直线和圆锥曲线的参数方程
参数方程
![参数方程](https://img.taocdn.com/s3/m/99220e67bb68a98270fefa49.png)
点(0,0)到直线 x-y+1=0 的距离为
1|20+-(0+-11|)2=
1= 2
22,
所以点
P
到直线
l
距离的最大值为
2+
2 2.
知识网络
要点归纳
题型研修
题型三 圆锥曲线的参数方程及其应用
对于椭圆的参数方程,要明确a,b的几何意义以及离心角φ 的意义,要分清椭圆上一点的离心角φ和这点与坐标原点连 线倾斜角θ的关系,双曲线和抛物线的参数方程中,要注意 参数的取值范围,且它们的参数方程都有多种形式.
23t2+12t2=7,
整理得 t2-4 3t+9=0.
(1)设 A 和 B 两点对应的参数分别为 t1 和 t2,由根与系数的关系得 t1+t2=4 3,t1·t2=9.
故|AB|=|t2-t1|= (t1+t2)2-4t1t2=2 3.
(2)设圆过 P0 的切线为 P0T,T 在圆上,则|P0T|2=|P0A|·|P0B|=|t1t2| =9,∴切线长|P0T|=3.
x=4cos y=4sin
θ θ
, (θ 为参数,且 0≤θ<2π
),点 M 是曲线 C1 上的
动点.
(1)求线段OM的中点P的轨迹的直角坐标方程;
(2)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标
系,若直线l的极坐标方程为ρcos θ-ρsin θ+1=0(ρ>0),
求点P到直线l距离的最大值.
另有一点xy= =- 0,4.∴所求的参数方程为xy= =- -44+ k482+k-k2k, 126, (k 为参数)和xy= =- 0,4.
知识网络
要点归纳
题型研修
跟 踪 演 练 1 已 知 椭 圆 C 的 极 坐 标 方 程 为 ρ2 =
参数方程题型大全
![参数方程题型大全](https://img.taocdn.com/s3/m/3ce6e903580216fc700afda4.png)
参数方程1.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ (φ为参数).(4)双曲线x 2a 2-y 2b2=1(a >0,b >0)的参数方程为⎩⎪⎨⎪⎧x =a 1cos θ,y =b tan θ(θ为参数).(5)抛物线px y 22=的参数方程可表示为)(.2,22为参数t pt y pt x ⎩⎨⎧==.基础练习1.在平面直角坐标系中,若曲线C 的参数方程为⎩⎨⎧x =2+22t ,y =1+22t (t 为参数),则其普通方程为____________.2.椭圆C 的参数方程为⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点,则|AB |min =________.3.曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________.4.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t(t 为参数),椭圆C 的方程为x 2+y 24=1,设直线l 与椭圆C 相交于A ,B 两点,则线段AB 的长为_______________考点一 参数方程与普通方程的互化(基础送分型考点——自主练透)[考什么·怎么考](1)⎩⎨⎧x =1t ,y =1t t 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数).(3)⎩⎪⎨⎪⎧x =1cos θ,y =tan θ2.求直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数.考点二 参数方程的应用(重点保分型考点——师生共研)角度一:t 的几何意义例.(2018·湖南五市十校联考)在直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =t sin α(t 为参数),直线l 与曲线C :⎩⎪⎨⎪⎧x =1cos θ,y =tan θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点的直角坐标;(2)若直线l 的斜率为2,且过已知点P (3,0),求|P A |·|PB |的值.1.方法要熟(1)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt(t 为参数)的参数方程,当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.(2)直线参数方程的应用:直线的标准参数方程主要用来解决过定点的直线与圆锥曲线相交时的弦长或距离问题.它可以避免求交点时解方程组的繁琐运算,但应用直线的参数方程时,需先判断是否是标准形式再考虑参数的几何意义.1.已知P 为半圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴,建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程.2.(2016·河南二模)在直角坐标系xOy 中,过点P ⎝ ⎛⎭⎪⎫0,32且倾斜角为α的直线l 与曲线(x -1)2+(y -2)2=1相交于不同的两点M ,N .求1|PM |+1|PN |的取值范围.3.在平面直角坐标系xOy 中,曲线C 1过点P (a,1),其参数方程为⎩⎨⎧x =a +2t ,y =1+2t(t 为参数,a ∈R).以O 为极点,x 轴非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|P A |=2|PB |,求实数a 的值.角度二:用参数来表示点的坐标[典题领悟]例. 在平面直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点P 的极坐标为⎝⎛⎭⎫23,π6,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =-3+2sin α(α为参数). (1)写出点P 的直角坐标及曲线C 的直角坐标方程;(2)若Q 为曲线C 上的动点,求PQ 中点M 到直线l :ρcos θ+2ρsin θ+1=0距离的最小值.1.已知直线L 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数),以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=21+3cos 2 θ.(1)求直线L 的极坐标方程和曲线C 的直角坐标方程;(2)过曲线C 上任意一点P 作与直线L 夹角为π3的直线l ,设直线l 与直线L 的交点为A ,求|P A |的最大值.2.(2018·石家庄一模)在平面直角坐标系中,将曲线C 1上的每一个点的横坐标保持不变,纵坐标缩短为原来的12,得到曲线C 2.以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,已知曲线C 1的极坐标方程为ρ=2.(1)求曲线C 2的参数方程;(2)过坐标原点O 且关于y 轴对称的两条直线l 1与l 2分别交曲线C 2于A ,C 和B ,D ,且点A 在第一象限,当四边形ABCD 的周长最大时,求直线l 1的普通方程.3.(2017·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a .考点三 极坐标、参数方程的综合应用1.(2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.、2.(2018·武昌调研)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =2sin t (t 为参数,a >0).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π4=-2 2. (1)设P 是曲线C 上的一个动点,当a =2时,求点P 到直线l 的距离的最小值; (2)若曲线C 上的所有点均在直线l 的右下方,求a 的取值范围.1.(2018·石家庄质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos t ,y =3+2sin t(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π4=- 2.(1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△P AB 面积的最小值.2.(2018·贵阳模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+3cos t ,y =5+3sin t (t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)求曲线C 1的普通方程和C 2的直角坐标方程;(2)若A ,B 分别为曲线C 1,C 2上的动点,求当AB 取最小值时△AOB 的面积.3.(2018·广州综合测试)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-t ,y =1+t (t 为参数).在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C :ρ=22cos ⎝⎛⎭⎫θ-π4. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值.4.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.5.(2018·成都诊断)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),直线l的参数方程为⎩⎨⎧x =3-32t ,y =3+12t (t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,过极点O 的射线与曲线C 相交于不同于极点的点A ,且点A 的极坐标为(23,θ),其中θ∈⎝⎛⎭⎫π2,π.(1)求θ的值;(2)若射线OA 与直线l 相交于点B ,求|AB |的值.6.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6.(1)求圆C 的直角坐标方程;(2)若P (x ,y )是直线l 与圆面ρ≤4sin ⎝⎛⎭⎫θ-π6的公共点,求3x +y 的取值范围.7.(2015·太原校级二模)在直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =5cos θ,y =5sin θ(θ为参数),直线l 经过点P (3,2),且倾斜角为π3.(1)写出直线l 的参数方程和圆C 的标准方程;(2)设直线l 与圆C 相交于A ,B 两点,求|P A |·|PB |的值.8.(2016·厦门一模)已知曲线C 的极坐标方程是ρ-4sin θ=0,以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 过点M (1,0),倾斜角为3π4.(1)求曲线C 的直角坐标方程与直线l 的参数方程;(2)设直线l 与曲线C 交于A ,B 两点,求 |MA |+|MB |.9.已知直线l 的参数方程为{⎩⎨⎧+=+=t32y t 3x (t 为参数),曲线C 的参数方程为⎩⎨⎧==θθsin 4cos 4y x (θ为参数)。
怎样用直线的参数方程解与直线有关的圆锥曲线题
![怎样用直线的参数方程解与直线有关的圆锥曲线题](https://img.taocdn.com/s3/m/5452ab338f9951e79b89680203d8ce2f00666537.png)
丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹考点透视当且仅当x=时取等号,则3+2x2+xy+y2x+y≥x-x+.利用柯西不等式解题,关键是将目标式配凑为柯西不等式左右两边的积式与平方和式.对于本题,我们将22x2+3变形为∙(2x)2+(3)3,即可配凑出柯西不等式左边的积式,直接根据柯西不等式,就可以求得最值.三、判别式法运用判别式法解答二元二次最值问题,需先引入参数,构造出二元二次方程;然后以其中一个变量为主元,根据一元二次方程有解,建立不等式Δ≥0,通过解不等式,求得参数的取值范围,即可确定目标式的最值.解法5.不妨令3+2x2+xy+y2x+y=m,则2x2+x(y-m)+y2-my+3=0,因为方程有解,则方程的根的判别式Δ=(y-m)2-4∙2∙(y2-my+ 3)≥0,整理得7y2-6my+24-m2≤0.设f()y=7y2-6my+24-m,要使函数的值小于或等于0,需使函数的图象都与x轴有两个交点,即Δ=36m2-4∙7(24-m2)≥0,得16m2≥7∙24,解得m≥.我们将目标式看作关于x的函数式,此时y,m为系数,根据一元二次方程2x2+x(y-m)+y2-my+3=0有解,得出判别式Δ≥0,即可得到关于y的不等式.此时还需再次构造函数f()y=7y2-6my+24-m,根据其函数的图象判定Δ≥0,从而求得m的取值范围.可见,解答二元最值问题,需灵活运用基本不等式、柯西不等式等工具,同时要学会将问题与函数、方程关联起来,根据一元二次方程的根的判别式、函数的性质来建立关系式.(作者单位:江苏省仪征市南京师范大学第二附属高级中学)圆锥曲线问题的显著特点是解题过程中的运算量较大.如何简化运算是同学们需重点思考的问题.事实上,对于一些与直线有关的圆锥曲线问题,可运用直线的参数方程来简化运算.若直线l过点P0(x0,y0),倾斜角为α,则其参数方程为{x=x0+t cosα,y=y0+t sinα,(t为参数).若点P(x,y)为直线l上的任意一点,由直线l的参数方程可知t2=(x-x0)2 +(y-y0)2,即|t|=|P0P|,则||t表示直线l上P0与P 两点间的距离.这就是直线的参数方程中t的几何意义.若直线l上任意两点A,B所对应的参数分别为t1,t2,则A(x0+t1cosα,y0+t1sinα)、B(x0+t2cosα,y0+t2sinα).由直线参数方程中参数t的几何意义可知,|t1|=|P0A|,|t2|=|P0B|,显然t1、t2、||t1、||t2的大小均由点P0与点A,B的相对位置决定,那么|P0A|±|P0B|=|t1|±|t2|,|P0A|·|P0B|=|t1t2|,|P0A||P0B|=||||||t1t2.下面结合实例,谈一谈如何运用直线的参数方程解答与直线有关的圆锥曲线问题.例1.如图1,已知点A(2,1)在双曲线C:x22-y2=1上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=22,求ΔPAQ的面积.图1题陈荣海38考点透视解:(1)设直线AP 的倾斜角为α,则直线AP 的参数方程为{x =2+t cos α,y =1+t sin α,(t 为参数)将其代入双曲线的方程中,化简并整理得:(cos 2α-2sin 2α)t 2+4(cos α-sin α)t =0,解得t 1=0(舍去)或t 1=4(cos α-sin α)cos 2α-2sin 2α.由于直线AP ,AQ 的斜率之和为0,所以直线AP ,AQ 的倾斜角互补,故直线AQ 的参数方程为:{x =2+t cos(π-α)=2-t cos α,y =1+t sin(π-α)=1+t sin α,(t 为参数)同理可得t 2=-4(cos α+sin α)cos 2α-2sin 2α.于是t 2-t 1=-4(cos α+sin α)cos 2α-2sin 2α-4(cos α-sin α)cos 2α-2sin 2α=-8cos αcos 2α-2sin 2α,t 2+t 1=-4(cos α+sin α)cos 2α-2sin 2α+4(cos α-sin α)cos 2α-2sin 2α=-8sin αcos 2α-2sin 2α.故y 2-y 1x 2-x 1=1+t 2sin α-(1+t 1sin α)2-t 2cos α-(2+t 1cos α)=(t 2-t 1)sin α-(t 2+t 1)cos α=-8cos αcos 2α-2sin 2α×sin α--8sin αcos 2α-2sin 2α×cos α=-1.所以直线l 的斜率为-1.(2)设α为锐角,由于直线AP ,AQ 的斜率之和为0,故直线AP ,AQ 的倾斜角互补,所以2α+∠PAQ =π,即∠PAQ =π-2α.由tan ∠PAQ =tan(π-2α)=-tan 2α=-2tan α1-tan 2α=22,解得tan α=2.由ìíîïïtan α=sin αcos α=2,sin 2α+cos 2α=1,得sin α=α=,所以t 1=4(cos α-sin α)cos 2α-2sin 2α=,t 2=-4(cos α+sin α)cos 2α-2sin 2α=.又==2sin αcos α=22313=.所以ΔPAQ 的面积S =12|t 1t 2|sin ∠PAQ=12×.我们先根据题意设出直线AP 、AQ 的参数方程;然后将其代入双曲线的方程中,构造出关于t 的一元二次方程,即可将AP 、AQ 对应的参数t 1、t 2看作方程的两个根,根据韦达定理建立关于两根t 1、t 2的关系式;再根据t 1、t 2的关系,利用直线的斜率公式、三角形的面积公式进行求解即可.运用直线的方程来解答圆锥曲线问题,能有效地减少运算量,降低解题的难度.例2.已知A (0,1)为椭圆E :x 2a 2+y 2b2=1(a >b >0)上的一个定点,其焦距为23.(1)求椭圆E 的方程;(2)如图2,过点P (-2,1)作斜率为k 的直线,与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N .若|MN |=2,求k 的值.图2解:(1)椭圆E 的方程为x 44+y 2=1;(过程略)(2)设α为直线BC 的倾斜角,则直线BC 的参数方程为{x =-2+t cos α,y =1+t sin α,(t 为参数)将其代入椭圆E 的方程,化简并整理得:(4sin 2α+cos 2α)t 2+(8sin α-4cos α)t +4=0.可得t 1+t 2=4cos α-8sin α4sin 2α+cos 2α,t 1t 2=44sin 2α+cos 2α.设B (x 1,y 1),C (x 2,y 2),则直线AB 的斜率为k AB =y 1-1x 1,AB 的直线方程为y =y 1-1x 1x +1,令y =0,可得点M 的横坐标x M =x 11-y 1=-2+t 1cos α1-(1+t 1sin α)=-2+t 1cos αt 1sin α.同理可得,点N 的横坐标x N =x 21-y 2=-2+t 2cos αt 2sin α.39考点透视于是|MN |=||||||x 11-y 1-x 21-y 2=||||||-2+t 1cos αt 1sin α--2+t 2cos αt 2sin α=||||||2(t 2-t 1)t 1t 2sin α=||12,因为(t 2+t 1)2-4t 1t 2=(4cos α-8sin α4sin 2α+cos 2α)2-4×44sin 2α+cos 2α=-64sin αcos α(4sin 2α+cos 2α)2,所以||MN =||||||4sin α4sin 2α+cos 2α=||=2.化简得-4sin αcos α=sin 2α,且sin α≠0,故tan α=-4.所以k 的值为-4.先设出直线BC 的参数方程,将其与椭圆的方程联立;然后构造出一元二次方程,并将AP 、AQ 所对应的参数t 1、t 2看作方程的两个根,即可根据韦达定理建立关于t 1、t 2的关系式;再用t 1、t 2表示出||MN ,便能将问题转化,快速获得问题的答案.例3.如图3,已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 的直线与线段AB 交于点T ,点H 满足MT =TH ,证明:直线HN 过定点.图3解:(1)椭圆E 的方程x 23+y24=1;(过程略)(2)设α为直线PN 的倾斜角,则直线PN 的参数方程为{x =1+t cos α,y =-2+t sin α,(t 为参数)将其代入椭圆E 的方程,化简并整理得:(3sin 2α+4cos 2α)t 2-(12sin α-8cos α)t +4=0.可得t 1+t 2=12sin α-8cos α3sin 2α+4cos 2α,t 1t 2=43sin 2α+4cos 2α.设M (1+t 1cos α,-2+t 1sin α),N (1+t 2cos α,-2+t 2sin α).由A (0,-2),B (32,-1)可得直线AB 的方程为y =23x -2,由于MH 平行于x 轴,故点T 的横坐标为32t 1sin α.于是 MH =2 MT =(3t 1sin α-2-2t 1cos α,0), PM =(t 1cos α,t 1sin α),PN =(t 2cos α,t 2sin α),则 PH = PM +MH =(3t 1sin α-2-t 1cos α,t 1sin α),又 PA =(-1,0),设 PH =λ PA +μ PN ,则PH =λ(-1,0)+μ(t 2cos α,t 2sin α)=(-λ+μt 2cos α,μt 2sin α),得{3t 1sin α-2-t 1cos α=-λ+μt 2cos α,t 1sin α=μt 2sin α,即{λ=2t 1cos α+2-3t 1sin α,t 1=μt 2.所以λ+μ=2t 1cos α+2-3t 1sin α+t 1t 2=(2cos α-3sin α)t 1t 2+(t 2+t 1)+t 2t 2=(2cos α-3sin α)×43sin 2α+4cos 2α+12sin α-8cos α3sin 2α+4cos 2α+t 2t 2=1,故N ,H ,A 三点共线,所以直线HN 过定点A .我们利用直线的参数方程,根据韦达定理得到t 1、t 2的关系,即可将M 、N 、T 三点的坐标用t 1、t 2以及三角函数表示出来.再根据向量的共线定理判定N 、H 、A 三点共线,就能确定点A 与直线HN 的位置关系.一般来说,对于一些动直线过定点问题、直线与圆锥曲线的位置关系问题、与直线有关的图形面积问题、圆锥曲线中的距离问题,巧用直线的参数方程来求解,不仅能大大地减少运算量,还能化繁为简,达到事半功倍的效果.(作者单位:福建省安溪第一中学)40。
圆锥曲线定直线问题解题方法与技巧
![圆锥曲线定直线问题解题方法与技巧](https://img.taocdn.com/s3/m/abfd61a40875f46527d3240c844769eae009a3e1.png)
圆锥曲线定直线问题解题方法与技巧标题:圆锥曲线定直线问题的解题方法与技巧一、引言在解析几何中,圆锥曲线是重要的研究对象,其中涉及到的定直线问题要求我们找出经过特定点或者满足特定条件的直线方程。
这类问题通常需要综合运用直线与圆锥曲线的位置关系、参数方程、极坐标方程以及代数运算等知识。
以下将详细介绍解决此类问题的一些基本方法和实用技巧。
二、基本解题方法1. 利用位置关系确定直线方程:当已知直线过某定点或与圆锥曲线相切、相交于两点等情况时,可以利用圆锥曲线的标准方程(例如椭圆、双曲线、抛物线)与直线的一般方程联立,通过求解方程组得到交点坐标,进而确定直线方程。
2. 参数法:圆锥曲线的参数方程能直观地反映点与曲线的关系,当直线与圆锥曲线有特殊关系(如切线、法线)时,可先将直线写成参数形式,然后与圆锥曲线的参数方程联立求解参数,从而得出直线的方程。
3. 极坐标法:在某些情况下,若圆锥曲线或直线在极坐标下表达更为简便,可直接在极坐标系中建立方程,求解后转换为直角坐标系下的直线方程。
三、解题技巧1. 明确题目条件:解决定直线问题时,首先要明确直线需要满足的条件,如是否过定点、是否为圆锥曲线的切线、斜率是否存在等,这些信息对于选择合适的解题方法至关重要。
2. 判断直线与圆锥曲线的位置关系:通过计算判别式,可以判断直线与圆锥曲线的位置关系,如相离、相切、相交等,进一步决定如何设定直线方程。
3. 巧妙应用韦达定理:在处理直线与圆锥曲线交点问题时,韦达定理是一个非常有力的工具。
它可以快速给出两交点横坐标的乘积和和关系,帮助简化计算过程。
4. 充分利用对称性:圆锥曲线具有良好的对称性,有时可以根据对称性简化问题,比如已知直线过原点或与坐标轴平行的情况。
总结,解决圆锥曲线定直线问题需灵活运用解析几何的基础理论,结合具体情况选择最适宜的解题策略,同时注重培养观察问题的能力和逻辑推理能力,以提升解题效率与准确性。
高中数学参数方程知识点大全
![高中数学参数方程知识点大全](https://img.taocdn.com/s3/m/b6aba66c84254b35effd3466.png)
