(新教材)人教A版高中数学必修第二册学案 统计导学案含答案
2019-2020学年新导学案同步人教A版数学必修2_第2章 点_直线_平面之2.3.1
返回导航
·
第二章 点、直线、平面之间的位置关系
3.直线和平面所成的角
(1)定义:一条直线和一个平面相交,但不和这个平面__垂__直____,这条直线
叫做这个平面的斜线,斜线和平面的___交__点___叫做斜足.过斜线上斜足以外的
一点向平面引垂线,过___垂__足___和__斜__足____的直线叫做斜线在这个平面上的射
一点,且SA=SB=SC.
数
(1)求证:SD⊥平面ABC;
学
必 修
(2)若AB=BC,求证:BD⊥平面SAC.
②
人 教
版
返回导航
·
·
第二章 点、直线、平面之间的位置关系
[解析] (1)因为SA=SC,D是AC的中点,
所以SD⊥AC.在Rt△ABC中,AD=BD,
由已知SA=SB,所以△ADS≌△BDS,
人 教
版
返回导航
·
第二章 点、直线、平面之间的位置关系
1.直线l⊥平面α,直线m⊂α,则l与m不可能
(A)
A.平行
B.相交
C.异面
D.垂直
[解析] ∵直线l⊥平面α,∴l与α相交,
又∵m⊂α,∴l与m相交或异面,由直线与平面垂直的定义,可知l⊥m.故l与
数 学
m不可能平行.
必
修
②
人 教
版
返回导航
·
②连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角
即为所求的角;③把该角归结在某个三角形中,通过解三角形,求出该角.
(2)求线面角的技巧:在上述步骤中,其中作角是关键,而确定斜线在平面
内的射影是作角的关键,几何图形的特征是找射影的依据,射影一般都是一些
高中数学人教A版(新)选择性必修第二册 一元函数的导数及其应用 教学设计 导数的概念及其几何意义
5.1.2 导数的概念及其几何意义一、教学目标1. 理解导数的概念及其几何意义;2. 掌握用导数的概念求简单函数在某点处的导数及曲线的切线问题. 二、教学重难点 1. 教学重点导数的概念及利用导数概念求导数、导数的几何意义及其应用. 2. 教学难点导数的概念及其几何意义的理解. 三、教学过程 (一)新课导入上节课研究了两类变化率问题:一类是物理学中的问题,涉及平均速度和瞬时速度;另一类是几何学中的问题,涉及割线斜率和切线斜率.这两类问题都采用了由“平均变化率”逼近“瞬时变化率”的思想方法;问题的答案也有一样的表示形式.下面我们用上述思想方法研究更一般的问题. (二)探索新知 1. 导数的概念对于函数()y f x =,设自变量x 从0x 变化到0x x +∆,相应地,函数值y 就从0()f x 变化到0(Δ)f x x +.这时,x 的变化量为Δx ,y 的变化量为00Δ(Δ)()y f x x f x =+-.我们把比值ΔΔy x,即00(Δ)()ΔΔΔf x x f x y x x+-=叫做函数()y f x =从0x 到0x x +∆的平均变化率. 如果当Δ0x →时,平均变化率ΔΔy x 无限趋近于一个确定的值,即ΔΔyx有极限,则称()y f x =在0x x =处可导,并把这个确定的值叫做()y f x =在0x x =处的导数(也称为瞬时变化率),记作0()f x '或0x x y =',即000Δ0Δ0Δ()Δ()lim lim()ΔΔx x f x x f x yf x x x→→+-=='. 例1 设1()f x x=,求(1)f '. 解:Δ0Δ0Δ011(1Δ)(1)11Δ(1)lim lim lim 1ΔΔ1Δx x x f x f x f x x x →→→-+-⎛⎫+===-=- ⎪+⎝⎭'. 例2 一辆汽车在公路上沿直线变速行驶,假设s t 时汽车的速度(单位:m/s )为2()660y v t t t ==-++,求汽车在第2 s 与第6 s 时的瞬时加速度,并说明它们的意义.解:在第2 s 和第6 s 时,汽车的瞬时加速度就是(2)v '和(6)v '. 根据导数的定义,22Δ(2Δ)(2)(2Δ)6(2Δ)60(26260)Δ2ΔΔΔy v t v t t t t t t+--++++--+⨯+===-+, 所以Δ0Δ0Δ(2)lim lim(Δ2)2Δt t yv t t →→==-+=',同理可得(6)6v '=-.在第2 s 与第6 s 时,汽车的瞬时加速度分别是22m/s 与26m/s -.说明在第2 s 附近,汽车的速度每秒大约增加2m/s ;在第6 s 附近,汽车的速度每秒大约减少6m/s . 2. 导数的几何意义思考:如图,观察函数()y f x =的图象,平均变化率00(Δ)()ΔΔΔf x x f x y x x+-=表示什么?瞬时变化率000Δ0Δ0Δ()Δ()limlim()ΔΔx x f x x f x yf x x x→→+-=='表示什么?容易发现,平均变化率00(Δ)()ΔΔΔf x x f x y x x+-=表示割线0P P 的斜率. 如下图,在曲线()y f x =上任取一点(())P x f x ,,如果当点(())P x f x ,沿着曲线()y f x =无限趋近于点000(())P x f x ,时,割线0P P 无限趋近于一个确定的位置,这个确定位置的直线0PT 称为曲线()y f x =在点0P 处的切线.割线0P P 的斜率00()()f x f x k x x -=-.记0Δx x x =-,当点P 沿着曲线()y f x =无限趋近于点0P时,即当Δ0x →时,k 无限趋近于函数()y f x =在0x x =处的导数.因此,函数()y f x =在0x x =处的导数0()f x '就是切线0PT 的斜率0k ,即0000Δ0(Δ)()lim ()Δx f x x f x k f x x→'+-==.这就是导数的几何意义.例3 如图是高台跳水运动中运动员的重心相对于水面的高度随时间变化的函数2() 4.9 4.811h t t t =-++的图象.根据图象,请描述、比较曲线()h t 在012t t t t =,,附近的变化情况.解:我们用曲线()h t 在012t t t t =,,处的切线斜率, 刻画曲线()h t 在上述三个时刻附近的变化情况.(1)当0t t =时,曲线()h t 在0t t =处的切线0l 平行于t 轴,0()0h t '=. 这时,在0t t =附近曲线比较平坦,几乎没有升降.(2)当1t t =时,曲线()h t 在1t t =处的切线1l 的斜率1()0h t '<. 这时,在1t t =附近曲线下降,即函数()h t 在1t t =附近单调递减. (3)当2t t =时,曲线()h t 在2t t =处的切线2l 的斜率2()0h t '<. 这时,在2t t =附近曲线下降,即函数()h t 在2t t =附近也单调递减.从图中可以看出,直线1l 的倾斜程度小于直线2l 的倾斜程度,这说明曲线()h t 在1t t =附近比在2t t =附近下降得缓慢.从求函数()y f x =在0x x =处导数的过程可以看到,当0x x =时,0()f x '是一个唯一确定的数.这样,当x 变化时,()y f x '=就是x 的函数,我们称它为()y f x =的导函数(简称导数).()y f x =的导函数有时也记作y ',即Δ0Δ()())limΔ(x f x x f x f x y x→'+-'==.(三)课堂练习1.()2f x x =在1x =处的导数为( ) A.2xB.2C.2x +∆D.1【答案】B【解析】20000(1)(1)12()1lim lim lim lim(2)2x x x x y f x f x x x x x x ∆→∆→∆→∆→∆+∆-+∆+∆-===+∆=∆∆∆.故选B.2.曲线23y x x =+在点()2,10A 处的切线的斜率k 是( ) A.4B.5C.6D.7【答案】D【解析】曲线23y x x =+在点(2,10)A 处的切线的斜率222000(2)3(2)232lim lim lim()7'7x x x x y x x k y x x x=∆→∆→∆→∆+∆++∆--⨯====+∆=∆∆.故选D.3.已知曲线21()2f x x x =+的一条切线的斜率是3,则切点的横坐标为( )A.2-B.1-C.1D.2【答案】D 【解析】222111()()()()()222y f x x f x x x x x x x x x x x ∆=+∆-=+∆++∆--=⋅∆+∆+∆,112y x x x ∆∴=+∆+∆,0i 1'()l mx yf x x x ∆→∆∴==+∆.设切点坐标为()00,x y , 则()00013,'2f x x x =+=∴=.故选D.4.一质点M 按运动方程()21s t at =+做直线运动(s 表示位移大小,单位:m ;t 表示时间,单位:s ).若质点M 在2s t =时的瞬时速度大小为8m /s ,则常数a 为_____________. 【答案】2【解析】因为222(2)(2)(2)1214()s s t s a t a a t a t ∆=+∆-=+∆+-⋅-=∆+∆,所以4sa a t t∆=+∆∆,当2t =时,瞬时速度大小为0lim4t sa t∆→∆=∆,可得48a =,所以2a =. 5.若一物体的运动方程如下:(位移s 的单位:m ,时间t 的单位:s ) 22323293(3)0 3.t t s t t ⎧+≥=⎨+-≤<⎩,,①,② 求:(1)物体在[]3,5内的平均速度; (2)物体的初速度0v ;(3)物体在1t =时的瞬时速度.【解】(1)因为物体在[3,5]内的时间变化量532t ∆=-=,物体在[3,5]内的位移变化量()()222235233235348s ∆=⨯+-⨯+=⨯-=, 所以物体在[3,5]内的平均速度为4824(m /s)2s t ∆==∆. (2)求物体的初速度0v ,即求物体在0t =时的瞬时速度.因为(0)(0)s s t s t t∆+∆-=∆∆22293[(0)3]293(03)t t ++∆---⨯-=∆318t =∆-, 所以物体在0t =处的瞬时速度为00lim lim(318)18t t st t ∆→∆→∆=∆-=-∆.即物体的初速度为18m /s -.(3)物体在1t =时的瞬时速度,即为函数()s t 在1t =处的瞬时变化率.因为22(1)(1)293[(1)3]293(13)312s s t s t t t t t∆+∆-++∆---⨯-===∆-∆∆∆,所以函数在1t =时的瞬时变化率为00lim lim(312)12t t st t ∆→∆→∆=∆-=-∆.即物体在1t =时的瞬时速度为12m /s -. 小结作业 小结:1. 导数的概念;2. 导数的几何意义. 作业:课后习题 四、板书设计5.1.2 导数的概念及其几何意义1. 导数的概念;2. 导数的几何意义.。
(新教材)人教A版高中数学必修第二册学案 统计导学案含答案
9.1随机抽样考点学习目标核心素养抽样调查理解全面调查、抽样调查、总体、个体、样本、样本量、样本数据等概念数学抽象简单随机抽样理解简单随机抽样的概念,掌握简单随机抽样的两种方法:抽签法和随机数法数学抽象、逻辑推理分层随机抽样理解分层随机抽样的概念,并会解决相关问题数学抽象、逻辑推理问题导学预习教材P173-P187的内容,思考以下问题:1.全面调查、抽样调查、总体、个体、样本、样本量、样本数据的概念是什么?2.什么叫简单随机抽样?3.最常用的简单随机抽样方法有哪两种?4.抽签法是如何操作的?5.随机数法是如何操作的?6.什么叫分层随机抽样?7.分层随机抽样适用于什么情况?8.分层随机抽样时,每个个体被抽到的机会是相等的吗?9.获取数据的途径有哪些?1.全面调查与抽样调查(1)对每一个调查对象都进行调查的方法,称为全面调查,又称普查W.(2)在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体W.(3)根据一定的目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查W.(4)把从总体中抽取的那部分个体称为样本W. (5)样本中包含的个体数称为样本量W.(6)调查样本获得的变量值称为样本的观测数据,简称样本数据. 2.简单随机抽样(1)有放回简单随机抽样一般地,设一个总体含有N (N 为正整数)个个体,从中逐个抽取n (1≤n <N )个个体作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样.(2)不放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样.(3)简单随机抽样放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样. (4)简单随机样本通过简单随机抽样获得的样本称为简单随机样本. (5)简单随机抽样的常用方法实现简单随机抽样的方法很多,抽签法和随机数法是比较常用的两种方法.■名师点拨 (1)从总体中,逐个不放回地随机抽取n 个个体作为样本,一次性批量随机抽取n 个个体作为样本,两种方法是等价的.(2)简单随机抽样中各个个体被抽到的机会都相等,从而保证了抽样的公平性.3.总体平均数与样本平均数 (1)总体平均数①一般地,总体中有N 个个体,它们的变量值分别为Y 1,Y 2,…,Y N ,则称Y -=Y 1+Y 2+…+Y N N =1N ∑Ni =1Y i为总体均值,又称总体平均数.②如果总体的N 个变量值中,不同的值共有k (k ≤N )个,不妨记为Y 1,Y 2,…,Y k ,其中Y i 出现的频数f i (i =1,2,…,k ),则总体均值还可以写成加权平均数的形式Y -=1N ∑ki =1f i Yi W.(2)样本平均数如果从总体中抽取一个容量为n 的样本,它们的变量值分别为y 1,y 2,…,y n ,则称y -=y 1+y 2+…+y n n =1n ∑ni =1y i 为样本均值,又称样本平均数.在简单随机抽样中,我们常用样本平均数y -去估计总体平均数Y -.4.分层随机抽样 (1)分层随机抽样一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层W.(2)比例分配在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.5.分层随机抽样中的总体平均数与样本平均数(1)在分层随机抽样中,如果层数分为2层,第1层和第2层包含的个体数分别为M 和N ,抽取的样本量分别为m 和n .我们用X 1,X 2,…,X M 表示第1层各个个体的变量值,用x 1,x 2,…,x m 表示第1层样本的各个个体的变量值;用Y 1,Y 2,…,Y N 表示第2层各个个体的变量值,用y 1,y 2,…,y n 表示第2层样本的各个个体的变量值,则:①第1层的总体平均数和样本平均数分别为X -=X 1+X 2+…+X M M =1M ∑Mi =1X i ,x -=x 1+x 2+…+x m m =1m ∑mi =1x i.②第2层的总体平均数和样本平均数分别为Y -Y 1+Y 2+…+Y N N 1N ∑Ni =1Y i,y -=y 1+y 2+…+y n n =1n ∑ni =1y i.③总体平均数和样本平均数分别为W -=∑Mi =1X i +∑Ni =1Y i M +N ,w -=∑mi =1x i +∑ni =1yim +nW.(2)由于用第1层的样本平均数x -可以估计第1层的总体平均数X -,用第2层的样本平均数y -可以估计第2层的总体平均数Y -.因此我们可以用M ×x -+N ×y -M +N =M M +N x -+N M +N y-估计总体平均数W -.(3)在比例分配的分层随机抽样中,m M =n N =m +n M +N ,可得M M +N x -+N M +N y -=m m +n x -+n m +n y -=w -.因此,在比例分配的分层随机抽样中,我们可以直接用样本平均数w -估计总体平均数W -.6.获取数据的途径获取数据的基本途径有:(1)通过调查获取数据;(2)通过试验获取数据;(3)通过观察获取数据;(4)通过查询获取数据判断(正确的打“√”,错误的打“×”) (1)高考考生的身体检查,是抽样调查.( )(2)某养鱼专业户要了解鱼塘中鱼的平均质量,是抽样调查.( ) (3)在简单随机抽样中,一次可以抽取多个个体.( ) (4)抽签法和随机数法都是简单随机抽样.( )(5)无论是抽签法还是随机数法,每一个个体被抽到的机会都是均等的.( ) (6)在分层随机抽样的过程中,每个个体被抽到的可能性是相同的,与层数及分层有关.( )答案:(1)× (2)√ (3)× (4)√ (5)√ (6)× 抽签法中确保样本代表性的关键是( ) A.制签 B.搅拌均匀 C.逐一抽取D.抽取不放回解析:选B.逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算再放回)也不影响样本的代表性,制签也一样.为了保证分层随机抽样时每个个体被等可能地抽取,必须要求( ) A.每层等可能抽取 B.每层抽取的个体数相等C.每层抽取的个体数可以不一样多,但必须满足抽取n i =n ·N iN (i =1,2,…,k )个个体(其中i 是层的序号,k 是总层数,n 为抽取的样本容量,N i 是第i 层中的个体数,N 是总体容量)D.只要抽取的样本容量一定,每层抽取的个体数没有限制解析:选C.分层随机抽样时,在各层中按层中所含个体在总体中所占的比例进行抽样. A 中,虽然每层等可能地抽样,但是没有指明各层中应抽取几个个体,故A 不正确; B 中,由于每层的个体数不一定相等,每层抽取同样多的个体数,显然从总体来看,各层的个体被抽取的可能性就不相等了,因此B 也不正确;C 中,对于第i 层的每个个体,它被抽到的可能性与层数i 无关,即对于每个个体来说,被抽取为样本的可能性是相同的,故C 正确;D 显然不正确.从一批零件中抽取10个,测得它们的长度(单位:cm )如下: 22.36 22.35 22.33 22.35 22.37 22.34 22.3822.36 22.32 22.35由此估计这批零件的平均长度. 在此统计活动中:(1)总体为 ; (2)个体为 ; (3)样本为 ; (4)样本量为 W.答案:(1)这批零件的长度 (2)每个零件的长度 (3)抽取的10个零件的长度 (4)10一个班共有54人,其中男同学、女同学之比为5∶4,若抽取9人参加教改调查会,则每个男同学被抽取的可能性为 ,每个女同学被抽取的可能性为 W.解析:男、女每人被抽取的可能性是相同的,因为男同学共有54×59=30(人),女同学共有54×49=24(人),所以每个男同学被抽取的可能性为530=16,每个女同学被抽取的可能性为424=16.答案:16 16总体、样本等概念辨析题为了调查参加运动会的1 000名运动员的平均年龄,从中抽取了100名运动员进行调查,下面说法正确的是( )A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本量是100【解析】 根据调查的目的可知,总体是这1 000名运动员的年龄,个体是每个运动员的年龄,样本是抽取的100名运动员的年龄,样本量为100.故答案为D.【答案】 D此类题目要正确理解总体与个体的概念,要弄明白概念的实质,并注意样本与样本容量的不同,其中样本量为数目,无单位.为了了解全年级240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体是每一个学生C.样本容量是40名学生D.样本量为40解析:选D.本题调查的对象是“学生的身高”这一项指标,故A、B不正确.而样本量是数量,故C不正确.由此可见,研究此类问题首先要弄清楚所要调查的对象是什么.简单随机抽样的概念下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区开展救灾工作.【解】(1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.要判断所给的抽样方法是否为简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点.下面的抽样方法是简单随机抽样吗?为什么?(1)某工厂的质检员从一袋30个螺母中一次性取出5个进行质量检测;(2)某商品的市场调查员为了了解该商品在某日某超市的销售情况,在超市出口处随机向10个顾客询问是否购买了该商品;(3)某班级有4个小组,每组共有12个同学.班主任指定每组坐在第一张桌子的8位同学为班干部;(4)中国福利彩票30选7,得到7个彩票中奖号码.解:简单随机抽样要求:被抽取的样本的总体个数确定且较少,抽取样本时要求逐个抽取,每个个体被抽取的可能性一样.所以(1)不是,因为是一次性抽取不是逐个抽取;(2)不是,被抽取的样本的总体个数不确定;(3)不是,班主任的指定不能保证班级里的每一个学生被抽取的可能性一样;(4)是,它属于简单随机抽样中的随机数法.抽签法及随机数法的应用某班有50名学生,要从中随机地抽出6人参加一项活动,请分别写出利用抽签法和随机数法抽取该样本的过程.【解】(1)利用抽签法步骤如下:第一步:将这50名学生编号,编号为01,02,03, (50)第二步:将50个号码分别写在纸条上,并揉成团,制成号签.第三步:将得到的号签放在一个不透明的容器中,搅拌均匀.第四步:从容器中逐一抽取6个号签,并记录上面的号码.对应上面6个号码的学生就是参加该项活动的学生.(2)利用随机数法步骤如下:第一步:将这50名学生编号,编号为1,2,3, (50)第二步:用随机数工具产生1~50范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的学生进入样本.第三步:重复第二步的过程,直到抽足样本所需人数.对应上面6个号码的学生就是参加该项活动的学生.(1)利用抽签法抽取样本时应注意以下问题:①编号时,如果已有编号(如学号、标号等)可不必重新编号.(例如该题中50名同学,可以直接利用学号)②号签要求大小、形状完全相同.③号签要搅拌均匀.④抽取号签时要逐一、不放回抽取.(2)利用随机数法抽取样本时应注意的问题:如果生成的随机数有重复,即同一编号被多次抽到,应剔除重复的编号并重新产生随机数,直到产生的不同编号个数等于样本所需的人数.从20架钢琴中抽取5架进行质量检查,请选用合适的方法确定这5架钢琴.解:第一步,将20架钢琴编号,号码是0,1, (19)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀.第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号.第五步,所得号码对应的5架钢琴就是要抽取的对象.分层随机抽样中的有关计算(1)某单位共有老、中、青年职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层随机抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工的人数为 W.(2)某高中学校为了促进学生个体的全面发展,针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:高一年级高二年级高三年级泥塑 a b c 剪纸xyz其中x ∶y ∶z =5∶3∶2,且“泥塑”社团的人数占两个社团总人数的35,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取 人.【解析】 (1)设该单位老年职工人数为x ,由题意得3x =430-160,解得x =90.则样本中的老年职工人数为90×32160=18. (2)法一:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以“剪纸”社团的人数为800×25=320;因为“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以“剪纸”社团中高二年级人数为320×310=96.由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6.法二:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以抽取的50人的样本中,“剪纸”社团中的人数为50×25=20.又“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以从高二年级“剪纸”社团中抽取的人数为20×310=6.【答案】 (1)18 (2)6分层随机抽样中有关计算的方法(1)抽样比=该层样本量n 总样本量N =该层抽取的个体数该层的个体数.(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.对于分层抽样中求某层个体数,或某层要抽取的样本个体数,都可以通过上面两个等量关系求解.1.为了调查城市PM2.5的情况,按地域把48个城市分成大型、中型、小型三组,相应的城市数分别为8,16,24.若用分层随机抽样的方法抽取12个城市,则应抽取的中型城市数为( )A.3B.4C.5D.6解析:选 B.根据分层随机抽样的特点可知,抽样比为1248=14,则应抽取的中型城市数为16×14=4.2.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层随机抽样的方法从全体职工中抽取一个容量为25的样本,则应抽取超过45岁的职工 人.解析:抽样比为25∶200=1∶8,而超过45岁的职工有80人,则从中应抽取的个体数为80×18=10.答案:10样本平均数的求法(1)甲在本次飞镖游戏中的成绩为8,6,7,7,8,10,9,8,7,8.求甲在本次游戏中的平均成绩.(2)在了解全校学生每年平均阅读多少本文学经典名著时,甲同学抽取了一个容量为10的样本,并算得样本的平均数为5;乙同学抽取了一个容量为8的样本,并算得样本的平均数为6.已知甲、乙两同学抽取的样本合在一起组成一个容量为18的样本,求合在一起后的样本均值.【解】 (1)甲在本次游戏中的平均成绩为6+3×7+4×8+9+1010=7.8.(2)合在一起后的样本均值为10×5+8×610+8=50+4818=499.在分层随机抽样中,如果第一层的样本量为m ,平均值为x ;第二层的样本量为n ,平均值为y ,则样本的平均值为mx +nym +n.某学校为了调查高一年级学生的体育锻炼情况,从甲、乙、丙3个班中,按分层随机抽样的方法获得了部分学生一周的锻炼时间(单位:h ),数据如下.甲 6 6.5 7 7.5 8 乙 6 7 8 9 10 11 12 丙34.567.5910.51213.5(1)求三个班中学生人数之比;(2)估计这个学校高一的学生中,一周的锻炼时间超过10个小时的百分比; (3)估计这个学校高一年级学生一周的平均锻炼时间.解:(1)由题干中的表格可知,按分层随机抽样的方法从甲、乙、丙3个班中分别抽取5个,7个,8个学生.故三个班学生人数之比为5∶7∶8.(2)由题意知,抽取的20个学生中,一周的锻炼时间超过10小时的有5人,故一周的锻炼时间超过10个小时的百分比为520=25%.(3)从甲班抽取的5名学生的总时间为6+6.5+7+7.5+8=35. 从乙班抽取的7名学生的总时间为6+7+8+9+10+11+12=63.从丙班抽取的8名学生的总时间为3+4.5+6+7.5+9+10.5+12+13.5=66. 则35+63+665+7+8=16420=8.2. 即这个学校高一年级学生一周的平均锻炼时间为8.2小时.1.在简单随机抽样中,每一个个体被抽中的可能性( ) A.与第几次抽样有关,第一次抽中的可能性要大些 B.与第几次抽样无关,每次抽中的可能性都相等 C.与第几次抽样有关,最后一次抽中的可能性要大些 D.每个个体被抽中的可能性无法确定解析:选B.在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关. 2.若对某校1 200名学生的耐力做调查,抽取其中120名学生,测试他们1 500米跑的成绩,得出相应的数值,在这项调查中,样本是指( )A.120名学生B.1 200名学生C.120名学生的成绩D.1 200名学生的成绩解析:选C.