信息,参考帮助系统中的 dsolve, dsolve/numeric, 和 ODE Analyzer.偏微分方程 (PDEs): pdsolve 命令用于求 PDEs 和含边界值问题的 PDEs 的符号解或数值解。

使用Maple的PDE工具可以完成对PDE系统的结构分析和指数降阶处理。

了解更多信息,参考帮助系统中的 pdsolve and pdsolve/numeric.微分-代数方程 (DAEs): dsolve/numeric 命令是符号-数值混合求解器,使用符号预处理和降阶技术,让Maple能够求解高指数的DAE问题。

Maple内置三个求解器用于处理DAEs:1)修正的 Runge-Kutta Fehlberg 方法,2)Rosenbrock 方法,以及 3)修正的拓展后向差分隐式方法。

10.1 Maple中的微分代数方程(DAEs)更多亮点:大部分情况下,通过识别是否存在因变量的纯代数方程,dsolve命令可以判断给定的问题是否是微分代数方程,而不是常微分方程。

如果输入是一个不含有纯代数方程的微分代数方程,使用solve求解时需要用method参数指定对象是一个微分代数方程。

dsolve 有三种数值方法求解DAEs。

默认的 DAE IVP 方法是 modified Runge-Kutta Fehlberg method (rkf45_dae),另两个方法是 rosenbrock_dae 和 Modified Extended Backward-Differentiation Implicit method (mebdfi),可以通过 method 参数项指定。

maple_chap2

maple_chap2

36微积分运算 第二章 本章将通过例子系统地介绍Maple 软件中的微积分运算,读者可以学到利用Maple 软件解决简单的高等数学问题的一些方法和技巧。

本章具体包括以下内容:如何在Maple 中计算函数的极限如何在Maple 中检验函数的连续性如何在Maple 中表示微分运算如何在Maple 中进行函数和表达式的微分运算如何在Maple 中对隐函数进行微分和求导运算如何在Maple 中进行符号积分运算如何在Maple 中计算广义积分如何在Maple 中计算数值积分如何在Maple 中表示和计算数列如何在Maple 中求数列的极限如何在Maple 中将已知函数展开成级数。

37.Maple 的应用,可以说大多数是用在高等数学的计算上了,微积分运算,也许是Maple 最为拿手的计算了。

任何解析函数,Maple 都可以求出它的导数来;任何理论上可以计算的的积分,Maple 也都可以不费吹灰之力地将它计算出来。

有了Maple ,你完全可以把积分手册扔到一边去,因为你在也忍受不了它了。

不仅如此,Maple 从来不会抱怨表达式太繁,或者太长的。

可以毫不夸张地说,高等数学书上的任何一道计算题,都可以用Maple 解决。

不信?那好,就跟着我用Maple 重新温习一遍微积分吧,你一定会有新的发现的!2.1 极限和连续性2.1.1 函数或表达式的极限在Maple 中,我们可以利用函数limit 表示和计算函数和表达式的极限。