高考复习之参数方程一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数方程或极坐标方程求两条曲线的交点.二、知识结构1.直线的参数方程(1)标准式过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=at y y a t x x sin cos 00(t 为参数)(2)一般式过定点P 0(x 0,y 0)斜率k=tgα=ab的直线的参数方程是⎩⎨⎧+=+=bt y y atx x 00(t 不参数)②在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时,|t|表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t|.直线参数方程的应用设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=at y y a t x x sin cos 00(t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则(1)P 1、P 2两点的坐标分别是(x 0+t 1cosα,y 0+t 1sinα)(x 0+t 2cosα,y 0+t 2sinα);(2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t,则t=221t t +中点P 到定点P 0的距离|PP 0|=|t|=|221t t +|(4)若P 0为线段P 1P 2的中点,则t 1+t 2=0.2.圆锥曲线的参数方程(1)圆圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆椭圆12222=+b y a x (a>b>0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆12222=+by a y (a>b>0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数)3.极坐标极坐标系在平面内取一个定点O,从O 引一条射线Ox,选定一个单位长度以及计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x y tg y x θρ三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1在圆x 2+y 2-4x-2y-20=0上求两点A 和B,使它们到直线4x+3y+19=0的距离分别最短和最长.解:将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数)则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2极坐标方程ρ=θθcos sin 321++所确定的图形是()A.直线B.椭圆C.双曲D.抛物线解:ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题赏析例3椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ()A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5).应选B.例4参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y x A.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21)C.双曲线的一支,这支过(-1,21) D.抛物线的一部分,这部分过(-1,21)解:由参数式得x 2=1+sinθ=2y(x>0)即y=21x 2(x>0).∴应选B.例5在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是()A.(2,-7)B.(31,32) C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2将x=21代入,得y=21∴应选C.例6下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是()A.⎩⎨⎧==t y t xB.⎩⎨⎧==ty tx 2cos cos C.⎪⎩⎪⎨⎧-+==t t y tgt x 2cos 12cos 1D.⎪⎩⎪⎨⎧+-==t ty tgt x 2cos 12cos 1解:普通方程x 2-y 中的x∈R,y≥0,A.中x=|t|≥0,B.中x=cost∈〔-1,1〕,故排除A.和B.C.中y=t t 22sin 2cos 2=ctg 2t=2211xt tg ==,即x 2y=1,故排除C.∴应选D.例7曲线的极坐标方程ρ=4sinθ化成直角坐标方程为()A.x 2+(y+2)2=4B.x 2+(y-2)2=4C.(x-2)2+y 2=4D.(x+2)2+y 2=4解:将ρ=22y x +,sinθ=22y x y +代入ρ=4sinθ,得x 2+y 2=4y,即x 2+(y-2)2=4.∴应选B.例8极坐标ρ=cos(θπ-4)表示的曲线是()A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cosθ+sinθ)⇒22ρ=ρcosθ+ρsinθ,∴普通方程为2(x 2+y 2)=x+y,表示圆.应选D.例9在极坐标系中,与圆ρ=4sinθ相切的条直线的方程是()A.ρsinθ=2 B.ρcosθ=2C.ρcosθ=-2 D.ρcosθ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sinθ,CO⊥OX,OA 为直径,|OA|=4,l 和圆相切,l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有cosθ=ρ2=OPOB ,得ρcosθ=2,∴应选B.例104ρsin 22θ=5表示的曲线是()A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ把ρ=22y x +ρcosθ=x,代入上式,得222y x +=2x-5.平方整理得y 2=-5x+.425.它表示抛物线.∴应选D.例11极坐标方程4sin 2θ=3表示曲线是()A.两条射线 B.两条相交直线 C.圆D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3x 2,y=±x 3,它表示两相交直线.∴应选B.四、能力训练(一)选择题1.极坐标方程ρcosθ=34表示()A.一条平行于x 轴的直线B.一条垂直于x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是()A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲线:①θ=6π和sinθ=21;②θ=6π和tgθ=33,③ρ2-9=0和ρ=3;④⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为()A.1 B.2 C.3 D.44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0,θ1+θ2=0,则M,N 两点位置关系是()A.重合B.关于极点对称C.关于直线θ=2π D.关于极轴对称5.极坐标方程ρ=sinθ+2cosθ所表示的曲线是()A.直线B.圆C.双曲线D.抛物线6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是()A.⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211 C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 2152317.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m mm a x (m 是参数,ab≠0)化为普通方程是()A.)(12222a xb y a x ≠=+ B.)(12222a x b y a x -≠=+C.)(12222a x by a x ≠=- D.)(12222a x by a x -≠=-8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为()A.(1,3π),r=2 B.(1,6π),r=1 C.(1,3π),r=1D.(1,-3π),r=29.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是()A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方程为()A.y-1=)2(21+±x B.y=x 21±C.y-1=)2(2+±x D.y+1=)2(2-±x 11.若直线⎩⎨⎧=+=bty at x 4((t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为()A.3π B.32π C.3π或32π D.3π或35π12.已知曲线⎩⎨⎧==pty pt x 222(t 为参数)上的点M,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M,N 间的距离为()A.2p(t 1+t 2)B.2p(t 21+t 22) C.│2p(t 1-t 2)│D.2p(t 1-t 2)213.若点P(x,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy,y 2-x 2)也在单位圆上运动,其运动规律是()A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcosθ+25+3sinθ-25sin 2θ与x 轴两个交点距离的最大值是()A.5B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是()A.θθρsin cos 23-=B.θθρcos cos 23-=C.θθρsin 2cos 3-=D.θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y 轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为.18.极坐标方程ρ=tgθsecθ表示的曲线是.19.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为;直线上一点P(x ,y)与点M(-1,2)的距离为.(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数)上一点P,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p>0,t 为参数),当t∈[-1,2]时,曲线C 的端点为A,B,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD,与椭圆的左半部分交于C、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G,H 两点.(1)试判断满足│BC│·│BD│=3│GF 2│·│F 2H│成立的直线BD 是否存在?并说明理由.(2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离.24.A,B 为椭圆2222by a x +=1,(a>b>0)上的两点,且OA⊥OB,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l∶812yx +=1,P 是l 上一点,射线OP 交椭圆于点R,又点Q 在OP 上且满足│OQ│·│OP│=│OR│2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D3.C4.C5.B6.A7.A8.C9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x≤21);18.抛物线;19.135°,|32t|(三)20.(5154,558);21.;33222.(1)不存在,(2)x+y+2=0;23.51(27-341);24.Smax=2ab ,s max=2222b a b a +;25.25)1(25)1(22-+-y x =1(x,y)不同时为零)。
直线和圆锥曲线的参数方程
![直线和圆锥曲线的参数方程](https://img.taocdn.com/s3/m/1695208cf524ccbff12184b2.png)
3 3 4 倾斜角为 α,则 tan α=4,sin α=5,cos α=5.又点 P(1,1)在直线 4 x=1+5t, l 上,所以直线 l 的参数方程为 (t 为参数). 3 y=1+ t 5 因为 3×5-4×4+1=0,所以点 M 在直线 l 上. 4 由 1+5t=5,得 t=5,即点 P 到点 M 的距离为 5. 因为点 N 不在直线 l 上,故根据两点之间的距离公式,可得|PN| = (1+2)2+(1-6)2= 34.