本题抽取的是120名学生的成绩,因此每个学生的成绩是个体,这120名学生的成绩构成一个样本.3.(2019·广西钦州市期末考试)某中学共有1 000名学生,其中高一年级350人,该校为了了解本校学生视力情况,用分层随机抽样的方法从该校学生中抽出一个容量为100的样本进行调查,则应从高一年级抽取的人数为( )A.20B.25C.30D.35解析:选D.高一年级抽取的人数为3501 000×100=35.故选D.4.在调查某中学的学生身高时,利用分层抽样的方法抽取男生20人,女生15人,得到了男生身高的平均值为170,女生身高的平均值为165.试估计该中学所有学生的平均身高是多少?解:20×170+15×16520+15=5 87535=16767.即该中学所有学生的平均身高为16767.9.2 用样本估计总体 9.2.1 总体取值规律的估计 9.2.2 总体百分位数的估计考点学习目标核心素养 频率分布表、频率分布直方图会画一组数据的频率分布表、频率分布直方图直观想象、数据分析用样本估计总体会用频率分布表、频率分布直方图、条形图、扇形图、折线图 等对总体进行估计直观想象、数据分析总体百分位数的估计掌握求n 个数据的第p 百分位数的方法数学抽象、数学运算 问题导学预习教材P 192-P 202的内容,思考以下问题: 1.绘制频率分布表和频率分布直方图有哪些步骤? 2.频率分布直方图有哪些特征? 3.如何求n 个数据的第p 百分位数?1.频率分布表、频率分布直方图的制作步骤及意义2.百分位数(1)定义:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.(2)计算步骤:计算一组n个数据的第p百分位数的步骤:第1步,按从小到大排列原始数据.第2步,计算i=n×p%.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.判断(正确的打“√”,错误的打“×”)(1)直方图的高表示取某数的频率.()(2)直方图的高表示该组上的个体在样本中出现的频率.()(3)直方图的高表示取某组上的个体在样本中出现的频数与组距的比值.()(4)直方图的高表示取该组上的个体在样本中出现的频率与组距的比值.()解析:要注意频率分布直方图的特点.在直方图中,纵轴(矩形的高)表示频率与组距的比值,其相应组距上的频率等于该组距上的矩形的面积.答案:(1)×(2)×(3)×(4)√一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为()A.10组B.9组C.8组D.7组解析:选B.极差为140-51=89,而组距为10,故应将样本数据分为9组.将容量为100的样本数据按由小到大排列分成8个小组,如表所示,但第3组被墨汁污染,则第三组的频率为()组号 1 2 3 4 5 6 7 8频数10 13 14 15 13 12 9A.0.14 B.0.12C.0.03 D.0.10解析:选A.第三组的频数为100-(10+13+14+15+13+12+9)=14.故第三组的频率为14100=0.14.(2019·四川省绵阳市教学质量测试)某高速公路移动雷达测速检测车在某时段对某段路过往的400辆汽车的车速进行检测,根据检测的结果绘制出如图所示的频率分布直方图,根据直方图的数据估计400辆汽车中时速在区间[90,110)的约有____________辆.解析:由图可知,时速在区间[80,90),[110,120)的频率为(0.01+0.02)×10=0.3,所以时速在区间[90,110)的频率为1-0.3=0.7.所以时速在区间[90,110)的车辆数为400×0.7=280.答案:280频率分布表、频率分布直方图、频率分布折线图的绘制角度一频率分布表、频率分布直方图的绘制为考查某校高二男生的体重,随机抽取44名高二男生,实测体重数据(单位:kg)如下:57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,54,42,51,56,55,51,54,51,60,62,43,55,56,61,52,69,64,46,54,48将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图.【解】以4为组距,列表如下:分组 频率累计频数 频率 [41.5,45.5) 2 0.045 5 [45.5,49.5) 7 0.159 1 [49.5,53.5) 8 0.181 8 [53.5,57.5) 16 0.363 6 [57.5,61.5) 5 0.113 6 [61.5,65.5) 4 0.090 9 [65.5,69.5)20.045 5频率分布直方图和频率分布折线图如图所示.(1)在列频率分布表时,极差、组距、组数有如下关系: ①若极差组距为整数,则极差组距=组数;②若极差组距不为整数,则极差组距的整数部分+1=组数.(2)组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,纵使数据的分布规律能较清楚地呈现出来,组数太多或太少,都会影响我们了解数据的分布情况,若样本容量不超过100,按照数据的多少常分为5~12组,一般样本量越大,所分组数越多.角度二 频率分布直方图的应用为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少?(3)样本中不达标的学生人数是多少? (4)第三组的频数是多少?【解】 (1)频率分布直方图以面积的形式反映数据落在各小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08.又因为第二小组的频率=第二小组的频数样本量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由直方图可估计该校高一年级学生的达标率为17+15+9+32+4+17+15+9+3×100%=88%.(3)由(1)(2)知达标率为88%,样本量为150,不达标的学生频率为1-0.88=0.12. 所以样本中不达标的学生人数为150×0.12=18(人). (4)第三小组的频率为172+4+17+15+9+3=0.34.又因为样本量为150,所以第三组的频数为150×0.34=51.频率分布直方图的应用中的计算问题(1)小长方形的面积=组距×频率组距=频率; (2)各小长方形的面积之和等于1;(3)频数样本量=频率,此关系式的变形为频数频率=样本量,样本量×频率=频数. 某厂对一批产品进行抽样检测,如图是抽检产品净重(单位:克)的频率分布直方图,样本数据分组为[76,78),[78,80),…,[84,86].若这批产品有120个,估计其中净重大于或等于78克且小于84克的产品的个数是( )A .12B .18C .25D .90解析:选D.净重大于或等于78克且小于84克的频率为(0.100+0.150+0.125)×2=0.75,所以在该范围内的产品个数为120×0.75=90.条形统计图为了丰富校园文化生活,某校计划在午间校园广播台播放“百家讲坛”的部分内容.为了了解学生的喜好,抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如图所示.请根据统计图提供的信息回答以下问题: (1)求抽取的学生数;(2)若该校有3 000名学生,估计喜欢收听易中天《品三国》的学生人数;(3)估计该校喜欢收听刘心武评《红楼梦》的女学生人数约占全校学生人数的百分比. 【解】 (1)从统计图上可以看出,喜欢收听于丹析《庄子》的男生有20人,女生有10人; 喜欢收听《故宫博物院》的男生有30人,女生有15人; 喜欢收听于丹析《论语》的男生有30人,女生有38人; 喜欢收听易中天《品三国》的男生有64人,女生有42人; 喜欢收听刘心武评《红楼梦》的男生有6人,女生有45人.所以抽取的学生数为20+10+30+15+30+38+64+42+6+45=300(人).(2)喜欢收听易中天《品三国》的男生有64人,女生有42人,共有106人,占所抽取总人数的比例为106300,由于该校有3 000名学生,因此可以估计喜欢收听易中天《品三国》的学生有106300×3 000=1 060(人).(3)该校喜欢收听刘心武评《红楼梦》的女学生人数约占全校学生人数的比例为45300×100%=15%.(1)绘制条形统计图时,第一步确定坐标系中横轴和纵轴上坐标的意义,第二步确定横轴上各部分的间距及位置,第三步根据统计结果绘制条形图.实际问题中,我们需根据需要进行分组,横轴上的分组越细,对数据的刻画(描述)就越。
最新人教版高二下册数学必修2全册导学案及答案
七、小结与反思: 【励志良言】不为失败找理由,只为成功找方法。
2
1.1.2 圆柱、锥、台、球、组合体的结构特征
一、学习目标: 1、知识与技能:能根据几何结构特征对空间物体进行分类。会用语言概述圆柱、锥、台、组合体的 结构特征。会表示圆柱、锥、台的分类。 2、过程与方法:通过直观感受空间物体,概括出柱、锥、台的几何结构特征。观察、讨论、归纳、 概括所学的知识。 3、情感态度与价值观:感受空间几何体存在于现实生活周围,增强学习的积极性,同时提高观察能 力。培养空间想象能力和抽象概括能力。 二、学习重点、难点: 学习重点:感受大量空间实物及模型、概括出圆柱、锥、台的结构特征。 学习难点:圆柱、锥、台的结构特征的概括。 三、使用说明及学法指导: 1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。 2、要求小班、重点班学生全部完成,平行班学生完成 A、B 类问题。 3、A 类是自主探究,B 类是合作交流。 四、知识链接: 棱柱: 棱锥: 棱台: 五、学习过程: A 问题 1:观察下列图形探究各自的特点及共同点
七、小结与反思:
【励志良言】当你感到悲哀痛苦时,最好是去学些什么东西。学习会使你永远立于不败之地。
6
高一数学必修 2 导学案
主备人:
备课时间:
备课组长:
1.2.2 空间几何体的直观图
一、学习目标: 知识与技能: (1)掌握斜二测画法画水平设置的平面图形的直观图。 (2)采用对比的方法了解在平行 投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。 过程与方法:通过观察和类比,利用斜二测画法画出空间几何体的直观图。 情感态度与价值观: (1)提高空间想象力与直观感受。 (2)体会对比在学习中的作用。 (3)感受几何 作图在生产活动中的应用。 二、学习重点、难点: 学习重点:用斜二测画法画空间几何体的直观图。 学习难点:用斜二测画法画空间几何体的直观图。 三、 使用说明及学法指导: 1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。 2、要求小班、重点班学生全部完成,平行班学生完成 A、B 类问题。 3、A 类是自主探究,B 类是合作交流。 四、知识链接: 正视图: 侧视图: 俯视图: 五、学习过程: A 例 1.用斜二测画法画水平放置的正六边形的直观图。
人教A版高中数学必修第二册全册学案
人教A版高中数学必修第二册全册学案人教A版高中数学必修第二册全册学案一、学案概述本学案是以人教A版高中数学必修第二册全册教材为基础,为学生提供全面的学习指导。
旨在帮助学生更好地掌握教材中的知识点,提高学习效率和学习成绩。
二、知识梳理本学案按照教材章节顺序,对各章节知识点进行了梳理。
对于每个知识点,学案提供了相关例题和解析,以便学生加深对知识点的理解和掌握。
第一章集合与函数1.1 集合及其表示方法 1.2 集合之间的关系 1.3 函数及其表示方法 1.4 函数的性质第二章三角函数2.1 正弦、余弦、正切函数的定义与性质 2.2 三角函数的图像及变换方法 2.3 三角函数的应用第三章数列3.1 数列的概念与分类 3.2 等差数列和等比数列的通项公式 3.3 数列的前n项和公式 3.4 数列的应用第四章平面几何4.1 点、线、面的基本概念和性质 4.2 三角形、四边形的性质和判定方法 4.3 多边形、圆、扇形、弓形的性质和面积计算方法 4.4 几何图形的作图方法第五章概率与统计5.1 概率的基本概念和计算方法 5.2 统计的基本概念和方法 5.3 中心极限定理的应用三、学习建议1、学生应根据个人学习情况,制定合理的学习计划,逐步掌握各章节知识点。
2、对于每个知识点,学生应通过多种方式进行练习,例如课堂练习、课后作业、自主解题等,加深对知识点的理解和掌握。
3、学生应注意知识点的归纳和总结,形成自己的知识体系。
4、学生应积极参加课堂讨论和提问,与老师和同学交流学习心得,提高学习效果。
四、总结归纳本学案对人教A版高中数学必修第二册全册教材进行了全面的知识梳理和学习指导,旨在帮助学生更好地掌握教材中的知识点,提高学习效率和学习成绩。
学生应根据个人学习情况,制定合理的学习计划,通过多种方式进行练习,注意知识点的归纳和总结,积极参加课堂讨论和提问,提高学习效果。
外研版高中英语必修3全册学案版本外研版高中英语必修3全册学案版本外语教学与研究出版社出版的《高中英语必修3》是一本针对高中英语教学的教材,旨在帮助学生掌握英语语言知识,提高英语应用能力。
人教A版高中数学必修二全册全册导学案
人教A版高中数学必修二全册精品导学案高中数学必修导学案§1.1 空间几何体的结构【使用说明及学法指导】1.结合问题导学自已复习课本必修2的P2页至P4页,用红色笔勾画出疑惑点;独立完成探究题,并总结规律方法。
2.针对问题导学及小试牛刀找出的疑惑点,课上讨论交流,答疑解惑。
3. 感受空间实物及模型,增强学生直观感知;能根据几何结构特征对空间物体进行分类;4.理解多面体的有关概念;会用语言概述棱柱、棱锥、棱台的结构特征.5. 在科学上没有平坦的道路,只有不畏劳苦,敢于沿着陡峭山路攀登的人才有希望达到光辉的顶点。
【重点难点】重点是棱柱、棱锥、棱台结构特征.难点是棱柱、棱锥、棱台的结构特征一【问题导学】探索新知探究1:几何体的相关概念(1)预习课本第2页的观察部分,试着将所给出的16幅图片进行分类,并说明分类依据。
(2)空间几何体的概念:(3探究2新知1:(1)多面体:(2)多面体的面:(3)多面体的棱:(4 指出右侧几何体的面、棱、顶点探究2:旋转体的相关概念新知2:旋转体旋转体的轴 探究31、 棱柱:2、棱柱的分类:(1)按侧棱及底面垂直及否,分为:(2)按底面多边形的边数,分为:注:底面是正多边形的直棱柱叫做正棱柱。
3、棱柱的表示:4、补充:平行六面体——底面是平行四边形的四棱柱探究41、棱锥:2、棱锥的分类:注:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥是正棱锥.3、棱锥的表示:探究5:(三)棱台1、棱台:2、棱台的分类:3、棱台的表示:二【小试牛刀】1. 一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成().A.棱锥 B.棱柱 C.平面 D.长方体2. 棱台不具有的性质是().A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点三【合作、探究、展示】例1、根据右边模型,回答下列问题:(1)观察长方体模型,有多少对平行平面?能作为棱柱底面的有多少对?(2) 如右图,长方体''''中被截去一部ABCD A B C D分,其中''EH A D。
人教版高中数学必修二《第九章 统计》单元导学案及答案
人教版高中数学必修二《第九章统计》单元导学案《9.1.1简单的随机抽样》导学案【学习目标】1.体会随机抽样的必要性和重要性2.理解随机抽样的目的和基本要求;3.掌握简单随机抽样中的抽签法、随机数法的一般步骤【自主学习】知识点1 统计的基本概念1.总体:一般把所考察对象的某一数值指标的全体构成的集合看成总体.2.个体:构成总体的每一个元素作为个体.3.样本:从总体中抽出若干个个体所组成的集合叫样本.4.样本容量:样本中个体的数目叫样本容量.知识点2 简单随机抽样1.一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的四个特点(1)它要求被抽取样本的总体的个数有限,这样便于通过随机抽取的样本对总体进行分析.(2)它是从总体中逐个抽取,这样便于在抽样实践中进行操作.(3)它是一种不放回抽样,由于抽样实践中多采用不放回抽样,使其具有较广泛的实用性,而且由于所抽取的样本中没有被重复抽取的个体,便于进行有关的分析和计算.(4)它是一种等机会抽样,不仅每次从总体中抽取一个个体时,各个个体被抽到的机会相等,而且在整个抽样的过程中,各个个体被抽取的机会也相等,从而保证了这种抽样方法的公平性.知识点3 抽签法和随机数法1.抽签法:把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.2.随机数法:随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.3.利用随机数法抽取个体时的注意事项(1)定起点:事先应确定以表中的哪个数(哪行哪列)作为起点. (2)定方向:读数的方向(向左、向右、向上或向下都可以).(3)读数规则:读数时结合编号的特点进行读取,编号为两位数则两位两位地读取,编号为三位数则三位三位地读取,如果出现重复则跳过,直到取满所需的样本个体数.知识点4 总体平均数和加权平均数1.一般地,总体中有N 个个体,它们的变量值分别为Y 1,Y 2,…,Y N ,则称∑==++=Ni iN YN N Y Y Y Y 1211 为总体均值,又称总体平均数.2.一般地,对于f 1个x 1,f 2个x 2,…,f n 个x n ,共f 1+f 2+…+f n 个数组成的一组数据的平均数为x 1f 1+x 2f 2+…+x n f nf 1+f 2+…+f n.这个平均数叫做加权平均数,其中f 1, f 2,…, f n 叫做权,这个“权”,含有权衡所占份量的轻重之意,即f i (i =1,2,…,k )越大,表明x i 的个数越多,“权”就越大.【合作探究】探究一 简单随机抽样的判断【例1】下面的抽样是简单随机抽样吗?为什么?(1)小乐从玩具箱中的10件玩具中随意拿出一件玩,玩后放回,再拿出一件,连续拿出四件;(2)某学校从300名学生中一次性抽取20名学生调查睡眠情况.解 (1)不是简单随机抽样,因为玩具被放回了,不符合“不放回抽样”这一特点. (2)不是简单随机抽样,因为一次性抽取不符合“逐个抽取”这一特点.反思与感悟 当抽样具有:(1)总体中个体数是有限的,(2)逐个抽取,(3)不放回抽取,(4)每个个体被抽到的机会等可能时,为简单随机抽样,否则不是简单随机抽样.【练习1】下面的抽样方法是简单随机抽样的是( )A .盒子中有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里B .某车间包装一种产品,在自动包装传送带上,每隔5分钟抽一包产品,称其重量是否合格C .某校分别从行政人员、教师、后勤人员中抽取2人,14人,4人了解对他们学校机构改革的意见D .从8台电脑中不放回地随机抽取2台进行质量检验(假设8台电脑已编好号,对编号随机抽取)答案 D解析 依据简单随机抽样的特点知,只有D 符合.探究二 简单随机抽样等可能性应用【例2】一个布袋中有10个同样质地的小球,从中不放回地依次抽取3个小球,则某一特定小球被抽到的可能性是________,第三次抽取时,剩余每个小球被抽到的可能性是________.答案310 18解析 因为简单随机抽样过程中每个个体被抽到的可能性均为n N ,所以第一个空填310.因为本题中的抽样是不放回抽样,所以第一次抽取时,每个小球被抽到的可能性为110,第二次抽取时,剩余9个小球,每个小球被抽到的可能性为19,第三次抽取时,剩余8个小球,每个小球被抽到的可能性为18.反思与感悟 简单随机抽样,每次抽取时,总体中各个个体被抽到的概率相同,在整个抽样过程中各个个体被抽到的机会也都相等.【练习2】从总体容量为N 的一批零件中,抽取一个容量为30的样本,若每个零件被抽到的可能性为0.25,则N 的值为( )A .120B .200C .150D .100答案 A解析 因为从含有N 个个体的总体中抽取一个容量为30的样本时,在每次抽取一个个体的过程中任意一个个体被抽到的可能性为1N,在整个抽样过程中每个个体被抽到的可能性为30N ,所以30N=0.25,从而有N =120.故选A.探究三 抽签法的应用【例3】某卫生单位为了支援抗震救灾,要在18名志愿者中选取6人组成医疗小组去参加救治工作,请用抽签法设计抽样方案.解 方案如下:第一步,将18名志愿者编号,号码为01,02,03,…,18. 第二步,将号码分别写在相同的纸条上,揉成团,制成号签. 第三步,将得到的号签放到一个不透明的盒子中,充分搅匀. 第四步,从盒子中依次取出6个号签,并记录上面的编号. 第五步,与所得号码对应的志愿者就是医疗小组成员.反思与感悟 一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.【练习3】从20架钢琴中抽取5架进行质量检查,请用抽签法确定这5架钢琴. 解 第一步,将20架钢琴编号,号码是01,02,…,20. 第二步,将号码分别写在相同的纸条上,揉成团,制成号签. 第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀. 第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号. 第五步,与所得号码对应的5架钢琴就是要进行质量检查的对象.探究四 随机数法的应用【例4】假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,应如何操作?解 第一步,将800袋牛奶编号为000,001, (799)第二步,在随机数表中任选一个数作为起始数(例如选出第8行第7列的数7). 第三步,从选定的数7开始依次向右读(读数的方向也可以是向左、向上、向下等),将编号范围内的数取出,编号范围外的数去掉,直到取满60个号码为止,就得到一个容量为60的样本.【练习4】总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为( )A .答案D解析:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次为08,02,14,07,02,01.其中第二个和第四个都是02,重复.可知对应的数值为08,02,14,07,01,则第5个个体的编号为01.探究五 总体平均数和加权平均数【例5】小林在八年级第一学期的数学书面测验成绩分别为:平时考试第一单元得84分,第二单元得76分,第三单元得92分;期中考试得82分;期末考试得90分,如果按照平时、期中、期末的权重分别为10%、30%、60%计算,那么小林该学期数学书面测验的总平均成绩应为多少分?解:x (平时单元测试平均成绩)=84+76+923=84(分).所以总平均成绩为84×10%+82×30%+90×60%10%+30%+60%=87(分).所以小林该学期数学书面测验的总平均成绩应为87分【练习5】2. “一世”又叫“一代”.东汉·王充《论衡·宜汉篇》:“且孔子所谓一世,三十年也”,清代·段玉裁《说文解字注》:“三十年为一世,按父子相继曰世”.而当代中国学者测算“一代”平均为25年.另根据国际一家研究机构的研究报告显示,全球家族企业的平均寿命其实只有26年,约占总量的28%的家族企业只能传到第二代,约占总量的14%的家族企业只能传到第三代,约占总量4%的家族企业可以传到第四代甚至更久远(为了研究方便,超过四代的可忽略不计).根据该研究机构的研究报告,可以估计该机构所认为的“一代”大约为()A. 23年B. 22年C. 21年D. 20年答案:B【分析】设“一代”为x年,根据约占总量的28%的家族企业只能传到第二代,约占总量的14%的家族企业只能传到第三代,约占总量4%的家族企业可以传到第四代,列出频率分布表,然后根据平均寿命其实只有26年,利用平均数的求法求解.【详解】设“一代”为x年,由题意得:企业寿命的频率分布表为:又因为全球家族企业的平均寿命其实只有26年,所以家族企业的平均寿命为:0.540.50.28 1.50.14 2.50.04 3.526⨯+⨯+⨯+⨯=,x x x xx≈,解得22故选:B《9.1.2分层随机抽样 9.1.3获取数据的途径》导学案【学习目标】1.理解并掌握分层随机抽样,会用分层随机抽样从总体中抽取样本2.记住分层随机抽样的特点和步骤3.利用分层随机抽样的方法解决实际问题4.了解获取数据的途径,并学会简单应用【自主学习】知识点1 分层随机抽样的概念 (1)定义一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层.(2)适用范围当总体是由差异明显的几个部分组成时,往往采用分层随机抽样. (3)比例分配在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.知识点2 分层随机抽样的步骤(1)根据已掌握的信息,将总体分成若干部分.(2)根据总体中的个体数N 和样本量n 计算出抽样比k =nN.(3)根据抽样比k 计算出各层中应抽取的个体数:n N·N i (其中N i 为第i 层所包含的个体总数).(4)按步骤3所确定的数在各层中随机抽取个体,并合在一起得到容量为n 的样本.【合作探究】探究一 分层随机抽样的概念【例1-1】(1) 下列问题中,最适合用分层随机抽样抽取样本的是( ) A .从10名同学中抽取3人参加座谈会B .一次数学竞赛中,某班有10人在110分以上,40人在90~100分,12人低于90分,现从中抽取12人了解有关情况C .从1 000名工人中,抽取100名调查上班途中所用时间D .从生产流水线上,抽取样本检查产品质量(2)分层随机抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层随机抽样为保证每个个体等可能抽样,必须进行( )A .每层等可能抽样B.每层可以不等可能抽样C.所有层按同一抽样比等可能抽样D.所有层抽取的个体数量相同【答案】(1)B (2)C[分析] 当总体由差异明显的几部分组成时,该样本的抽取适合用分层随机抽样,结合题中的四个选项及分层随机抽样的特点可对(1)(2)作出判断.[解析] (1)A中总体个体无明显差异且个数较少,不适合用分层随机抽样;C和D中总体个体无明显差异且个数较多,不适合用分层随机抽样;B中总体个体差异明显,适合用分层随机抽样.(2)保证每个个体等可能地被抽取是简单随机抽样和分层随机抽样的共同特征,为了保证这一点,分层随机抽样时必须在所有层都按同一抽样比等可能抽取.归纳总结:1.使用分层随机抽样的前提:,分层随机抽样的适用前提条件是总体可以分层、层与层之间有明显区别,而层内个体间差异较小.2.使用分层随机抽样应遵循的原则:(1)将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则;(2)分层随机抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比等于抽样比.【练习1】某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A.抽签法B.随机数法C.分层随机抽样法D.任何抽样法都可以【答案】 C解析:由于被抽取的个体属性有明显的差异,因此宜采用分层随机抽样法.探究二分层随机抽样的设计【例2】某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人,上级机关为了了解政府机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作.[分析] 观察特征→确定抽样方法→求出比例→确定各层样本数→从各层中抽样→成样[解] 因机构改革关系到每个人的不同利益,故采用分层随机抽样方法较妥. ∵20100=15,∴105=2,705=14,205=4. ∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人. 