基于51单片机的精确延时(微秒级)
单片机精确毫秒延时函数
单片机精确毫秒延时函数单片机精确毫秒延时函数实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。
今天主要介绍软件延时以及单片机精确毫秒延时函数。
单片机的周期介绍在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。
脉冲信号之间的时间间隔称为周期;而将在单位时间(如1秒)内所产生的脉冲个数称为频率。
频率是描述周期性循环信号(包括脉冲信号)在单位时间内所出现的脉冲数量多少的计量名称;频率的标准计量单位是Hz(赫)。
电脑中的系统时钟就是一个典型的频率相当精确和稳定的脉冲信号发生器。
指令周期:CPU执行一条指令所需要的时间称为指令周期,它是以机器周期为单位的,指令不同,所需的机器周期也不同。
对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。
对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。
通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。
时钟周期:也称为振荡周期,一个时钟周期= 晶振的倒数。
对于单片机时钟周期,时钟周期是单片机的基本时间单位,两个振荡周期(时钟周期)组成一个状态周期。
机器周期:单片机的基本操作周期,在一个操作周期内,单片机完成一项基本操作,如取指令、存储器读/写等。
机器周期=6个状态周期=12个时钟周期。
51单片机的指令有单字节、双字节和三字节的,它们的指令周期不尽相同,一个单周期指令包含一个机器周期,即12个时钟周期,所以一条单周期指令被执行所占时间为12*(1/ 晶振频率)= x s。
常用单片机的晶振为11.0592MHz,12MHz,24MHz。
其中11.0592MHz 的晶振更容易产生各种标准的波特率,后两种的一个机器周期分别为1 s和2 s,便于精确延时。
51 单片机 定时器 延时1s函数
51 单片机定时器延时1s函数1.引言1.1 概述本文介绍了51单片机中的定时器功能以及如何通过定时器实现延时1秒的函数。
在单片机应用中,定时器是一种非常重要且常用的功能模块之一。
它能够精确计时,并可用于实现周期性的任务触发、计时、脉冲输出等功能。
本文首先将对51单片机进行简要介绍,包括其基本概念、结构和特点。
随后,重点讲解了定时器的基本原理和功能。
定时器通常由一个计数器和一组控制寄存器组成,通过预设计数器的初值和控制寄存器的配置来实现不同的计时功能。
接着,本文详细介绍了如何通过编程实现一个延时1秒的函数。
延时函数是单片机开发中常用的功能,通过定时器的计时功能可以实现精确的延时控制。
本文将以C语言为例,介绍延时函数的编写步骤和原理,并给出示例代码和详细的说明。
最后,本文对所述内容进行了总结,并展望了定时器在单片机应用中的广泛应用前景。
通过学习定时器的相关知识和掌握延时函数的编写方法,我们可以更好地应用定时器功能,提高单片机应用的效率和精确性。
综上所述,通过本文的学习,读者可全面了解51单片机中定时器的功能和应用,并能够掌握延时函数的编写方法,为单片机应用开发提供一定的参考和指导。
1.2 文章结构本文以51单片机定时器功能为主题,旨在介绍如何使用定时器进行延时操作。
文章分为引言、正文和结论三个主要部分。
在引言部分,首先会对文章的背景进行概述,介绍单片机的基本概念和应用领域。
然后,给出本文的整体结构,并阐述文章的目的和意义。
正文部分将分为两个小节。
在2.1节中,将对单片机进行详细介绍,包括其构造与工作原理。
这部分的内容将帮助读者全面了解单片机的基本知识,为后续的定时器功能介绍打下基础。
2.2节将重点介绍定时器的功能和特点。
这部分将涵盖定时器的基本原理、工作模式以及在实际应用中的使用方法。
同时,还将详细讲解如何使用定时器进行1秒钟的延时操作,包括具体的代码实现和注意事项。
结论部分将对全文进行总结,并强调定时器的重要性和应用前景。
51单片机C语言精确延时程序(超级准)
51单片机 C语言精确延时程序(超级准)
51单片机C语言精密延时程序 程序如下: void delayms(unsigned char t) { unsigned char j; unsigned char i; do { j=3; do { i=165; do { --i; } while(i!=0); --j; } while(j!=0); --t; } while(t!=0); } 该程序延时时基为1ms,所以最大延时时间是255ms 下面是反编译的汇编程序 C:0x0031 7E03 MOV R6,#0x03 C:0x0033 7DA5 MOV R5,#0xA5 C:0x0035 DDFE DJNZ R5,C:0035 C:0x0037 DEFA DJNZ R6,C:0033 C:0x0039 DFF6 DJNZ R7,delayms(C:0031) C:0x003B 22 RET 延时时间计算公式如下: ((R5*2 + 2+1)*R6+2+1)R7
假设R7=1,上式为(165*2+3)*3+2+1 =1002us!!!!! 以上程序使用的晶振是12MHz,如果使用的是其他频率的晶振只需计算出1ms的机器周期 数,代入5*2 + 2+1)*R6+2+1,选择合适的R
基于51单片机的秒表设计报告
课程名称:微机原理课程设计题目:基于51单片机的秒表设计随着社会的发展,单片机已经渗透到我们生活中的各个领域,广泛应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等。
本设计就是由单片机STC89C52RC芯片和四位一体LED数码管为核心,辅以必要的电路,构成了一个单片机电子秒表。
秒表是一种常用的测试仪器,它可以用在百米赛跑等需要精确计时的地方,为人们的生活提供了很大的方便。
该单片机电子秒表布置合理,全部器件分布在7*9cm洞洞板上,看起来小巧精简。
采用的是单片机内部定时/计数器计时,走时非常精确而且不易出错。
0.56英寸的四位数码管发出红光,可以直观地显示时间。
一个控制按键就可以控制秒表的计数与停止,按一下控制键,秒表工作状态就由计时变为计时变为停止或停止变为计时,按一下清零键就可以清零,操作非常简单。
由于是四位数码管,它的计时周期为100秒,显示满刻度为99:99秒,从左往右数共四位,前两位显示整数部分,后两位显示小数部分,中间两个个秒闪灯(秒闪灯一直亮)。