QM → 动点 M 分有向线段QP的数量比 MP
自主预习
讲练互动
课堂达标
教材链接
2.圆的参数方程 (1)圆心在原点、 半径为 r 为参数).
x=rcos α, y=rsin α 的圆的参数方程_____________( α
OP与x轴正方向的夹角 参数 α 的几何意义是_________________________.
x=t, 得到参数方程 y=2t+1
t (t 为参数);如果令 x=2,可得到
t x= , 参数方程 2 (t 为参数) y=t+1
自主预习 讲练互动 课堂达标 教材链接
这样的参数方程中的 t 不具有一定的几何意义,但是在 实际应用中有时能够简化某些运算.例如,动点 M 做匀 速直线运动,它在 x 轴和 y 轴方向的分速度分别为 9 和 12,点 M 从 A 点(1,1)开始运动,求点 M 的轨迹的参数 方程.点 M (t 为参数).
【思维导图】
自主预习
讲练互动
课堂达标
教材链接
【知能要点】
1.直线的参数方程.
2.直线的参数方程的应用.
3.圆的参数方程及应用.
自主预习
讲练互动
参数方程人教版高中数学
![参数方程人教版高中数学](https://img.taocdn.com/s3/m/b27a15b0a6c30c2258019e12.png)
参数方程知识精讲一.参数方程的定义在平面直角坐标系中,若曲线上的任意一点满足,并且对于的每个允许值,由方程组所确定的点都在这条曲线上,则该方程叫曲线的参数方程,变量是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.二.常见曲线的参数方程1.直线标准式:经过点,倾斜角为的直线的参数方程为(为参数).一般式:经过点,倾斜角为的直线的参数方程为(为参数),其中.2.圆的常用参数方程为:为参数.3.圆锥曲线的参数方程椭圆的常用参数方程为:为参数.双曲线的参数方程为(为参数).抛物线的参数方程为(为参数).三点剖析一.方法点拨1.直线的标准式中,参数有明显的几何意义.经过点,倾斜角为的直线的参数方程为(为参数),在直线有任一点,,即表示直线上任一点到定点的距离.若是直线上两点,所对应的参数分别为,则.2.已知直线或曲线的参数方程讨论其位置关系、性质问题一般要通过消参(代入法、加减法、三角法)转化为普通方程解答.3.对于直线与圆锥曲线曲线方程化为参数方程问题实质是引入第三个变量的换元法,这里经常用到的有代数换元或三角换元.4.参数方程与极坐标的互化问题,需要通过普通方程这一中间桥梁来实现,现将参数方程(极坐标方程)化为普通方程,再将普通方程化为极坐标方程(参数方程).题模精讲题模一参数方程化普通方程例1.1、曲线(θ为参数)的对称中心()A、在直线y=2x上B、在直线y=-2x上C、在直线y=x-1上D、在直线y=x+1上例1.2、参数方程(t为参数)所表示的曲线是()A、A选项B、B选项C、C选项D、D选项例1.3、曲线的参数方程是(t是参数,t≠0),它的普通方程是()A、(x-1)2(y-1)=1B、y=C、y=-1D、y=+1题模二直线与圆的参数方程例2.1、设曲线C的参数方程为(θ为参数),直线l的方程为x+y+1=0,则曲线C上到直线l距离为的点的个数为()A、1B、2C、3D、4例2.2、已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C截得的线段长度.例2.3、在直角坐标系xOy中,设倾斜角为α的直线l:(t为参数)与曲线C:(θ为参数)相交于不同两点A,B.(1)若,求线段AB中点M的坐标;(2)若|PA|•|PB|=|OP|2,其中,求直线l的斜率.题模三参数方程的应用例3.1、设直线l:(l为参数)与曲线C:(t为参数,实数a≠0)交于不同两点,求实数a的取值范围.例3.2、已知点P(x,y)是圆x2+y2=2y上的动点,(1)求2x+y的取值范围;(2)若x+y+a≥0恒成立,求实数a的取值范围.例3.3、在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.随堂练习随练1.1、已知两曲线参数方程分别为(0≤θ<π)和(t∈R),它们的交点坐标为____.随练1.2、直线y=2x+1的参数方程是()A、(t为参数)B、(t为参数)C、(t为参数)D、(θ为参数)随练1.3、圆的参数方程为,则此圆的半径为______________.随练1.4、极坐标ρ=cosθ和参数方程(t为参数)所表示的图形分别是()A、直线、直线B、直线、圆C、圆、圆D、圆、直线随练1.5、以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,).若直线l过点P,且倾斜角为,圆C以M为圆心、4为半径.(Ⅰ)求直线l的参数方程和圆C的极坐标方程;(Ⅱ)试判定直线l和圆C的位置关系.随练1.6、圆C的极坐标方程为,极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,且长度单位相同,直线l的参数方程为(t为参数).(1)求C的直角坐标方程及圆心的极坐标(2)l与C交于A,B两点,求|AB|随练1.7、在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.随练1.8、若x,y为实数,且x2+2xy﹣y2=7,则x2+y2的最小值为______.随练1.9、已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M 到直线C3:(t为参数)距离的最小值.自我总结课后作业作业1、参数方程(θ为参数)化为普通方程是()A、2x-y+1=0B、2x+y-1=0C、2x-y+1=0,x∈[0,1]D、2x+y-1=0,x∈[0,1]作业2、曲线(t为参数)的直角坐标方程是____.作业3、在直角坐标系中,已知直线l:(s为参数)与曲线C:(t 为参数)相交于A、B两点,则|AB|=_______.作业4、已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).(1)求曲线C的直角坐标方程与直线l的普通方程;(2)设曲线C与直线l相交于P、Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.作业5、在平面直角坐标系中,坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),(,).圆C的参数方程为,(θ为参数).(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;(Ⅱ)判断直线l与圆C的位置关系.作业6、以直角坐标系的原点为极点,x轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为(t为参数),圆C的极坐标方程为ρ=4cos(θ-).(Ⅰ)求直线l和圆C的直角坐标方程;(Ⅱ)若点P(x,y)在圆C上,求x+y的取值范围.作业7、已知直线n的极坐标是pcos(θ+)=4,圆A的参数方程是(θ是参数)(1)将直线n的极坐标方程化为普通方程;(2)求圆A上的点到直线n上点距离的最小值.作业8、在平面直角坐标系xOy 中,已知曲线C1:(t 为参数)与曲线C 2:(θ为参数,a>0).(Ⅰ)若曲线C1与曲线C2有一个公共点在x轴上,求a的值;(Ⅱ)当a=3时,曲线C1与曲线C2交于A,B两点,求A,B两点的距离.作业9、在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合.(I)分别说明C1,C2是什么曲线,并求出a与b的值;(II)设当α=时,l与C1,C2的交点分别为A1,B1,当α=﹣时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.。
圆锥曲线方程知识点总结
![圆锥曲线方程知识点总结](https://img.taocdn.com/s3/m/c5489a3726284b73f242336c1eb91a37f11132fd.png)
圆锥曲线方程知识点总结一、圆锥曲线的基本方程椭圆的标准方程如下:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (a > b > 0)$$其中椭圆的长轴为$2a$,短轴为$2b$,焦距为$\sqrt{a^2 - b^2}$,离心率为$c/a$。
双曲线的标准方程如下:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. (a > 0, b > 0)$$其中双曲线的两个分支的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$。
抛物线的标准方程如下:$$x^2 = 4ay. (a > 0)$$其中抛物线的焦点为$(0, a)$,顶点为$(0, 0)$。
二、圆锥曲线的参数方程圆锥曲线还可以用参数方程表示。
以椭圆为例,其参数方程为:$$\begin{cases}x = a \cos \theta, \\y = b \sin \theta. \\\end{cases}$$其中$\theta$的取值范围为$[0, 2\pi]$。
双曲线和抛物线的参数方程也可以类似地表示。
三、圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程表示。
以椭圆为例,其极坐标方程为:$$r = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}.$$其中$r$为极径,$\theta$为极角。
双曲线和抛物线的极坐标方程也可以类似地表示。
四、圆锥曲线的性质1. 圆锥曲线关于坐标轴的对称性:- 椭圆关于$x$轴和$y$轴都对称;- 双曲线关于$x$轴和$y$轴都对称;- 抛物线关于$y$轴对称。
2. 圆锥曲线的焦点、直径、离心率等:- 椭圆的焦点到中心的距离为$c = \sqrt{a^2 - b^2}$,离心率为$e = c/a$;- 双曲线的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$,离心率为$e = c/a$;- 抛物线的焦点到中心的距离为$c = a$,离心率为$e = 1$。
圆锥曲线的参数方程全解
![圆锥曲线的参数方程全解](https://img.taocdn.com/s3/m/b35ba4f35fbfc77da269b1ef.png)
将y=
b
a x代入①,解得点A的横坐标为
a
①
xA = a2(sec tan).