读者一定还记得,我们用一对单引号表示暂时不作计算的表达式;上面,我们就利用它在Maple 中写出了一个漂亮的极限式。

而后面再次引用它时,Maple 就进行计算,得到了我们所期望的结果。

实际上,对于这些常用的“漂亮”计算符号(又比如求导、积分等运算),Maple 中都有一套函数与其一一对应。

对应的规则是,把原有函数的首字母改成大写,于是就得到“形式函数”,得到的是一个形式上的表达式。

比如上面这个例子,我们就可以写成:顺理成章地,这个函数也可用来求自变量趋于无穷时的极限。

Maple的一个非常实用的功能就是微积分计算它能求导数,作积分,作级数

Maple的一个非常实用的功能就是微积分计算它能求导数,作积分,作级数

第3章微积分Maple 的一个非常实用的功能就是微积分计算.它能求导数,作积分,作级数展开,作无穷求和,还有很多很多功能.在这一章,我们关注最基本的功能.极限极限思想是微积分学中最基本的思想,而Maple 知道怎么计算它们.例如,要求lim x →0sin 3x x 的极限值,可以使用Maple 的limit 命令,表达式如下所示:>limit(sin(3*x)/x,x=0);3当然你也可以使用Maple 函数来求解>y:=x->sin(3*x)/x;limit(y(x),x=0);y :=x →sin (3x )x3您可以输入?limit 来查看这条命令的详细说明,但这并不是命令的全部说明.问题3.1尝试着练习这个问题:lim x →0cos (x )−1x 2微分导数相对来说是容易的,所以这一节也一样.Maple 对初等函数和特殊函数的求导是同样容易的,所以这一节只是展示两条Maple 的微分命令,一条用于表达式,一条用于函数.首先,我们对表达式进行微分.我建议你使用下面说明正切函数用法的形式来求一阶导数,二阶导数和三阶导数.你也可以使用diff命令,它直接求出导数,或者Diff和value 命令,给出所求表达式的导数,并计算其值.Diff命令的用途实际上超出你的想像,因为它给你一个机会查看你要Maple 求的导数是不是你所想要的.>diff(tan(x),x);1+tan (x )2>diff(tan(x),x\$2);2tan (x )(1+tan (x )2)>d:=Diff(tan(x),x\$3);>d:=value(d);d :=∂3∂x3tan (x )d :=2(1+tan (x )2)2+4tan (x )2(1+tan (x )2)>d:=simplify(d);d:=2+8tan(x)2+6tan(x)4下面让我们看一下如何对函数进行微分.>f:=x->tan(x)/x;f:=x→tan(x)xDiff命令不能对函数进行微分,因此我们要使用Maple的D命令.这是一条体积小但功能非常强的命令.它能求复合函数的多阶导数(查看所有用法请输入?D),但我们只能对单一函数求一阶导数.求一阶导数是非常容易的fp:=D(f);f p:=x→1+tan(x)2x−tan(x)x2注意,指定D(f)对f p的结果产生函数f p(x).求高阶导数的方法有很多种,这是最通用的一种.>fpp:=D[1$2](f);f pp:=x→2tan(x)(1+tan(x)2x−2(1+tan(x)2)x2+2tan(x)x3方括号里的“1”表示关于参数列表里的第一个变量(这里只有一个)求微分,“$2”表示相当于执行diff命令两次.好了,内容就这么多.这里有一些练习需要训练.问题3.2求下列函数的形式导数.大部分使用表达式形式,(a)和(d)使用函数形式.如果得到混乱的结果,尝试使用simplify命令化简它.你会发现simplify命令对函数无效,为了使结果更好看,用鼠标把你想要化简的混乱结果复制到剪贴板,把它赋给一个新的变量,删除无关的内容,然后再执行化简命令.然后再使用剪切和粘贴命令重建求导函数.Maple的这个组合及编辑是做无错误代数的好方法.(a)∂3∂x3√1+x3(b)∂∂xJ0(x)(c)∂∂xI1(x)(d)∂2∂x2e tan(x)(e)∂∂xΓ(x)(f)∂∂xerf(x)(g)∂∂kK(k)((g)是第一种形式的完全椭圆积分,使用Maple的EllipticK命令.)问题3.3这是一个你在大学里也使用的求最大最小问题.考虑函数ln(x)J0(x)(我用词“函数”是数学意义的,而不是Maple意义的.如果你仅仅使用一个Maple表达式来定义上面的函数,这个问题是很简单的.)(a)首先画出函数在区间[0,10]上的图像.(b)观察图像,找出并估摸函数取得最大最小值时x的值.接着对函数求导,然后使用fsolve 命令求出x的精确值.假若求导后的表达式为f,如果你想求出1.1附近的零点,你可以这样做:fsolve(f,x=1.1);在量子力学中,你会遇到近似我们已经见过的勒让德函数P n (x ).这些新函数叫做联合勒让德函数P m n .对于每一个整数n ,在区间[0..n ]上,函数由m 的值定义,当m =0时,函数等价于P n (x ).这些函数由勒让德函数的导数的项定义:P m n =(−1)m (1−x 2)(m 2),diff (P n (x ),x $m )这个定义对于大多数的计算机语言来说是累赘的,但是Maple 操控它很容易,因为Maple 用符号化代替数值化.这里有个函数评价它>with(orthopoly);[G,H,L,P,T,U ]>Pnm:=(n,m,x)->(-1)^m*(1-x^2)^(m/2)*diff(P(n,x),x$m);P nm:=(n,m,x )→(−1)m (1−x 2)(12m ),diff (P (n,x ),x $m )在做任何花哨的事情之前我们测试它,因此让我们为n,m 和x 输入数字.>Pnm(3,1,.5);Error,(in Pnm)wrong number (or type)of parameters in function diff 好了,我们又遇到麻烦了.这个问题是P (n,x )返回了什么.如同我们在第2章一个节中看到的这个函数,它不返回数字,而是返回多项式.当我们把0.5赋给x 时,它进入到上面定义的函数Pnm ,并代替x ,然后diff命令尝试关于0.5求导数,而这是没有意义的.观察当我们用一个变量而不是数字来代替x 时发生什么.>Pnm(3,1,t);−√1−t 2(152t 2−32)倘若你想要一个数值结果你可以这样做>a:=Pnm(3,1,t);t:=0.5;a;a :=−√1−t 2(152t 2−32)t :=.5−.3247595264这是很烦人的,另一方面,仅仅考虑它;总之,为什么在Maple 里需要一个数字呢?你要画函数图像,微分,求积,在微分方程里使用,等等.有什么事情比得到一个明确的表达式更好呢?Maple 认为这不是一个问题;而是一个特性.而且这个特性为你使用with(orthopoly)想要得到的所有正交函数所享有.这里还有另一个关于函数Pnm 更烦人的事情.观察当我们尝试用m =0执行时发生什么.>Pnm(5,0,x);Error,(in Pnm)wrong number (or type)of parameters in function diff 当m =0时它假想返回Pn(x)的结果,但事与愿违.不工作的原因是因为我们要求它求一个函数的0阶导数,而Maple 的diff命令应付不了.稍后学习程序之后我们返回这个问题并修复它,使得当m =0时也工作.好了,我已经演示怎样做了.现在请你结合P (5,x )作5个联合勒让德函数的图像,例如,n =5及m =1,2,3,4,5.