因副处级以上干部与工人数都较少,将他们分别按1~10和1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,…,69编号,然后用随机数法抽取14人.这样便得到了一个容量为20的样本.归纳总结:分层随机抽样的特点1适用于总体由差异明显的几部分组成的情况.2更充分体现和反映了总体的情况.3等可能抽样,每个个体被抽到的可能性都相等.【练习2】某公司生产三种型号的轿车,产量分别是1 200辆,6 000辆和2 000辆,为检验该公司的产品质量,现用分层随机抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取的数量为( )A .15,15,16B .6,30,10C .10,13,23D .12,16,18 【答案】 B解析:三种型号的轿车共9 200辆,抽取样本为46辆,则按469 200=1200的比例抽样,所以依次应抽取1 200×1200=6(辆),6 000×1200=30(辆),2 000×1200=10(辆). 探究三 获取数据的途径【例3】为了研究近年来我国高等教育发展状况,小明需要获取近年来我国大学生入学人数的相关数据,他获取这些数据的途径最好是( )A .通过调查获取数据B .通过试验获取数据C .通过观察获取数据D .通过查询获得数据【答案】D [因为近年来我国大学生入学人数的相关数据有所存储,所以小明获取这些数据的途径最好是通过查询获得数据.]归纳总结:【练习3】下列调查方案中,抽样方法合适、样本具有代表性的是( )A.用一本书第1页的字数估计全书的字数B.为调查某校学生对航天科技知识的了解程度,上学期间,在该校门口,每隔2分钟随机调查一位学生C.在省内选取一所城市中学,一所农村中学,向每个学生发一张卡片,上面印有一些名人的名字,要求每个学生只能在一个名字下面画“√”,以了解全省中学生最崇拜的人物是谁D.为了调查我国小学生的健康状况,共抽取了100名小学生进行调查【答案】B[A中样本缺少代表性(第1页的字数一般较少);B中抽样保证了随机性原则,样本具有代表性;对于C,城市中学与农村中学的规模往往不同,学生崇拜的人物也未必在所列的名单之中,这些都会影响数据的代表性;D中总体数量很大,而样本容量太少,不足以体现总体特征.]《9.2.1总体取值规律的估计》导学案【学习目标】1.学会用频率分布直方图表示样本数据2.能通过频率分布直方图对数据做出总体统计【自主学习】知识点1 频率分布直方图的绘制(1)求极差,即一组数据中的最大值与最小值的差.(2)决定组距与组数.组距与组数的确定没有固定的标准,一般来说,数据分组的组数与数据的个数有关,数据的个数越多,所分组数越多,当样本量不超过100时,常分为5~12组.(3)将数据分组.(4)列频率分布表,计算各小组的频率,作出频率分布表.(5)画频率分布直方图.其中横轴表示样本数据,纵轴表示频率与组距的比.知识点2 频率分布直方图的意义频率分布直方图中,各小长方形的面积表示相应各组的频率,各小长方形的面积的总和等于1.【合作探究】探究一 频率分布概念的理【答案】【例1】例1 关于频率分布直方图,下列说法正确的是( ) A .直方图中小长方形的高表示取某数的频率B .直方图中小长方形的高表示该组上的个体在样本中出现的频率C .直方图中小长方形的高表示该组上的个体在样本中出现的频数与组距的比值D .直方图中小长方形的高表示该组上的个体在样本中出现的频率与组距的比值 【答案】 D【答案】析 注意频率分布直方图和条形图的区别,在直方图中,纵轴(小长方形的高)表示频率与组距的比值,其相应组距上的频率等于该组距上的小长方形的面积.归纳总结:由频率的定义不难得出,各组数据的频率之和为1,因为各组数据的个数之和为样本容量.在列频率分布表时,可以利用这种方法检查是否有数据的丢失.【练习1】一个容量为20的样本数据,将其分组如下表:则样本在区间(-∞,50)上的频率为( ) A .0.5 B .0.25 C .0.6 D .0.7 【答案】 D【答案】析 样本在区间(-∞,50)上的频率为2+3+4+520=1420=0.7.探究二 频率分布直方图的绘制【例2】某中学从高一年级随机抽取50名学生进行智力测验,其得分如下(单位:分): 48 64 52 86 71 48 64 41 86 79 71 68 82 84 68 64 62 68 81 57 90 52 74 73 56 78 47 66 55 64 56 88 69 40 73 97 68 56 67 59 70 52 79 44 55 69 62 58 32 58 根据上面的数据,回答下列问题:(1) 这次测验成绩的最高分和最低分分别是多少?(2)将区间[30,100]平均分成7个小区间,试列出这50名学生智力测验成绩的频率分布表,进而画出频率分布直方图;(3)分析频率分布直方图,你能得出什么结论?【答案】(1)这次测验成绩的最低分是32分,最高分是97分.(2)根据题意,列出样本的频率分布表如下:(3)从频率分布直方图可以看出,这50名学生的智力测验成绩大体上呈两头小、中间大,左右基本对称,说明这50名学生中智力特别好或特别差的占极少数,而智力一般的占多数,这是一种最常见的分布.归纳总结:频率分布表和频率分布直方图之间的密切关系是显然的,它们只不过是相同的数据的两种不同的表达方式,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚地看到整个样本数据的频率分布情况,并由此估计总体的分布情况.【练习2】如表所示给出了在某校500名12岁男孩中,用随机抽样得出的120人的身高(单位:cm).(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134 cm的人数占总人数的百分比.【答案】(1)样本频率分布表如下:(2)(3)由样本频率分布表可知,身高小于134 cm的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm的人数占总人数的19%.探究三频率分布直方图的应用【例3】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).【答案】 (1)根据频数分布表知,100名学生中一周课外阅读时间不少于12小时的学生共有6+2+2=10(名),所以样本中的学生一周课外阅读时间少于12小时的频率是1-10100=0.9.故从该校随机选取一名学生,估计其该周课外阅读时间少于12小时的概率为0.9. (2)课外阅读时间落在组[4,6)内的有17人,频率为0.17,所以a =频率组距=0.172=0.085.课外阅读时间落在组[8,10)内的有25人,频率为0.25,所以b =频率组距=0.252=0.125.(3)样本中的100名学生该周课外阅读时间的平均数在第4组.归纳总结:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1.【练习3】某学校组织学生参加数学测试,某班学生的成绩频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15,则该班的学生总人数是( )A.45 B.50 C.55 D.60【答案】 B【答案】析结合频率分布直方图,得分低于60分的人数占总人数的频率为20×(0.005+0.01)=0.30,所以总人数为150.30=50,故选B.《9.2.2总体百分位数的估计》导学案【学习目标】1.理解百分位数的概念2.掌握计算百分位数的方法【自主学习】知识点1 百分位数(1)如果将一组数据从小到大排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数.一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.(2)第25百分位数又称第一四分位数或下四分位数;第75百分位数又称第三四分位数或上四分位数.知识点2 如何计算百分位数下面的步骤来说明如何计算第p百分位数.第1步:以递增顺序排列原始数据(即从小到大排列).第2步:计算 i =np %.第3步:①若 i 不是整数,将 i 向上取整.大于i 的比邻整数即为第p 百分位数的位置;②若i 是整数,则第p 百分位数是第i 项与第(i +1)项数据的平均值.【合作探究】探究一 百分位数的计算【例1】从某珍珠公司生产的产品中,任意抽取12颗珍珠,得到它们的质量(单位:g) 如下:7.9,9.0,8.9,8.6,8.4,8.5,8.5,8.5,9.9,7.8,8.3,8.0. (1)分别求出这组数据的第25,75,95百分位数. (2)请你找出珍珠质量较小的前15%的珍珠质量.(3)若用第25,50,95百分位数把公司生产的珍珠划分为次品、合格品、优等品和特优品,依照这个样本的数据,给出该公司珍珠等级的划分标准.[解] (1)将所有数据从小到大排列,得7.8,7.9,8.0,8.3,8.4,8.5,8.5,8.5,8.6,8.9,9.0,9.9,因为共有12个数据,所以12×25%=3,12×75%=9,12×95%=11.4, 则第25百分位数是8.0+8.32=8.15,第75百分位数是8.6+8.92=8.75,第95百分位数是第12个数据(2)因为共有12个数据,所以12×15%=1.8,则第15百分位数是第2个数据为7.9.即产品质量较小的前15%的产品有2个,它们的质量分别为7.8,7.9.(3)由(1)可知样本数据的第25百分位数是8.15 g ,第50百分位数为8.5 g, 第95百分位数是9.9 g ,所以质量小于或等于8.15 g 的珍珠为次品,质量大于8.15 g 且小于或等于8.5 g 的珍珠为合格品,质量大于8.5 g 且小于等于9.9 g 的珍珠为优等品,质量大于9.9 g 的珍珠为特优品.【练习1】以下数据为参加数学竞赛决赛的15人的成绩: 78,70,72,86,88,79,80,81,94,84,56,98,83,90,91, 则这15人成绩的第80百分位数是( ) A .90 B .90.5 C .91 D .91.5答案B [把成绩按从小到大的顺序排列为: 56,70,72,78,79,80,81,83,84,86,88,90,91,94,98,因为15×80%=12,所以这15人成绩的第80百分位数是90+912=90.5.]探究二 百分位数的综合应用【例2】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200千瓦时的部分按0.5元/千瓦时收费,超过200千瓦时但不超过400千瓦时的部分按0.8元/千瓦时收费,超过400千瓦时的部分按1.0元/千瓦时收费.(1)求某户居民用电费用y (单位:元)关于月用电量x (单位:千瓦时)的函数解析式. (2)为了了解居民的用电情况,通过抽样获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.若这100户居民中,今年1月份用电费用不超过260元的占80%,求a ,b 的值.(3)根据(2)中求得的数据计算用电量的75%分位数.[解] (1)当0≤x ≤200时,y =0.5x ;当200<x ≤400时,y =0.5×200+0.8×(x -200)=0.8x -60; 当x >400时,y =0.5×200+0.8×200+1.0×(x -400)=x -140. 所以y 与x 之间的函数解析式为 y =⎩⎪⎨⎪⎧0.5x ,0≤x ≤200,0.8x -60,200<x ≤400,x -140,x >400.(2)由(1)可知,当y =260时,x =400,即用电量不超过400千瓦时的占80%, 结合频率分布直方图可知⎩⎪⎨⎪⎧0.001×100+2×100b +0.003×100=0.8,100a +0.000 5×100=0.2,解得a =0.001 5,b =0.002 0. (3)设75%分位数为m ,。
(新教材)2020新人教A版高中数学必修第二册同步学案:8.5.1 直线与直线平行 Word版含答案
8.5 空间直线、平面的平行 8.5.1 直线与直线平行问题导学预习教材P133-P135的内容,思考以下问题: 1.基本事实4的内容是什么? 2.定理的内容是什么?1.基本事实4(1)平行于同一条直线的两条直线平行.这一性质通常叫做平行线的传递性.(2)符号表示:⎭⎪⎬⎪⎫a ∥b b ∥c ⇒a ∥c . 2.定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.■名师点拨 定理实质上是由如下两个结论组合成的:①若一个角的两边与另一个角的两边分别平行且方向都相同(或方向都相反),则这两个角相等;②若一个角的两边与另一个角的两边分别平行,有一组对应边方向相同,另一组对应边方向相反,则这两个角互补.判断(正确的打“√”,错误的打“×”)(1)如果一个角的两边与另一个角的两边平行,那么这两个角相等.( ) (2)如果两个角相等,则它们的边互相平行.( ) 答案:(1)× (2)×已知AB ∥PQ ,BC ∥QR ,若∠ABC =30°,则∠PQR 等于( ) A .30°B .30°或150°C.150°D.以上结论都不对答案:B在长方体ABCD-A′B′C′D′中,与AD平行的棱有____________(填写所有符合条件的棱)答案:A′D′,B′C′,BC基本事实4的应用如图,E,F分别是长方体ABCD-A1B1C1D1的棱A1A,C1C的中点.求证:四边形B1EDF为平行四边形.【证明】如图所示,取DD1的中点Q,连接EQ,QC1.因为E是AA1的中点,所以EQ═∥A1D1.因为在矩形A1B1C1D1中,A1D1═∥B1C1,所以EQ═∥B1C1,所以四边形EQC1B1为平行四边形,所以B1E═∥C1Q.又Q,F分别是D1D,C1C的中点,所以QD═∥C1F,所以四边形DQC1F为平行四边形,所以C1Q═∥FD.又B1E═∥C1Q,所以B1E═∥FD,故四边形B1EDF为平行四边形.证明空间中两条直线平行的方法(1)利用平面几何的知识(三角形与梯形的中位线、平行四边形的性质、平行线分线段成比例定理等)来证明.(2)利用基本事实4即找到一条直线c ,使得a ∥c ,同时b ∥c ,由基本事实4得到a ∥b .如图,已知E ,F 分别是正方体ABCD A 1B 1C 1D 1的棱AA 1,CC 1的中点,求证:四边形EBFD 1是菱形.证明:如图所示,在正方体ABCD -A 1B 1C 1D 1中,取棱BB 1的中点G ,连接C 1G ,EG .因为E ,G 分别为棱AA 1,BB 1的中点, 所以EG ═∥A 1B 1. 又A 1B 1═∥C 1D 1,所以EG ═∥C 1D 1, 从而四边形EGC 1D 1为平行四边形, 所以D 1E ═∥C 1G . 因为F ,G 分别为棱CC 1,BB 1的中点,所以C 1F ═∥BG ,从而四边形BGC 1F 为平行四边形,所以BF ═∥C 1G , 又D 1E ═∥C 1G ,所以D 1E ═∥BF , 从而四边形EBFD 1为平行四边形.不妨设正方体ABCD -A 1B 1C 1D 1的棱长为a ,易知BE =BF =52a , 故平行四边形EBFD 1是菱形.定理的应用如图所示,不共面的三条射线OA ,OB ,OC ,点A1,B 1,C 1分别是OA ,OB ,OC 上的点,且OA 1OA =OB 1OB =OC 1OC.求证:△A 1B 1C 1∽△ABC .【证明】 在△OAB 中,因为OA 1OA =OB 1OB ,所以A 1B 1∥AB .同理可证A 1C 1∥AC ,B 1C 1∥BC .所以∠C 1A 1B 1=∠CAB ,∠A 1B 1C 1=∠ABC . 所以△A 1B 1C 1∽△ABC .运用定理判定两个角是相等还是互补的途径有两种:一是判定两个角的方向是否相同;二是判定这两个角是否都为锐角或都为钝角,若都为锐角或都为钝角则相等,反之则互补.如图,三棱柱ABC -A 1B 1C 1中,M ,N ,P 分别为AA 1,BB 1,CC 1的中点.求证:∠MC 1N =∠APB .证明:因为N ,P 分别是BB 1,CC 1的中点,所以BN ═∥C 1P ,所以四边形BPC 1N 为平行四边形,所以C 1N ∥BP .同理可证C 1M ∥AP ,又∠MC 1N 与∠APB 方向相同,所以∠MC 1N =∠APB .1.如图,长方体ABCD -A1B 1C 1D 1中,M 是AD 的中点,N 是B 1C 1的中点,求证:CM ∥A 1N .证明:取A 1D 1的中点P ,连接C 1P ,MP ,则A 1P =12A 1D 1.又N 为B 1C 1的中点,B 1C 1═∥A 1D 1, 所以C 1N ═∥P A 1,四边形P A 1NC 1为平行四边形,A 1N ∥C 1P . 又由PM ═∥DD 1═∥CC 1,得C 1P ∥CM.所以CM ∥A 1N . 2.如图,已知直线a ,b 为异面直线,A ,B ,C 为直线a 上三点,D ,E ,F 为直线b 上三点,A ′,B ′,C ′,D ′,E ′分别为AD ,DB ,BE ,EC ,CF 的中点.求证:∠A ′B ′C ′=∠C ′D ′E ′.证明:因为A′,B′分别是AD,DB的中点,所以A′B′∥a,同理C′D′∥a,B′C′∥b,D′E′∥b,所以A′B′∥C′D′,B′C′∥D′E′.又∠A′B′C′的两边和∠C′D′E′的两边的方向都相同,所以∠A′B′C′=∠C′D′E′.[A基础达标]1.下列结论中正确的是()①在空间中,若两条直线不相交,则它们一定平行;②平行于同一条直线的两条直线平行;③一条直线和两条平行直线中的一条相交,那么它也和另一条相交;④空间中有四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.A.①②③B.②④C.③④D.②③解析:选B.①错,可以异面.②正确.③错误,和另一条可以异面.④正确,由平行线的传递性可知.2.下列命题中,正确的有()①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;④如果两条直线同时平行于第三条直线,那么这两条直线互相平行.A.1个B.2个C.3个D.4个解析:选B.由等角定理可知:对于①这两个角可能相等,也可能互补;对于②显然正确.对于③如图,∠DD1C1与∠DAD1的两边D1C1⊥AD1,AD⊥D1D,而这两个角不相等,也不互补,所以该命题错误;由基本事实4知命题④正确.所以②④是正确的.3.若∠AOB=∠A1O1B1且OA∥O1A1,OA与O1A1的方向相同,则下列结论中正确的是()A.OB∥O1B1且方向相同B.OB∥O1B1C.OB与O1B1不平行D.OB与O1B1不一定平行解析:选D.OB与O1B1不一定平行,反例如图.4.如图,α∩β=l,a⊂α,b⊂β,且a,b为异面直线,则以下结论中正确的是()A.a,b都与l平行B.a,b中至多有一条与l平行C.a,b都与l相交D.a,b中至多有一条与l相交解析:选B.如果a,b都与l平行,根据基本事实4,有a∥b,这与a,b为异面直线矛盾,故a,b中至多有一条与l平行.5.如图所示,在长方体木块AC1中,E,F分别是B1O和C1O的中点,则长方体的各棱中与EF平行的有()A.3条B.4条C.5条D.6条解析:选B.由于E,F分别是B1O,C1O的中点,故EF∥B1C1,因为和棱B1C1平行的棱还有3条:AD,BC,A1D1,所以共有4条.6.空间中有两个角α,β,且角α、β的两边分别平行.若α=60°,则β=________.解析:因为α与β两边对应平行,但方向不确定,所以α与β相等或互补.答案:60°或120°7.如图,在正方体ABCD-AB1C1D1中,BD和B1D1分别是正方形ABCD和A1B1C1D1的对角线,(1)∠DBC的两边与________的两边分别平行且方向相同;(2)∠DBC的两边与________的两边分别平行且方向相反.解析:(1)因为B1D1∥BD,B1C1∥BC且方向相同,所以∠DBC的两边与∠D1B1C1的两边分别平行且方向相同.(2)B1D1∥BD,D1A1∥BC且方向相反,所以∠DBC的两边与∠B1D1A1的两边分别平行且方向相反.答案:(1)∠D1B1C1(2)∠B1D1A18.如图,点P,Q,R,S分别在正方体的四条棱上,且是所在棱的中点,则直线PQ与RS是平行直线的图是________(填序号).解析:结合基本事实4可知,①②均是平行直线,④中RS和PQ相交,③是异面直线.答案:①②9.如图,在正方体ABCD-A1B1C1D1中,M,M1分别是棱AD和A1D1的中点.求证:(1)四边形BB1M1M为平行四边形;(2)∠BMC=∠B1M1C1.证明:(1)因为在正方形ADD1A1中,M,M1分别为AD,A1D1的中点,所以MM1═∥AA1.又因为AA1═∥BB1,所以MM1∥BB1,且MM1=BB1.所以四边形BB1M1M为平行四边形.(2)由(1)知四边形BB1M1M为平行四边形,所以B1M1∥BM.同理可得四边形CC1M1M为平行四边形,所以C1M1∥CM.由平面几何知识可知,∠BMC和∠B1M1C1都是锐角,所以∠BMC=∠B1M1C1.10.如图,已知在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是棱CD,AD的中点.求证:(1)四边形MNA1C1是梯形;(2)∠DNM=∠D1A1C1.证明:(1)如图,连接AC,因为在△ACD中,M,N分别是CD,AD的中点,所以MN是△ACD的中位线,所以MN∥AC,MN=12AC.由正方体的性质得:AC∥A1C1,AC=A1C1.所以MN∥A1C1,且MN=1,即MN≠A1C1,2A1C1所以四边形MNA1C1是梯形.(2)由(1)可知MN∥A1C1.又因为ND∥A1D1,所以∠DNM与∠D1A1C1相等或互补.而∠DNM与∠D1A1C1均为锐角,所以∠DNM=∠D1A1C1.[B能力提升]11.如图所示,在四面体ABCD中,M,N,P,Q,E分别是AB,BC,CD,AD,AC的中点,则下列说法不正确的是()A .M ,N ,P ,Q 四点共面B .∠QME =∠CBDC .△BCD ∽△MEQ D .四边形MNPQ 为矩形解析:选D.由条件易得MQ ∥BD ,ME ∥BC ,QE ∥CD ,NP ∥BD ,所以MQ ∥NP .对于A ,由MQ ∥NP ,得M ,N ,P ,Q 四点共面,故A 正确;对于B ,根据定理,得∠QME =∠CBD ,故B 正确;对于C ,由定理知∠QME =∠CBD ,∠MEQ =∠BCD ,则△BCD ∽△MEQ ,故C 正确;对于D ,没有充分理由推证四边形MNPQ 为矩形,故D 不正确.12.如图所示,E ,F ,G ,H 分别是空间四边形ABCD 各边AB ,BC ,CD ,DA 的中点,若BD =2,AC =4,则四边形EFGH 的周长为________.解析:因为E ,H 分别是空间四边形ABCD 中的边AB ,DA 的中点,所以EH ∥BD ,且EH =12BD ,同理FG ∥BD ,且FG =12BD .所以EH =FG =12BD =1,同理EF =GH =12AC =2,所以四边形EFGH 的周长为6. 答案:613.(2019·丽水检测)一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ∥CM ;②EF 与MN 是异面直线;③MN ∥CD . 以上结论中正确的序号为________.解析:把正方体平面展开图还原到原来的正方体,如图所示,EF 与MN 是异面直线.AB ∥CM ,MN ⊥CD ,只有①②正确.答案:①②14.如图,在空间四边形ABCD 中,E ,H 分别是AB ,AD 的中点,F ,G 分别是CB ,CD 上的点,且CF CB =CG CD =23,若BD =6 cm ,梯形EFGH的面积为28 cm 2,求平行线EH ,FG 间的距离.解:在△BCD 中,因为CF CB =CG CD =23, 所以GF ∥BD ,FG BD =23. 所以FG =4 cm.在△ABD 中,因为点E ,H 分别是AB 、AD 的中点,所以EH =12BD =3(cm). 设EH ,FG 间的距离为d cm.则12×(4+3)×d =28,所以d =8. 即EH 和FG 间的距离为8 cm.[C 拓展探究]15.如图,E ,F ,G ,H 分别是空间四边形ABCD 各边上的点,且AE ∶EB =AH ∶HD =m ,CF ∶FB =CG ∶GD =n .(1)证明:E ,F ,G ,H 四点共面;(2)m ,n 满足什么条件时,四边形EFGH 是平行四边形?解:(1)证明:因为AE ∶EB =AH ∶HD ,所以EH ∥BD .又CF ∶FB =CG ∶GD ,所以FG ∥BD .所以EH ∥FG .所以E ,F ,G ,H 四点共面.(2)当EH ∥FG ,且EH =FG 时,四边形EFGH 为平行四边形.因为EH BD =AE AE +EB =m m +1,所以EH =m m +1BD . 同理可得FG =n n +1BD ,由EH =FG ,得m =n . 故当m =n 时,四边形EFGH 为平行四边形.。
高中数学 322(直线的两点式方程)导学案 新人教A版必修2 学案
3.2.2《直线的两点式方程》导学案【学习目标】知识与技能:(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。
过程与方法:让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。
情感态度与价值观:(1)认识事物之间的普遍联系与相互转化;(2)培养学生用联系的观点看问题。
【重点难点】1、 重点:直线方程两点式。
2、难点:两点式推导过程的理解。
【学法指导】注意逐字逐句仔细审题,认真思考阅读教材、独立规范作答。
牢记直线方程的表达形式及解题方法规律。
平行班完成学案AB 类问题. 【知识链接】:过点),(000y x P ,斜率是k 的直线l 上的点,其坐标都满足方程)(00x x k y y -=-它叫做直线的点斜式方程,简称点斜式。
斜截式方程:b kx y += 理解“截距”与“距离”两个概念的区别.【学习过程】A 问题1、利用点斜式解答如下问题:(1)已知直线l 经过两点)5,3(),2,1(21P P ,求直线l 的方程. (2)已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠,求通过这两点的直线方程。
由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程.B 问题2、若点),(),,(222211y x P x x P 中有21x x =,或21y y =,此时这两点的直线方程是什么?例1已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a ,求直线l 的方程。
B 例2 已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),求BC 边所在直线的方程,以及该边上中线所在直线的方程。
【基础达标】A .1求过下列两点的直线的两点式方程;(1)A(2,1),B(0,-3); (2)A(0,5),B(5,0)A2.根据下列条件求直线的方程,并画出图形:(1)在x 轴上的截距是2,在y 轴上的截距是3;(2)在x 轴上的截距是-5,在y 轴上的截距是6.B .B3.根据下列条件,求直线的方程:(1)过点(0,5),且在两坐标轴上的截距之和为2(2)过点(5,0),且在两坐标轴上的截距之差为24一条直线经过点(-2,2),并且与两坐标轴围成的三角形的面积是1,求此直线的方程。
人教版高中数学必修2全册导学案及答案
人教版高中数学必修2全册导学案及答案全文表达流畅,无影响阅读体验的问题。
为了确保文章的质量,我认为在回答你的提问之前,有必要对导学案和答案的特点进行一下了解。
人教版高中数学必修2全册导学案是教师在备课过程中为了引导学生自主学习而准备的一份辅助教材。
它通常包含了本课时的学习目标、学习内容的整理、学习方法指导和相关习题等。