解: 同理可得,点B的横坐标为xB = a2(sec tan).
设AOx=,则tan b . 所以MAOB的面积为
a
S MAOB =|OA||OB|sin2 =
xA
cos
xB
cos
sin2
过点A作圆C1的切线AA '与x轴交于点A ' ,
过圆C2与x轴的交点B作圆C2的切线BB'与直线OA交于点B'. 过点A ' ,B'分别作y轴,x轴的平行线A' M,B' M交于点M.
双曲线的参数方程
y
设M (x, y) 则A' (x, 0), B'(b, y).
a
B'
A
•M
点A在圆C1上 A(acos,asin).
又OA AA',OA AA'=0
o B A' x
b
AA' =(x-acos,-asin )
a cos(x a cos) (a sin)2 0 解得:x a
又 点B'在角的终边上,记 由三角函数定义有:tan y .
co1sy消saxbe去22cta参n数by22得:x1
2
2
说明:⑴ 这里参数 叫做双曲线的离心角与直线OM
的倾斜角不同. ⑵ 双曲线的参数方程可以由方程
x2 a2
y2 b2
1
与三角
恒等式sec2 1 tan2 相比较而得到,所以双曲
线的参数方程的实质是三角代换.
高中数学参数方程知识点详解(讲义+过关检测+详细答案)
![高中数学参数方程知识点详解(讲义+过关检测+详细答案)](https://img.taocdn.com/s3/m/87bed83902768e9951e738f8.png)
5.【答案】D
【解析】 x2 t, y2 1 t 1 x2, x2 y2 1,而t 0, 0 1 t 1,得0 y 2 .
4
4
6.【答案】D
【解析】圆
x=2 cos,
的圆心为原点,半径为
y =2 sin
2,
则圆心到直线 3x-4y-9=0 的距离为 9 ,小于半径 2,故直线与圆相交. 5
D.(1, 3)
2.已知某曲线的参数方程为 xy==ccooss2, +1,则该曲线是(
)
A.直线
B.圆
C.双曲线
3.若一直线的参数方程为
x
x0
1 2
t
(t 为参数),则此直线的倾斜Байду номын сангаас为(
y
y0
3t 2
A.30º
B. 60º
C.120º
4.若点
P(4,a)在曲线
x=
t 2
(t 为参数)上,点 F(2,0),则|PF|等于(
)
y=2 t
A.4
B.5
C.6
D.抛物线 ) D.150º
D.7
5.与参数方程为
x
t
(t为参数) 等价的普通方程为( )
y 2 1 t
A. x2 y2 1 4
B. x2 y2 1(0 x 1) 4
C. x2 y2 1(0 y 2) 4
D. x2 y2 1(0 x 1, 0 y 2) 4
y2 b2
1( a
0 , b 0 )的参数方程为:
x a sec
y
b
tan
(
为参数,
[0, 2 ) 且
, 2
3 2
参数方程 (1)
![参数方程 (1)](https://img.taocdn.com/s3/m/6a9ad2d6d15abe23482f4d2d.png)
教学过程一、复习预习1、极坐标系2、参数方程的概念3、参数方程的意义4、直线、圆锥曲线的参数方程二、知识讲解1.曲线的参数方程在平面直角坐标系xOy 中,如果曲线上任意一点的坐标x ,y 都是某个变量t 的函数⎩⎨⎧x =f (t ),y =g (t ).并且对于t 的每一个允许值上式所确定的点M (x ,y )都在这条曲线上,则称上式为该曲线的参数方程,其中变量t 称为参数.2.一些常见曲线的参数方程(1)过点P 0(x 0,y 0),且倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).设P 是直线上的任一点,则t 表示有向线段P 0P →的数量.(2)圆的方程(x -a )2+(y -b )2=r 2的参数方程为⎩⎪⎨⎪⎧x =a +r cos θy =b +r sin θ(θ为参数).(3)椭圆方程x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos θy =b sin θ(θ为参数).(4)抛物线方程y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2y =2pt (t 为参数).三、例题精析【例题1】把下列参数方程化为普通方程,并说明它们各表示什么曲线.(1)⎩⎨⎧ x =1+12t ,y =2+32t (t 为参数); (2)⎩⎪⎨⎪⎧x =1+t 2,y =2+t (t 为参数).(3)⎩⎨⎧x =t +1t,y =1t -t(t 为参数); (4)⎩⎪⎨⎪⎧x =4sin θ,y =5cos θ(θ为参数).【答案】见解析【解析】(1)由x =1+12t 得t =2x -2.∴y =2+32(2x -2).∴3x -y +2-3=0,此方程表示直线. (2)由y =2+t 得t =y -2,∴x =1+(y -2)2. 即(y -2)2=x -1,此方程表示抛物线.(3)由⎩⎨⎧ x =t +1t,y =1t -t , ①②∴①2-②2得x 2-y 2=4,此方程表示双曲线.(4)⎩⎪⎨⎪⎧x =4sin θ,y =5cos θ,得⎩⎨⎧ sin θ=x4,cos θ=y5,①②①2+②2,得x 216+y 225=1,此方程表示椭圆.【例题2】 已知圆C :⎩⎪⎨⎪⎧ x =1+cos θ,y =sin θ(θ为参数)和直线l :⎩⎨⎧x =2+t cos α,y =3+t sin α(其中t 为参数,α为直线l 的倾斜角).(1)当α=2π3时,求圆上的点到直线l 距离的最小值;(2)当直线l 与圆C 有公共点时,求α的取值范围. 【答案】3-1;π6≤α≤π2.【解析】(1)当α=2π3时,直线l 的直角坐标方程为3x +y -33=0,圆C 的圆心坐标为(1,0),圆心到直线的距离d =232=3,圆的半径为1,故圆上的点到直线l 距离的最小值为3-1.(2)圆C 的直角坐标方程为(x -1)2+y 2=1,将直线l 的参数方程代入圆C 的直角坐标方程,得t 2+2(cos α+3sin α)t +3=0,这个关于t 的一元二次方程有解,故Δ=4(cos α+3sin α)2-12≥0,则sin 2⎝⎛⎭⎫α+π6≥34,即sin ⎝⎛⎭⎫α+π6≥32或sin ⎝⎛⎭⎫α+π6≤-32.又0≤α<π,故只能sin ⎝⎛⎭⎫α+π6≥32,即π3≤α+π6≤2π3,即π6≤α≤π2. 【例题3】已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数). (1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.【答案】(1,0),⎝⎛⎭⎫12,-32;圆心为⎝⎛⎭⎫14,0,半径为14的圆 【解析】 (1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1. 联立方程组⎩⎨⎧y =3(x -1),x 2+y 2=1,(2)C 1的普通方程为x sin α-y cos α-sin α=0. A 点坐标为(sin 2α,-cos αsin α), 故当α变化时,P 点轨迹的参数方程为⎩⎨⎧x =12sin 2α,y =-12sin αcos α(α为参数),P 点轨迹的普通方程为⎝⎛⎭⎫x -142+y 2=116. 故P 点轨迹是圆心为⎝⎛⎭⎫14,0,半径为14的圆. 【例题4】在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示); (2)求圆C 1与C 2的公共弦的参数方程.【答案】⎝⎛⎭⎫2,π3,⎝⎛⎭⎫2,-π3;⎩⎪⎨⎪⎧x =1,y =t (-3≤t ≤3). 【解析】 (1)圆C 1的极坐标方程为ρ=2,圆C 2的极坐标方程为ρ=4cos θ.由⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ,解得ρ=2,θ=±π3,故圆C 1与C 2交点的坐标为⎝⎛⎭⎫2,π3,⎝⎛⎭⎫2,-π3. 注:极坐标系下点的表示不唯一.(2)由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =t (-3≤t ≤3).(或参数方程写成⎩⎪⎨⎪⎧x =1,y =y (-3≤y ≤3)四、课堂运用【基础】1.将下列参数方程化为普通方程.(1)⎩⎨⎧x =3k1+k 2,y =6k21+k2(k 为参数); (2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数);(3)⎩⎪⎨⎪⎧x =1-t 21+t 2,y =t1+t2(t 为参数).【答案】见解析【解析】(1)两式相除,得k =y2x ,将其代入,得x =3·y 2x 1+⎝⎛⎭⎫y 2x 2,化简得所求的普通方程是4x 2+y 2-6y =0(y ≠6). (2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得y 2=2-x .又x =1-sin 2θ∈[0,2], 得所求的普通方程为y 2=2-x ,x ∈[0,2].(3)由⎝ ⎛⎭⎪⎫1-t 21+t 22+⎝⎛⎭⎫2t 1+t 22=1,得x 2+4y 2=1,又x =1-t 21+t2≠-1,得所求的普通方程是x 2+4y 2=1(x ≠-1). 2.已知曲线C 的参数方程为⎩⎨⎧x =t -1t,y =3⎝⎛⎭⎫t +1t (t 为参数,t >0).求曲线C 的普通方程. 【答案】3x 2-y +6=0【解析】∵x 2=t +1t -2,∴x 2+2=t +1t =y3,故曲线C 的普通方程为3x 2-y +6=0.3. 在平面直角坐标系xOy 中,求过椭圆⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t (t 为参数)平行的直线的普通方程. 