关键词:秒表,51单片机,C语言一、设计任务与要求 (18)1.1 设计任务 (18)1.2 设计要求 (18)二、方案总体设计 (19)2.1 方案一 (19)2.2 方案二 (19)2.3 系统采用方案 (19)三、硬件设计 (21)3.1 单片机最小系统 (21)3.2 数码管显示模块 (21)3.3 系统电源 (22)3.4 整体电路 (22)四、软件设计 (24)4.1 keil软件介绍 (24)4.2 系统程序流程 (24)五、仿真与实现 (27)5.1 proteus软件介绍 (27)5.2 仿真过程 (27)5.3 实物制作与调试 (29)5.4 使用说明 (30)六、总结 (32)6.1设计总结 (32)6.2经验总结 (20)七、参考文献 (21)一、设计任务与要求1.1 设计任务1).对更多小器件的了解2).巩固51单片机和C语言的知识,熟悉单片机和C语言的实际操作运用3).掌握仿真软件的运用和原理图的绘制4).加深焊接的技巧,提高焊接的能力5).熟悉调试方法和技巧,提高解决实际问题的能力6).熟悉设计报告的编写过程1.2 设计要求1).清零键进行清零2).一个独立按键进行停止与运行的操作3).秒闪灯一直亮二、方案总体设计设计一个基于51单片机的秒表。
51单片机延时函数设计
58:
unsigned char i = 0;
C:0x11A5 E4
CLR
A
C:0x11A6 FF
MOV
R7,A
59:
unsigned char j = 0;
60:
for(i = 0;i < 29;i++)
61:
{
62:
for(j = 0;j < 62;j++)
C:0x11A7 E4
CLR
A
C:0x11A8 FE
djnz r6,DELAY2 ;2 个机器周期
djnz r5,DELAY1 ;2 个机器周期
ret
;2 个机器周期
假定已经给 delayr5、delayr6 和 delayr7 赋予了正确的数值,当调用 DELAY
函数的时候就会进行一段时间的空循环,然后返回,达到延时的目的。必须遵守
如下的调用顺序:
我找到了解决之道,参看示例代码 7。
示例代码 7
unsigned char i = 0;
unsigned char j = 0;
for(i = 0;i < 29;i++)
{
for(j = 0;j < 62;j++)
{
_nop_();
}
_nop_();
}
编译器做出来的代码类似如下格式(蓝色行是汇编代码,红色行是 C 源代码):
再次强调,延时时间是包括“DelayConstantInner = XXX”这些语句在内 的总时间。当然,在 C 程序中嵌入汇编,还要设置一些编译器选项,这个你自己 找书看。这一步很重要哦,要不编译根本通不过。
keilc51程序设计中几种精确延时方法精确延时
Keil C51程序设计中几种精确延时方法2008-04-03 08:48实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。
1 使用定时器/计数器实现精确延时单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。
第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。
本程序中假设使用频率为12 MHz的晶振。
最长的延时时间可达216=65 536 μs。
若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。
在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。
使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。
但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。
这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。
2 软件延时与时间计算在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。
下面介绍几种软件延时的方法。
2.1 短暂延时可以在C文件中通过使用带_NOP_( )语句的函数实现,定义一系列不同的延时函数,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一个自定义的C文件中,需要时在主程序中直接调用。
如延时10 μs 的延时函数可编写如下:void Delay10us( ) {_NOP_( );_NOP_( );_NOP_( )_NOP_( );_NOP_( );_NOP_( );}Delay10us( )函数中共用了6个_NOP_( )语句,每个语句执行时间为1 μs。
51单片机延时程序
51单片机延时程序51单片机延时程序应用单片机的时候,经常会遇到需要短时间延时的情况。
需要的延时时间很短,一般都是几十到几百微妙(us)。
有时候还需要很高的精度,比如用单片机驱动DS18B20的时候,误差容许的范围在十几us 以内,不然很容易出错。
这种情况下,用计时器往往有点小题大做。
而在极端的情况下,计时器甚至已经全部派上了别的用途。
这时就需要我们另想别的办法了。
以前用汇编语言写单片机程序的时候,这个问题还是相对容易解决的。
比如用的是12MHz晶振的51,打算延时20us,只要用下面的代码,就可以满足一般的需要:mov r0, #09hloop: djnz r0, loop51 单片机的指令周期是晶振频率的1/12,也就是1us一个周期。
mov r0, #09h需要2个极其周期,djnz也需要2个极其周期。
那么存在r0里的数就是(20-2)/2。
用这种方法,可以非常方便的实现256us 以下时间的延时。
如果需要更长时间,可以使用两层嵌套。
而且精度可以达到2us,一般来说,这已经足够了。
现在,应用更广泛的毫无疑问是Keil的C编译器。
相对汇编来说,C固然有很多优点,比如程序易维护,便于理解,适合大的项目。
但缺点(我觉得这是C的唯一一个缺点了)就是实时性没有保证,无法预测代码执行的指令周期。
因而在实时性要求高的场合,还需要汇编和C的联合应用。
但是是不是这样一个延时程序,也需要用汇编来实现呢?为了找到这个答案,我做了一个实验。