这些内容对于学生来说是非常重要的,因为通过导学案,学生可以在自主学习的过程中得到更好的指导和帮助。
作为导学案的一部分,答案的提供也是非常重要的。
学生在自学过程中,可以通过对答案的核对来检验自己的学习情况,找出自己的问题所在,并及时进行纠正和补充学习。
根据题目要求,我将按照导学案的格式布局,提供必修2全册的导学案及答案。
这样你可以更方便地进行自主学习,并通过对答案的核对来加深对数学知识的理解。
导学案及答案第一章函数与导数1.1 函数的概念与表示学习目标:1. 了解函数的基本概念;2. 掌握用集合、映射等方法表示函数的方法。
学习内容:1. 函数的定义;2. 函数的表示方法;3. 函数的性质。
学习方法指导:1. 仔细阅读教材相关内容,理解函数的定义;2. 注意区分自变量和因变量的概念;3. 多做一些例题,加深对函数表示方法的理解。
习题:1. 设函数f(x) = 2x + 3,求f(1)的值;2. 函数y = x^2的图象为抛物线,确定该函数的定义域和值域。
答案:1. 将x = 1带入函数f(x),得到f(1) = 2(1) + 3 = 5。
2. 函数y = x^2的定义域为全体实数集R,值域为非负实数集[0,+∞)。
......根据上述导学案的格式,我将为你提供人教版高中数学必修2全册的导学案及答案。
由于篇幅限制,本文无法将全册的导学案及答案一一列出。
但你可以根据此示例并借鉴此格式,自行拟定其他章节的导学案及答案。
希望上述内容对你有所帮助,祝你学习顺利!。
人教版高一数学必修2全册导学案及答案
人教版高一数学必修2全册导学案及答案第一章:集合及其运算1. 集合的概念及表示方法a) 集合的定义:集合是由一些确定的、互不相同的对象构成的整体。
b) 集合的表示方法:i) 列举法:把集合中的元素逐个列举出来,用大括号括起来表示,如A={1, 2, 3}。
ii) 描述法:用条件描述集合中的元素,如A={x|x是自然数,且x<4}。
2. 集合的运算a) 交集:设A和B为两个集合,A∩B表示同时属于A和B的元素组成的集合。
b) 并集:设A和B为两个集合,A∪B表示属于A或者属于B的元素组成的集合。
c) 差集:设A和B为两个集合,A-B表示属于A但不属于B的元素组成的集合。
d) 互斥与互补:若A∩B=∅,则A和B互斥;若A∪B=U(全集),则称A和B互为互补集。
练习题:1. 设A={1, 2, 3, 4},B={3, 4, 5},求A∩B和A∪B。
2. 若A={1, 2, 3, 4},B={2, 3, 4, 5},求A-B和B-A。
3. 设全集U={1, 2, 3, 4, 5},A={1, 2, 3},B={3, 4},求A的补集和B的补集。
答案:1. A∩B={3, 4},A∪B={1, 2, 3, 4, 5}。
2. A-B={1},B-A={5}。
3. A的补集U-A={4, 5},B的补集U-B={1, 2, 5}。
第二章:不等式与不等式组1. 不等式的概念a) 不等式的定义:设a和b是两个实数,用符号"<"表示a小于b,用符号">"表示a大于b,用符号"≤"表示a小于等于b,用符号"≥"表示a大于等于b。
b) 不等式的解集:使不等式不等号成立的实数的集合,称为不等式的解集。
2. 一元一次不等式a) 不等式的性质:两边加上(或减去)同一个实数,不等式的大小方向不变;两边乘以正实数(或除以正实数),不等式的大小方向不变;两边乘以负实数(或除以负实数),不等式的大小方向相反。
新教材高中数学第9章总体百分位数的估计学案含解析新人教A版必修第二册
新教材高中数学学案含解析新人教A版必修第二册:9.2.2 总体百分位数的估计学习任务核心素养1.结合实例,能用样本估计百分位数.(重点) 2.理解百分位数的统计含义.(重点、难点)1.通过对百分位数概念的学习,培养数学抽象素养.2.通过计算样本的百分位数,培养数学运算素养.某省数学考试结果揭晓,根据规定,0.8%的同学需要补考.问题:那么如何确定需要补考的分数线呢?1.第p百分位数的定义一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.2.计算一组n个数据的第p百分位数的步骤第1步,按从小到大排列原始数据.第2步,计算i=n×p%.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i 是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.3.四分位数25%,50%,75%这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数.(1) 班级人数为50的班主任老师说“90%的同学能够考取本科院校”,这里的“90%”是百分位数吗?(2)“这次数学测试成绩的第70百分位数是85分”这句话是什么意思?[提示] (1)不是.是指能够考取本科院校的同学占同学总数的百分比.(2)有70%的同学数学测试成绩小于或等于85分.1.思考辨析(正确的画“√”,错误的画“×”)(1)若一组样本数据各不相等,则其75%分位数大于25%分位数. ( )(2)若一组样本数据的10%分位数是23,则在这组数据中有10%的数据大于23.( )(3)若一组样本数据的24%分位数是24,则在这组数据中至少有76%的数据大于或等于24.( )[答案] (1)√ (2)× (3)√2.下列关于一组数据的第50百分位数的说法正确的是( )A .第50百分位数就是中位数B .总体数据中的任意一个数小于它的可能性一定是50%C .它一定是这组数据中的一个数据D .它适用于总体是离散型的数据A [由百分位数的意义可知选项B ,C ,D 错误.]3.数据7.0,8.4,8.4,8.4,8.6,8.7,9.0,9.1的第30百分位数是________.8.4 [因为8×30%=2.4,故30%分位数是第三项数据8.4.]4.一组样本数据的频率分布直方图如图所示,试估计此样本数据的第50百分位数为________. 1009 [样本数据低于10的比例为0.08 +0.32=0.40,样本数据低于14的比例为0.40 +0.36=0.76,所以此样本数据的第50百分位数在[10,14]内,估计此样本数据的第50百分位数为10+0.10.36×4=1009.]类型1 百分位数的计算【例1】 (对接教材P 202例2)从某珍珠公司生产的产品中,任意抽取12颗珍珠,得到它们的质量(单位:g)如下:7.9,9.0,8.9,8.6,8.4,8.5,8.5,8.5,9.9,7.8,8.3,8.0.(1)分别求出这组数据的第25,75,95百分位数.(2)请你找出珍珠质量较小的前15%的珍珠质量.(3)若用第25,50,95百分位数把公司生产的珍珠划分为次品、合格品、优等品和特优品,依照这个样本的数据,给出该公司珍珠等级的划分标准.[解] (1)将所有数据从小到大排列,得7.8,7.9,8.0,8.3,8.4,8.5,8.5,8.5,8.6,8.9,9.0,9.9,因为共有12个数据,所以12×25%=3,12×75%=9,12×95%=11.4,则第25百分位数是8.0+8.32=8.15, 第75百分位数是8.6+8.92=8.75, 第95百分位数是第12个数据为9.9.(2)因为共有12个数据,所以12×15%=1.8,则第15百分位数是第2个数据为7.9. 即产品质量较小的前15%的产品有2个,它们的质量分别为7.8,7.9.(3)由(1)可知样本数据的第25百分位数是8.15 g ,第50百分位数为8.5 g, 第95百分位数是9.9 g ,所以质量小于或等于8.15 g 的珍珠为次品,质量大于8.15 g 且小于或等于8.5 g 的珍珠为合格品,质量大于8.5 g 且小于等于9.9 g 的珍珠为优等品,质量大于9.9 g 的珍珠为特优品.计算第p 百分位数的步骤是什么?[提示] 计算一组n 个数据的第p 百分位数的一般步骤:(1)排列:按照从小到大排列原始数据;(2)计算i :计算i =n ×p %;(3)定数:若i 不是整数,大于i 的最小整数为j ,则第p 百分位数为第j 项数据;若i 是整数,则第p 百分位数为第i 项与第(i +1)项数据的平均数.[跟进训练]1.以下数据为参加数学竞赛决赛的15人的成绩:78,70,72,86,88,79,80,81,94,84,56,98,83,90,91,则这15人成绩的第80百分位数是( )A .90B .90.5C .91D .91.5B [把成绩按从小到大的顺序排列为:56,70,72,78,79,80,81,83,84,86,88,90,91,94,98,因为15×80%=12,所以这15人成绩的第80百分位数是90+912=90.5.] 类型2 百分位数的综合应用【例2】 某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200千瓦时的部分按0.5元/千瓦时收费,超过200千瓦时但不超过400千瓦时的部分按0.8元/千瓦时收费,超过400千瓦时的部分按1.0元/千瓦时收费.(1)求某户居民用电费用y (单位:元)关于月用电量x (单位:千瓦时)的函数解析式.(2)为了了解居民的用电情况,通过抽样获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.若这100户居民中,今年1月份用电费用不超过260元的占80%,求a ,b 的值.(3)根据(2)中求得的数据计算用电量的75%分位数.1.第p 百分位数有什么特点?[提示] 总体数据中的任意一个数小于或等于它的可能性是p .2.某组数据的第p 百分位数在此组数据中一定存在吗?为什么?[提示] 不一定.因为按照计算第p 百分位数的步骤,第2步计算所得的i =n ×p %如果是整数,则第p 百分位数为第i 项与第(i +1)项数据的平均数,若第i 项与第(i +1)项数据不相等,则第p 百分位数在此组数据中就不存在.[解] (1)当0≤x ≤200时,y =0.5x ;当200<x ≤400时,y =0.5×200+0.8×(x -200)=0.8x -60;当x >400时,y =0.5×200+0.8×200+1.0×(x -400)=x -140.所以y 与x 之间的函数解析式为y =⎩⎪⎨⎪⎧ 0.5x ,0≤x ≤200,0.8x -60,200<x ≤400,x -140,x >400.(2)由(1)可知,当y =260时,x =400,即用电量不超过400千瓦时的占80%,结合频率分布直方图可知⎩⎪⎨⎪⎧0.001×100+2×100b +0.003×100=0.8,100a +0.000 5×100=0.2, 解得a =0.001 5,b =0.002 0.(3)设75%分位数为m ,因为用电量低于300千瓦时的所占比例为(0.001+0.002+0.003)×100=60%,用电量不超过400千瓦时的占80%,所以75%分位数为m 在[300,400)内,所以0.6+(m -300)×0.002=0.75,解得m =375千瓦时,即用电量的75%分位数为375千瓦时. 根据例2的(2)题中求得的数据计算用电量的15%分位数.[解] 设15%分位数为x ,因为用电量低于100千瓦时的所占比例为0.001×100=10%,用电量不超过200千瓦时的占30%,所以15%分位数为x 在[100,200)内,所以0.1+(x -100)×0.002=0.15,解得x =125千瓦时,即用电量的15%分位数为125千瓦时.根据频率分布直方图计算样本数据的百分位数,首先要理解频率分布直方图中各组数据频率的计算,其次估计百分位数在哪一组,再应用方程的思想方法,设出百分位数,解方程可得.[跟进训练]2.某市举行“中学生诗词大赛”,某校有1 000名学生参加了比赛,从中抽取100名学生,统计他们的成绩(单位:分),并进行适当的分组(每组为左闭右开的区间),得到的频率分布直方图如图所示,则估计该校学生成绩的80%分位数为________.122 [根据频率分布直方图可知,成绩在130分以下的学生所占比例为1-0.005 0×20=0.9,成绩在110分以下的学生所占比例为1-(0.012 5+0.005 0)×20=0.65,因此80%分位数一定位于[110,130)内,由110+20×0.8-0.650.9-0.65=122,故可估计该校学生成绩的80%分位数为122.]1.下列一组数据的第25百分位数是( )2.1,3.0,3.2,3.8,3.4,4.0,4.2,4.4,5.3,5.6A .3.2B .3.0C .4.4D .2.5A [把这组数据按照由小到大排列,可得:2.1,3.0,3.2,3.4,3.8,4.0,4.2,4.4,5.3,5.6,由i =10×25%=2.5,不是整数,则第3个数据3.2是第25百分位数.]2.已知100个数据的第75百分位数是9.3,则下列说法正确的是( )A .这100个数据中一定有75个数小于或等于9.3B .把这100个数据从小到大排列后,9.3是第75个数据C .把这100个数据从小到大排列后,9.3是第75个数据和第76个数据的平均数D .把这100个数据从小到大排列后,9.3是第75个数据和第74个数据的平均数C [因为100×75%=75为整数,所以第75个数据和第76个数据的平均数为第75百分位数,是9.3,故选C .] 3.2019年某学科能力测试共有12万考生参加,成绩采用15级分,测试成绩分布图如图,试估计成绩高于11级分的人数为( )A .8 000B .10 000C .20 000D .60 000B [从题图中可以看出,12级分的有2.5%左右,13级分的有3%左右,14级分的有1%左右,15级分的有1.5%左右,∴高于11级分的有8%左右,其人数约为12万的8%,即120 000×0.08=9 600人.选项B 最接近.故选B .]4.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)[25,30)年龄组对应小矩形的高度为________;(2)由频率分布直方图估计志愿者年龄的95%分位数为________岁.(1)0.04 (2)42.5 [(1)设[25,30)年龄组对应小矩形的高度为h ,则5×(0.01+h +0.07+0.06+0.02)=1,解得h =0.04.(2)由题图可知年龄小于40岁的频率为(0.01+0.04+0.07+0.06)×5=0.9,且所有志愿者的年龄都小于45岁,所以志愿者年龄的95%分位数在[40,45]内,因此志愿者年龄的95%分位数为40+0.95-0.91-0.9×5=42.5岁.]回顾本节知识,自我完成以下问题:(1)p 百分位数的定义是什么?(2)百分位数告诉我们什么信息?。
人教A版(新教材)必修第二册 6.2.3 向量的数乘运算 学案(含答案)
人教A版(新教材)必修第二册 6.2.3 向量的数乘运算学案(含答案)6.2.3向量的数乘运算向量的数乘运算学习目标1.了解向量数乘的概念.2.理解并掌握向量数乘的运算律,会运用向量数乘的运算律进行向量运算.3.理解并掌握向量共线定理及其判定方法.知识点一向量数乘的定义实数与向量a的积是一个向量,这种运算叫做向量的数乘,记作a,其长度与方向规定如下1|a||||a|.2aa0的方向当0时,与a的方向相同;当0时,与a的方向相反.特别地,当0时,a0.当1时,1aa.知识点二向量数乘的运算律1.1aa.2aaa.3abab.特别地,aaa,abab.2.向量的线性运算向量的加.减.数乘运算统称为向量的线性运算,对于任意向量a,b,以及任意实数,1,2,恒有1a2b1a2b.知识点三向量共线定理向量aa0与b共线的充要条件是存在唯一一个实数,使ba.思考向量共线定理中为什么规定a0答案若将条件a0去掉,即当a0时,显然a与b共线.1若b0,则不存在实数,使ba.2若b0,则对任意实数,都有ba.1.若向量b与a共线,则存在唯一的实数使ba.提示当b0,a0时,实数不唯一.2.若ba,则a与b共线.3.若a0,则a0.提示若a0,则a0或0.4.|a||a|.提示|a||||a|.一.向量的线性运算例11若a2bc,化简3a2b23bc2ab等于A.aB.bC.cD.以上都不对答案C解析原式3a6b6b2c2a2ba2b2c2bc2b2cc.2若3xa2x2a4xab0,则x________.答案4b3a解析由已知,得3x3a2x4a4x4a4b0,所以x3a4b0,所以x4b3a.反思感悟向量线性运算的基本方法1类比法向量的数乘运算类似于代数多项式的运算,例如,实数运算中的去括号.移项.合并同类项.提取公因式等变形手段在数与向量的乘积中同样适用,但是这里的“同类项”.“公因式”是指向量,实数看作是向量的系数.2方程法向量也可以通过列方程来解,把所求向量当作未知数,利用解方程的方法求解,同时在运算过程中多注意观察,恰当的运用运算律,简化运算.跟踪训练1计算ab3ab8a.解ab3ab8aa3ab3b8a2a4b8a10a4b.二.用已知向量表示其他向量例2如图,在ABCD中,E是BC 的中点,若ABa,ADb,则DE等于A.12abB.12abC.a12bD.a12b答案D解析因为E是BC的中点,所以CE12CB12AD12b,所以DEDCCEABCEa12b.反思感悟用已知向量表示其他向量的两种方法1直接法2方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.跟踪训练2在ABC中,若点D满足BD2DC,则AD等于A.13AC23ABB.53AB23ACC.23AC13ABD.23AC13AB答案D解析示意图如图所示,由题意可得ADABBDAB23BCAB23ACAB13AB23AC.三.向量共线的判定及应用例3设a,b是不共线的两个向量.1若OA2ab,OB3ab,OCa3b,求证A,B,C三点共线;2若8akb与ka2b共线,求实数k的值.1证明ABOBOA3ab2aba2b,而BCOCOBa3b3ab2a4b2AB,AB与BC共线,且有公共点B,A,B,C三点共线.2解8akb与ka2b共线,存在实数,使得8akbka2b,即8kak2b0,a与b不共线,8k0,k20,解得2,k24.反思感悟1证明或判断三点共线的方法一般来说,要判定A,B,C三点是否共线,只需看是否存在实数,使得ABAC或BCAB 等即可.2利用向量共线求参数的方法已知向量共线求,常根据向量共线的条件转化为相应向量系数相等求解.跟踪训练3已知向量e1,e2不共线,如果ABe12e2,BC5e16e2,CD7e12e2,则共线的三个点是________.答案A,B,D解析ABe12e2,BDBCCD5e16e27e12e22e12e22AB,AB,BD共线,且有公共点B,A,B,D三点共线.三点共线的常用结论典例如图所示,在ABC 中,点O是BC的中点.过点O的直线分别交直线AB,AC于不同的两点M,N,若ABmAM,ACnAN,则mn的值为A.1B.2C.3D.4答案B解析连接AO图略,O是BC的中点,AO12ABAC.又ABmAM,ACnAN,AOm2AMn2AN.又M,O,N三点共线,m2n21,则mn2.素养提升1本题主要是应用判断三点共线的一个常用结论若A,B,C三点共线,O为直线外一点存在实数x,y,使OAxOByOC,且xy1.2应用时一定注意O是共同的起点,主要是培养学生逻辑推理的核心素养.1.下列运算正确的个数是32a6a;2ab2ba3a;a2b2ba0.A.0B.1C.2D.3答案C解析根据向量数乘运算和加减运算规律知正确;a2b2baa2b2ba0,是零向量,而不是0,所以该运算错误.所以运算正确的个数为2.2.如图,已知AM是ABC的边BC上的中线,若ABa,ACb,则AM等于A.12abB.12abC.12abD.12ab答案C解析因为M是BC的中点,所以AM12ab.3.设P是ABC所在平面内一点,BCBA2BP,则A.PAPB0B.PCPA0C.PBPC0D.PAPBPC0答案B解析因为BCBA2BP,所以点P为线段AC的中点,故选项B正确.4.化简4a3b62ba________.答案10a解析4a3b62ba4a12b12b6a10a.5.设e1与e2是两个不共线向量,AB3e12e2,CBke1e2,CD3e12ke2,若A,B,D三点共线,则k________.答案94解析因为A,B,D三点共线,故存在一个实数,使得ABBD,又AB3e12e2,CBke1e2,CD3e12ke2,所以BDCDCB3e12ke2ke1e23ke12k1e2,所以3e12e23ke12k1e2,所以33k,22k1,解得k94.1.知识清单1向量的数乘及运算律.2向量共线定理.2.方法归纳数形结合.分类讨论.3.常见误区忽视零向量这一个特殊向量.。
(新教材)2020新人教A版高中数学必修第二册同步学案:8.4.1 平面 Word版含答案
8.4 空间点、直线、平面之间的位置关系8.4.1 平 面问题导学预习教材P124-P127的内容,思考以下问题: 1.教材中是如何定义平面的? 2.平面的表示方法有哪些?3.点、线、面之间有哪些关系?如何用符号表示? 4.三个基本事实及推论的内容是什么?各有什么作用?1.平面 (1)平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.平面是向四周无限延展的.(2)平面的画法我们常用矩形的直观图,即平行四边形表示平面.当水平放置时,常把平行四边形的一边画成横向;当平面竖直放置时,常把平行四边形的一边画成竖向.(3)平面的表示方法我们常用希腊字母α,β,γ等表示平面,如平面α、平面β、平面γ等,并将它写在代表平面的平行四边形的一个角内;也可以用代表平面的平行四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称.如图中的平面α,也可以表示为平面ABCD 、平面AC 或者平面BD .■名师点拨(1)平面和点、直线一样,是只描述而不加定义的原始概念,不能进行度量.(2)平面无厚薄、无大小,是无限延展的.2.点、线、面之间的关系及符号表示A是点,l,m是直线,α,β是平面.从集合的角度理解点、线、面之间的关系(1)直线可以看成无数个点组成的集合,故点与直线的关系是元素与集合的关系,用“∈”或“∉”表示.(2)平面也可以看成点集,故点与平面的关系也是元素与集合的关系,用“∈”或“∉”表示.(3)直线与平面都是点集,它们之间的关系可看成集合与集合的关系,故用“⊂”或“⊄”表示.3.平面的性质在画两个相交平面时,如果其中一个平面的一部分被另一个平面挡住,通常把被挡住的部分画成虚线或不画,这样可使画出的图形立体感更强一些.如下图①,图②所示:4.平面性质的三个推论推论1 经过一条直线和这条直线外一点,有且只有一个平面.如图(1). 推论2 经过两条相交直线,有且只有一个平面.如图(2). 推论3 经过两条平行直线,有且只有一个平面.如图(3).判断(正确的打“√”,错误的打“×”)(1)我们常用平行四边形表示平面,所以平行四边形就是一个平面.( ) (2)22个平面重叠起来要比10个平面重叠起来厚一些.( ) (3)直线a 与直线b 相交于点A ,可用符号表示为a ∩b =A .( ) (4)平面ABCD 的面积为100 m 2.( ) (5)过三点A ,B ,C 有且只有一个平面.( ) 答案:(1)× (2)× (3)√ (4)× (5)×若一直线a在平面α内,则正确的图形是()解析:选A.选项B,C,D中直线a在平面α外,选项A中直线a在平面α内.如图所示,下列符号表示错误的是()A.l∈αB.P∉lC.l⊂αD.P∈α解析:选A.观察图知:P∉l,P∈α,l⊂α,则l∈α是错误的.下面是一些命题的叙述语(A,B表示点,a表示直线,α,β表示平面),其中命题和叙述方法都正确的是()A.因为A∈α,B∈α,所以AB∈αB.因为a∈α,a∈β,所以α∩β=aC.因为A∈a,a⊂α,所以A∈αD.因为A∉a,a⊂α,所以A∉α解析:选C.对于A,直线AB在平面α内,应为AB⊂α,故A错误;对于B,直线a在平面α,β内,应为a⊂α,a⊂β,故B错误;对于C,因为A∈a,a⊂α,所以A∈α,故C正确;对于D,A∉a,a⊂α,有可能A∈α,故D错误.故选C.已知如图,试用适当的符号表示下列点、直线和平面之间的关系:(1)点C与平面β:____________.(2)点A与平面α:____________.(3)直线AB与平面α:__________.(4)直线CD与平面α:__________.(5)平面α与平面β:____________.答案:(1)C∉β(2)A∉α(3)AB∩α=B(4)CD⊂α(5)α∩β=BD图形、文字、符号语言的相互转化(1)用符号语言表示下面的语句,并画出图形.平面ABD与平面BDC交于BD,平面ABC与平面ADC交于AC.(2)将下面用符号语言表示的关系用文字语言予以叙述,并用图形语言予以表示.α∩β=l,A∈l,AB⊂α,AC⊂β.【解】(1)符号语言表示:平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC.用图形表示如图①所示.(2)文字语言叙述为:点A在平面α与平面β的交线l上,直线AB,AC分别在平面α,β内,图形语言表示如图②所示.三种语言的转换方法(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言叙述,再用符号语言表示.(2)根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.1.根据图形用符号表示下列点、直线、平面之间的关系.(1)点P与直线AB;(2)点C与直线AB;(3)点M与平面AC;(4)点A1与平面AC;(5)直线AB与直线BC;(6)直线AB与平面AC;(7)平面A1B与平面AC.解:(1)点P∈直线AB.(2)点C∉直线AB.(3)点M∈平面AC.(4)点A1∉平面AC.(5)直线AB∩直线BC=点B.(6)直线AB⊂平面AC.(7)平面A1B∩平面AC=直线AB.2.根据下列条件画出图形:平面α∩平面β=直线AB,直线a⊂α,直线b⊂β,a∥AB,b∥AB. 解:图形如图所示.点、线共面问题证明两两相交且不共点的三条直线在同一平面内.【解】已知:如图所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.求证:直线l1,l2,l3在同一平面内.证明:法一:(纳入平面法)因为l1∩l2=A,所以l1和l2确定一个平面α.因为l2∩l3=B,所以B∈l2.又因为l2⊂α,所以B∈α.同理可证C∈α.又因为B∈l3,C∈l3,所以l3⊂α.所以直线l1,l2,l3在同一平面内.法二:(辅助平面法)因为l1∩l2=A,所以l1,l2确定一个平面α.因为l2∩l3=B,所以l2,l3确定一个平面β.因为A∈l2,l2⊂α,所以A∈α.因为A∈l2,l2⊂β,所以A∈β.同理可证B∈α,B∈β,C∈α,C∈β.所以不共线的三个点A,B,C既在平面α内,又在平面β内.所以平面α和β重合,即直线l 1,l 2,l 3在同一平面内.证明点、线共面的常用方法(1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内.(2)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.已知直线a ∥b ,直线l 与a ,b 都相交,求证:过a ,b ,l 有且只有一个平面.证明:如图所示.由已知a ∥b ,所以过a ,b 有且只有一个平面α. 设a ∩l =A ,b ∩l =B ,所以A ∈α,B ∈α,且A ∈l ,B ∈l , 所以l ⊂α.即过a ,b ,l 有且只有一个平面.三点共线、三线共点问题如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为AB 、AA 1的中点.求证:CE ,D 1F ,DA 三线交于一点.【证明】 连接EF ,D 1C ,A 1B , 因为E 为AB 的中点,F 为AA 1的中点,所以EF ═∥12A 1B . 又因为A 1B ═∥D 1C , 所以EF ═∥12D 1C , 所以E ,F ,D 1,C 四点共面, 可设D 1F ∩CE =P .