【答案】x -2y -4=0【解析】由题设知,椭圆的长半轴长为a =5,短半轴长为b =3,从而c =a 2-b 2=4,∴右焦点为(4,0),将已知直线的参数方程化为普通方程:x -2y +2=0.故所求直线的斜率为12,因此其方程为y =12(x -4),即x -2y -4=0.【巩固】及相应的α的值. 【答案】34;α=π2【解析】设直线的参数方程为⎩⎪⎨⎪⎧x =102+t cos α,y =t sin α(t 是参数),代入曲线方程并整理得(1+sin 2α)t 2+(10cos α)t +32=0,设M 、N 对应的参数分别为t 1、t 2,而由参数t 的几何意义得PM =|t 1|,PN =|t 2|, 则PM ·PN =|t 1t 2|=321+sin 2α,所以,当sin 2α=1,即α=π2时,PM ·PN 有最小值34,此时α=π2.2.在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)求圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|P A |+|PB |. 【答案】x 2+(y -5)2=5;32【解析】解法一: (1)由ρ=25sin θ,得x 2+y 2-25y =0, 即x 2+(y -5)2=5.(2)将l 的参数方程代入圆C 的直角坐标方程, 得⎝⎛⎭⎫3-22t 2+⎝⎛⎭⎫22t 2=5,即t 2-32t +4=0. ∴t 1=2或t 2=22,则A (2,1+5),B (1,2+5) 又直线l 过点P (3,5),故由上式及t 的几何意义得, |P A |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2. 解法二:(1)同法一.(2)因为圆C 的圆心为(0,5),半径r =5,直线l 的普通方程为:y =-x +3+ 5.由⎩⎨⎧ x 2+(y -5)2=5,y =-x +3+5得x 2-3x +2=0.解得:⎩⎨⎧ x =1,y =2+5或⎩⎨⎧x =2,y =1+ 5. 不妨设A (1,2+5),B (2,1+5),又点P 的坐标为(3,5), 故|P A |+|PB |=8+2=3 2. 【拔高】1.已知P 为半圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP ︵的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程. 【答案】⎝⎛⎭⎫π3,π3;⎩⎨⎧x =1+⎝⎛⎭⎫π6-1t ,y =3π6t(t 为参数)【解析】(1)由已知,点M 的极角为π3,且点M 的极径等于π3,故点M 的极坐标为⎝⎛⎭⎫π3,π3. (2)点M 的直角坐标为⎝⎛⎭⎫π6,3π6,A (1,0),故直线AM 的参数方程为⎩⎨⎧x =1+⎝⎛⎭⎫π6-1t ,y =3π6t(t 为参数).2.在平面直角坐标系xOy 中,C 1的参数方程为⎩⎪⎨⎪⎧x =cos φ,y =sin φ(φ为参数),曲线C 2的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(a >b >0,φ为参数).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α与C 1,C 2各有一个交点.当α=0时,这两个交点的距离为2,当α=π2时,这两个交点重合.(1)分别说明C 1,C 2是什么曲线,并求出a 与b 的值;(2)设当α=π4时,l 与C 1,C 2的交点分别为A 1,B 1,当α=-π4时,l 与C 1,C 2的交点分别为A 2,B 2,求四边形A 1A 2B 2B 1的面积. 【答案】1; 25【解析】(1)C 1是圆,C 2是椭圆.当α=0时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a =3.当α=π2时,射线l 与C ,C 2交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以b =1.(2)C 1,C 2的普通方程分别为x 2+y 2=1和x 29+y 2=1.当α=π4时,射线l 与C 1的交点A 1的横坐标为x =22,与C 2的交点B 1的横坐标为x ′=3 1010.当α=-π4时,射线l 与C 1,C 2的两个交点,A 2,B 2分别与A 1,B 1关于x 轴对称,因此四边形A 1A 2B 2B 1为梯形,故四边形A 1A 2B 2B 1的面积为(2x ′+2x )(x ′-x )2=25.课程小结一个复习指导复习本讲时,应紧紧抓住直线的参数方程、圆的参数方程、圆锥曲线的参数方程的建立以及各参数方程中参数的几何意义,同时要熟练掌握参数方程与普通方程互化的一些方法.课后作业【基础】1.P 为曲线C 1:⎩⎪⎨⎪⎧ x =1+cos θ,y =sin θ(θ为参数)上一点,求它到直线C 2:⎩⎪⎨⎪⎧x =1+2t ,y =2(t 为参数)距离的最小值. 【答案】1【解析】将曲线C 1化成普通方程是(x -1)2+y 2=1,圆心是(1,0), 直线C 2化成普通方程是y -2=0,则圆心到直线的距离为2. 所以曲线C 1上点到直线的最小距离为1.2.在平面直角坐标系xOy 中,点P (x ,y )是椭圆x 23+y 2=1上的一个动点,求S =x +y 的最大值. 【答案】2【解析】∵椭圆x 23+y 2=1的参数方程为⎩⎨⎧x =3cos φ,y =sin φ(φ为参数),故可设动点P的坐标为(3cos φ,sin φ),其中0≤φ<2π.因此S =x +y =3cos φ+sin φ= 2⎝⎛⎭⎫32cos φ+12sin φ=2sin ⎝⎛⎭⎫φ+π3,∴当φ=π6时,S 取得最大值2. 3.在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =m +2cos α,y =2sin α(α为参数),曲线D 的参数方程为⎩⎪⎨⎪⎧x =2-4t ,y =3t -2(t 为参数).若曲线C 、D 有公共点,求实数m 的取值范围.【答案】⎣⎡⎦⎤-4,83 【解析】曲线C 的普通方程为(x -m )2+y 2=4. 曲线D 的普通方程为3x +4y +2=0.因为曲线C 、D 有公共点,所以|3m +2|5≤2,|3m +2|≤10.解得-4≤m ≤83,即m 的取值范围是⎣⎡⎦⎤-4,83. 4.已知极坐标方程为ρcos θ+ρsin θ-1=0的直线与x 轴的交点为P ,与椭圆⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)交于点A ,B ,求P A ·PB 的值. 【答案】65【解析】由题意,直线经过点P (1,0),其参数方程为⎩⎨⎧x =1-22t ,y =22t(t 为参数),① 又椭圆方程为x 24+y 2=1,②将①代入②,整理,得5t 2-22t -6=0;所以P A ·PB =|t 1t 2|=65.5.在极坐标系中,圆C 的方程为ρ=42cos ⎝⎛⎭⎫θ-π4,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =t -1(t 为参数),求直线l 被⊙C 截得的弦AB 的长度. 【答案】26【解析】⊙C 的方程可化为ρ=4cos θ+4sin θ,两边同乘ρ,则ρ2=4ρcos θ+4ρsin θ. 由ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ,得x 2+y 2-4x -4y =0. 圆心C 的坐标为(2,2),圆的半径r =2 2. 又由题设知直线l 的普通方程为x -y -2=0, 故圆心C 到直线l 的距离d =|-2|2= 2. ∴弦AB 长度等于2(22)2-(2)2=2 6.【巩固】1.已知曲线C 的极坐标方程为ρ=6sin θ,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l 的参数方程为⎩⎨⎧x =12t ,y =32t +1(t 为参数),求直线l被曲线C 截得的线段长度. 【答案】4 2.【解析】将曲线C 的极坐标方程化为直角坐标方程为x 2+y 2-6y =0,即x 2+(y -3)2=9,它表示以(0,3)为圆心,3为半径的圆,直线方程l 的普通方程为y =3x +1, 圆C 的圆心到直线l 的距离d =1,故直线l 被曲线C 截得的线段长度为232-12=4 2.2.在平面直角坐标系xOy 中,判断曲线C :⎩⎪⎨⎪⎧ x =2cos θ,y =sin θ(θ为参数)与直线l :⎩⎪⎨⎪⎧x =1+2t ,y =1-t(t 为参数)是否有公共点,并证明你的结论. 【答案】没有公共点【解析】直线l 与曲线C 没有公共点.证明如下: 直线l 的普通方程为x +2y -3=0,把曲线C 的参数方程代入l 的方程x +2y -3=0,得 2cos θ+2sin θ-3=0,即2sin ⎝⎛⎭⎫θ+π4=32. ∵2sin ⎝⎛⎭⎫θ+π4∈[-2,2],而32∉[-2,2], ∴方程2sin ⎝⎛⎭⎫θ+π4=32无解,即曲线C 与直线l 没有公共点.3.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =4-2t ,y =t -2(t 为参数),P 是椭圆x 24+y 2=1上任意一点,求点P 到直线l 的距离的最大值. 【答案】2 105【解析】将直线l 的参数方程⎩⎪⎨⎪⎧x =4-2t y =t -2(t 为参数)转化为普通方程为x +2y =0, 因为P 为椭圆x 24+y 2=1上任意一点, 故可设P (2cos θ,sin θ),其中θ∈R .因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22⎪⎪⎪⎪sin ⎝⎛⎭⎫θ+π45, 所以当θ=k π+π4,k ∈Z 时,d 取得最大值2 105. 