用C语言实现延时程序,首先想到的就是C常用的循环语句。
下面这段代码是我经常在网上看到的:void delay2(unsigned char i){for(; i != 0; i--);到底这段代码能达到多高的精度呢?为了直接衡量这段代码的效果,我把 Keil C 根据这段代码产生的汇编代码找了出来:; FUNCTION _delay2 (BEGIN); SOURCE LINE # 18;---- Variable i assigned to Register R7 ----; SOURCE LINE # 19; SOURCE LINE # 200000 ?C0007:0000 EF MOV A,R70001 6003 JZ ?C00100003 1F DEC R70004 80FA SJMP ?C0007; SOURCE LINE # 210006 ?C0010:0006 22 RET; FUNCTION _delay2 (END)真是不看不知道~~~一看才知道这个延时程序是多么的不准点~~~光看主要的那四条语句,就需要6个机器周期。
基于51单片机控制系统的软件延时程序的分析
2 汇 编 语 言 软 件 延 时 程序 设计
汇 编语 言 编写 的延 时程 序 常用 的方 法 是 多 次 重 复 使 用
空操 作 指 令 N0 P或 者 使 用 循 环 结 构 及 嵌 套 实 现 , 延 时 程
序 常 以 子 程序 的形 式 出 现 。 延 时 子程 序 的运 行 时 间 与指 令
2 0 1 3年 第 2期 ( 总第 7 0期 )
桂 林航 天工 业 学院 学报 J O U R N A L O F G U I L I N U N I V E R S I T Y O F A E R O S P A C E T E C H N O L O G Y 信 息 与 电 子 工 程
数器 , 但每次延时都使用定时器/ 计 数 器 也是 不 现 实 的 , 利 用 软 件 延 时 程 序 来 完 成 一 些 需 要 延 时 是 必 须 的 。文
中对 常 用 的汇 编 和 C 5 1软 件 延 时 程 序 的 设 计 方 法 进 行 了 归 纳 总 结 , 其 中经 典 的 设 计 方 法 可 以 广 泛 应 用 于 5 1
1 软 件 延 时程 序 的基 本 原 理
延 时 程 序 就 是 利 用 程 序 执 行 的指 令 或 语 句 时需 要 占用 C P延 时 时 间
的长 短 主 要 与 两 个 因素 有 关 , 一 是 单 片 机 所 用 的 晶振 , 二 是
的执行时间 、 循环次数及 5 1 单 片 机 的 晶振 频 率 有 关 。 比如 5 1单 片 机 的 晶 振 频 率 为 1 2 MHz , 则 一 个 机 器 周 期 T 的 时 间就是 1 s , 设 延 时 程 序 的所 有 指 令 所 占 的 机 器 周 期 数 为 N, 那 么 延 时 程 序 的 运 行 时 间 为 NT 即 N t L s 。表 1为 软 件
keilc51精确延时程序执行时间
K e i l C51精确延时程序执行时间(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--Keil C51 精确延时程序执行时间引言单片机因具有体积小、功能强、成本低以及便于实现分布式控制而有非常广泛的应用领域[1]。
单片机开发者在编制各种应用程序时经常会遇到实现精确延时的问题,比如按键去抖、数据传输等操作都要在程序中插入一段或几段延时,时间从几十微秒到几秒。
有时还要求有很高的精度,如使用单总线芯片DS18B20时,允许误差范围在十几微秒以内[2],否则,芯片无法工作。
用51汇编语言写程序时,这种问题很容易得到解决,而目前开发嵌入式系统软件的主流工具为C语言,用C51写延时程序时需要一些技巧[3]。
因此,在多年单片机开发经验的基础上,介绍几种实用的编制精确延时程序和计算程序执行时间的方法。
实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。
1 使用定时器/计数器实现精确延时单片机系统一般常选用 2 MHz、12 MHz或6 MHz晶振。
第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。
本程序中假设使用频率为12 MHz的晶振。
最长的延时时间可达216=65 536 μs。
若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。
在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。
使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。
但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。
单片机C51延时时间怎样计算
单片机C51延时时间怎样计算
1. 延时函数:C51中提供了一个延时函数`delay(`,可以用来实现简单的延时操作。
该函数的参数为延时的时间,单位是毫秒(ms)。
2.单片机时钟频率:C51的时钟频率一般为12MHz,即每秒钟钟脉冲个数为12,000,000次。
3.定时/计数器模块:C51中的定时/计数器模块可以用来精确控制延时时间。
其中,TMOD寄存器用来设置定时器的工作模式,THx和TLx寄存器用来设置定时器的初值。
4.定时器计数:C51的定时器工作时,会不断地进行计数。
当计数值达到设定的初值时,会触发中断或者产生一个标志位,可以利用这个特性来实现精确的延时操作。
5.延时时间计算公式:延时时间(单位:毫秒)=计数器初值*定时器计数时间/定时器时钟频率
延时时间计算的具体步骤如下:
1.确定延时所需的毫秒数。
2.确定定时器的工作模式。
3.根据定时器的工作模式,设置THx和TLx寄存器的初值。
4.根据定时器的时钟频率和计数器初值,计算延时时间。
延时函数的缺点是,它是通过循环执行一段无用指令来实现延时的,因此在延时期间无法执行其他操作,延时的精度也不够高。
如果需要精确的延时时间,可以利用定时/计数器模块来实现。
mcs-51单片机中汇编程序延时的精确算法。 -回复
mcs-51单片机中汇编程序延时的精确算法。
-回复MCs51单片机中的汇编程序延时是一种非常重要的功能,它可以用于控制程序的执行速度,并保证特定操作之间的时间间隔。