图像从x =−1画到x =1.用不同的颜色把5个图像画在同一轴上,当m 的范围从1变化到n =5时发生了什么.看过图片之后你可能想要重新缩放函数图像使得它们看起来大小相同.在下一节积分中,我们会重新绘制并用一种自然的方式让函数图像接近相同的尺寸.这是下一节积分中引过来的一个电学问题.电势函数z ,电荷球半径为R ,电荷面密度为σ,其中z 上升到半球的对称轴,表达式如下>V:=-1/2*sigma*R*(-sqrt(R^2+z^2)+sqrt((z-R)^2))/(z*e0);V :=−12σR (−√R 2+z 2+√(z −R )2)ze 0其中e 0表示电荷常数ε0.电场分量E z 可以通过电势V 微分得到:E z =−(∂∂zV ).使用Maple 对这个求导可以得到一个关于E z (繁杂)的表达式.化简它.你会看到一个叫csgn 的陌生函数,输入?csgn 查看函数说明以确保你知道它是做什么的.然后令σ=1,R =1及e 0=1,然后从z =−4到z =4同时画V 和E z 的图像.这是一个电磁定律关于跨表面电荷密度,电场区域通过σε0变化.(你可能注意到上面定义的V 我用e 0代替ε0.这是故意的.尽可能是避免变量下标,因为Maple 中的下标引用矩阵元素.)验证你的图像以获得正确的跳跃.在图像中,负z 在半球圆缘的下方,正z 从0到R 在半球内部,且正z 从R 到无穷在圆顶之上.想像你的图像并说服你自己使它有意义.问题3.6这是一类花俏的微分叫做隐式微分,且Maple 可能求解.假设你有一个方程涉及x 和y ,像这个x 2+y 2=3.你想要解出dy dx 而不求解y (x ).这种方式求隐式方程的微分得2x +3y 2(∂∂x y )=0,然后求解dy dx .Maple 知道如何求解,规定你告诉它y 依赖于x ,像这样.>restart;>eq:=x^2+y(x)^3=3;eq :=x 2+y (x )3=3>deq:=diff(eq,x);deq :=2x +3y (x )2(∂∂x y (x ))=0>dydx:=solve(deq,diff(y(x),x));dydx :=−23xy (x )2如果你任何时候都不想输入y (x ),你可以使用Maple 的alias 命令告诉它把y 变为y (x )(只适用Maple 的内部进程)当遇到的时候.>restart;允许我们使用y 代替y (x )>alias(y=y(x));y>eq:=x^2+y^3=3;eq :=x 2+y 3=3>deq:=diff(eq,x);deq :=2x +3y 2(∂∂x y )=0>dydx:=solve(deq,diff(y,x));dydx :=−23xy 2这是一个物理学中的例子.等离子体电磁波的分散关系是ω2=wp 2+k 2c 2,其中wp 是一个频率叫做等离子体频率.波的相对速度由ωk 给出,群速度由dωdk 给出.首先用Maple 求出相对和群速度的公式,在wp ,k 及c 的条件下求解ω(k )并微分.然后在k ,c 及ω的条件下用隐式微分得到群速度.最后,Maple 也知道怎样求解偏导数.考虑关于x 和y 的函数f (x,y )=cos (xy )y .这是关于x ,y ,以及x 和y 的导数,用表达式形式>restart;f:=cos(x*y)/y;f :=cos (xy )y>diff(f,x);diff(f,y);diff(f,x,y);−sin (xy )−sin (xy )x y −cos (xy )y 2−cos (xy )x也可以通过Maple 的符号函数来做相同的事情>restart;f:=(x,y)->cos(x*y)/y;f :=(x,y )→cos (xy )y>D[1](f);D[2](f);D[1,2](f);(x,y )→−sin (xy )(x,y )→−sin (xy )x y −cos (xy )y 2(x,y )→−cos (xy )x问题3.7求出下面这个函数的一阶导数及三个二阶导数(两个x ,两个y 以及xy )K (√4xy (x +y )2)其中K 是完全椭圆积分EllipticK .使用符号表达式并用diff命令求解.尝试使用expand 和simplify 命令清除杂乱的东西以得到结果.积分你使用Maple做得最多的简单事情就是积分.事实上,你没有更多的思想比较积分表和计算尺.大多数都是可以的,因为你很容易获得Maple并且它是不错的.但是它不会做任何事情(就如果你在这一节看到的一些例子一样),所以你需要知道当Maple 失败的时候该怎么做.最好的做法是看一本由Gradshteyn和Ryzhik编写的一本名为《A Table of Series and Integrals》的数学参考书.你可以从图书馆的数学参考书部分找到它,或者在我们系图书室,如果没有教员把它借走.初等积分Maple可以求解你在第一节积分课里遇到的所有积分问题.实现这个功能的命令叫做int,你可以像这样使用表达式>int(sin(x),x);−cos(x)或者>f:=sin(x)*x;int(f,x);f:=sin(x)xsin(x)−x cos(x)注释:不要使用f(x)作为参数如果f是一个表达式.倘若是函数,积分命令这样用:>g:=(x,y)->sin(x*y)*x;g:=(x,y)→sin(xy)x>int(g(x,y),x);sin(xy)−xy cos(xy)y2这有一个int的简化形式,叫做Int,用来显示积分.这个形式你可以用于记录表.尝试这个:>s1:=Int(exp(x),x);s1:=∫e x dx请注意:Int命令只显示,并不做数学运算.也许你会问,“但如果它不做任何事,我为什么要用它呢?”因为它能帮助查看你是否输入正确的积分,Int命令是很有价值的调试工具.当显示形式你看起来对之后,使用value(s1)得到结果.因此正确求解上面的简单积分并取得结果是这样的:>s1:=Int(exp(x),x);>s1:=value(s1);s1:=∫e2dxs1:=e2我建议你总是使用Int和value组合的方式求解积分.这是一个好习惯,可以减少你查看愚蠢错误的时间.当然,你也可以像这样求解定积分:>s2:=Int(tan(x),x=0..1);>s2:=value(s2);s 2:=∫10tan (x )dxs 2:=−ln (cos (1))如果想要求积分值,你可以这样做:>evalf(s2);.6156264703噢,如果你仅仅是想要数值结果而不通过evalf 命令,只需给int 命令浮点极限你就可马上得到结果.>s2:=Int(tan(x),x=0..1.);>value(s2);s 2:=∫10tan (x )dx当然你也知道Maple 可以对无穷极限求积分,但你需要通过assume 命令做一些引导.好了,你要了解的Maple 求解积分的东西就这么多.输入?int 获取更多Maple 提供的积分选项.下面让我们做些练习.问题3.8用Maple 求解下列积分,其中(a)-(d)用表达式符号,(e)-(g)用函数符号.求出(e)和(f)的积分值.求解(g)时你会遇到麻烦,你得到的结果看起来很繁杂,试着用simplify 命令化简.(a )∫ln (x )dx (b )∫√1−x 2dx (c )∫x 1+x 3dx (d )∫cos h (x )dx (e )∫10√1+x 1−x dx (f )∫120x x 3−1dx (尝试使用1/2和1./2.作为积分上限)(g )∫∞e −ax cos (x )dx (不知道如何输入∞,输入?使用联机帮助.)。