4.过点P (-3,0)且倾斜角为30°的直线和曲线⎩⎨⎧ x =t +1t ,y =t -1t(t 为参数)相交于A 、B 两点,求线段AB 的长. 【答案】⎩⎨⎧ x =32t -1,y =12t (t 为参数);3【解析】直线的参数方程为⎩⎨⎧ x =-3+32s ,y =12s(s 为参数), 又曲线⎩⎨⎧ x =t +1t ,y =t -1t (t 为参数)可以化为x 2-y 2=4,将直线的参数方程代入上式,得s 2-63s +10=0,设A 、B 对应的参数分别为s 1,s 2.∴s 1+s 2=63,s 1s 2=10∴|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2=217.即⎩⎨⎧ x =32t -1,y =12t (t 为参数).(2)直线AF 2的斜率k =-3,倾斜角是120°,设P (ρ,θ)是直线AF 2上任一点, 则ρsin 60°=1sin (120°-θ),ρsin(120°-θ)=sin 60°, 则ρsin θ+3ρcos θ= 3.5.已知极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合.若曲线C 1的方程为ρ2=8ρsin θ-15,曲线C 2的方程为⎩⎨⎧ x =22cos α,y =2sin α(α为参数). (1)将C 1的方程化为直角坐标方程;(2)若C 2上的点Q 对应的参数为α=3π4,P 为C 1上的动点,求PQ 的最小值. 【答案】x 2+y 2-8y +15=0;13-1【解析】(1)x 2+y 2-8y +15=0.(2)当α=3π4时,得Q (-2,1),点Q 到C 1的圆心(0,4)的距离为13, 所以PQ 的最小值为13-1.【拔高】1.已知极坐标系的极点与直角坐标系的原点O 重合,极轴与x 轴的正半轴重合.曲线C 1:ρcos ⎝⎛⎭⎫θ+π4=22与曲线C 2:⎩⎪⎨⎪⎧x =4t 2,y =4t (t 为参数,t ∈R )交于两个不同 的点A 、B .求证:OA ⊥OB .【答案】见解析【解析】曲线C 1的直角坐标方程是x -y =4,曲线C 2的直角坐标方程是抛物线y 2=4x .联立以上两个方程,消去x ,得y 2-4y -16=0.设A (x 1,y 1),B (x 2,y 2),则y 1.2=2±2 5.∴A (6-25,2-25),B (6+25,2+25).2.已知圆锥曲线⎩⎨⎧x =2cos θ,y =3sin θ(θ是参数)和定点A (0,3),F 1、F 2是圆锥曲线的 左、右焦点.(1)求经过点F 1且垂直于直线AF 2的直线l 的参数方程; (2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求直线AF 2的极坐 标方程. 【答案】⎩⎨⎧ x =32t -1,y =12t (t 为参数);3【解析】(1)圆锥曲线⎩⎨⎧x =2cos θ,y =3sin θ化为普通方程x 24+y 23=1, 所以F 1(-1,0),F 2(1,0),则直线AF 2的斜率k =-3,于是经过点F 1且垂直于直线AF 2的直线l 的斜率k ′=33,直线l 的倾斜角是30°, 所以直线l 的参数方程是⎩⎪⎨⎪⎧x =-1+t cos 30°,y =t sin 30°(t 为参数),。
圆锥曲线的参数方程
![圆锥曲线的参数方程](https://img.taocdn.com/s3/m/82134bdcbb4cf7ec4afed03c.png)
x x1 a y y1 b
-5 5
(a,b) O1
P(x,y)
v(a,b)
显然当sin( θ+ 小值,分别为
1 2 2
4
)=
1时,d 取最大值,最 ,2
2 1 。
1 例4: 已知A,B两点是椭圆 9 与坐标轴 正半轴的两个交点,在第一象限的椭圆弧上求一点P, 使四边形OAPB的面积最大. 小结: 借助参数方 x 3 cos 解 : 椭圆参数方程 程,可以将曲线上的 y 2 sin 设点P(3cos ,2sin ) 任意一点的坐标用三 SABC 面积一定, 需求 SABP 最大即可 角函数表示,利用三 角知识加以解决。 即求点P到线AB的距离最大值
圆锥曲线的参数方程
1.曲线的参数方程的概念
在取定的坐标系中,如果曲线上任意一 点的坐标 x, y 都是某个变数 t 的函数
x f (t ), y (t ),
(1)
并且对于t 的每一个允许值,由方程组 (1) 确定的点M( x, y ),都在这条曲线上, 那么方程组 (1) 就叫做这条曲线的参数 方程。
x=bcot φ y2 x2 ( φ 为参数 ) 2- 2=1(a>0,b>0) a b y=acsc φ
4、抛物线的参数方程
设抛物线的普通方程y 2 2 px y 因为点M在的终边上可得 t an x 2p x t an2 解出x, y,得到 (为参数) y 2 p t an
2 第2讲 参数方程
![2 第2讲 参数方程](https://img.taocdn.com/s3/m/d41d06507e21af45b307a897.png)
第2讲 参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地,可以通过消去参数,从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 2.直线、圆和圆锥曲线的参数方程经常用到公式:cos 2θ+sin 2θ=1,1+tan 2θ=1cos 2θ.(2)利用曲线的参数方程来求解两曲线间的最值问题,常转化三角函数最值问题.(3)将参数方程化为普通方程,在消参数的过程中,要注意x ,y 的取值范围,保持等价转化. (4)确定曲线的参数方程时,一定要根据实际问题的要求确定参数的取值范围,必要时通过限制参数的范围去掉多余的解.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值. 解:直线l 的普通方程为x -y -a =0,椭圆C 的普通方程为x 29+y 24=1,所以椭圆C 的右顶点坐标为(3,0),若直线l 过点(3,0), 则3-a =0, 所以a =3.已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)和⎩⎪⎨⎪⎧x =54t 2,y =t (t ∈R ),求它们的交点坐标.解:根据题意,两曲线分别是椭圆x 25+y 2=1的上半部分和开口向右的抛物线y 2=45x ,联立易得它们的交点坐标为⎝⎛⎭⎫1,255.如图,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.解:圆的半径为12,记圆心为C ⎝⎛⎭⎫12,0,连接CP ,则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ, y P =12sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,求直线l 被圆C 截得的弦长.解:化为直角坐标方程,利用圆的几何性质求解.直线l 的普通方程是x -y -4=0,圆C 的直角坐标方程是x 2+y 2-4x =0,标准方程为(x -2)2+y 2=4.圆心(2,0)到直线的距离为|2-4|2=2, 所以直线l 被圆C 截得的弦长为2r 2-d 2=24-2=2 2.参数方程与普通方程的互化[典例引领]已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线. 【解】 曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是中心为坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等.对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解.将下列参数方程化为普通方程.(1)⎩⎨⎧x =3k 1+k 2,y =6k 21+k 2;(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ.解:(1)两式相除,得k =y2x ,将其代入得x =3·y 2x1+⎝⎛⎭⎫y 2x 2,化简得所求的普通方程是4x 2+y 2-6y =0(y ≠6).(2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ),x =1-sin 2θ∈[0,2],得y 2=2-x . 即所求的普通方程为y 2=2-x ,x ∈[0,2].参数方程的应用[典例引领](2017·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 【解】 (1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1解得⎩⎪⎨⎪⎧x =3,y =0,或⎩⎨⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝⎛⎭⎫-2125,2425. (2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917. 由题设得a +917=17,所以a =8;当a <-4时,d 的最大值为-a +117, 由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.(1)解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上与动点有关的问题,如最值、范围等. (2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2. ①弦长l =|t 1-t 2|;②弦M 1M 2的中点⇒t 1+t 2=0; ③|M 0M 1||M 0M 2|=|t 1t 2|.