又D 1F ⊂平面A 1D 1DA ,CE ⊂平面ABCD , 所以点P 为平面A 1D 1DA 与平面ABCD 的公共点.又因为平面A1D1DA∩平面ABCD=DA,所以据基本事实3可得P∈DA,即CE,D1F,DA三线交于一点.[变条件、变问法]若将本例条件中的“E,F分别为AB,AA1的中点”改成“E,F分别为AB,AA1上的点,且D1F∩CE=M”,求证:点D、A、M三点共线.证明:因为D1F∩CE=M,且D1F⊂平面A1D1DA,所以M∈平面A1D1DA,同理M∈平面BCDA,从而M在两个平面的交线上,因为平面A1D1DA∩平面BCDA=AD,所以M∈AD成立.所以点D、A、M三点共线.1.如图,已知平面α,β,且α∩β=l,设梯形ABCD中,AD∥BC,且AB⊂α,CD⊂β.求证:AB,CD,l共点.证明:因为梯形ABCD中,AD∥BC,所以AB,CD是梯形ABCD的两腰,所以AB,CD必定相交于一点,如图,设AB∩CD=M.又因为AB⊂α,CD⊂β,所以M∈α,且M∈β,又因为α∩β=l,所以M∈l.即AB,CD,l共点.2.如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F.求证:E,F,G,H四点必定共线.证明:因为AB∥CD,所以AB,CD确定一个平面β(即平面ABCD),又因为AB∩α=E,AB⊂β,所以E∈α,E∈β,即E为平面α与β的一个公共点.同理可证F,G,H均为平面α与β的公共点,两个平面有公共点,它们有且只有一条通过公共点的公共直线,所以E,F,G,H四点必定共线.1.能确定一个平面的条件是()A.空间三个点B.一个点和一条直线C.无数个点D.两条相交直线解析:选D.不在同一条直线上的三个点可确定一个平面,A,B,C条件不能保证有不在同一条直线上的三个点,故不正确.2.经过同一条直线上的3个点的平面()A.有且只有一个B.有且只有3个C.有无数个D.不存在解析:选C.经过共线3个点的平面有无数个,比如:课本中每一页都过共线的三点.3.如果直线a⊂平面α,直线b⊂平面α,M∈a,N∈b,M∈l,N∈l,则()A.l⊂αB.l⊄αC.l∩α=M D.l∩α=N解析:选A.因为M∈a,a⊂α,所以M∈α,同理,N∈α,又M∈l,N∈l,故l⊂α.4.如果两个平面有一个公共点,那么这两个平面()A.没有其他公共点B.仅有这一个公共点C.仅有两个公共点D.有无数个公共点解析:选D.根据基本事实3可知,两个不重合的平面若有一个公共点,则这两个平面有且只有一条经过该点的公共直线.5.说明语句“l⊂α,m∩α=A,A∉l”表示的点、线、面的位置关系,并画出图形.解:直线l在平面α内,直线m与平面α相交于点A,且点A不在直线l上,图形如图所示.[A基础达标]1.下列说法中正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.两个不同平面α和β有不在同一条直线上的三个公共点解析:选C.不共线的三点确定一个平面,故A不正确;四边形有时指空间四边形,故B 不正确;梯形的上底和下底平行,可以确定一个平面,故C正确;两个平面如果相交,一定有一条交线,所有这两个平面的公共点都在这条交线上,故D不正确,故选C.2.给出以下四个命题:①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.其中正确命题的个数是()A.0B.1C.2 D.3解析:选B.①假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不共面矛盾,故其中任意三点不共线,所以①正确;②如图,两个相交平面有三个公共点A,B,C,但A,B,C,D,E不共面;③显然不正确;④不正确,因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形.3.已知α,β为平面,A,B,M,N为点,a为直线,下列推理错误的是()A.A∈a,A∈β,B∈a,B∈β⇒a⊂βB.M∈α,M∈β,N∈α,N∈β⇒α∩β=MNC.A∈α,A∈β⇒α∩β=AD.A,B,M∈α,A,B,M∈β,且A,B,M不共线⇒α,β重合解析:选C.选项C中,α与β有公共点A,则它们有过点A的一条交线,而不是点A,故C错.4.在空间四边形ABCD中,在AB,BC,CD,DA上分别取E,F,G,H四点,如果GH,EF交于一点P,则()A.P一定在直线BD上B.P一定在直线AC上C.P在直线AC或BD上D.P既不在直线BD上,也不在AC上解析:选B.由题意知GH⊂平面ADC,GH,EF交于一点P,所以P∈平面ADC.同理,P ∈平面ABC.因为平面ABC∩平面ADC=AC,由基本事实3可知点P一定在直线AC上.5.下列各图均是正六棱柱,P,Q,R,S分别是所在棱的中点,这四个点不共面的图形是()解析:选D.在选项A,B,C中,由棱柱、正六边形、中位线的性质,知均有PS∥QR,即在此三个图形中P,Q,R,S共面,故选D.6.设平面α与平面β相交于l,直线a⊂α,直线b⊂β,a∩b=M,则M________l.解析:因为a∩b=M,a⊂α,b⊂β,所以M∈α,M∈β.又因为α∩β=l,所以M∈l.答案:∈7.已知空间四点中无任何三点共线,那么这四点可以确定平面的个数是________.解析:其中三个点可确定唯一的平面,当第四个点在此平面内时,可确定1个平面,当第四个点不在此平面内时,则可确定4个平面.答案:1或4 8.看图填空:(1)平面AB 1∩平面A 1C 1=________; (2)平面A 1C 1CA ∩平面AC =________.答案:A 1B 1 AC9.按照给出的要求,完成图中两个相交平面的作图,图中所给线段AB 分别是两个平面的交线.解:以AB 为其中一边,分别画出来表示平面的平行四边形.如图.10.已知空间四边形ABCD (如图所示),E ,F 分别是AB ,AD 的中点,G ,H 分别是BC ,CD 上的点,且CG =13BC ,CH =13DC .求证:(1)E ,F ,G ,H 四点共面; (2)直线FH ,EG ,AC 共点.证明:(1)连接EF ,GH .因为E ,F 分别是AB ,AD 的中点,所以EF ═∥12BD ,因为G ,H 分别是BC ,CD 上的点,且CG =13BC ,CH =13DC .所以GH ═∥13BD , 所以EF ∥GH ,所以E ,F ,G ,H 四点共面.(2)因为E ,F 分别是AB ,AD 的中点,所以EF ═∥12BD ,因为G ,H 分别是BC ,CD 上的点,且CG =13BC ,CH =13DC .所以GH ═∥13BD , 所以EF ∥GH ,且EF ≠GH ,所以四边形EFHG 是梯形, 设两腰EG ,FH 相交于一点T . 因为EG ⊂平面ABC ,FH ⊂平面ACD ,所以T ∈平面ABC ,且T ∈平面ACD ,又平面ABC ∩平面ACD =AC , 所以T ∈AC ,即直线EG ,FH ,AC 相交于一点T .[B 能力提升]11.空间四点A ,B ,C ,D 共面但不共线,那么这四点中( ) A .必有三点共线 B .必有三点不共线 C .至少有三点共线D .不可能有三点共线解析:选B.若AB ∥CD ,则AB ,CD 共面,但A ,B ,C ,D 任何三点都不共线,故排除A ,C ;若直线l 与直线外一点A 在同一平面内,且B ,C ,D 三点在直线l 上,所以排除D.故选B.12.如图,平面α∩平面β=l ,A 、B ∈α,C ∈β,C ∉l ,直线AB ∩l=D ,过A 、B 、C 三点确定的平面为γ,则平面γ、β的交线必过( )A .点AB .点BC .点C ,但不过点DD .点C 和点D解析:选D.根据基本事实判定点C 和点D 既在平面β内又在平面γ内,故在β与γ的交线上.故选D.13.在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱DD 1和BB 1上的点,MD =13DD 1,NB=13BB 1,那么正方体过点M ,N ,C 1的截面图形是( )A .三角形B .四边形C .五边形D .六边形解析:选C.在正方体ABCD -A1B 1C 1D 1中,M ,N 分别是棱DD 1和BB 1上的点,MD =13DD 1,NB =13BB 1.如图,延长C 1M 交CD 的延长线于点P ,延长C 1N 交CB 的延长线于点Q ,连接PQ 交AD于点E ,AB 于点F ,连接NF ,ME ,则正方体过点M ,N ,C 1的截面图形是五边形,故选C.14.如图所示,AB ∩α=P ,CD ∩α=P ,A ,D 与B ,C 分别在平面α的两侧,AC ∩α=Q ,BD ∩α=R .求证:P ,Q ,R 三点共线.证明:因为AB ∩α=P ,CD ∩α=P , 所以AB ∩CD =P .所以AB ,CD 可确定一个平面,设为β. 因为A ∈AB ,C ∈CD ,B ∈AB ,D ∈CD , 所以A ∈β,C ∈β,B ∈β,D ∈β. 所以AC ⊂β,BD ⊂β,平面α,β相交. 因为AB ∩α=P ,AC ∩α=Q ,BD ∩α=R , 所以P ,Q ,R 三点是平面α与平面β的公共点.所以P ,Q ,R 都在α与β的交线上,故P ,Q ,R 三点共线.[C 拓展探究]15.如图,在正方体ABCD -A 1B 1C 1D 1中,设线段A 1C 与平面ABC 1D 1交于点Q ,求证:B ,Q ,D 1三点共线.证明:如图,连接A 1B ,CD 1,显然B ∈平面A 1BCD 1,D 1∈平面A 1BCD 1.所以BD 1⊂平面A 1BCD 1. 同理BD 1⊂平面ABC 1D 1所以平面ABC1D1∩平面A1BCD1=BD1.因为A1C∩平面ABC1D1=Q,所以Q∈平面ABC1D1.又因为A1C⊂平面A1BCD1,所以Q∈平面A1BCD1.所以Q在平面A1BCD1与ABC1D1的交线上,即Q∈BD1,所以B,Q,D1三点共线.。
人教A版高中同步学案数学选择性必修第二册精品习题课件 第四章 数列 数列的综合应用及数学归纳法
+
+ −
,故 +
+
+
+
+
对任意的
+
=
>−
+
+
+
,所以当
(+)+
≥ 都成立.
=
−
× +
+
−
+
+
,令
=
+
,因为
+
= + 时,不等式也
= 2
6.数列{ }中,1 = 2,+1 − = 2 ,则{ }的通项公式为________.
比是2的等比数列,所以 − = 2 ,即 = 2 + .
− 6, 为奇数,
10.[2023新高考Ⅱ]已知{ }为等差数列, = ൝
记 , 分别为数列
2 , 为偶数.
{ },{ }的前项和,若4 = 32,3 = 16.
(1)求{ }的通项公式;
, 为奇数,
ቐ 2
, 为偶数, 其前项和为 ,则30
2
C.240
=() C
D.360
[解析]由题意得
= ( + + ⋯ + ) + ( + + ⋯ + ) = ( + + ⋯ + ) + ( + +
⋯ + ) =
×
(2)证明:当 > 5时, > .
证明由(1)得 = 1 +
(新教材)人教A版高中数学必修第二册学案 概率导学案含答案
10.1随机事件与概率10.1.1有限样本空间与随机事件10.1.2事件的关系和运算考点学习目标核心素养随机试验理解随机试验的概念及特点数学抽象样本空间理解样本点和样本空间,会求所给试验的样本点和样本空间数学抽象随机事件理解随机事件、必然事件、不可能事件的概念,并会判断某一事件的性质数学抽象事件的关系和运算理解事件5种关系并会判断数学抽象、逻辑推理问题导学预习教材P226-P232的内容,思考以下问题:1.随机试验的概念是什么?它有哪些特点?2.样本点和样本空间的概念是什么?3.事件的分类有哪些?4.事件的关系有哪些?1.随机试验(1)定义:把对随机现象的实现和对它的观察称为随机试验.(2)特点:①试验可以在相同条件下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.样本点和样本空间(1)定义:我们把随机试验E的每个可能的基本结果称为样本点,全体样本点的集合称为试验E的样本空间.(2)表示:一般地,我们用Ω表示样本空间,用ω表示样本点.如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间.3.事件的分类(1)随机事件:①我们将样本空间Ω的子集称为随机事件,简称事件,并把只包含一个样本点的事件称为基本事件.②随机事件一般用大写字母A,B,C,…表示.③在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生.(2)必然事件:Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.(3)不可能事件:空集∅不包含任何样本点,在每次试验中都不会发生,我们称∅为不可能事件.■名师点拨必然事件和不可能事件不具有随机性,它是随机事件的两个极端情况.4.事件的关系或运算的含义及符号表示事件的关系或运算含义符号表示包含A发生导致B发生A⊆B并事件(和事件)A与B至少一个发生A∪B或A+B交事件(积事件)A与B同时发生A∩B或AB互斥(互不相容)A与B不能同时发生A∩B=∅互为对立A与B有且仅有一个发生A∩B=∅,A∪B=Ω■名师点拨(1)如果事件B包含事件A,事件A也包含事件B,即B⊇A且A⊇B,则称事件A与事件B 相等,记作A=B.(2)类似地,可以定义多个事件的和事件以及积事件.例如,对于三个事件A,B,C,A ∪B∪C(或A+B+C)发生当且仅当A,B,C中至少一个发生,A∩B∩C(或ABC)发生当且仅当A,B,C同时发生.判断(正确的打“√”,错误的打“×”)(1)必然事件一定发生.()(2)不可能事件一定不发生.()(3)互斥事件一定对立.()(4)对立事件一定互斥.()答案:(1)√(2)√(3)×(4)√下列事件:①长度为3,4,5的三条线段可以构成一个直角三角形;②经过有信号灯的路口,遇上红灯;③下周六是晴天.其中是随机事件的是()A.①②B.②③C.①③D.②解析:选B.①为必然事件;②③为随机事件.“李晓同学一次掷出3枚骰子,3枚全是6点”的事件是()A.不可能事件B.必然事件C.可能性较大的随机事件D.可能性较小的随机事件解析:选D.掷出的3枚骰子全是6点,可能发生,但发生的可能性较小.一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中任意抽取5件,现给出以下四个事件:事件A:“恰有一件次品”;事件B:“至少有两件次品”;事件C:“至少有一件次品”;事件D:“至多有一件次品”.并给出以下结论:①A∪B=C;②D∪B是必然事件;③A∪B=B;④A∪D=C.其中正确的序号是()A.①②B.③④C.①③D.②③解析:选A.A∪B表示的事件为至少有一件次品,即事件C,所以①正确,③不正确;D∪B表示的事件为至少有两件次品或至多有一件次品,包括了所有情况,所以②正确;A∪D表示的事件为至多有一件次品,即事件D,所以④不正确.事件类型的判断指出下列事件是必然事件、不可能事件还是随机事件.(1)中国体操运动员将在下届奥运会上获得全能冠军.(2)出租车司机小李驾车通过几个十字路口都将遇到绿灯.(3)若x∈R,则x2+1≥1.(4)抛一枚骰子两次,朝上面的数字之和小于2.【解】由题意知(1)(2)中事件可能发生,也可能不发生,所以是随机事件;(3)中事件一定会发生,是必然事件;由于骰子朝上面的数字最小是1,两次朝上面的数字之和最小是2,不可能小于2,所以(4)中事件不可能发生,是不可能事件.判断事件类型的思路要判定事件是何种事件,首先要看清条件,因为三种事件都是相对于一定条件而言的,第二步再看它是一定发生,还是不一定发生,还是一定不发生,一定发生的是必然事件,不一定发生的是随机事件,一定不发生的是不可能事件.1.下面的事件:①在标准大气压下,水加热到80℃时会沸腾;②a,b∈R,则ab=ba;③一枚硬币连掷两次,两次都出现正面向上.其中是不可能事件的为()A.②B.①C.①②D.③解析:选B.②是必然事件,③是随机事件.2.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件;②当“x为某一实数时可使x2<0”是不可能事件;③“2025年的国庆节是晴天”是必然事件;④“从100个灯泡(有10个是次品)中取出5个,5个都是次品”是随机事件.其中正确命题的个数是()A.4 B.3C.2 D.1解析:选B.“2025年的国庆节是晴天”是随机事件,故命题③错误,命题①②④正确.故选B.样本点与样本空间同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的样本空间;(2)求这个试验的样本点的总数;(3)“x+y=5”这一事件包含哪几个样本点?“x<3且y>1”呢?(4)“xy=4”这一事件包含哪几个样本点?“x=y”呢?【解】(1)Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(2)样本点的总数为16.(3)“x+y=5”包含以下4个样本点:(1,4),(2,3),(3,2),(1,4);“x<3且y>1”包含以下6个样本点:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4).(4)“xy=4”包含以下3个样本点:(1,4),(2,2),(4,1);“x=y”包含以下4个样本点:(1,1),(2,2),(3,3),(4,4).确定样本空间的方法(1)必须明确事件发生的条件;(2)根据题意,按一定的次序列出问题的答案.特别要注意结果出现的机会是均等的,按规律去写,要做到既不重复也不遗漏.甲、乙两人做出拳游戏(锤、剪、布).(1)写出样本空间;(2)用集合表示事件“甲赢”;(3)用集合表示事件“平局”.解:(1)Ω={(锤,剪),(锤,布),(锤,锤),(剪,锤),(剪,剪),(剪,布),(布,锤),(布,剪),(布,布)}.(2)记“甲赢”为事件A,则A={(锤,剪),(剪,布),(布,锤)}.(3)记“平局”为事件B,则B={(锤,锤),(剪,剪),(布,布)}.事件的运算盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有1个红球2个白球},事件B={3个球中有2个红球1个白球},事件C={3个球中至少有1个红球},事件D={3个球中既有红球又有白球}.求:(1)事件D与A、B是什么样的运算关系?(2)事件C与A的交事件是什么事件?【解】(1)对于事件D,可能的结果为1个红球,2个白球或2个红球,1个白球,故D =A∪B.(2)对于事件C,可能的结果为1个红球,2个白球或2个红球,1个白球或3个均为红球,故C∩A=A.[变条件、变问法]在本例中,设事件E={3个红球},事件F={3个球中至少有一个白球},那么事件C与A、B、E是什么运算关系?C与F的交事件是什么?解:由事件C包括的可能结果有1个红球2个白球,2个红球1个白球,3个红球三种情况,故A⊆C,B⊆C,E⊆C,所以C=A∪B∪C,而事件F包括的可能结果有1个白球2个红球,2个白球1个红球,3个白球,所以C∩F={1个红球2个白球,2个红球1个白球}=D.(1)利用事件间运算的定义.列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算.(2)利用Venn图.借助集合间运算的思想,分析同一条件下的试验所有可能出现的结果,把这些结果在图中列出,进行运算.掷一枚骰子,下列事件:A={出现奇数点},B={出现偶数点},C={点数小于3},D={点数不大于2},E={点数是3的倍数}.求:(1)A∩B,BC;(2)A∪B,B+C;(3)D,AC.解:(1)A∩B=∅,BC={出现2点}.(2)A∪B={出现1,2,3,4,5或6点},B+C={出现1,2,4或6点}.(3)D={点数小于或等于2}={出现1或2点};AC={出现1点}.互斥事件与对立事件的判定某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判别它们是不是对立事件.(1)恰有1名男生与恰有2名男生;(2)至少有1名男生与全是男生;(3)至少有1名男生与全是女生;(4)至少有1名男生与至少有1名女生.【解】判别两个事件是否互斥,就要考察它们是否能同时发生;判别两个互斥事件是否对立,就要考察它们是否必有一个发生.(1)因为“恰有1名男生”与“恰有2名男生”不可能同时发生,所以它们是互斥事件;当恰有2名女生时它们都不发生,所以它们不是对立事件.(2)因为恰有2名男生时“至少有1名男生”与“全是男生”同时发生,所以它们不是互斥事件.(3)因为“至少有1名男生”与“全是女生”不可能同时发生,所以它们互斥;由于它们必有一个发生,所以它们是对立事件.(4)由于选出的是1名男生1名女生时“至少有1名男生”与“至少有1名女生”同时发生,所以它们不是互斥事件.(1)包含关系、相等关系的判定①事件的包含关系与集合的包含关系相似;②两事件相等的实质为相同事件,即同时发生或同时不发生.(2)判断事件是否互斥的两个步骤第一步,确定每个事件包含的结果;第二步,确定是否有一个结果发生会意味着两个事件都发生,若是,则两个事件不互斥,否则就是互斥的.(3)判断事件是否对立的两个步骤第一步,判断是互斥事件;第二步,确定两个事件必然有一个发生,否则只有互斥,但不对立.判断下列给出的每对事件,是否为互斥事件,是否为对立事件,并说明理由.从40张扑克牌(红桃、黑桃、方块、梅花点数从1~10各10张)中,任取1张.(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.解:(1)是互斥事件,不是对立事件.理由是从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件.同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此,二者不是对立事件.(2)既是互斥事件,又是对立事件.理由是从40张扑克牌中,任意抽取1张,“抽出红色牌”与“抽出黑色牌”两个事件不可能同时发生,且其中必有一个发生,所以它们既是互斥事件,又是对立事件.(3)不是互斥事件,也不是对立事件.理由是从40张扑克牌中任意抽取1张,“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”这两个事件可能同时发生,如抽得点数为10,因此,二者不是互斥事件,当然也不可能是对立事件.1.下列事件:①如果a>b,那么a-b>0;②任取一实数a(a>0且a≠1),函数y=log a x是增函数;③某人射击一次,命中靶心;④从盛有一红、二白共三个球的袋子中,摸出一球观察结果是黄球.其中是随机事件的为()A.①②B.③④C.①④D.②③解析:选D.①是必然事件;②中a>1时,y=log a x单调递增,0<a<1时,y=log a x单调递减,故是随机事件;③是随机事件;④是不可能事件.2.(2019·四川省攀枝花市教学质量监测)从含有10件正品、2件次品的12件产品中,任意抽取3件,则必然事件是()A.3件都是正品B.3件都是次品C.至少有1件次品D.至少有1件正品解析:选D.从10件正品,2件次品,从中任意抽取3件,A:3件都是正品是随机事件,B:3件都是次品不可能事件,C:至少有1件次品是随机事件,D:因为只有2件次品,所以从中任意抽取3件必然会抽到正品,即至少有1件是正品是必然事件.故选D.3.(2019·广西钦州市期末考试)抽查10件产品,设“至少抽到2件次品”为事件A,则A 的对立事件是()A.至多抽到2件次品B.至多抽到2件正品C.至少抽到2件正品D.至多抽到1件次品解析:选D.因为“至少抽到2件次品”就是说抽查10件产品中次品的数目至少有2个,所以A的对立事件是抽查10件产品中次品的数目最多有1个.故选D.4.写出下列试验的样本空间:(1)甲、乙两队进行一场足球赛,观察甲队比赛结果(包括平局)________;(2)从含有6件次品的50件产品中任取4件,观察其中次品数________.解析:(1)对于甲队来说,有胜、平、负三种结果;(2)从含有6件次品的50件产品中任取4件,其次品的个数可能为0,1,2,3,4,不可能再有其他结果.答案:(1)Ω={胜,平,负}(2)Ω={0,1,2,3,4}10.1.3古典概型考点学习目标核心素养基本事件了解基本事件的特点数学抽象古典概型的定义理解古典概型的定义数学抽象古典概型的概率公式会应用古典概型的概率公式解决实际问题数学运算、数学建模问题导学预习教材P233-P238的内容,思考以下问题:1.古典概型的定义是什么?2.古典概型有哪些特征?3.古典概型的计算公式是什么?1.古典概型具有以下特征的试验叫做古典概型试验,其数学模型称为古典概率模型,简称古典概型.(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.■名师点拨古典概型的判断一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点:有限性和等可能性.并不是所有的试验都是古典概型.下列三类试验都不是古典概型:①样本点个数有限,但非等可能.②样本点个数无限,但等可能.③样本点个数无限,也不等可能.2.古典概型的概率公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)=kn=n(A)n(Ω).其中,n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.同时投掷两枚大小完全相同的骰子,用(x ,y )表示结果,记A 为“所得点数之和小于5”,则事件A 包含的基本事件数是( )A .3B .4C .5D .6解析:选D.事件A 包含的基本事件有6个:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).故选D.若书架上放有数学、物理、化学书分别是5本、3本、2本,则随机抽出一本是物理书的概率为( )A.15B.310C.35D.12解析:选B.基本事件总数为10,“抽出一本是物理书”包含3个基本事件,所以其概率为310,故选B. (2019·河北省石家庄市期末考试)将一枚骰子连续抛掷两次,则向上点数之差的绝对值不大于3的概率是( )A.23B.56C.2936D.34解析:选B.由题意,连续抛掷两次骰子共有6×6=36种情况;绝对值大于3的有(1,5),(1,6),(2,6),(5,1),(6,1),(6,2)共6种,所以绝对值不大于3有:36-6=30种,故所求概率P =3036=56.故选B.下列概率模型:①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任取一点; ②某射手射击一次,可能命中0环,1环,2环,…,10环; ③某小组有男生5人,女生3人,从中任选1人做演讲; ④一只使用中的灯泡的寿命长短;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.其中属于古典概型的是________.解析:①不属于,原因是所有横坐标和纵坐标都是整数的点有无限多个,不满足有限性;②不属于,原因是命中0环,1环,…,10环的概率不一定相同,不满足等可能性;③属于,显然满足有限性和等可能性;④不属于,原因是灯泡的寿命是任何一个非负实数,有无限多种可能,不满足有限性;⑤不属于,原因是该品牌月饼被评为“优”或“差”的概率不一定相同,不满足等可能性.答案:③样本点的列举一只口袋内装有5个大小相同的球,白球3个,黑球2个,从中一次摸出2个球.(1)共有多少个样本点?(2)“2个都是白球”包含几个样本点?【解】(1)法一:采用列举法.分别记白球为1,2,3号,黑球为4,5号,则样本点如下:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10个(其中(1,2)表示摸到1号,2号球).法二:采用列表法.设5个球的编号分别为a,b,c,d,e,其中a,b,c为白球,d,e为黑球.