maple教程

maple教程

maple教程1 初识计算机代数系统Maple1.1 Maple简说1980年9⽉, 加拿⼤Waterloo⼤学的符号计算机研究⼩组成⽴, 开始了符号计算在计算机上实现的研究项⽬, 数学软件Maple是这个项⽬的产品. ⽬前, 这仍是⼀个正在研究的项⽬.Maple的第⼀个商业版本是1985年出版的. 随后⼏经更新, 到1992年, Windows系统下的Maple 2⾯世后, Maple被⼴泛地使⽤, 得到越来越多的⽤户. 特别是1994年, Maple 3出版后, 兴起了Maple热. 1996年初, Maple 4问世, 1998年初, Maple 5正式发⾏. ⽬前⼴泛流⾏的是Maple 7以及2002年5⽉⾯市的Maple 8.Maple是⼀个具有强⼤符号运算能⼒、数值计算能⼒、图形处理能⼒的交互式计算机代数系统(Computer Algebra System). 它可以借助键盘和显⽰器代替原来的笔和纸进⾏各种科学计算、数学推理、猜想的证明以及智能化⽂字处理.Maple这个超强数学⼯具不仅适合数学家、物理学家、⼯程师, 还适合化学家、⽣物学家和社会学家, 总之, 它适合于所有需要科学计算的⼈.1.2 Maple结构Maple软件主要由三个部分组成: ⽤户界⾯(Iris)、代数运算器(Kernel)、外部函数库(External library). ⽤户界⾯和代数运算器是⽤C语⾔写成的, 只占整个软件的⼀⼩部分, 当系统启动时, 即被装⼊, 主要负责输⼊命令和算式的初步处理、显⽰结果、函数图象的显⽰等. 代数运算器负责输⼊的编译、基本的代数运算(如有理数运算、初等代数运算等)以及内存的管理. Maple的⼤部分数学函数和过程是⽤Maple⾃⾝的语⾔写成的, 存于外部函数库中. 当⼀个函数被调⽤时, 在多数情况下, Maple会⾃动将该函数的过程调⼊内存, ⼀些不常⽤的函数才需要⽤户⾃⼰调⼊, 如线性代数包、统计包等, 这使得Maple在资源的利⽤上具有很⼤的优势, 只有最有⽤的东西才留驻内存, 这保证了Maple可以在较⼩内存的计算机上正常运⾏. ⽤户可以查看Maple的⾮内存函数的源程序, 也可以将⾃⼰编的函数、过程加到Maple的程序库中, 或建⽴⾃⼰的函数库.1.3 Maple输⼊输出⽅式Maple 7有2种输⼊⽅式: Maple语⾔(Maple Notation)和标准数学记法(Standard Math Notation). Maple语⾔是⼀种结构良好、⽅便实⽤的内建⾼级语⾔, 它的语法和Pascal或C有⼀定程度的相似, 但有很⼤差别. 它⽀持多种数据操作命令, 如函数、序列、集合、列表、数组、表, 还包含许多数据操作命令, 如类型检验、选择、组合等. 标准数学记法就是我们常⽤的数学语⾔.启动Maple, 会出现新建⽂档中的“[>”提⽰符, 这是Maple中可执⾏块的标志, 在“>”后即可输⼊命令, 结束⽤“;”(显⽰输出结果)或者“:”(不 显⽰输出结果). 但是, 值得注意的是, 并不是说Maple的每⼀⾏只能执⾏⼀句命令, ⽽是在⼀个完整的可执⾏块中健⼊回车之后, Maple会执⾏当前执⾏块中所有命令(可以是若⼲条命令或者是⼀段程序). 如果要输⼊的命令很长, 不能在⼀⾏输完, 可以换⾏输⼊, 此时换⾏命令⽤“shift+Enter”组合键, ⽽在最后⼀⾏加⼊结束标志“;”或“:”, 也可在⾮末⾏尾加符号“\”完成.Maple 7有4种输出⽅式: Maple语⾔、格式化⽂本(Character Notation)、固定格式记法(Typeset Notation)、标准数学记法(Standard Math Notation). 通常采⽤标准数学记法.Maple会认识⼀些输⼊的变量名称, 如希腊字母等. 为了使⽤⽅便, 现将希腊字母表罗列如下,输⼊时只需录⼊相应的英⽂,要输⼊⼤写希腊字母, 只需把英⽂⾸字母⼤写:alpha beta gamma delta epsilon zeta eta theta iota kappa lambda munu xi omicron pi rho sigma tau upsilon phi chi psi omega有时候为了美观或特殊需要,可以采⽤Maple中的函数或程序设计⽅式控制其输出⽅式,如下例:> for i to 10 doprintf("i=%+2d and i^(1/2)=%+6.3f", i, eval(sqrt(i)));od;i=+1 and i^(1/2)=+1.000i=+2 and i^(1/2)=+1.414i=+3 and i^(1/2)=+1.732i=+4 and i^(1/2)=+2.000i=+5 andi^(1/2)=+2.236i=+6 and i^(1/2)=+2.449i=+7 and i^(1/2)=+2.646i=+8 and i^(1/2)=+2.828i=+9 and i^(1/2)=+3.000i=+10 and i^(1/2)=+3.162+2d的含义是带符号的⼗进位整数,域宽为2. 显然,这种输出⽅式不是我们想要的,为了得到更美观的输出效果,在语句中加⼊换⾏控制符“\n”即可:> for i to 10 doprintf("i=%+2d and i^(1/2)=%+6.3f\n", i, eval(sqrt(i)));od;i=+1 and i^(1/2)=+1.000i=+2 and i^(1/2)=+1.414i=+3 and i^(1/2)=+1.732i=+4 and i^(1/2)=+2.000i=+5 and i^(1/2)=+2.236i=+6 and i^(1/2)=+2.449i=+7 and i^(1/2)=+2.646i=+8 and i^(1/2)=+2.828i=+9 and i^(1/2)=+3.000i=+10 and i^(1/2)=+3.162再看下例:将输⼊的两个数字⽤特殊形式打印:> niceP:=proc(x,y)printf("value of x=%6.4f, value of y=%6.4f",x,y);end proc;> niceP(2.4,2002.204);value of x=2.4000, value of y=2002.20401.4 Maple联机帮助学会寻求联机帮助是掌握⼀个软件的钥匙. Maple有⼀个⾮常好的联机帮助系统, 它包含了90%以上命令的使⽤说明. 要了解Maple的功能可就会出现(也可以⽤Tab键和up, down选定). 可以从底栏中看到函数命令全称, 例如, 我们选graphics…, 出现该条的⼦⽬录, 从中选2D…, 再选plot就可得到作函数图象的命令plot的完整帮助信息. ⼀般帮助信息都有实例, 我们可以将实例中的命令部分拷贝到作业⾯进⾏计算、演⽰,由此可了解该命令的作⽤.在使⽤过程中, 如果对⼀个命令把握不准, 可⽤键盘命令对某个命令进⾏查询. 例如, 在命令区输⼊命令“?plot”(或help(plot);), 然后回车将2 Maple的基本运算2.1 数值计算问题算术是数学中最古⽼、最基础和最初等的⼀个分⽀, 它研究数的性质及其运算, 主要包括⾃然数、分数、⼩数的性质以及他们的加、减、乘、除四则运算. 在应⽤Maple做算术运算时, 只需将Maple当作⼀个“计算器”使⽤, 所不同的是命令结束时需加“;”或“:”.在Maple中, 主要的算术运算符有“+”(加)、“–”(减)、“*”(乘)、“/”(除)以及“^”(乘⽅或幂,或记为**), 算术运算符与数字或字母⼀起组成任意表达式, 但其中“+”、“*”是最基本的运算, 其余运算均可归诸于求和或乘积形式. 算述表达式运算的次序为: 从左到右, 圆括号最先, 幂运算优先, 其次是乘除,最后是加减. 值得注意的是, “^”的表达式只能有两个操作数, 换⾔之, 是错误的, ⽽“+”或“*”的任意表达式可以有两个或者两个以上的操作数.Maple有能⼒精确计算任意位的整数、有理数或者实数、复数的四则运算, 以及模算术、硬件浮点数和任意精度的浮点数甚⾄于矩阵的计算等等. 总之, Maple可以进⾏任意数值计算.但是, 任何软件或程序毕竟只是⼈们进⾏科学研究的⼀种必要的辅助, 即便它有很多优点, 但也有它的局限性, 为了客观地认识数学软件、认识Maple, 下⾯通过两个简单例⼦予以说明.第⼀个简单的数值计算实例想说明Maple数值计算的答案的正确性:> 3!!!;上述运算结果在IBM PC机(1G, 128M)上计算只需要0.01秒, 得到如此复杂的结果(1747位), ⼀个⾃然的问题是: 答案正确吗?为了回答这个问题, 我们借助于数值分析⽅法, 由Stiring公式可得: , 前三位数字与Maple输出结果相同, 且两者结果均为1747位. 另外, 在720!的计算中, 5的因⼦的个数为:这些5与⾜够多的2相乘将得到178个0, ⽽Maple的输出结果中最后178位数为零. 由此, 可以相信Maple结果的正确性.另⼀个例⼦则想说明Maple计算的局限性:Maple在处理问题时, 为了避免失根, 从不求算术式的近似值, 分数则化简为既约分数. 因此, 在Maple中很容易得到:显然这是错误的. 这⼀点可以从代数的⾓度予以分析.不妨设, 则, 即, 显然有3个结果, -2是其实数结果.另⼀⽅⾯, 设, 则, 即:显然有6个结果, -2、2是其实数结果.这个简单的例⼦说明了Maple在数值计算⽅⾯绝对不是万能的, 其计算结果也不是完全正确的, 但是, 通过更多的实验可以发现: Maple只可能丢失部分结果, ⽽不会增加或很少给出完全错误的结果(如上例中Maple的浮点数结果皆为). 这⼀点提醒我们, 在利⽤Maple或其他任何数学软件或应⽤程序进⾏科学计算时, 必须运⽤相关数学基础知识校验结果的正确性.尽管Maple存在缺陷(实际上, 任何⼀个数学软件或程序都存在缺陷), 但⽆数的事实说明Maple仍然不失为⼀个具有强⼤科学计算功能的计算机代数系统. 事实上, Maple同其他数学软件或程序⼀样只是科学计算的⼀个辅助⼯具, 数学基础才是数学科学中最重要的.2.1.1 有理数运算作为⼀个符号代数系统, Maple可以绝对避免算术运算的舍⼊误差. 与计算器不同, Maple从来不⾃作主张把算术式近似成浮点数, ⽽只是把两个有公因数的整数的商作化简处理. 如果要求出两个整数运算的近似值时, 只需在任意⼀个整数后加“.”(或“.0”), 或者利⽤“evalf”命令把表达式转换成浮点形式, 默认浮点数位是10 (即: Digits:=10, 据此可任意改变浮点数位, 如Digits:=20).> 12!+(7*8^2)-12345/125;> 123456789/987654321;> evalf(%);> 10!; 100*100+1000+10+1; (100+100)*100-9;> big_number:=3^(3^3);> length(%);上述实验中使⽤了⼀个变量“big_number”并⽤“:=”对其赋值, 与Pascal语⾔⼀样为⼀个变量赋值⽤的是“:=”. ⽽另⼀个函数“length”作⽤在整数上时是整数的⼗进制位数即数字的长度. “%”是⼀个⾮常有⽤的简写形式, 表⽰最后⼀次执⾏结果, 在本例中是上⼀⾏输出结果. 再看下⾯数值计算例⼦:1)整数的余(irem)/商(iquo)命令格式:irem(m,n); #求m除以n的余数irem(m,n,'q'); #求m除以n的余数, 并将商赋给qiquo(m,n); #求m除以n的商数iquo(m,n,'r'); #求m除以n的商数, 并将余数赋给r其中, m, n是整数或整数函数, 也可以是代数值, 此时, irem保留为未求值.> irem(2002,101,'q'); # 求2002除以101的余数, 将商赋给q> q; #显⽰q> iquo(2002,101,'r'); # 求2002除以101的商, 将余数赋给r> r; #显⽰r> irem(x,3);2)素数判别(isprime)素数判别⼀直是初等数论的⼀个难点, 也是整数分解问题的基础. Maple提供的isprime命令可以判定⼀个整数n是否为素数. 命令格式: isprime(n);如果判定n可分解, 则返回false, 如果返回true, 则n“很可能”是素数.> isprime(2^(2^4)+1);> isprime(2^(2^5)+1);上述两个例⼦是⼀个有趣的数论难题。