在本文中,我们将详细介绍MCs51单片机中汇编程序延时的精确算法,并一步一步回答与此主题相关的问题。
首先,让我们了解一下MCs51单片机的基本原理。
MCs51是一种8位微控制器,广泛应用于各种嵌入式系统中。
它的工作原理是通过读取和执行存储在其内部存储器中的指令来完成各种任务。
延时指令是一种特殊的指令,用于使程序在一定时间内暂停执行。
1. 什么是MCs51单片机中的延时?在MCs51单片机中,延时是指在程序执行过程中暂停一段时间。
这段时间可以是固定的,也可以根据不同的需求和算法进行动态调整。
延时指令是通过向计时器/计数器寄存器写入特定的数值来实现的。
2. MCs51单片机中的延时精确性有多高?MCs51单片机可以实现非常高精度的延时,通常可以达到微秒级别。
这种高精度是由于MCs51单片机的工作频率相对较高,并且可以使用精确的定时器/计数器来控制延时。
3. MCs51单片机中的延时算法是如何工作的?MCs51单片机中的延时算法基于定时器/计数器的工作原理。
定时器/计数器是一种特殊的寄存器,可以产生固定频率的时钟信号。
通过调整寄存器的初值,可以控制定时器/计数器产生的时钟脉冲的数量。
4. 常用的基本延时算法是什么?MCs51单片机中常用的基本延时算法是利用循环来实现的。
具体而言,通过实现一个循环,使程序重复执行一定次数,从而产生延时效果。
循环的次数可以根据不同的算法和需求进行调整。
5. 延时的时间是如何计算的?在MCs51单片机中,延时的时间是通过调整循环次数来实现的。
通常情况下,每次循环的执行时间是固定的,可以根据单片机的工作频率和循环次数进行计算。
例如,如果单片机的工作频率为10MHz,每次循环需要10个时钟周期,那么延时1ms就需要执行10000次循环。
51单片机精确延时程序大集合
51单片机精确延时程序大集合51单片机精确延时程序大集合以下程序说是精确延时,实际上都不对。
调用一次差个几微秒、几百微秒,一天下来差好几分钟。
加我的QQ群有精确版本哦,不同频率的晶振都适用。
群:383977592008-04-24 12:10:26,在论坛上看到不少不错的延时程序,整理如下共同分享:精确延时计算公式:延时时间=[(2*第一层循环+3)*第二层循环+3]*第三层循环+5;延时5秒左右DELAY5S:PUSH 04H;2个机器周期PUSH 05H;2个机器周期PUSH 06H;2个机器周期MOV R4,#50;1个机器周期DELAY5S_0:MOV R5,#200;1个机器周期DELAY5S_1:MOV R6,#245;1个机器周期DJNZ R6,$;2×245=490个机器周期DJNZ R5,DELAY5S_1;这条2个机器周期,这层循环包含R5×(490+1)+2×R5=98600个机器周期DJNZ R4,DELAY5S_0;这条2个机器周期,这层循环包含R4×(98600+1)+2×R4=4930150个机器周期POP 06H;2个机器周期POP 05H;2个机器周期POP 04H;2个机器周期RET;2个机器周期;(共2+2+2+1+4930150+2+2+2+2=4930165个机器周期);513微秒延时程序DELAY: MOV R2,#0FEH;1个机器周期JUZINAIYOU: DJNZ R2,JUZINAIYOU;2×R21即2×245RET;2个机器周期;(实际上是493个机器周期);10毫秒延时程序DL10MS: MOV R3,#14HDL10MS1:LCALL DELAYDJNZ R3,DL10MS1RET;(缺DELAY);0.1s延时程序12MHzDELAY: MOV R6,#250DL1: MOV R7,#200DL2: DJNZ R6,DL2DJNZ R7,DL1RET;延时1046549微秒(12MHz);具体的计算公式是:;((((r7*2+1)+2)*r6+1)+2)*r5+1+4 = ((r7*2+3)*r6+3)*r5+5 DEL : MOV R5,#08HDEL1: MOV R6,#0FFHDEL2: MOV R7,#0FFHDJNZ R7,$DJNZ R6,DEL2DJNZ R5,DEL1RET;1秒延时子程序是以12MHz晶振DELAY:MOV R1,#50del0: mov r2,#91del1: mov r3,#100djnz r3,$djnz r2,del1djnz r1,del0Ret;1秒延时子程序是以12MHz晶振为例算指令周期耗时KK: MOV R5,#10 ;1指令周期×1K1: MOV R6,#0FFH ;1指令周期×10K2: MOV R7,#80H ;1指令周期256×10=2560K3: NOP ;1指令周期;128*256*10=327680DJNZ R7,K3 ;2指令周期2*128*256*10=655360DJNZ R6,K2 ;2指令周期2*256*10=5120DJNZ R5,K1 ;2指令周期2*10=20RET;2指令周期;21+10+2560+327680+655360+5120+20+2=990753 ;约等于1秒=1000000微秒;这个算下来也只有0.998抄T_0: MOV R7,#10;D1: MOV R6,#200;D2: MOV R5,#248;DJNZ R5,$DJNZ R6,D2;DJNZ R7,D1;RET;这样算下来应该是1.000011秒T_0: MOV R7,#10;D1: MOV R6,#200;D2: NOPMOV R5,#248;DJNZ R5,$DJNZ R6,D2;DJNZ R7,D1;RETDELAY_2S: ;10MS(11.0592mhz) MOV R3,#200JMP DELAY10MSDELAY_100MS: ;100MS(11.0592mhz) MOV R3,#10JMP DELAY10MSDELAY_10MS:MOV R3,#1DELAY10MS: ;去抖动10MS(11.0592mhz)MOV R4,#20DELAY10MSA:MOV R5,#247DJNZ R5,$DJNZ R4,DELAY10MSADJNZ R3,DELAY10MSRETDELAY_500MS: ;500MSMOV R2,#208JMP DELAY_MSDELAY_175MS: ;175MSMOV R2,#73JMP DELAY_MSdelaY_120MS: ;120MSMOV R2,#50JMP DELAY_MSdelay_60ms: ;60msMOV R2,#25JMP DELAY_MSdelay_30ms: ;30msMOV R2,#12JMP