列表如下:a b c d ea (a,b)(a,c)(a,d)(a,e)b (b,a)(b,c)(b,d)(b,e)c (c,a)(c,b)(c,d)(c,e)d (d,a)(d,b)(d,c)(d,e)e (e,a)(e,b)(e,c)(e,d)由于每次取2个球,每次所取2个球不相同,而摸到(b,a)与(a,b)是相同的事件,故共有10个样本点.(2)法一中“2个都是白球”包括(1,2),(1,3),(2,3),共3个样本点,法二中“2个都是白球”包括(a,b),(b,c),(a,c),共3个样本点.样本点的三种列举方法(1)直接列举法:把试验的全部结果一一列举出来.此方法适合于较为简单的试验问题.(2)列表法:将样本点用表格的方式表示出来,通过表格可以弄清样本点的总数,以及要求的事件所包含的样本点数.列表法适用于较简单的试验的题目,样本点较多的试验不适合用列表法.(3)树状图法:树状图法是使用树状的图形把样本点列举出来的一种方法,树状图法便于分析样本点间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段,树状图法适用于较复杂的试验的题目.袋中有2个标号分别为1,2的白球和2个标号分别为3,4的黑球.这4个球除颜色、标号外完全相同,4个人按顺序依次从中摸出1个球,求样本点的个数.解:4个人按顺序依次从袋中摸出1个球的所有可能结果用树状图表示如图所示:共24个样本点.古典概型的概率计算(1)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A.45 B.35 C.25D.15(2)(2018·高考江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【解析】 (1)从5支彩笔中任取2支不同颜色的彩笔,有10种不同取法:(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫).而取出的2支彩笔中含有红色彩笔的取法有(红,黄),(红,蓝),(红,绿),(红,紫),共4种,故所求概率P =410=25.(2)记2名男生分别为A ,B ,3名女生分别为a ,b ,c ,则从中任选2名学生有AB ,Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,ab ,ac ,bc ,共10种情况,其中恰好选中2名女生有ab ,ac ,bc ,共3种情况,故所求概率为310.【答案】 (1)C (2)310求古典概型概率的步骤(1)判断是否为古典概型. (2)算出样本点的总数n .(3)算出事件A 中包含的样本点个数m .(4)算出事件A 的概率,即P (A )=mn.在运用公式计算时,关键在于求出m ,n .在求n 时,应注意这n 种结果必须是等可能的,在这一点上比较容易出错.1.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120解析:选C.从1,2,3,4,5中任取3个不同的数,共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C.2.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )A.15B.25C.35D.45解析:选C.如图可知从5个点中选取2个点的全部情况有(O ,A ),(O ,B ),(O ,C ),(O ,D ),(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D ),共10种.选取的2个点的距离不小于该正方形边长的情况有(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D ),共6种.故所求概率为610=35.数学建模——古典概型的实际应用已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层随机抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【解】(1)由已知,甲,乙,丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层随机抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为(A,B),(A,C),(A,D),(A,E),(A,F),(A,G),(B,C),(B,D),(B,E),(B,F),(B,G),(C,D),(C,E),(C,F),(C,G),(D,E),(D,F),(D,G),(E,F),(E,G),(F,G),共21种.(ii)由(1)设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为(A,B),(A,C),(B,C),(D,E),(F,G),共5种.所以事件M发生的概率P(M)=521.如何建立概率模型(古典概型)(1)在建立概率模型(古典概型)时,把什么看作一个样本点(即一个试验结果)是人为规定的.我们只要求每次试验有且只有一个样本点出现.对于同一个随机试验,可以根据需要(建立概率模型的主观原因)建立满足我们要求的概率模型.(2)注意验证是否满足古典概型的两个特性,即①样本点的有限性;②每个样本点发生的可能性相等.(3)求解时将其转化为互斥事件或对立事件的概率问题.(2019·高考天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.员工项目A B C D E F子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利息 ○ ○ × × ○ ○ 住房租金 × × ○ × × × 赡养老人○○×××○①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率.解:(1)由已知,老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)①从已知的6人中随机抽取2人的所有可能结果为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.②由表格知,符合题意的所有可能结果为(A ,B ),(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,E ),(C ,F ),(D ,F ),(E ,F ),共11种.所以事件M 发生的概率P (M )=1115.1.下列是古典概型的是( )①从6名同学中,选出4人参加数学竞赛,每人被选中的可能性的大小. ②同时掷两颗骰子,点数和为7的概率. ③近三天中有一天降雨的概率.④10个人站成一排,其中甲、乙相邻的概率. A .①②③④ B .①②④ C .②③④D .①③④解析:选B.①②④为古典概型,因为都适合古典概型的两个特征:有限性和等可能性,而③不适合等可能性,故不为古典概型.2.甲、乙两人有三个不同的学习小组A ,B ,C 可以参加,若每人必须参加并且仅能参加一个学习小组(两人参加各个小组的可能性相同),则两人参加同一个学习小组的概率为 ( )A.13B.14C.15D.16解析:选A.甲乙两人参加学习小组,若以(A ,B )表示甲参加学习小组A ,乙参加学习小组B ,则一共有如下情形:(A ,A ),(A ,B ),(A ,C ),(B ,A ),(B ,B ),(B ,C ),(C ,A ),(C ,B ),(C ,C ),共有9种情形,其中两人参加同一个学习小组共有3种情形,根据古典概型概率公式,得P =13.3.从甲、乙、丙、丁、戊五个人中选取三人参加演讲比赛,则甲、乙都当选的概率为( ) A.25 B.15 C.310D.35解析:选C.从五个人中选取三人有10种不同结果:(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),而甲、乙都当选的结果有3种,故所求的概率为310.4.在1,2,3,4四个数中,可重复地选取两个数,其中一个数是另一个数的2倍的概率是________.解析:可重复地选取两个数共有16种可能,其中一个数是另一个数的2倍的有1,2;2,1;2,4;4,2共4种,故所求的概率为416=14.答案:145.一只口袋装有形状大小都相同的6只小球,其中2只白球,2只红球,2只黄球,从中随机摸出2只球,试求:(1)2只球都是红球的概率; (2)2只球同色的概率;(3)“恰有一只是白球”是“2只球都是白球”的概率的几倍?解:记两只白球分别为a 1,a 2;两只红球分别为b 1,b 2;两只黄球分别为c 1,c 2. 从中随机取2只球的所有结果为(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 1,c 2),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 2,c 2),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 2,c 1),(b 2,c 2),(c 1,c 2)共15种结果.(1)2只球都是红球为(b 1,b 2)共1种, 故2只球都是红球的概率P =115.(2)2只球同色的有:(a 1,a 2),(b 1,b 2),(c 1,c 2),共3种, 故2只球同色的概率P =315=15.(3)恰有一只是白球的有:(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 1,c 2),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 2,c 2),共8种,其概率P =815;2只球都是白球的有:(a 1,a 2),1种,故概率P =115,所以“恰有一只是白球”是“2只球都是白球”的概率的8倍.10.1.4 概率的基本性质考点学习目标核心素养概率的性质理解并识记概率的性质数学抽象概率性质的应用会用互斥事件、对立事件的概率求解实际问题数学抽象、数学逻辑问题导学预习教材P239-P242的内容,思考以下问题:1.概率的性质有哪些?2.如果事件A与事件B互斥,则P(A∪B)与P(A),P(B)有什么关系?3.如果事件A与事件B为对立事件,则P(A)与P(B)有什么关系?概率的性质性质1:对任意的事件A,都有P(A)≥0;性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0;性质3:如果事件A与事件B互斥,那么P(A∪B)=P(A) +P(B);性质4:如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B);性质5:如果A⊆B,那么P(A)≤P(B),由该性质可得,对于任意事件A,因为∅⊆A⊆Ω,所以0≤P(A)≤1.性质6:设A,B是一个随机试验中的两个事件,有P(A∪B)=P(A)+P(B)-P(A∩B).判断(正确的打“√”,错误的打“×”)(1)任意事件A发生的概率P(A)总满足0<P(A)<1.()(2)若事件A为随机事件,则0<P(A)<1.()(3)事件A与B的和事件的概率一定大于事件A的概率.()(4)事件A与B互斥,则有P(A)=1-P(B).()答案:(1)×(2)√(3)×(4)×已知A与B互斥,且P(A)=0.2,P(B)=0.1,则P(A∪B)=________.解析:因为A与B互斥.所以P(A∪B)=P(A)+P(B)=0.2+0.1=0.3.答案:0.3(2019·广西钦州市期末考试)某产品分为优质品、合格品、次品三个等级,生产中出现合格品的概率为0.25,出现次品的概率为0.03,在该产品中任抽一件,则抽到优质品的概率。
(新教材)人教A版高中数学必修第二册学案 立体几何导学案含含配套练习答案
8.1基本立体图形第1课时棱柱、棱锥、棱台的结构特征考点学习目标核心素养棱柱的结构特征理解棱柱的定义,知道棱柱的结构特征,并能识别直观想象棱锥、棱台的结构特征理解棱锥、棱台的定义,知道棱锥、棱台的结构特征,并能识别直观想象应用几何体的平面展开图能将棱柱、棱锥、棱台的表面展开成平面图形直观想象问题导学预习教材P97-P100的内容,思考以下问题:1.空间几何体的定义是什么?2.空间几何体分为哪几类?3.常见的多面体有哪些?4.棱柱、棱锥、棱台有哪些结构特征?1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.空间几何体类别定义图示多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点旋转体一条平面曲线(包括直线)绕它所在平面内的这条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体.这条定直线叫做旋转体的轴3.棱柱、棱锥、棱台的结构特征结构特征及分类图形及记法棱柱结构特征(1)有两个面(底面)互相平行(2)其余各面都是四边形(3)相邻两个四边形的公共边都互相平行记作棱柱ABCDEFA′B′C′D′E′F′分类按底面多边形的边数分为三棱柱、四棱柱…续表结构特征及分类图形及记法棱锥结构特征(1)有一个面(底面)是多边形(2)其余各面(侧面)都是有一个公共顶点的三角形记作棱锥S-ABCD 分类按底面多边形的边数分为三棱锥、四棱锥……棱台结构特征(1)上下底面互相平行,且是相似图形(2)各侧棱延长线相交于一点(或用一个平行于棱锥底面的平面去截棱锥,底面与截面之间那部分多面体叫做棱台)记作棱台ABCD-A′B′C′D′分类由三棱锥、四棱锥、五棱锥……截得的棱台分别为三棱台、四棱台、五棱台……(1)棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).(2)各种棱柱之间的关系 ①棱柱的分类棱柱⎩⎪⎨⎪⎧直棱柱⎩⎪⎨⎪⎧正棱柱(底面为正多边形)一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系判断(正确的打“√”,错误的打“×”) (1)棱柱的侧面都是平行四边形.( )(2)用一个平面去截棱锥,底面和截面之间的部分叫棱台. ( ) (3)将棱台的各侧棱延长可交于一点.( ) 答案:(1)√ (2)× (3)√下面多面体中,是棱柱的有( )A .1个B .2个C .3个D .4个解析:选D.根据棱柱的定义进行判定知,这4个都满足. 下面四个几何体中,是棱台的是( )解析:选C.A 项中的几何体是棱柱.B 项中的几何体是棱锥;D 项中的几何体的棱AA ′,BB′,CC′,DD′没有交于一点,则D项中的几何体不是棱台;很明显C项中的几何体是棱台.在三棱锥A-BCD中,可以当作棱锥底面的三角形的个数为()A.1 B.2C.3 D.4解析:选D.每个面都可作为底面,有4个.下列说法正确的有________.(填序号)①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点.解析:棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故①对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故②错,③对.因而正确的有①③.答案:①③棱柱的结构特征下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确说法的序号是__________.【解析】①错误,棱柱的底面不一定是平行四边形;②错误,棱柱的底面可以是三角形;③正确,由棱柱的定义易知;④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以正确说法的序号是③④.【答案】③④棱柱结构特征的辨析技巧(1)扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.1.下列命题中正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫棱柱的底面C.棱柱的侧面都是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形解析:选D.由棱柱的定义可知,选D.2.如图所示的三棱柱ABC-A1B1C1,其中E,F,G,H是三棱柱对应边上的中点,过此四点作截面EFGH,把三棱柱分成两部分,各部分形成的几何体是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解:截面以上的几何体是三棱柱AEF-A1HG,截面以下的几何体是四棱柱BEFC-B1HGC1.棱锥、棱台的结构特征下列关于棱锥、棱台的说法:①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④由四个面围成的封闭图形只能是三棱锥;⑤棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.【解析】①错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台.②正确,棱台的侧面一定是梯形,而不是平行四边形.③正确,由棱锥的定义知棱锥的侧面只能是三角形.④正确,由四个面围成的封闭图形只能是三棱锥.⑤错误,如图所示四棱锥被平面截成的两部分都是棱锥.所以正确说法的序号为②③④.【答案】②③④判断棱锥、棱台形状的两种方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点1.棱台不具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱长都相等D.侧棱延长后相交于一点解析:选C.由棱台的概念(棱台的产生过程)可知A,B,D都是棱台具有的性质,而侧棱长不一定相等.2.下列说法中,正确的是()①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长相等.A.①②B.①③C.②③D.②④解析:选B.由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错;四面体就是由四个三角形所围成的封闭几何体,因此以四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错.空间几何体的平面展开图(1)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中的“2”在正方体的上面,则这个正方体的下面是()A.1 B.9C.快D.乐(2)如图是三个几何体的侧面展开图,请问各是什么几何体?【解】(1)选 B.由题意,将正方体的展开图还原成正方体,“1”与“乐”相对,“2”与“9”相对,“0”与“快”相对,所以下面是“9”.(2)题图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱的特点;题图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥的特点;题图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点,把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.多面体展开图问题的解题策略(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推,同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.1.某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的平面展开图应该为()解析:选A.其展开图是沿盒子的棱剪开,无论从哪条棱剪开,剪开的相邻面在展开图中可以不相邻,但未剪开的相邻面在展开图中一定相邻.相同的图案是盒子上相对的面,展开后不能相邻.2.根据如图所示的几何体的表面展开图,画出立体图形.解:如图是以四边形ABCD为底面,P为顶点的四棱锥.其图形如图所示.1.下面的几何体中是棱柱的有()A.3个B.4个C.5个D.6个解析:选C.棱柱有三个特征:(1)有两个面相互平行.(2)其余各面是四边形.(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.2.下面图形中,为棱锥的是()A.①③B.③④C.①②④D.①②解析:选C.根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.3.有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为()A.四棱柱B.四棱锥C.三棱柱D.三棱锥解析:选D.根据棱锥的定义可知该几何体是三棱锥.4.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为__________cm.解析:因为棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为60 5=12(cm).答案:125.画一个三棱台,再把它分成:(1)一个三棱柱和另一个多面体.(2)三个三棱锥,并用字母表示.解:画三棱台一定要利用三棱锥.(1)如图①所示,三棱柱是棱柱A′B′C′AB″C″,另一个多面体是B′C′C″B″BC.(2)如图②所示,三个三棱锥分别是A′ABC,B′A′BC,C′A′B′C.[A基础达标]1.下列说法正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可能都是棱柱解析:选D.棱柱和棱锥的底面可以是任意多边形,故选项A、B均不正确;可沿棱锥的侧棱将其分割成两个棱锥,故C错误;用平行于棱柱底面的平面可将棱柱分割成两个棱柱.2.具备下列条件的多面体是棱台的是()A .两底面是相似多边形的多面体B .侧面是梯形的多面体C .两底面平行的多面体D .两底面平行,侧棱延长后交于一点的多面体解析:选D.由棱台的定义可知,棱台的两底面平行,侧棱延长后交于一点. 3.如图,能推断这个几何体可能是三棱台的是( )A .A 1B 1=2,AB =3,B 1C 1=3,BC =4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3 C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1解析:选C.根据棱台是由棱锥截成的进行判断.选项A 中A 1B 1AB ≠B 1C 1BC ,故A 不正确;选项B 中B 1C 1BC ≠A 1C 1AC ,故B 不正确;选项C 中A 1B 1AB =B 1C 1BC =A 1C 1AC,故C 正确;选项D 中满足这个条件的可能是一个三棱柱,不是三棱台.故选C.4.一个棱锥的各棱长都相等,那么这个棱锥一定不是( ) A .三棱锥 B .四棱锥 C .五棱锥D .六棱锥解析:选D.由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.5.下列图形中,不能折成三棱柱的是( )解析:选C.C 中,两个底面均在上面,因此不能折成三棱柱,其余均能折成三棱柱. 6.四棱柱有________条侧棱,________个顶点.解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得). 答案:4 87.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱. 解析:面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱. 答案:5 6 98.在下面的四个平面图形中,是侧棱都相等的四面体的展开图的为__________.(填序号)解析:由于③④中的图组不成四面体,只有①②可以.答案:①②9.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥.(3)这是一个三棱台.10.画出如图所示的几何体的表面展开图.解:表面展开图如图所示:(答案不唯一)[B能力提升]11.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线()A.20条B.15条C.12条D.10条解析:选D.如图,在五棱柱ABCDE A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共有2×5=10(条).12.一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面()A.至多有一个是直角三角形B.至多有两个是直角三角形C.可能都是直角三角形D.必然都是非直角三角形解析:选C.注意到答案特征是研究侧面最多有几个直角三角形,这是一道开放性试题,需要研究在什么情况下侧面的直角三角形最多.在如图所示的长方体中,三棱锥AA1C1D1的三个侧面都是直角三角形.13.长方体ABCD-A1B1C1D1的长、宽、高分别为3,2,1,从A到C1沿长方体的表面的最短距离为________.解析:结合长方体的三种展开图不难求得AC1的长分别是:32,25,26,显然最小值是3 2.答案:3 214.如图,已知长方体ABCD-A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分几何体的形状是什么?解:(1)是棱柱.是四棱柱.因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)各部分几何体都是棱柱,分别为棱柱BB1FCC1E和棱柱ABF A1DCED1.[C拓展探究]15.如图,在一个长方体的容器中装有少量水,现在将容器绕着其底部的一条棱倾斜,在倾斜的过程中:(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,试着讨论水面和水的形状.解:(1)不对,水面的形状就是用一个与棱(倾斜时固定不动的棱)平行的平面截长方体时截面的形状,因而是矩形,不可能是其他非矩形的平行四边形.(2)不对,水的形状就是用与棱(将长方体倾斜时固定不动的棱)平行的平面将长方体截去一部分后,剩余部分的几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱;但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.第2课时圆柱、圆锥、圆台、球、简单组合体的结构特征考点学习目标核心素养圆柱、圆锥、圆台、球的概念理解圆柱、圆锥、圆台、球的定义,知道这四种几何体的结构特征,能够识别和区分这些几何体直观想象简单组合体的结构特征了解简单组合体的概念和基本形式直观想象旋转体中的计算问题会根据旋转体的几何体特征进行相关运算直观想象、数学运算问题导学预习教材P101-P104的内容,思考以下问题:1.常见的旋转体有哪些?是怎样形成的?2.这些旋转体有哪些结构特征?它们之间有什么关系?3.这些旋转体的侧面展开图和轴截面分别是什么图形?1.圆柱、圆锥、圆台和球的结构特征(1)圆柱的结构特征定义以矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆柱的轴底面:垂直于轴的边旋转而成的圆面侧面:平行于轴的边旋转而成的曲面母线:无论旋转到什么位置,平行于轴的边柱体:圆柱和棱柱统称为柱体■名师点拨(1)圆柱有无数条母线,它们平行且相等.(2)平行于底面的截面是与底面大小相同的圆,如图1所示.(3)过轴的截面(轴截面)都是全等的矩形,如图2所示.(4)过任意两条母线的截面是矩形,如图3所示.(2)圆锥的结构特征定义以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆锥的轴底面:垂直于轴的边旋转而成的圆面侧面:直角三角形的斜边旋转而成的曲面母线:无论旋转到什么位置,不垂直于轴的边锥体:圆锥和棱锥统称为锥体(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆,如图1所示.