Maple教程(查询很方便)

Maple教程(查询很方便)

第一章Maple基础1 初识计算机代数系统Maple1.1 Maple简说1980年9月, 加拿大Waterloo大学的符号计算机研究小组成立, 开始了符号计算在计算机上实现的研究项目, 数学软件Maple是这个项目的产品。

目前, 这仍是一个正在研究的项目。

Maple的第一个商业版本是1985年出版的。

随后几经更新, 到1992年, Windows系统下的Maple 2面世后, Maple被广泛地使用, 得到越来越多的用户。

特别是1994年, Maple 3出版后, 兴起了Maple热。

1996年初, Maple 4问世, 1998年初, Maple 5正式发行。

目前广泛流行的是Maple 7以及2002年5月面市的Maple 8。

Maple是一个具有强大符号运算能力、数值计算能力、图形处理能力的交互式计算机代数系统(Computer Algebra System)。

它可以借助键盘和显示器代替原来的笔和纸进行各种科学计算、数学推理、猜想的证明以及智能化文字处理。

Maple这个超强数学工具不仅适合数学家、物理学家、工程师, 还适合化学家、生物学家和社会学家, 总之, 它适合于所有需要科学计算的人。

1.2 Maple结构Maple软件主要由三个部分组成: 用户界面(Iris)、代数运算器(Kernel)、外部函数库(External library)。

用户界面和代数运算器是用C语言写成的, 只占整个软件的一小部分, 当系统启动时, 即被装入, 主要负责输入命令和算式的初步处理、显示结果、函数图象的显示等。

代数运算器负责输入的编译、基本的代数运算(如有理数运算、初等代数运算等)以及内存的管理。

Maple的大部分数学函数和过程是用Maple自身的语言写成的, 存于外部函数库中。

当一个函数被调用时, 在多数情况下, Maple会自动将该函数的过程调入内存, 一些不常用的函数才需要用户自己调入, 如线性代数包、统计包等, 这使得Maple在资源的利用上具有很大的优势, 只有最有用的东西才留驻内存, 这保证了Maple可以在较小内存的计算机上正常运行。

[整理版]Maple微积分

[整理版]Maple微积分

[整理版]Maple微积分積分技巧积分方法基本上可概分为分部积分法与代换积分法两种。

分部积分法将于9.2节里介绍,而简单的代换积分法已于5.3节探讨过。

于本章里首先将就基本的积分公式与代换积分法做一个简单的复习,同时也介绍了Maple的几个基本的积分指令,来为本章的学习暖个身。

9.1 基本积分公式与代换积分法的复习 9-2 9.2 分部积分法 9-99.3 三角函数的乘幂积分 9-229.4 三角代换积分法 9-349.5 含二次项的积分 9-429.6 有理函数的积分法 9-469.7 技巧性的代换积分法 9-569.8 数值积分 9-629.1基本积分公式与代换积分法的复习代换积分法(method of substitution)系利用变量变换,将较不易积分的数学式代换成较易积分的式子。