DELAY_MSDELAY_5MS: ;5MSMOV R2,#2;=================================== DELAY_MS:CALL DELAY2400DJNZ R2,DELAY_MSRET;=================================== DELAY2400: ;10x244+4=2447 /1.024=2390 MOV R0,#244 ;1 DELAY24001:MUL AB ;4MUL AB ;4DJNZ R0,DELAY24001 ;2RETDELAY: ;延时子程序(1秒)MOV R0,#0AHDELAY1: MOV R1,#00HJUZINAIYOU: MOV R2,#0B2HDJNZ R2,$DJNZ R1,JUZINAIYOUDJNZ R0,DELAY1RETMOV R2,#10 ;延时1秒LCALL DELAYMOV R2,#50 ;延时5秒LCALL DELAYDELAY: ;延时子程序PUSH R2PUSH R1PUSH R0DELAY1: MOV R1,#00HJUZINAIYOU: MOV R0,#0B2HDJNZ R0,$DJNZ R1,JUZINAIYOU ;延时 100 mSDJNZ R2,DELAY1POP R0POP R1POP R2RET1:DEL: MOV R7, #200DEL1: MOV R6, #123NOPDEL2: DJNZ R6, DEL2DJNZ R7, DEL1RET是50.001ms 算法是:0.001ms+200*0.001ms+200*0.001ms+200*123*0.002ms+2 00*0.002ms ;(123*2+4)*200+12: DEL: MOV R7, #200 DEL1: MOV R6, #123 DEL2:NOPDJNZ R6,DEL2DJNZ R7,DEL1RETD500MS:PUSH PSWSETB RS0MOV R7,#200D51: MOV R6,#250D52: NOPNOPNOPNOPDJNZ R6,D52DJNZ R7,D51POP PSWRETDELAY: ;延时1毫秒PUSH PSW SETB RS0MOV R7,#50D1: MOV R6,#10D2: DJNZ R6,$DJNZ R7,D1POP PSWRETORG 0LJMP MAINORG 000BHLJMP CTC0MAIN: MOV SP, #50HCLR EAMOV TMOD, #01HMOV TH0,#3CHMOV TL0,#0B0HMOV R4, #10SETB ET0SETB EASETB TR0SJMP $ ;CTC0: MOV TH0, #3CHMOV TL0, #0B0HDJNZ R4, LPCPL P1.0MOV R4, #10LP: RETIEND; 定时器中断延时TMOD=0x01; /*定时器0工作在模式1下(16位计数器)*/TH0=0xfd;TL0=0x83;TR0=1; /*启动定时器*/TF0==0;TR0=0;等待中断;100ms定时,11.0592晶振他定时准确啊又不影响程序运行2008-06-10 13:50:46 来源:来于网络,服务大家作者:未知【大中小】点击:9 次下面几个是单片机的延时程序(包括asm和C程序,都是我在学单片机的过程中用到的),在单片机延时程序中应考虑所使用的晶振的频率,在51系列的单片机中我们常用的是11.0592MHz和12.0000MHz的晶振,而在AVR单片机上常用的有8.000MHz和4.000MH的晶振所以在网上查找程序时如果涉及到精确延时则应该注意晶振的频率是多大。
C51单片机中的C语言精确延时的资料和例子
在网上搜了一些关于C51单片机C语言的精确延时(相对)的例子和方法现总结如下:1,_nop_() 适用于us级的少量延时标准的C语言中没有空语句。
但在单片机的C语言编程中,经常需要用几个空指令产生短延时的效果。
这在汇编语言中很容易实现,写几个nop就行了。
在keil C51中,直接调用库函数:#include<intrins.h> //声明了void _nop_(void);_nop_(); //产生一条NOP指令作用:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP指令,延时几微秒。
NOP指令为单周期指令,可由晶振频率算出延时时间,对于12M晶振,延时1uS。
2,一般延时大于10us一,定义的C51中循环变量,尽量采用无符号字符型变量。
二,在FOR循环语句中,尽量采用变量减减来做循环。
三,在do…while,while语句中,循环体内变量也采用减减方法这因为在C51编译器中,对不同的循环方法,采用不同的指令来完成的例:unsigned char i;for(i=255;i>0;i--);用keil C51编译后MOV09H,#0FFHLOOP: DJNZ09H,LOOP指令相当简洁,也很好计算精确的延时时间。
3,延时更长,达到MS级,这时需要嵌套循环循环嵌套的方法常用于达到ms级的延时。
对于循环语句同样可以采用for,do…while,while结构来完成,每个循环体内的变量仍然采用无符号字符变量。
例:unsigned char i,jfor(i=255;i>0;i--)for(j=255;j>0;j--);或unsigned char i,ji=255;do{j=255;do{j--}while(j);i--;}while(i);或unsigned char i,ji=255;while(i){j=255;while(j){j--};i--;}下面给出有关在C51中延时子程序设计时要注意的问题(一些经验之谈)1、在C51中进行精确的延时子程序设计时,尽量不要或少在延时子程序中定义局部变量,所有的延时子程序中变量通过有参函数传递。
基于51单片机的精确延时(微秒级)
声明:*此文章是基于51单片机的微秒级延时函数,采用12MHz晶振。
*此文章共包含4个方面,分别是延时1us,5us,10us和任意微秒。
前三个方面是作者学习过程中从书本或网络上面总结的,并非本人所作。
但是延时任意微秒函数乃作者原创且亲测无误。
欢迎转载。
*此篇文章是作者为方便初学者使用而写的,水平有限,有误之处还望大家多多指正。
*作者:Qtel*2012.4.14*QQ:97642651----------------------------------------------------------------------------------------------------------------------序:对于某些对时间精度要求较高的程序,用c写延时显得有些力不从心,故需用到汇编程序。