(3)过轴的截面是全等的等腰三角形,如图2所示.(4)过任意两条母线的截面是等腰三角形,如图3所示.(3)圆台的结构特征定义用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分图示及相关概念轴:圆锥的轴底面:圆锥的底面和截面侧面:圆锥的侧面在底面和截面之间的部分母线:圆锥的母线在底面与截面之间的部分台体:圆台和棱台统称为台体■名师点拨(1)圆台有无数条母线,且长度相等,延长后相交于一点.(2)平行于底面的截面是圆,如图1所示.(3)过轴的截面是全等的等腰梯形,如图2所示.(4)过任意两条母线的截面是等腰梯形,如图3所示.(4)球的结构特征定义以半圆的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体,简称球图示及相关概念球心:半圆的圆心半径:半圆的半径直径:半圆的直径■名师点拨(1)球心和截面圆心的连线垂直于截面.(2)球心到截面的距离d与球的半径R及截面圆的半径r有如下关系:r=R2-d2.2.简单组合体(1)概念由简单几何体组合而成的几何体叫做简单组合体.(2)两种构成形式①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成.判断(正确的打“√”,错误的打“×”)(1)直角三角形绕一边所在直线旋转得到的旋转体是圆锥.()(2)夹在圆柱的两个平行截面间的几何体是一圆柱.()(3)半圆绕其直径所在直线旋转一周形成球.()(4)圆柱、圆锥、圆台的底面都是圆面.()答案:(1)×(2)×(3)×(4)√下列几何体中不是旋转体的是()解析:选D.由旋转体的概念可知,选项D不是旋转体.过圆锥的轴作截面,则截面形状一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形答案:B可以旋转得到如图的图形的是()解析:选A.题图所示几何体上面是圆锥,下面是圆台,故平面图形应是由一个直角三角形和一个直角梯形构成.指出图中的几何体是由哪些简单几何体构成的.解:①是由一个圆锥和一个圆柱组合而成的;②是由一个圆柱和两个圆台组合而成的;③是由一个三棱柱和一个四棱柱组合而成的.圆柱、圆锥、圆台、球的概念(1)给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.(2)给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面形状是矩形.其中正确说法的序号是________.【解析】(1)①正确,圆柱的底面是圆面;②正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长相交于一点;④不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.(2)根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆面;④正确.【答案】(1)①②(2)①④(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量;②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.判断下列各命题是否正确.(1)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(2)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(3)到定点的距离等于定长的点的集合是球.解:(1)错误.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.(2)正确.(3)错误.应为球面.简单组合体的结构特征如图所示的几何体是由下面哪一个平面图形旋转而形成的()【解析】该几何体自上而下由圆锥、圆台、圆台、圆柱组合而成,故应选A.【答案】 A[变条件、变问法]若将本例选项B中的平面图形旋转一周,试说出它形成的几何体的结构特征.解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的几何体如图所示.通过观察可知,该几何体是由一个圆锥、一个圆台和一个圆柱自上而下拼接而成的.不规则平面图形旋转形成几何体的结构特征的分析策略(1)分割:首先要对原平面图形适当分割,一般分割成矩形、梯形、三角形或圆(半圆或四分之一圆)等基本图形.(2)定形:然后结合圆柱、圆锥、圆台、球的形成过程进行分析.已知AB是直角梯形ABCD中与底边垂直的腰,如图所示.分别以AB,BC,CD,DA所在的直线为轴旋转,试说明所得几何体的结构特征.解:(1)以AB 边所在的直线为轴旋转所得旋转体是圆台,如图①所示.(2)以BC 边所在的直线为轴旋转所得旋转体是一个组合体:下部为圆柱,上部为圆锥,如图②所示.(3)以CD 边所在的直线为轴旋转所得旋转体为一个组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥,如图③所示.(4)以AD 边所在的直线为轴旋转所得旋转体是一个组合体:一个圆柱上部挖去一个圆锥,如图④所示.旋转体中的计算问题如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.【解】 设圆台的母线长为l cm ,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm ,4r cm.过轴SO 作截面,如图所示,则△SO ′A ′∽△SOA ,SA ′=3 cm. 所以SA ′SA =O ′A ′OA ,所以33+l =r 4r =14.解得l =9,即圆台O ′O 的母线长为9 cm.解决旋转体中计算问题的方法用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程(组)而解得.。
(新教材)2020新人教A版高中数学必修第二册同步学案:10.2 事件的相互独立性 Word版含答案
10.2 事件的相互独立性问题导学预习教材P247~P249的内容,思考以下问题: 1.事件的相互独立性的定义是什么? 2.相互独立事件有哪些性质?3.相互独立事件与互斥事件有什么区别?1.相互独立的概念设A ,B 为两个事件,若P (AB )=P (A )P(B),则称事件A 与事件B 相互独立. 2.相互独立的性质若事件A 与B 相互独立,那么A 与B -,A -与B ,A -与B -也都相互独立. ■名师点拨 (1)必然事件Ω,不可能事件∅都与任意事件相互独立. (2)事件A ,B 相互独立的充要条件是P(AB )=P (A )·P (B ).判断(正确的打“√”,错误的打“×”) (1)不可能事件与任何一个事件相互独立.( ) (2)必然事件与任何一个事件相互独立.( )(3)“P (AB )=P (A )·P (B )”是“事件A ,B 相互独立”的充要条件.( ) 答案:(1)√ (2)√ (3)√下列事件A ,B 是相互独立事件的是( )A .一枚硬币掷两次,A 表示“第一次为正面”,B 表示“第二次为反面”B .袋中有2个白球,2个黑球,不放回地摸球两次,每次摸一球,A 表示“第一次摸到白球”,B 表示“第二次摸到白球”C .掷一枚骰子,A 表示“出现点数为奇数”,B 表示“出现点数为偶数”D .A 表示“一个灯泡能用1 000小时”,B 表示“一个灯泡能用2 000小时” 答案:A甲、乙两水文站同时作水文预报,如果甲站、乙站各自预报的准确率为0.8和0.7.那么,在一次预报中,甲、乙两站预报都准确的概率为________.答案:0.56一件产品要经过两道独立的工序,第一道工序的次品率为a ,第二道工序的次品率为b ,则该产品的正品率为________.答案:(1-a )(1-b )相互独立事件的判断一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A ={一个家庭中既有男孩又有女孩},B ={一个家庭中最多有一个女孩}.对下述两种情形,讨论A 与B 的独立性:(1)家庭中有两个小孩; (2)家庭中有三个小孩.【解】 (1)有两个小孩的家庭,男孩、女孩的可能情形为Ω={(男,男),(男,女),(女,男),(女,女)},它有4个基本事件,由等可能性知概率都为14.这时A ={(男,女),(女,男)}, B ={(男,男),(男,女),(女,男)}, AB ={(男,女),(女,男)}, 于是P (A )=12,P (B )=34,P (AB )=12.由此可知P (AB )≠P (A )P (B ), 所以事件A ,B 不相互独立.(2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(男,女,女),(女,男,男),(女,男,女),(女,女,男),(女,女,女)}.由等可能性知这8个基本事件的概率均为18,这时A 中含有6个基本事件,B 中含有4个基本事件,AB 中含有3个基本事件.于是P (A )=68=34,P (B )=48=12,P (AB )=38,显然有P (AB )=38=P (A )P (B )成立.从而事件A 与B 是相互独立的.判断两个事件是否相互独立的两种方法(1)根据问题的实质,直观上看一事件的发生是否影响另一事件发生的概率来判断,若没有影响,则两个事件就是相互独立事件;(2)定义法:通过式子P (AB )=P (A )P (B )来判断两个事件是否独立,若上式成立,则事件A ,B 相互独立,这是定量判断.1.分别抛掷两枚质地均匀的硬币,设事件A 是“第一枚为正面”,事件B 是“第二枚为正面”,事件C 是“两枚结果相同”,则下列事件具有相互独立性的有________.(填序号)①A ,B ;②A ,C ;③B ,C .解析:根据事件相互独立的定义判断,只要P (AB )=P (A )P (B ),P (AC )=P (A )P (C ),P (BC )=P (B )P (C )成立即可.利用古典概型概率公式计算可得P (A )=0.5,P (B )=0.5,P (C )=0.5,P (AB )=0.25,P (AC )=0.25,P (BC )=0.25.可以验证P (AB )=P (A )P (B ),P (AC )=P (A )P (C ),P (BC )=P (B )P (C ).所以根据事件相互独立的定义,事件A 与B 相互独立,事件B 与C 相互独立,事件A 与C 相互独立.答案:①②③2.从一副扑克牌(52张)中任抽一张,记事件A 为“抽得K ”,记事件B 为“抽得红牌”,记事件C 为“抽得J ”.判断下列每对事件是否相互独立?为什么?(1)A 与B ; (2)C 与A .解:(1)P (A )=452=113,P (B )=2652=12.事件AB 即为“既抽得K 又抽得红牌”,亦即“抽得红桃K 或方块K ”,故P (AB )=252=126,从而有P (A )P (B )=P (AB ),因此事件A 与B 相互独立.(2)事件A 与事件C 是互斥的,因此事件A 与C 不是相互独立事件.相互独立事件同时发生的概率王敏某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率; (2)这三列火车至少有一列正点到达的概率.【解】 用A ,B ,C 分别表示这三列火车正点到达的事件. 则P (A )=0.8,P (B )=0.7,P (C )=0.9, 所以P (A -)=0.2,P (B -)=0.3,P (C -)=0.1.(1)由题意得A ,B ,C 之间互相独立,所以恰好有两列正点到达的概率为 P 1=P (A -BC )+P (A B -C )+P (AB C -)=P (A -)P (B )P (C )+P (A )P (B -)P (C )+P (A )P (B )P (C -) =0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398. (2)三列火车至少有一列正点到达的概率为 P 2=1-P (A -B -C -)=1-P (A -)P (B -)P (C -) =1-0.2×0.3×0.1=0.994.1.[变问法]在本例条件下,求恰有一列火车正点到达的概率. 解:恰有一列火车正点到达的概率为P 3=P (A B -C -)+P (A -B C -)+P (A -B -C )=P (A )P (B -)P (C -)+P (A -)P (B )P (C -)+P (A -)P (B -)P (C )=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9=0.092.2.[变条件]若一列火车正点到达记10分,用ξ表示三列火车的总得分,求P (ξ≤20). 解:事件“ξ≤20”表示“至多两列火车正点到达”,其对立事件为“三列火车都正点到达”,所以P (ξ≤20)=1-P (ABC )=1-P (A )P (B )P (C )=1-0.8×0.7×0.9=0.496.与相互独立事件有关的概率问题的求解策略明确事件中的“至少有一个发生”“至多有一个发生”“恰好有一个发生”“都发生”“都不发生”“不都发生”等词语的意义.一般地,已知两个事件A ,B ,它们的概率分别为P (A ),P (B ),那么: (1)A ,B 中至少有一个发生为事件A +B . (2)A ,B 都发生为事件AB . (3)A ,B 都不发生为事件A -B -.(4)A ,B 恰有一个发生为事件A B -+A -B .(5)A ,B 中至多有一个发生为事件A B -+A -B +A - B -. 它们之间的概率关系如表所示:甲、乙2个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:(1)2个人都译出密码的概率; (2)2个人都译不出密码的概率; (3)至多有1个人译出密码的概率; (4)恰有1个人译出密码的概率; (5)至少有1个人译出密码的概率.解:记“甲独立地译出密码”为事件A ,“乙独立地译出密码”为事件B ,A 与B 为相互独立事件,且P (A )=13,P (B )=14.(1)“2个人都译出密码”的概率为 P (AB )=P (A )·P (B )=13×14=112.(2)“2个人都译不出密码”的概率为P (A -B -)=P (A -)·P (B -)=[1-P (A )]×[1-P (B )]=(1-13)×(1-14)=12.(3)“至多有1个人译出密码”的对立事件为“2个人都译出密码”, 所以至多1个人译出密码的概率为 1-P (AB )=1-P (A )P (B )=1-13×14=1112.(4)“恰有1个人译出密码”可以分为两类,即甲译出乙未译出以及甲未译出乙译出,且两个事件为互斥事件,所以恰有1个人译出密码的概率为 P (A B -+A -B )=P (A B -)+P (A -B ) =P (A )P (B -)+P (A -)P (B ) =13×(1-14)+(1-13)×14=512. (5)“至少有1个人译出密码”的对立事件为“2个人都未译出密码”, 所以至少有1个人译出密码的概率为 1-P (A -B -)=1-P (A -)P (B -)=1-23×34=12.相互独立事件的综合应用本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租用时间不超过两小时免费,超过两小时的部分每小时收费2元(不足一小时的部分按一小时计算).有甲、乙两人独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12,超过两小时但不超过三小时还车的概率分别为12,14,两人租车时间都不会超过四小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设ξ为甲、乙两人所付的租车费用之和,求P (ξ=4)和P (ξ=6)的值.【解】 (1)由题意可得甲、乙两人超过三小时但不超过四小时还车的概率分别为14,14.记甲、乙两人所付的租车费用相同为事件A ,则P (A )=14×12+12×14+14×14=516.所以甲、乙两人所付租车费用相同的概率为516.(2)P (ξ=4)=14×14+12×14+12×14=516,P (ξ=6)=14×14+12×14=316.概率问题中的数学思想(1)正难则反.灵活应用对立事件的概率关系(P (A )+P (A -)=1)简化问题,是求解概率问题最常用的方法.(2)化繁为简.将复杂事件的概率转化为简单事件的概率,即寻找所求事件与已知事件之间的关系.“所求事件”分几类(考虑加法公式转化为互斥事件)还是分几步组成(考虑乘法公式转化为相互独立事件).(3)方程思想.利用有关的概率公式和问题中的数量关系,建立方程(组),通过解方程(组)使问题获解.一个电路如图所示,A ,B ,C ,D ,E ,F 为6个开关,其闭合的概率都是12,且是相互独立的,则灯亮的概率是( )A.164 B.5564 C.18D.116解析:选B.设A 与B 中至少有一个不闭合的事件为T ,E 与F 中至少有一个不闭合的事件为R ,则P (T )=P (R )=1-12×12=34,所以灯亮的概率P =1-P (T )P (R )P (C )P (D )=5564.,1.如图,在两个圆盘中,指针落在圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A.49 B.29 C.23D.13解析:选A.左边圆盘指针落在奇数区域的概率为46=23,右边圆盘指针落在奇数区域的概率也为23,所以两个指针同时落在奇数区域的概率为23×23=49.2.已知A ,B 是相互独立事件,且P (A )=12,P (B )=23,则P (A B -)=________;P (A - B -)=________.解析:因为P (A )=12,P (B )=23.所以P (A -)=12,P (B -)=13.所以P (A B -)=P (A )P (B -)=12×13=16,P (A - B -)=P (A -)P (B -)=12×13=16.答案:16 163.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话; (2)拨号不超过3次而接通电话.解:设A i ={第i 次拨号接通电话},i =1,2,3. (1)第3次才接通电话可表示为A 1-A 2-A 3, 于是所求概率为P (A 1-A 2-A 3)=910×89×18=110.(2)拨号不超过3次而接通电话可表示为A 1+A 1- A 2+A 1-A 2-A 3,于是所求概率为P (A 1+A 1-A 2+A 1-A 2-A 3) =P (A 1)+P (A 1-A 2)+P (A 1-A 2-A 3) =110+910×19+910×89×18=310.[A 基础达标]1.坛子中放有3个白球,2个黑球,从中进行不放回地取球两次,每次取一球,用A 1表示第一次取得白球,A 2表示第二次取得白球,则A 1和A 2是( )A .互斥事件B .相互独立事件C .对立事件D .不相互独立的事件解析:选D.因为P (A 1)=35,若A 1发生了,P (A 2)=24=12;若A 1不发生,P (A 2)=34,所以A 1发生的结果对A 2发生的结果有影响,所以A 1与A 2不是相互独立事件.2.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为( )A .0.2B .0.8C .0.4D .0.3解析:选D.由相互独立事件同时发生的概率可知,问题由乙答对的概率为P =0.6×0.5=0.3,故选D.3.某种开关在电路中闭合的概率为p ,现将4只这种开关并联在某电路中(如图所示),若该电路为通路的概率为6581,则p =( )A.12B.13C.23D.34解析:选B.因为该电路为通路的概率为6581,所以该电路为不通路的概率为1-6581,只有当并联的4只开关同时不闭合时该电路不通路,所以1-6581=(1-p )4,解得p =13或p =53(舍去).故选B .4.(2019·重庆检测)荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 荷叶上,则跳三次之后停在A 荷叶上的概率是( )A.13B.29C.49D.827解析:选A.由已知得逆时针跳一次的概率为23,顺时针跳一次的概率为13,则逆时针跳三次停在A 上的概率为P 1=23×23×23=827,顺时针跳三次停在A 上的概率为P 2=13×13×13=127.所以跳三次之后停在A 上的概率为P =P 1+P 2=827+127=13.5.有一道数学难题,学生A 解出的概率为12,学生B 解出的概率为13,学生C 解出的概率为14.若A ,B ,C 三人独立去解答此题,则恰有一人解出的概率为( ) A .1 B.14 C.1124 D.1724解析:选C.一道数学难题,恰有一人解出,包括: ①A 解出,B ,C 解不出,概率为12×23×34=14;②B 解出,A ,C 解不出,概率为12×13×34=18;③C 解出,A ,B 解不出,概率为12×23×14=112.所以恰有1人解出的概率为14+18+112=1124.6.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是________.解析:所求概率P =0.8×0.1+0.2×0.9=0.26. 答案:0.267.在如图所示的电路图中,开关a ,b ,c 闭合与断开的概率都是12,且是相互独立的,则灯亮的概率是________.解析:设“开关a ,b ,c 闭合”分别为事件A ,B ,C ,则灯亮这一事件为ABC ∪AB C -∪A B -C ,且A ,B ,C 相互独立,ABC ,AB C -,A B - C 相互独立,ABC ,AB C -,A B - C 互斥,所以P =P (ABC )+P (AB C -)+P (A B -C )=P (A )P (B )P (C )+P (A )P (B )P (C -)+P (A )P (B -)P (C )=12×12×12+12×12×⎝⎛⎭⎫1-12+12×⎝⎛⎭⎫1-12×12=38. 答案:388.某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因遇绿灯而通行的概率分别为13,12,23,则汽车在这三处因遇红灯或黄灯而停车一次的概率为________. 解析:分别设汽车在甲、乙、丙三处通行的事件为A ,B ,C ,则P (A )=13,P (B )=12,P (C )=23, 停车一次为事件(A -BC )∪(A B -C )∪(AB C -),故其概率P =⎝⎛⎭⎫1-13×12×23+13×⎝⎛⎭⎫1-12×23+13×12×⎝⎛⎭⎫1-23=718. 答案:7189.某学生语、数、英三科考试成绩在一次考试中排名全班第一的概率为语文为0.9,数学为0.8,英语为0.85,求在一次考试中:(1)三科成绩均未获得第一名的概率是多少?(2)恰有一科成绩未获得第一名的概率是多少?解:分别记该学生语、数、英考试成绩排名全班第一的事件为A ,B ,C ,则A ,B ,C 两两互相独立,且P (A )=0.9,P (B )=0.8,P (C )=0.85.(1)“三科成绩均未获得第一名”可以用A - B - C -表示,P (A - B - C -)=P (A -)P (B -)P (C -)=[1-P (A )][1-P (B )][1-P (C )]=(1-0.9)(1-0.8)(1-0.85)=0.003,即三科成绩均未获得第一名的概率是0.003.(2)“恰有一科成绩未获得第一名”可以用(A -BC )∪(A B -C )∪(AB C -)表示.由于事件A -BC ,A B -C 和AB C -两两互斥,根据概率加法公式和相互独立事件的意义,所求的概率为P (A -BC )+P (A B -C )+P (AB C -)=P (A -)P (B )P (C )+P (A )P (B -)P (C )+P (A )P (B )P (C -)=[1-P (A )]P (B )P (C )+P (A )[1-P (B )]P (C )+P (A )P (B )[1-P (C )]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329,即恰有一科成绩未获得第一名的概率是0.329.10.某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100 m 跑(互不影响)的成绩在13 s 内(称为合格)的概率分别为25,34,13,若对这三名短跑运动员的100 m 跑的成绩进行一次检测,则(1)三人都合格的概率;(2)三人都不合格的概率;(3)出现几人合格的概率最大.解:记“甲、乙、丙三人100 m 跑成绩合格”分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P (A )=25,P (B )=34,P (C )=13. 设恰有k 人合格的概率为P k (k =0,1,2,3),(1)三人都合格的概率为P 3=P (ABC )=P (A )·P (B )·P (C )=25×34×13=110. (2)三人都不合格的概率为P 0=P (A -B -C -)=P (A -)·P (B -)·P (C -)=35×14×23=110. (3)恰有两人合格的概率为P 2=P (AB C -)+P (A B -C )+P (A -BC )=25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率为P 1=1-P 0-P 2-P 3=1-110-2360-110=2560=512. 综合(1)(2)(3)可知P 1最大.所以出现恰有1人合格的概率最大.[B 能力提升]11.端午节放假,甲回老家过节的概率为13,乙、丙回老家过节的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人回老家过节的概率为( )A.5960B.35C.12D.160解析:选B.“甲、乙、丙回老家过节”分别记为事件A ,B ,C ,则P (A )=13,P (B )=14,P (C )=15,所以P (A -)=23,P (B -)=34,P (C -)=45.由题知A ,B ,C 为相互独立事件,所以三人都不回老家过节的概率P (A -B -C -)=P (A -)P (B -)P (C -)=23×34×45=25,所以至少有1人回老家过节的概率P =1-25=35. 12.如图,已知电路中4个开关闭合的概率都是12,且是互相独立的,则灯亮的概率为( )A.316B.34C.1316D.14解析:选C.记“A ,B ,C ,D 四个开关闭合”分别为事件A ,B ,C ,D ,可用对立事件求解,图中含开关的三条线路同时断开的概率为P (C -)P (D -)[1-P (AB )]=12×12×⎝⎛⎭⎫1-12×12=316.所以灯亮的概率为1-316=1316. 13.事件A ,B ,C 相互独立,如果P (AB )=16,P (B -C )=18,P (AB C -)=18,则P (B )=________,P (A -B )=________.解析:由题意可得⎩⎪⎨⎪⎧P (A )·P (B )=16,P (B -)·P (C )=18,P (A )·P (B )·P (C -)=18, 解得P (A )=13,P (B )=12,P (C )=14, 所以P (A -B )=P (A -)·P (B )=23×12=13. 答案:12 1314.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为45、56、23,且三个项目是否成功互相独立.