通常代换积分法必须利用一些现成的积分公式或积分表来完成,以下列出了常用的积分公式: 乘幂与指数n,11xndx,lnx,Cxdx,,C,n,,1,,xn,1 1. 2.nanxxadx,,C,a,1,a,0edx,e,C,,lna 3. 4.三角函数sinxdx,,cosx,Ccosxdx,sinx,C,, 5. 6.22secxdx,tanx,Ccscxdx,,cotx,C,, 7. 8.secxtanxdx,secx,Ccscxcotxdx,,cscx,C,, 9. 10.tanxdx,,lncosx,Ccotxdx,lnsinx,C,, 11. 12. 基本的代数函数1x,,,111x,,,1dx,sin,C,,dx,tan,C,,,,2222a,,aaa,x,,a,x 13. 14.11a1x,,,,,1,1dx,cos,C,sec,C,a,0,,,,,22axaa,,,,xx,a15.xedx2x,16,9e【例题9.1.1】试求xxu,3edu,3edx【解】设,则,因此xe1111xdx,(3edx),du,,,2x2x23316,9e16,9e16,u(1)11u,,,1tan,,,C,,344,, (利用积分公式14) (2)x,,13e,1,,,,Ctan,,124,, (3) Maple的student链接库里所提供的changevar指令可以用来做变量变换积分,下列的步骤模拟了本例题中,整个手算的过程。

maple 牛顿-莱布尼茨公式

maple 牛顿-莱布尼茨公式

《探寻maple 牛顿-莱布尼茨公式》一、引言maple 牛顿-莱布尼茨公式,作为微积分中的经典公式,是描述求导和积分的关系的重要定理。

它由两位伟大的数学家牛顿和莱布尼茨分别独立发现,并且在实际应用和理论探讨中发挥着重要作用。

本文将从浅入深地探讨maple 牛顿-莱布尼茨公式,希望能为读者深入理解这一数学定理的内涵和应用。

二、maple 牛顿-莱布尼茨公式的基本概念1. maples 的概念在微积分中,maple 是代表一个函数的导数。

它描述了函数在某一点的瞬时变化率,是微积分中非常重要的概念之一。

2. 牛顿-莱布尼茨公式的表达maple 牛顿-莱布尼茨公式由以下表达式所描述:∫(a, b) f(x)dx = F(b) - F(a)其中,∫代表积分,f(x)是函数,F(x)是f(x)的不定积分函数,a和b是积分的上下限。

三、maple 牛顿-莱布尼茨公式的探讨1. 证明方法maple 牛顿-莱布尼茨公式的证明可以通过利用极限的性质,结合微分学和积分学的知识进行推导。

基于导数和积分的定义,可以清晰地展示maple 牛顿-莱布尼茨公式的成立过程。

2. 函数的连续性和可导性maple 牛顿-莱布尼茨公式适用于连续函数和可导函数。

在进行积分操作时,对函数连续性和可导性的要求是必不可少的。

3. 应用场景maple 牛顿-莱布尼茨公式在物理学、工程学、经济学等领域都有广泛的应用。

在物理学中,可以利用maple 牛顿-莱布尼茨公式求解曲线下的面积和质心等问题。

四、个人理解和观点作为一名数学爱好者,我深刻理解maple 牛顿-莱布尼茨公式的重要性和美妙之处。

它不仅揭示了导数和积分之间的奇妙关系,还为我们解决实际问题提供了强大的工具。

maple 牛顿-莱布尼茨公式的深入理解不仅有助于提高数学水平,还能拓展思维,对于培养逻辑思维和解决实际问题具有重要意义。

五、总结本文从maple 牛顿-莱布尼茨公式的基本概念出发,深入探讨了其证明方法、适用条件和应用场景,同时结合个人观点和理解进行了阐述。

Maple微积分计算步骤

Maple微积分计算步骤

Maple微积分计算步骤首先这个貌似要在Maple13版本以上才有。

准备工作:首先打开Maple。

再打开菜单工具栏中的工具——调用程序包。

在调用程序包中找到Student:-Calculus1。

并点击它,则Maple中出现。

当然也可以自己输入with(Student[Calculus1]):。

并按enter结束方法一:例如我想用Maple求一下三个积分的求解步骤:有了以上的准备工作后,在面板中输入。

然后鼠标右键—2-D数学—转换为—惰性形式。

转换为惰性形式之后的式子为。

(在点击右键的时候鼠标要在虚线框内。

)然后再鼠标右键—solve—Show Solution Steps。

即求解完毕。

完毕之后的内容为:这两个的方法也是同上面一样。

过程在“Maple步骤程序”中。

方法二:还是同样计算上面的三个式子。

在面板中直接输入。

然后也是鼠标右键——2-D ——转换为——惰性形式。

再按Enter就行了。

过程为:其它两个也一样。

Maple中的步骤不仅对以上三种有用。

对极限和偏导也可以。

具体的可以试试。

我在“Maple步骤程序”中也举了例子。

至于其它的,有兴趣的可以自己去研究。

但并不是每个微分里面的Maple都会有步骤显示。

而且如果你们自己试过Maple里面的步骤之后会看到,它里面的步骤是一步一步来的。

有些明明自己做起来很简单的步骤,Maple也许会很复杂。

我们自己做的时候并不需要那么多步骤。

有些还要自己省。

而且有些步骤不一定适合我们自己。

毕竟Maple不是人,它的步骤是唯一的。

但那些步骤或许会给我们点启发。

所以我们只能做参考。

Maple微分方程的求解

Maple微分方程的求解

题目:微分方程的求解——基于Maple工具姓名:学号:专业:学科:老师:目录一、简介 (3)概况: (3)Maple 主要技术特征: (3)1. 强大的求解器:数学和分析软件的领导者 (3)2. 技术文件环境:重新定义数学的使用性 (4)3. 知识捕捉:不仅是工具,更是知识 (4)4. 外部程序连接:无缝集成到您现有的工具链中 (4)二、Maple在微分方程中的应用 (5)1、常用函数 (5)1)求解常微分方程的命令dsolve. (5)2)求解一阶线性常微分方程的命令linearsol. (5)3)偏微分方程求解命令pdsolve. (6)2、方法 (6)1)一阶常微分方程的解法 (6)2)二阶线性常微分方程的解法 (7)3、作图 (8)1)常微分方程数值解作图命令odeplot (8)2)偏微分方程作图命令PDEplot (8)三、各种方程的求解 (8)第一部分:一阶常微分方程 (8)1、可分离变量方程 (8)2、齐次方程 (9)3、线性方程 (10)4、Bernoulli方程 (10)第二部分:二阶线性常微分方程 (11)1、二阶常系数线性齐次方程 (11)2、二阶常系数线性非齐次方程 (12)3、Euler方程(变系数) (12)第三部分:偏微分方程 (13)1、波动方程 (13)2、热传导方程 (14)3、作图 (14)四、总结 (15)一、简介概况:Maple是目前世界上最为通用的数学和工程计算软件之一,在数学和科学领域享有盛誉,有“数学家的软件”之称。