本人通过测试,总结了51的精确延时函数(在c语言中嵌入汇编)分享给大家。
至于如何在c 中嵌入汇编大家可以去网上查查,这方面的资料很多,且很简单。
以12MHz晶振为例,12MHz 晶振的机器周期为1us,所以,执行一条单周期指令所用时间就是1us,如NOP指令。
下面具体阐述一下。
----------------------------------------------------------------------------------------------------------------------1.若要延时1us,则可以调用_nop_();函数,此函数是一个c函数,其相当于一个NOP指令,使用时必须包含头文件“intrins.h”。
例如:#include<intrins.h>#include<reg52.h>void main(void){P1=0x0;_nop_();//延时1usP1=0xff;}----------------------------------------------------------------------------------------------------------------------2.延时5us,则可以写一个delay_5us()函数:delay_5us(){#pragma asmnop#pragma endasm}这就是一个延时5us的函数,只需要在需要延时5us时调用此函数即可。
51单片机汇编延时程序的设计方法
MOV 为1个机器周期,DNJZ 为2个机器周期,RET 为2个机器周期。
例1:
MAIN: AJMP DELAY1MS
DELAY1MS: ;误差 0us,包含调用时间
MOV R6,#0C7H 1个机器周期 0C7H=199
DL0:
MOV R5,#01H 1个机器周期
例3:
DELAY1MS: ;误差 0us,不包含调用时间
MOV R7,#01H
DL1:
MOV R6,#8EH
DL0:
MOV R5,#02H
DJNZ R5,$
DJNZ R6,DL0
DJNZ R7,DL1
RET
ห้องสมุดไป่ตู้
例4:
以此为基本的计时单位。如本实验要求0.2秒=200ms,10ms×R5=200ms,则R5=20,延时子程序如下:
DELAY200MS: MOV R5,#20
D1: MOV R6,#20
D2: MOV R7,#248
DJNZ R7,$
DJNZ R6,D2
DJNZ R5,D1
RET
作为单片机的指令的执行的时间是很短,数量大微秒级,因此,我们要求的闪烁时间间隔为0.2秒,相对于微秒来说,相差太大,所以我们在执行某一指令时,插入延时程序,来达到我们的要求,但这样的延时程序是如何设计呢?下面具体介绍其原理:
石英晶体为12MHz,因此,1个机器周期为1微秒,如果石英晶体为24MHz,1个机器周期为0.5微妙。
MOV R7,#05H
DL1:
MOV R6,#04H
DL0:
MOV R5,#0F8H
DJNZ R5,$
51单片机延时程序算法详解
51单片机汇编延时程序算法详解将以12MHZ晶振为例,详细讲解MCS-51单片机中汇编程序延时的精确算法。
指令周期、机器周期与时钟周期指令周期:CPU执行一条指令所需要的时间称为指令周期,它是以机器周期为单位的,指令不同,所需的机器周期也不同。
时钟周期:也称为振荡周期,一个时钟周期=晶振的倒数。
MCS-51单片机的一个机器周期=6个状态周期=12个时钟周期。
MCS-51单片机的指令有单字节、双字节和三字节的,它们的指令周期不尽相同,一个单周期指令包含一个机器周期,即12个时钟周期,所以一条单周期指令被执行所占时间为12*(1/12000000)=1μs。
程序分析例1 50ms 延时子程序:DEL:MOV R7,#200 ①DEL1:MOV R6,#125 ②DEL2:DJNZ R6,DEL2 ③DJNZ R7,DEL1 ④RET ⑤精确延时时间为:1+(1*200)+(2*125*200)+(2*200)+2=(2*125+3)*200+3 ⑥=50603μs≈50ms由⑥整理出公式(只限上述写法)延时时间=(2*内循环+3)*外循环+3 ⑦详解:DEL这个子程序共有五条指令,现在分别就每一条指令被执行的次数和所耗时间进行分析。
第一句:MOV R7,#200 在整个子程序中只被执行一次,且为单周期指令,所以耗时1μs 第二句:MOV R6,#125 从②看到④只要R7-1不为0,就会返回到这句,共执行了R7次,共耗时200μs第三句:DJNZ R6,DEL2 只要R6-1不为0,就反复执行此句(内循环R6次),又受外循环R7控制,所以共执行R6*R7次,因是双周期指令,所以耗时2*R6*R7μs。
例2 1秒延时子程序:DEL:MOV R7,#10 ①DEL1:MOV R6,#200 ②DEL2:MOV R5,#248 ③DJNZ R5,$ ④DJNZ R6,DEL2 ⑤DJNZ R7,DEL1 ⑥RET ⑦对每条指令进行计算得出精确延时时间为:1+(1*10)+(1*200*10)+(2*248*200*10)+(2*200*10)+(2*10)+2 =[(2*248+3)*200+3]*10+3 ⑧=998033μs≈1s由⑧整理得:延时时间=[(2*第一层循环+3)*第二层循环+3]*第三层循环+3 ⑨此式适用三层循环以内的程序,也验证了例1中式⑦(第三层循环相当于1)的成立。
51单片机精确延时实现方法
51单片机精确延时实现方法51单片机的几种精确延时实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。
1 使用定时器/计数器实现精确延时单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。
第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。
本程序中假设使用频率为12 MHz的晶振。
最长的延时时间可达216=65 536 μs。
若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。
在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。