(1)求恰有两个项目成功的概率;(2)求至少有一个项目成功的概率.解:(1)只有农产品加工和绿色蔬菜种植两个项目成功的概率为45×56×(1-23)=29, 只有农产品加工和水果种植两个项目成功的概率为45×(1-56)×23=445, 只有绿色蔬菜种植和水果种植两个项目成功的概率为(1-45)×56×23=19, 所以恰有两个项目成功的概率为29+445+19=1945. (2)三个项目全部失败的概率为(1-45)×(1-56)×(1-23)=190,所以至少有一个项目成功的概率为1-190=8990. [C 拓展探索]15.甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.8,计算:(1)两人都击中目标的概率;(2)其中恰有一人击中目标的概率;(3)至少有一人击中目标的概率.解:记“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B .“两人都击中目标”是事件AB ;“恰有1人击中目标”是A B -∪A -B ;“至少有1人击中目标”是AB ∪A B -∪A -B .(1)“两人各射击一次,都击中目标”就是事件AB ,又由于事件A 与B 相互独立. 所以P (AB )=P (A )·P (B )=0.8×0.8=0.64.(2)“两人各射击一次,恰好有一人击中目标”包括两种情况:一种是甲击中乙未击中(即A B -),另一种是甲未击中乙击中(即A -B ).根据题意,这两种情况在各射击一次时不可能同时发生,即事件A B -与A -B 是互斥的,所以所求概率为P =P (A B -)+P (A -B )=P (A )·P (B -)×P (A -)·P (B )=0.8×(1-0.8)+(1-0.8)×0.8=0.16+0.16=0.32.(3)“两人各射击一次,至少有一人击中目标”的概率为P =P (AB )+[P (A B -)+P (A -B )]=0.64+0.32=0.96.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.1随机抽样考点学习目标核心素养抽样调查理解全面调查、抽样调查、总体、个体、样本、样本量、样本数据等概念数学抽象简单随机抽样理解简单随机抽样的概念,掌握简单随机抽样的两种方法:抽签法和随机数法数学抽象、逻辑推理分层随机抽样理解分层随机抽样的概念,并会解决相关问题数学抽象、逻辑推理问题导学预习教材P173-P187的内容,思考以下问题:1.全面调查、抽样调查、总体、个体、样本、样本量、样本数据的概念是什么?2.什么叫简单随机抽样?3.最常用的简单随机抽样方法有哪两种?4.抽签法是如何操作的?5.随机数法是如何操作的?6.什么叫分层随机抽样?7.分层随机抽样适用于什么情况?8.分层随机抽样时,每个个体被抽到的机会是相等的吗?9.获取数据的途径有哪些?1.全面调查与抽样调查(1)对每一个调查对象都进行调查的方法,称为全面调查,又称普查W.(2)在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体W.(3)根据一定的目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查W.(4)把从总体中抽取的那部分个体称为样本W. (5)样本中包含的个体数称为样本量W.(6)调查样本获得的变量值称为样本的观测数据,简称样本数据. 2.简单随机抽样(1)有放回简单随机抽样一般地,设一个总体含有N (N 为正整数)个个体,从中逐个抽取n (1≤n <N )个个体作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样.(2)不放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样.(3)简单随机抽样放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样. (4)简单随机样本通过简单随机抽样获得的样本称为简单随机样本. (5)简单随机抽样的常用方法实现简单随机抽样的方法很多,抽签法和随机数法是比较常用的两种方法.■名师点拨 (1)从总体中,逐个不放回地随机抽取n 个个体作为样本,一次性批量随机抽取n 个个体作为样本,两种方法是等价的.(2)简单随机抽样中各个个体被抽到的机会都相等,从而保证了抽样的公平性.3.总体平均数与样本平均数 (1)总体平均数①一般地,总体中有N 个个体,它们的变量值分别为Y 1,Y 2,…,Y N ,则称Y -=Y 1+Y 2+…+Y N N =1N ∑Ni =1Y i为总体均值,又称总体平均数.②如果总体的N 个变量值中,不同的值共有k (k ≤N )个,不妨记为Y 1,Y 2,…,Y k ,其中Y i 出现的频数f i (i =1,2,…,k ),则总体均值还可以写成加权平均数的形式Y -=1N ∑ki =1f i Yi W.(2)样本平均数如果从总体中抽取一个容量为n 的样本,它们的变量值分别为y 1,y 2,…,y n ,则称y -=y 1+y 2+…+y n n =1n ∑ni =1y i 为样本均值,又称样本平均数.在简单随机抽样中,我们常用样本平均数y -去估计总体平均数Y -.4.分层随机抽样 (1)分层随机抽样一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层W.(2)比例分配在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.5.分层随机抽样中的总体平均数与样本平均数(1)在分层随机抽样中,如果层数分为2层,第1层和第2层包含的个体数分别为M 和N ,抽取的样本量分别为m 和n .我们用X 1,X 2,…,X M 表示第1层各个个体的变量值,用x 1,x 2,…,x m 表示第1层样本的各个个体的变量值;用Y 1,Y 2,…,Y N 表示第2层各个个体的变量值,用y 1,y 2,…,y n 表示第2层样本的各个个体的变量值,则:①第1层的总体平均数和样本平均数分别为X -=X 1+X 2+…+X M M =1M ∑Mi =1X i ,x -=x 1+x 2+…+x m m =1m ∑mi =1x i.②第2层的总体平均数和样本平均数分别为Y -Y 1+Y 2+…+Y N N 1N ∑Ni =1Y i,y -=y 1+y 2+…+y n n =1n ∑ni =1y i.③总体平均数和样本平均数分别为W -=∑Mi =1X i +∑Ni =1Y i M +N ,w -=∑mi =1x i +∑ni =1yim +nW.(2)由于用第1层的样本平均数x -可以估计第1层的总体平均数X -,用第2层的样本平均数y -可以估计第2层的总体平均数Y -.因此我们可以用M ×x -+N ×y -M +N =M M +N x -+N M +N y-估计总体平均数W -.(3)在比例分配的分层随机抽样中,m M =n N =m +n M +N ,可得M M +N x -+N M +N y -=m m +n x -+n m +n y -=w -.因此,在比例分配的分层随机抽样中,我们可以直接用样本平均数w -估计总体平均数W -.6.获取数据的途径获取数据的基本途径有:(1)通过调查获取数据;(2)通过试验获取数据;(3)通过观察获取数据;(4)通过查询获取数据判断(正确的打“√”,错误的打“×”) (1)高考考生的身体检查,是抽样调查.( )(2)某养鱼专业户要了解鱼塘中鱼的平均质量,是抽样调查.( ) (3)在简单随机抽样中,一次可以抽取多个个体.( ) (4)抽签法和随机数法都是简单随机抽样.( )(5)无论是抽签法还是随机数法,每一个个体被抽到的机会都是均等的.( ) (6)在分层随机抽样的过程中,每个个体被抽到的可能性是相同的,与层数及分层有关.( )答案:(1)× (2)√ (3)× (4)√ (5)√ (6)× 抽签法中确保样本代表性的关键是( ) A.制签 B.搅拌均匀 C.逐一抽取D.抽取不放回解析:选B.逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算再放回)也不影响样本的代表性,制签也一样.为了保证分层随机抽样时每个个体被等可能地抽取,必须要求( ) A.每层等可能抽取 B.每层抽取的个体数相等C.每层抽取的个体数可以不一样多,但必须满足抽取n i =n ·N iN (i =1,2,…,k )个个体(其中i 是层的序号,k 是总层数,n 为抽取的样本容量,N i 是第i 层中的个体数,N 是总体容量)D.只要抽取的样本容量一定,每层抽取的个体数没有限制解析:选C.分层随机抽样时,在各层中按层中所含个体在总体中所占的比例进行抽样. A 中,虽然每层等可能地抽样,但是没有指明各层中应抽取几个个体,故A 不正确; B 中,由于每层的个体数不一定相等,每层抽取同样多的个体数,显然从总体来看,各层的个体被抽取的可能性就不相等了,因此B 也不正确;C 中,对于第i 层的每个个体,它被抽到的可能性与层数i 无关,即对于每个个体来说,被抽取为样本的可能性是相同的,故C 正确;D 显然不正确.从一批零件中抽取10个,测得它们的长度(单位:cm )如下: 22.36 22.35 22.33 22.35 22.37 22.34 22.3822.36 22.32 22.35由此估计这批零件的平均长度. 在此统计活动中:(1)总体为 ; (2)个体为 ; (3)样本为 ; (4)样本量为 W.答案:(1)这批零件的长度 (2)每个零件的长度 (3)抽取的10个零件的长度 (4)10一个班共有54人,其中男同学、女同学之比为5∶4,若抽取9人参加教改调查会,则每个男同学被抽取的可能性为 ,每个女同学被抽取的可能性为 W.解析:男、女每人被抽取的可能性是相同的,因为男同学共有54×59=30(人),女同学共有54×49=24(人),所以每个男同学被抽取的可能性为530=16,每个女同学被抽取的可能性为424=16.答案:16 16总体、样本等概念辨析题为了调查参加运动会的1 000名运动员的平均年龄,从中抽取了100名运动员进行调查,下面说法正确的是( )A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本量是100【解析】 根据调查的目的可知,总体是这1 000名运动员的年龄,个体是每个运动员的年龄,样本是抽取的100名运动员的年龄,样本量为100.故答案为D.【答案】 D此类题目要正确理解总体与个体的概念,要弄明白概念的实质,并注意样本与样本容量的不同,其中样本量为数目,无单位.为了了解全年级240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体是每一个学生C.样本容量是40名学生D.样本量为40解析:选D.本题调查的对象是“学生的身高”这一项指标,故A、B不正确.而样本量是数量,故C不正确.由此可见,研究此类问题首先要弄清楚所要调查的对象是什么.简单随机抽样的概念下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区开展救灾工作.【解】(1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.要判断所给的抽样方法是否为简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点.下面的抽样方法是简单随机抽样吗?为什么?(1)某工厂的质检员从一袋30个螺母中一次性取出5个进行质量检测;(2)某商品的市场调查员为了了解该商品在某日某超市的销售情况,在超市出口处随机向10个顾客询问是否购买了该商品;(3)某班级有4个小组,每组共有12个同学.班主任指定每组坐在第一张桌子的8位同学为班干部;(4)中国福利彩票30选7,得到7个彩票中奖号码.解:简单随机抽样要求:被抽取的样本的总体个数确定且较少,抽取样本时要求逐个抽取,每个个体被抽取的可能性一样.所以(1)不是,因为是一次性抽取不是逐个抽取;(2)不是,被抽取的样本的总体个数不确定;(3)不是,班主任的指定不能保证班级里的每一个学生被抽取的可能性一样;(4)是,它属于简单随机抽样中的随机数法.抽签法及随机数法的应用某班有50名学生,要从中随机地抽出6人参加一项活动,请分别写出利用抽签法和随机数法抽取该样本的过程.【解】(1)利用抽签法步骤如下:第一步:将这50名学生编号,编号为01,02,03, (50)第二步:将50个号码分别写在纸条上,并揉成团,制成号签.第三步:将得到的号签放在一个不透明的容器中,搅拌均匀.第四步:从容器中逐一抽取6个号签,并记录上面的号码.对应上面6个号码的学生就是参加该项活动的学生.(2)利用随机数法步骤如下:第一步:将这50名学生编号,编号为1,2,3, (50)第二步:用随机数工具产生1~50范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的学生进入样本.第三步:重复第二步的过程,直到抽足样本所需人数.对应上面6个号码的学生就是参加该项活动的学生.(1)利用抽签法抽取样本时应注意以下问题:①编号时,如果已有编号(如学号、标号等)可不必重新编号.(例如该题中50名同学,可以直接利用学号)②号签要求大小、形状完全相同.③号签要搅拌均匀.④抽取号签时要逐一、不放回抽取.(2)利用随机数法抽取样本时应注意的问题:如果生成的随机数有重复,即同一编号被多次抽到,应剔除重复的编号并重新产生随机数,直到产生的不同编号个数等于样本所需的人数.从20架钢琴中抽取5架进行质量检查,请选用合适的方法确定这5架钢琴.解:第一步,将20架钢琴编号,号码是0,1, (19)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀.第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号.第五步,所得号码对应的5架钢琴就是要抽取的对象.分层随机抽样中的有关计算(1)某单位共有老、中、青年职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层随机抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工的人数为 W.(2)某高中学校为了促进学生个体的全面发展,针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:高一年级高二年级高三年级泥塑 a b c 剪纸xyz其中x ∶y ∶z =5∶3∶2,且“泥塑”社团的人数占两个社团总人数的35,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取 人.【解析】 (1)设该单位老年职工人数为x ,由题意得3x =430-160,解得x =90.则样本中的老年职工人数为90×32160=18. (2)法一:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以“剪纸”社团的人数为800×25=320;因为“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以“剪纸”社团中高二年级人数为320×310=96.由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6.法二:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以抽取的50人的样本中,“剪纸”社团中的人数为50×25=20.又“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以从高二年级“剪纸”社团中抽取的人数为20×310=6.【答案】 (1)18 (2)6分层随机抽样中有关计算的方法(1)抽样比=该层样本量n 总样本量N =该层抽取的个体数该层的个体数.(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.对于分层抽样中求某层个体数,或某层要抽取的样本个体数,都可以通过上面两个等量关系求解.1.为了调查城市PM2.5的情况,按地域把48个城市分成大型、中型、小型三组,相应的城市数分别为8,16,24.若用分层随机抽样的方法抽取12个城市,则应抽取的中型城市数为( )A.3B.4C.5D.6解析:选 B.根据分层随机抽样的特点可知,抽样比为1248=14,则应抽取的中型城市数为16×14=4.2.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层随机抽样的方法从全体职工中抽取一个容量为25的样本,则应抽取超过45岁的职工 人.解析:抽样比为25∶200=1∶8,而超过45岁的职工有80人,则从中应抽取的个体数为80×18=10.答案:10样本平均数的求法(1)甲在本次飞镖游戏中的成绩为8,6,7,7,8,10,9,8,7,8.求甲在本次游戏中的平均成绩.(2)在了解全校学生每年平均阅读多少本文学经典名著时,甲同学抽取了一个容量为10的样本,并算得样本的平均数为5;乙同学抽取了一个容量为8的样本,并算得样本的平均数为6.已知甲、乙两同学抽取的样本合在一起组成一个容量为18的样本,求合在一起后的样本均值.【解】 (1)甲在本次游戏中的平均成绩为6+3×7+4×8+9+1010=7.8.(2)合在一起后的样本均值为10×5+8×610+8=50+4818=499.在分层随机抽样中,如果第一层的样本量为m ,平均值为x ;第二层的样本量为n ,平均值为y ,则样本的平均值为mx +nym +n.某学校为了调查高一年级学生的体育锻炼情况,从甲、乙、丙3个班中,按分层随机抽样的方法获得了部分学生一周的锻炼时间(单位:h ),数据如下.甲 6 6.5 7 7.5 8 乙 6 7 8 9 10 11 12 丙34.567.5910.51213.5(1)求三个班中学生人数之比;(2)估计这个学校高一的学生中,一周的锻炼时间超过10个小时的百分比; (3)估计这个学校高一年级学生一周的平均锻炼时间.解:(1)由题干中的表格可知,按分层随机抽样的方法从甲、乙、丙3个班中分别抽取5个,7个,8个学生.故三个班学生人数之比为5∶7∶8.(2)由题意知,抽取的20个学生中,一周的锻炼时间超过10小时的有5人,故一周的锻炼时间超过10个小时的百分比为520=25%.(3)从甲班抽取的5名学生的总时间为6+6.5+7+7.5+8=35. 从乙班抽取的7名学生的总时间为6+7+8+9+10+11+12=63.从丙班抽取的8名学生的总时间为3+4.5+6+7.5+9+10.5+12+13.5=66. 则35+63+665+7+8=16420=8.2. 即这个学校高一年级学生一周的平均锻炼时间为8.2小时.1.在简单随机抽样中,每一个个体被抽中的可能性( ) A.与第几次抽样有关,第一次抽中的可能性要大些 B.与第几次抽样无关,每次抽中的可能性都相等 C.与第几次抽样有关,最后一次抽中的可能性要大些 D.每个个体被抽中的可能性无法确定解析:选B.在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关. 2.若对某校1 200名学生的耐力做调查,抽取其中120名学生,测试他们1 500米跑的成绩,得出相应的数值,在这项调查中,样本是指( )A.120名学生B.1 200名学生C.120名学生的成绩D.1 200名学生的成绩解析:选C.本题抽取的是120名学生的成绩,因此每个学生的成绩是个体,这120名学生的成绩构成一个样本.3.(2019·广西钦州市期末考试)某中学共有1 000名学生,其中高一年级350人,该校为了了解本校学生视力情况,用分层随机抽样的方法从该校学生中抽出一个容量为100的样本进行调查,则应从高一年级抽取的人数为( )A.20B.25C.30D.35解析:选D.高一年级抽取的人数为3501 000×100=35.故选D.4.在调查某中学的学生身高时,利用分层抽样的方法抽取男生20人,女生15人,得到了男生身高的平均值为170,女生身高的平均值为165.试估计该中学所有学生的平均身高是多少?解:20×170+15×16520+15=5 87535=16767.即该中学所有学生的平均身高为16767.9.2 用样本估计总体 9.2.1 总体取值规律的估计 9.2.2 总体百分位数的估计考点学习目标核心素养 频率分布表、频率分布直方图会画一组数据的频率分布表、频率分布直方图直观想象、数据分析用样本估计总体会用频率分布表、频率分布直方图、条形图、扇形图、折线图 等对总体进行估计直观想象、数据分析总体百分位数的估计掌握求n 个数据的第p 百分位数的方法数学抽象、数学运算 问题导学预习教材P 192-P 202的内容,思考以下问题: 1.绘制频率分布表和频率分布直方图有哪些步骤? 2.频率分布直方图有哪些特征? 3.如何求n 个数据的第p 百分位数?1.频率分布表、频率分布直方图的制作步骤及意义2.百分位数(1)定义:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.(2)计算步骤:计算一组n个数据的第p百分位数的步骤:第1步,按从小到大排列原始数据.第2步,计算i=n×p%.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.判断(正确的打“√”,错误的打“×”)(1)直方图的高表示取某数的频率.()(2)直方图的高表示该组上的个体在样本中出现的频率.()(3)直方图的高表示取某组上的个体在样本中出现的频数与组距的比值.()(4)直方图的高表示取该组上的个体在样本中出现的频率与组距的比值.()解析:要注意频率分布直方图的特点.在直方图中,纵轴(矩形的高)表示频率与组距的比值,其相应组距上的频率等于该组距上的矩形的面积.答案:(1)×(2)×(3)×(4)√一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为()A.10组B.9组C.8组D.7组解析:选B.极差为140-51=89,而组距为10,故应将样本数据分为9组.将容量为100的样本数据按由小到大排列分成8个小组,如表所示,但第3组被墨汁污染,则第三组的频率为()组号 1 2 3 4 5 6 7 8频数10 13 14 15 13 12 9A.0.14 B.0.12C.0.03 D.0.10解析:选A.第三组的频数为100-(10+13+14+15+13+12+9)=14.故第三组的频率为14100=0.14.(2019·四川省绵阳市教学质量测试)某高速公路移动雷达测速检测车在某时段对某段路过往的400辆汽车的车速进行检测,根据检测的结果绘制出如图所示的频率分布直方图,根据直方图的数据估计400辆汽车中时速在区间[90,110)的约有____________辆.解析:由图可知,时速在区间[80,90),[110,120)的频率为(0.01+0.02)×10=0.3,所以时速在区间[90,110)的频率为1-0.3=0.7.所以时速在区间[90,110)的车辆数为400×0.7=280.答案:280频率分布表、频率分布直方图、频率分布折线图的绘制角度一频率分布表、频率分布直方图的绘制为考查某校高二男生的体重,随机抽取44名高二男生,实测体重数据(单位:kg)如下:57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,54,42,51,56,55,51,54,51,60,62,43,55,56,61,52,69,64,46,54,48将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图.【解】以4为组距,列表如下:分组 频率累计频数 频率 [41.5,45.5) 2 0.045 5 [45.5,49.5) 7 0.159 1 [49.5,53.5) 8 0.181 8 [53.5,57.5) 16 0.363 6 [57.5,61.5) 5 0.113 6 [61.5,65.5) 4 0.090 9 [65.5,69.5)20.045 5频率分布直方图和频率分布折线图如图所示.(1)在列频率分布表时,极差、组距、组数有如下关系: ①若极差组距为整数,则极差组距=组数;②若极差组距不为整数,则极差组距的整数部分+1=组数.(2)组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,纵使数据的分布规律能较清楚地呈现出来,组数太多或太少,都会影响我们了解数据的分布情况,若样本容量不超过100,按照数据的多少常分为5~12组,一般样本量越大,所分组数越多.角度二 频率分布直方图的应用为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少?(3)样本中不达标的学生人数是多少? (4)第三组的频数是多少?【解】 (1)频率分布直方图以面积的形式反映数据落在各小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08.又因为第二小组的频率=第二小组的频数样本量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由直方图可估计该校高一年级学生的达标率为17+15+9+32+4+17+15+9+3×100%=88%.(3)由(1)(2)知达标率为88%,样本量为150,不达标的学生频率为1-0.88=0.12. 所以样本中不达标的学生人数为150×0.12=18(人). (4)第三小组的频率为172+4+17+15+9+3=0.34.又因为样本量为150,所以第三组的频数为150×0.34=51.频率分布直方图的应用中的计算问题(1)小长方形的面积=组距×频率组距=频率; (2)各小长方形的面积之和等于1;(3)频数样本量=频率,此关系式的变形为频数频率=样本量,样本量×频率=频数. 某厂对一批产品进行抽样检测,如图是抽检产品净重(单位:克)的频率分布直方图,样本数据分组为[76,78),[78,80),…,[84,86].若这批产品有120个,估计其中净重大于或等于78克且小于84克的产品的个数是( )A .12B .18C .25D .90解析:选D.净重大于或等于78克且小于84克的频率为(0.100+0.150+0.125)×2=0.75,所以在该范围内的产品个数为120×0.75=90.条形统计图为了丰富校园文化生活,某校计划在午间校园广播台播放“百家讲坛”的部分内容.为了了解学生的喜好,抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如图所示.请根据统计图提供的信息回答以下问题: (1)求抽取的学生数;(2)若该校有3 000名学生,估计喜欢收听易中天《品三国》的学生人数;(3)估计该校喜欢收听刘心武评《红楼梦》的女学生人数约占全校学生人数的百分比. 【解】 (1)从统计图上可以看出,喜欢收听于丹析《庄子》的男生有20人,女生有10人; 喜欢收听《故宫博物院》的男生有30人,女生有15人; 喜欢收听于丹析《论语》的男生有30人,女生有38人; 喜欢收听易中天《品三国》的男生有64人,女生有42人; 喜欢收听刘心武评《红楼梦》的男生有6人,女生有45人.所以抽取的学生数为20+10+30+15+30+38+64+42+6+45=300(人).(2)喜欢收听易中天《品三国》的男生有64人,女生有42人,共有106人,占所抽取总人数的比例为106300,由于该校有3 000名学生,因此可以估计喜欢收听易中天《品三国》的学生有106300×3 000=1 060(人).(3)该校喜欢收听刘心武评《红楼梦》的女学生人数约占全校学生人数的比例为45300×100%=15%.(1)绘制条形统计图时,第一步确定坐标系中横轴和纵轴上坐标的意义,第二步确定横轴上各部分的间距及位置,第三步根据统计结果绘制条形图.实际问题中,我们需根据需要进行分组,横轴上的分组越细,对数据的刻画(描述)就越。