Maple 在全球拥有数百万用户,被广泛地应用于科学、工程和教育等领域,用户渗透超过96%的世界主要高校和研究所,超过81%的世界财富五百强企业。

Maple系统内置高级技术解决建模和仿真中的数学问题,包括世界上最强大的的符号计算、无限精度数值计算、创新的互联网连接、强大的4GL语言等,内置超过5000个计算命令,数学和分析功能覆盖几乎所有的数学分支,如微积分、微分方程、特殊函数、线性代数、图像声音处理、统计、动力系统等。

用Maple计算简单的微分操作

用Maple计算简单的微分操作

用Maple计算简单的微分操作
在利用Maple解决数学问题时,更多的是因为Maple符号计算的强大功能。

利用Maple可以完成符号和数值微分计算。

下面介绍常见的Maple微分命令。

更多Maple基本功能与常用操作命令介绍请访问Maple中文版网站。

对表达式求微分:
1)在左侧的表达式面板中,点击微分项,或者偏微分项。

2)定义表达式和自变量,然后求值。

例如,求xsin(ax)关于x的微分:
用户也可以使用右键菜单求微分。

想要计算高阶或偏微分,需要编辑插入的微分符号。

例如,计算xsin(ax)+x2关于x的二阶微分:
计算xsin(3x)+yx5的混合偏导数:
注意:想要插入偏导符号,用户可以通过拷贝和粘帖已有的符号,或者输入字母d然后按ESC符号补全。

diff命令:
Maple使用diff命令对表达式求微分。

通常的用法是diff(expr,var),其中var是要求微分的变量。

例如:
用户可以通过定义一组微分变量计算高阶微分。

Maple递归地调用diff 命令。

想要计算偏微分,使用相同的语法。

Maple会假设为偏微分计算。

如果要对一个变量多次求导,可以使用diff(f,x$n),它实际上是一种缩写的形式,n代表变量x重复的次数。

这个语法也可以用于计算符号nth阶微分。

以上内容向大家介绍了Maple符号计算中有关微分的一些使用,这些常见的Maple微分命令是大家经常使用的,熟记在心后会使处理问题快捷很多。

如果需要了解更多Maple基本操作,可以参考教程:怎样用Maple键盘命令解决数学问题。

利用Maple计算数学的常见命令

利用Maple计算数学的常见命令
板输入数据,面板含有用于常规操作的填充模版。
示例:使用微积分面板求表达式4t6+sin(t)的积分。
操作过程:
打开“微积分”面板,然后点击不定积分的模板。一个不定积分模版将出当前工作表中。在占位符处输入被积表达式,完成后,按下回车键计算。
示例:使用表达式面板用于求解函数的极限。
操作过程:将光标移到要工作的位置,点击极限表达式,在占位符中填入表达式,完成后按回车键计算。
提示:可以将经常要用的面板项移到收藏夹中。操作方式是鼠标右击面板按钮,然后选
择添加到收藏夹面板中。
符号和命令补全
符号和命令补全机制帮助用户完成符号和命令的输入。键入符号名称开始的几个字符,按下“Esc”键,从弹出的下拉菜单中选择需要的符号。
示例:对表达式y=ex绘图,使用符号补全方式创建指数e。操作过程:标签
按回车键执行计算返回结果,工作表将自动给出一个方程标签。如果想引用前面的计算
结果,使用“Ctrl+L”,在弹出的对话框中输入标签数字。
示例:用标签(1)引用前面的计算结果乘以x。
以上内容向大家介绍了利用Maple计算数学时常用的命令与操作。这些命令与操作都是在Maple数学计算中经常用到的。如果需要了解更多Maple入门的使用技巧,可以参考Maple中文版教程:介绍Maple入门的一些常见操作。
利用Maple计算数学的常见命令
在进行数学论文撰写时会根据具体的问题来对数学问题进行求解计算。利用Maple面板中数学模板就能够输入数学公式并利用Maple计算数学问题。
更多Maple入门教程、功能介绍请访问Maple中文官网。
面板介绍
Maple工作表左侧的20个面板含有1,000多个符号。用户也可以使用Maple面
Maple区分大小写,X,x表示不同的变量名。

电磁场理论实验指导(Maple简明版)

电磁场理论实验指导(Maple简明版)

第二篇 Maple工具篇
常用的3个工具包:student; VectorCalculus; plots
第4章 矢量分析
分析对象:矢量、 矢量场(矢性函数)、 标量函数。 工具包:1.“矢量运算”工具包 with(VectorCalculus)(重点) 2.”物理矢量“工具包 with(Physics[Vect:with(student)
2.1 导数diff 2.1.1 导数: diff(expr,var1,..,varn) 例: 1.单变量求导 diff(x/sin(x),x); diff(x/sin(x),x$4);求4阶导数。 2.多变量求导 diff(exp(x*y*z),x$2,y$3); Diff(ln(x+sqrt(y+x^2)),x,y) ; diff(ln(x+sqrt(y+x^2)),x,y) ;simplify(%); 2.2.2 隐函数的导数 implicitdiff(f, y, x): (计算dy/dx) 例题: f := x^2+y^3=1; implicitdiff(f,y,x);
复数运算
1.Re Im I conjugate abs argument Re和Im运算前变量应假设为实数: assume(x1, real,x2,real,…);#做了假设的变量,会带” ˜” 例:assume(x,real,b,real); z:=a+b*I ; Re(z) 2.复指数与三角形式之间的转换: convert(expr,trig) 例:z:=exp(I*theta); convert(z,trig) convert(expr,exp) 例:y:=cos(theta)+I*sin(theta); convert(y,exp) bine 合并同类项 复数运算举例: restart; assume(a,real,b,real,theta,real,r2,real); z1:=a+b*I; z2:=r2*exp(theta*I); z3:=r3*(cos(theta)+I*sin(theta)); Re(z1); Im(z2); convert(z2,trig); convert(z3,exp);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

> D(D(sin)); −sin
> (D@@2)(sin); −sin
> f:=(x,y,z)->(x/y)^(1/z);
fБайду номын сангаас
:=
(
x,
y,
z)

⎛⎝⎜⎜
x y
⎛⎝⎜⎜
⎞⎠⎟⎟
1 z
⎞⎠⎟⎟
> Diff(f,y)(1,1,1)=D[2](f)(1,1,1);
lim
x→ 1
xn − 1 x− 1
=
n
> Limit(x^x,x=0,right)=limit(x^x,x=0,right);
lim xx = 1
x → 0+
> Limit(abs(x)/x,x=0,left)=limit(abs(x)/x,x=0,left);
lim x = -1 x → 0- x
[ -10.0000086158831731 .. -9.99994148230377888 , -8.00006570776243642 .. -7.99994267738026022 , -6.00006150975869534 .. -5.99992641140166860 , -4.00004327130417892 .. -3.99994355004940650 , -2.00005917347370676 .. -1.99993152974711540 , -.0000687478627751661410 .. .0000124812251913941740 ]
时返回FAIL. 另外, iscont函数假定表达式中的所有符号都是实数型. 颇为有趣的是, 当 给定区间[a,b] (a>b)时, iscont会自动按[b,a]处理.
> iscont(1/x,x=1..2); true
> iscont(1/x,x=-1..1,closed); false
> iscont(1/(x+a),x=0..1); FAIL
1 +
y2