使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。
但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW 和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。
这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。
2 软件延时与时间计算在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。
下面介绍几种软件延时的方法。
2.1 短暂延时可以在C文件中通过使用带_NOP_()语句的函数实现,定义一系列不同的延时函数,如Delay10us()、Delay25us()、Delay40us ()等存放在一个自定义的C文件中,需要时在主程序中直接调用。
如延时10 μs的延时函数可编写如下:void Delay10us(){_NOP_();_NOP_();_NOP_();_NOP_();_NOP_();_NOP_();}Delay10us()函数中共用了6个_NOP_()语句,每个语句执行时间为1 μs。
延时函数—微秒级
说明:以下程序测试都是在晶振频率12MHZ下测试的。
在写51单片机的程序中会用到延迟函数,但是能精确到微秒级的函数,由于一个机器周期就1us,所以几乎写不出来。
倘若用到这类函数,只能迷糊的写一些延迟函数,但究竟延迟多长时间也不知道。
以下是我的研究结果,仅供参考,有错难免,望谅解。
/********************************************************** ******************关于以下函数延迟时间的研究:void delay_us(unsigned int n){while(n--);}微秒级延时函数,其延时结果的特殊情况如下:n=0 delaytime=17 usn=1 delaytime=25 usn=2 delaytime=34 usn=3 delaytime=43 usn=4 delaytime=52 usn=5 delaytime=61 us delaytime/n=12.2us/次n=10 delaytime=106 us delaytime/n=10.6us/次n=50 delaytime=466 us delaytime/n=9.3us/次n=100 delaytime=916 us delaytime/n=9.2us/次n=500 delaytime=4517 us delaytime/n=9.0us/次n=1000 delaytime=9019 us delaytime/n=9.0us/次结论:推测将n趋于无穷大,delaytime/n=9us/次其他运算的延迟时间:_nop_(); delaytime=1 usi++; delaytime=2 us*********************************************************** *****************//********************************************************** ******************关于该函数延迟时间的测试*********************************************************** #include <reg51.h> //52系列头文件#include<intrins.h> //包含_nop_()函数定义的头文件void delay_us(unsigned int n){while(n--);}main(){_nop_();delay_us(10);_nop_();}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
声明:
*此文章是基于51单片机的微秒级延时函数,采用12MHz晶振。
*此文章共包含4个方面,分别是延时1us,5us,10us和任意微秒。
前三个方面是作者学习过程中从书本或网络上面总结的,并非本人所作。
但是延时任意微秒函数乃作者原创且亲测无误。
欢迎转载。
*此篇文章是作者为方便初学者使用而写的,水平有限,有误之处还望大家多多指正。
*作者:Qtel
*2012.4.14
*QQ:97642651
----------------------------------------------------------------------------------------------------------------------序:
对于某些对时间精度要求较高的程序,用c写延时显得有些力不从心,故需用到汇编程序。
本人通过测试,总结了51的精确延时函数(在c语言中嵌入汇编)分享给大家。
至于如何在c 中嵌入汇编大家可以去网上查查,这方面的资料很多,且很简单。
以12MHz晶振为例,12MHz 晶振的机器周期为1us,所以,执行一条单周期指令所用时间就是1us,如NOP指令。
下面具体阐述一下。
----------------------------------------------------------------------------------------------------------------------1.若要延时1us,则可以调用_nop_();函数,此函数是一个c函数,其相当于一个NOP指令,使用时必须包含头文件“intrins.h”。
例如:
#include<intrins.h>
#include<reg52.h>
void main(void){
P1=0x0;
_nop_();//延时1us
P1=0xff;
}
----------------------------------------------------------------------------------------------------------------------2.延时5us,则可以写一个delay_5us()函数:
delay_5us(){
#pragma asm
nop
#pragma endasm
}
这就是一个延时5us的函数,只需要在需要延时5us时调用此函数即可。
或许有人会问,只有一个NOP指令,怎么是延时5us呢?
答案是:在调用此函数时,需要一个调用指令,此指令消耗2个周期(即2us);函数执行完毕时要返回主调函数,需要一个返回指令,此指令消耗2个周期(2us)。
调用和返回消耗了2us+2us=4us。
然后再加上一个NOP指令消耗1us,不就是5us吗。
----------------------------------------------------------------------------------------------------------------------3.延时10us。
我们编写一个delay_10us()函数:
delay_10us(){
#pragma asm
nop
nop
nop
nop
nop
nop
#pragma endasm
}
这就是延时10us的函数。
同延时5us函数一样,调用和返回消耗4us,加上函数中的6个NOP指令6us,正好是10us。
----------------------------------------------------------------------------------------------------------------------4.此时有人不禁要问那么,任意微秒时,函数应该怎么写呢?看我慢慢道来:
首先,延时任意微秒我暂时没有想到,但是,我可以延时任意偶数微秒或延时任意奇数微秒,也就是说,需要两个函数,一个函数专门实现任意偶数的微秒级延时,另一个函数专门实现任意奇数的微秒级延时。
只要有了这两个函数在,不就可以延时任意的微秒了吗!
首先我们来实现任意偶数的微秒级延时:
void delay_even_us(unsigned char even){//任意偶数的微秒级延时#pragma asm
1mov a,r7//为什么要用到r7呢,因为r7里面装的是函数的参数!!!
//^_^这句消耗1个周期
2subb a,#10H//这句看完程序我再解释这句消耗1个周期
3mov b,#02H//这句看完程序我再解释这句消耗2个周期
4div ab//这句意思是a/b,商放在a里,余数放在b里稍
//后解释这句消耗4个周期
5mov r0,a//这句消耗1个周期
6nop//这句消耗1个周期
7loop:
8djnz r0,loop//不等于0跳转指令,也就是说r0中的值若不为0的话,
//就跳转到loop处这句消耗2个周期
#pragma endasm
}
下面我们来分析一下为何这样写:为了方便分析,我给句子编上了序号。
我们以延时100us 为例(delay_even_us(100))。
首先减去调用和返回的4个周期(4us)。
再减去参数传递所消耗的
2个周期。
因为c函数参数传递到汇编是需要消耗周期的。
一共消耗了6个周期。
也就是消耗了6us,还剩下100us-6us=94us。
然后再看我再程序上面注释的各语句消耗时间:从1句到5句一共消耗了10个周期(不信你数数^_^)。
还剩下94us-10us=84us。
现在就看第8句了,这句应该消耗84个周期才能达到我们延时100us。
而这句每执行一次消耗2个周期,也就是说r0的值应该为84/2=42。
那么,怎样达到r0=42的呢?我们从第1句开始分析:
第1句中,r7为c传递过来的参数,此例子中为100.执行完此句后a的值为100;
第2句中,将a=a-16=100-16=84。
此句结束后a的值为84;
第3句中,给b赋值为2;
第4句中,用a来除以b。
结果商存入a中,余数存入b中,此句结束后a的值为a=a/b=84/2 =42;
第5句,将a值赋给r0,此句结束后r0的值为42。
于是乎,r0的值为42这个目的达到了。
结合前面的分析,此程序是不是延时了100us呢?答案当然是“是”了!
这个函数可以实现任意偶数微秒(>=18)的延时的,不信的话可以带一个值进去算的。
至于为什么值必须>=18us,用不着我解释了吧。
任意奇数的微秒级延时:
void delay_odd_us(unsigned char odd){
#pragma asm
1mov a,r7
2subb a,#0fH
3mov b,#02H
4div ab
5mov r0,a
6loop1:
7djnz r0,loop1
#pragma endasm
}
此即为任意奇数微秒的延时,和偶数延时一样的道理,不解释了。
^_^
此函数的参数必须大于等于17,请思考为什么?^_^。