2 y2
(
x2
+
y2
2
)

2 x2
(
x2
+
y2
2
)
0
+
8 x2 y2
(
x2
+
y2
3
)
> normal(%);
x2 + y2 ≠ 0 otherwise
- 37 -
⎧⎩⎪⎪⎪⎪⎪⎪⎨

x4
− 6 x2 y2 +
(
x2
+
y2
3
)
0
y4
x2 + y2 ≠ 0 otherwise
函数 diff 求得的结果总是一个表达式, 如果要得到一个函数形式的结果, 也就是求 导函数, 可以用 D 算子. D 算子作用于一个函数上, 得到的结果也是一个函数. 求 f 的导
> D(g);
x→
xn
n
sin( x
e
)
+
xn cos( x )
sin( x )
e
x
> Diff(g,x)(Pi/6)=D(g)(Pi/6);
⎛⎝⎜⎜
∂ ∂x
g
⎠⎟⎟⎞⎝⎜⎜⎛
1 6
π ⎠⎟⎟⎞
=
6
⎛⎝⎜⎜
1 6
n
π ⎞⎠⎟⎟ n
π
( 1/2 )
e
+
1 2
⎛⎝⎜⎜
1 6
n
π ⎠⎟⎟⎞
( 1/2 )
3e
> fdiscont(round(3*x-1/2),x=-1..1);
[ -1.00003155195758886 .. -.999634596231187556 , -.667056666250248842 .. -.666327819216380068 , -.333731406929595187 .. -.333002495225188489 , -.000262904384890887231 .. .000298288004691702826 , .332976914927844203 .. .333778498831551751 , .666340020328179072 .. .667141797110034518 , .999646728223793524 .. 1.00008356747731275 ]
> limit((sin(x+y)/(sin(x)*sin(y)),{x=Pi/4,y=Pi/4}));
limit⎛⎝⎜⎜
sin( x sin( x )
+ y) sin( y
)
,
{
x
=
1 4
π,
y
=
1 4
π
}
⎞⎠⎟⎟
> limit(limit(sin(x+y)/(sin(x)*sin(y)),x=Pi/4),y=Pi/4);
x→a+
x→a−
x=a, left); 请看下述例子:
> Limit((1+1/x)^x,x=infinity)=limit((1+1/x)^x,x=infinity);
x
lim
x→ ∞
⎛⎝⎜⎜ 1 +
1 x
⎞⎠⎟⎟
=e
> Limit((x^n-1)/(x-1),x=1)=limit((x^n-1)/(x-1),x=1);
第二章 微积分运算
微积分是数学学习的重点和难点之一, 而微积分运算是 Maple 最为拿手的计算之一, 任何解析函数, Maple 都可以求出它的导数来, 任何理论上可以计算的积分, Maple 都可 以毫不费力的将它计算出来. 随着作为数学符号计算平台的 Maple 的不断开发和研究, 越来越多的应用程序也在不断地创设.
2
1.2 函数的连续性
1.2.1 连续 在 Maple 中可以用函数 iscont 来判断一个函数或者表达式在区间上的连续性. 命令
格式为: iscont(expr, x=a..b, 'colsed'/'opened');
其中, closed表示闭区间, 而opened表示开区间(此为系统默认状态). 如果表达式在区间上连续, iscont返回true, 否则返回false, 当iscont无法确定连续性
> iscont(ln(x),x=10..1); true
1.2.2 间断 函数 discont 可以寻找函数或表达式在实数域的间断点, 当间断点周期或成对出现
- 35 -
时, Maple 会利用一些辅助变量予以表达, 比如, _Zn~(任意整数)、_NZn~(任意自然数) 和 Bn~(一个二进制数, 0 或者 1), 其中 n 是序号. 判定 f(x)间断点的命令为:
> limit(a*x*y-b/(x*y),{x=1,y=1});
a− b
> limit(x^2*(1+x)-y^2*((1-y))/(x^2+y^2),{x=0,y=0}); undefined
由于多重极限的复杂性,很多情况下 limit 无法找到答案,此时,不应轻易得出极 限不存在的结论,而是应该利用数学基础判定极限的存在性,然后再寻找别的可行的方 法计算极限(如化 n 重根限为 n 次极限等)。如下例就是化二重极限为二次极限而得正确 结果:
f( x,
y)
:=
⎧⎩⎪⎪⎪⎪⎪⎨
xy x2 + y2
0
x2 + y2 ≠ 0 otherwise
> diff(f(x,y),x);
⎧⎩⎪⎪⎪⎪⎪⎪⎨
x2
y +
y2
− 2 x2 y
(
x2
+
y2
2
)
0
x2 + y2 ≠ 0 otherwise
> diff(f(x,y),x,y);
⎧⎩⎪⎪⎪⎪⎪⎪⎨
x2
> Limit(abs(x)/x,x=0,right)=limit(abs(x)/x,x=0,right);
lim
x → 0+
x x
=1
- 34 -
> limit(abs(x)/x,x=0); undefined
对于多重极限计算, 也用limit. 命令格式为: limit(f, points, dir); 其中, points是由一 系列方程定义的极限点, dir(可选项)代表方向: left(左)、right(右)等. 例如:
另一个寻找间断点的函数fdiscont是用数值法寻找在实数域上的间断点. 命令格式
为:
fdiscont(f, domain, res, ivar, eqns); 其中, f表示表达式或者, domain表示要求的区域, res表示要求的分辨率, ivar表示独立变 量名称, eqns表示可选方程.
> fdiscont(GAMMA(x/2), x=-10..0, 0.0001);
- 36 -
2 导数和微分
2.1 符号表达式求导
利用 Maple 中的求导函数 diff 可以计算任何一个表达式的导数或偏导数, 其惰性形 式 Diff 可以给出求导表达式, $表示多重导数. 求 expr 关于变量 x1, x2, …, xn 的(偏)导数
的命令格式为:
diff(expr, x1, x2, …, xn);
D 运算符并不局限于单变量函数, 一个带指标的 D 运算符 D[i](f)可以用来求偏导函 数, D[i](f)表示函数 f 对第 i 个变量的导函数, 而高阶导数 D[i,j](f)等价于 D[i](D[j](f)).
相关文档
最新文档