(2018·广东惠州模拟)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =-4+22t(t 为参数),l 与C 分别交于点M ,N .(1)写出C 的直角坐标方程和l 的普通方程; (2)若|PM |,|MN |,|PN |成等比数列,求a 的值. 解:(1)曲线C 的直角坐标方程为y 2=2ax (a >0); 直线l 的普通方程为x -y -2=0.(2)将直线l 的参数方程代入C 的直角坐标方程,可得t 2-22(4+a )t +8(4+a )=0.(*) 由题意知Δ=8a (4+a )>0, 又a >0,所以4+a >0.设点M ,N 对应的参数分别为t 1,t 2,则t 1,t 2恰为方程(*)的根. 易知|PM |=|t 1|,|PN |=|t 2|,|MN |=|t 1-t 2|, 由题设得(t 1-t 2)2=|t 1t 2|, 即(t 1+t 2)2-4t 1t 2=|t 1t 2|.又由(*)得t 1+t 2=22(4+a ),t 1t 2=8(4+a )>0, 则有(4+a )2-5(4+a )=0, 解得a =1或a =-4. 因为a >0,所以a =1.极坐标方程与参数方程的综合问题[典例引领](2018·贵州省适应性考试)曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+2cos αy =2sin α(α为参数),在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρcos 2θ=sin θ.(1)求曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)过原点且倾斜角为α(π6<α≤π4)的射线l 与曲线C 1,C 2分别相交于A ,B 两点(A ,B 异于原点),求|OA |·|OB |的取值范围.【解】 (1)曲线C 1的普通方程为(x -2)2+y 2=4, 即x 2+y 2-4x =0,故曲线C 1的极坐标方程为ρ2=4ρcos θ,即ρ=4cos θ.由曲线C 2的极坐标方程为ρcos 2θ=sin θ,两边同乘以ρ,得ρ2cos 2θ=ρsin θ, 故曲线C 2的直角坐标方程为x 2=y .(2)法一:射线l 的极坐标方程为θ=α,π6<α≤π4,把射线l 的极坐标方程代入曲线C 1的极坐标方程得|OA |=ρ=4cos α, 把射线l 的极坐标方程代入曲线C 2的极坐标方程得|OB |=ρ=sin αcos 2α,所以|OA |·|OB |=4cos α·sin αcos 2α=4tan α,因为π6<α≤π4,所以|OA |·|OB |的取值范围是⎝⎛⎦⎤433,4.法二:射线l 的参数方程为⎩⎪⎨⎪⎧x =t cos αy =t sin α(t 为参数,π6<α≤π4).把射线l 的参数方程代入曲线C 1的普通方程得t 2-4t cos α=0. 解得t 1=0,t 2=4cos α.故|OA |=|t 2|=4cos α. 同理可得|OB |=sin αcos 2α,所以|OA |·|OB |=4cos α·sin αcos 2α=4tan α,因为π6<α≤π4,所以|OA |·|OB |的取值范围是⎝⎛⎦⎤433,4.涉及参数方程和极坐标方程的综合问题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2018·成都市第一次诊断性检测)在平面直角坐标系xOy 中,倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρcos 2θ-4sin θ=0. (1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)已知点P (1,0).若点M 的极坐标为⎝⎛⎭⎫1,π2,直线l 经过点M 且与曲线C 相交于A ,B两点,设线段AB 的中点为Q ,求|PQ |的值.解:(1)因为直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数),所以直线l 的普通方程为y =tan α·(x -1).由ρcos 2θ-4sin θ=0得ρ2cos 2θ-4ρsin θ=0,即x 2-4y =0. 所以曲线C 的直角坐标方程为x 2=4y .(2)因为点M 的极坐标为⎝ ⎛⎭⎪⎫1,π2,所以点M 的直角坐标为(0,1).所以tan α=-1,直线l 的倾斜角α=3π4.所以直线l 的参数方程为⎩⎨⎧x =1-22ty =22t(t 为参数).代入x 2=4y ,得t 2-62t +2=0. 设A ,B 两点对应的参数分别为t 1,t 2. 因为Q 为线段AB 的中点,所以点Q 对应的参数值为t 1+t 22=622=3 2.又点P (1,0),则|PQ |=|t 1+t 22|=3 2.直线参数方程的应用已知直线l 经过点M 0(x 0,y 0),倾斜角为α,点M (x ,y )为l 上任意一点,则直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(1)若M 1,M 2是直线l 上的两个点,对应的参数分别为t 1,t 2,则|M 0M 1→| |M 0M 2→|=|t 1t 2|,|M 1M 2→|=|t 2-t 1|=(t 2+t 1)2-4t 1t 2.(2)若线段M 1M 2的中点为M 3,点M 1,M 2,M 3对应的参数分别为t 1,t 2,t 3,则t 3=t 1+t 22.(3)若直线l 上的线段M 1M 2的中点为M 0(x 0,y 0),则t 1+t 2=0,t 1t 2<0.[注意] 在使用直线参数方程的几何意义时,要注意参数前面的系数应该是该直线倾斜角的正余弦值.否则参数不具备该几何含义.圆的参数方程的应用(1)解决与圆上的动点有关的距离取值范围以及最大值和最小值问题,通常可以转化为点与圆、直线与圆的位置关系.(2)求距离的问题,通过设圆的参数方程,就转化为求三角函数的值域问题.[注意] 把曲线的参数方程化为普通方程或极坐标方程时易忽视参数的范围而导致出错.圆与椭圆参数方程的异同1.在平面直角坐标系中,以原点为极点,x 轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C 的极坐标方程为ρ=2cos θ,直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos α,y =t sin α(t 为参数,α为直线的倾斜角). (1)写出直线l 的普通方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 有唯一的公共点,求角α的大小. 解:(1)当α=π2时,直线l 的普通方程为x =-1;当α≠π2时,直线l 的普通方程为y =(x +1)tan α.由ρ=2cos θ,得ρ2=2ρcos θ,所以x 2+y 2=2x ,即为曲线C 的直角坐标方程.(2)把x =-1+t cos α,y =t sin α代入x 2+y 2=2x ,整理得t 2-4t cos α+3=0. 由Δ=16cos 2α-12=0,得cos 2α=34,所以cos α=32或cos α=-32, 故直线l 的倾斜角α为π6或5π6.2.以极点为原点,以极轴为x 轴正半轴建立平面直角坐标系,已知曲线C 的极坐标方程为ρ=10,曲线C ′的参数方程为⎩⎪⎨⎪⎧x =3+5cos α,y =-4+5sin α,(α为参数).(1)判断两曲线C 和C ′的位置关系;(2)若直线l 与曲线C 和C ′均相切,求直线l 的极坐标方程. 解:(1)由ρ=10得曲线C 的直角坐标方程为x 2+y 2=100,由⎩⎪⎨⎪⎧x =3+5cos α,y =-4+5sin α得曲线C ′的普通方程为(x -3)2+(y +4)2=25. 曲线C 表示以(0,0)为圆心,10为半径的圆; 曲线C ′表示以(3,-4)为圆心,5为半径的圆.因为两圆心间的距离5等于两圆半径的差,所以圆C 和圆C ′的位置关系是内切.(2)由(1)建立方程组⎩⎪⎨⎪⎧x 2+y 2=100,(x -3)2+(y +4)2=25,解得⎩⎪⎨⎪⎧x =6,y =-8;可知两圆的切点坐标为(6,-8),且公切线的斜率为34,所以直线l 的直角坐标方程为y +8=34(x -6),即3x -4y -50=0,所以极坐标方程为3ρcos θ-4ρsin θ-50=0.3.(2018·惠州市第三次调研考试)已知曲线C 的极坐标方程是ρ=4cos θ.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数). (1)将曲线C 的极坐标方程化为直角坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|AB |=14,求直线l 的倾斜角α的值. 解:(1)由ρ=4cos θ得ρ2=4ρcos θ. 因为x 2+y 2=ρ2,x =ρcos θ,y =ρsin θ, 所以曲线C 的直角坐标方程为x 2+y 2-4x =0, 即(x -2)2+y 2=4.(2)将⎩⎪⎨⎪⎧x =1+t cos αy =t sin α代入曲线C 的方程得(t cos α-1)2+(t sin α)2=4,化简得t 2-2t cos α-3=0.设A ,B 两点对应的参数分别为t 1,t 2,则⎩⎪⎨⎪⎧t 1+t 2=2cos αt 1t 2=-3. 所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4cos 2α+12=14,所以4cos 2α=2,cos α=±22,α=π4或3π4.4.(2018·陕西省高三教学质量检测试题(一))已知在平面直角坐标系xOy 中,直线l 的参数方程是⎩⎨⎧x =22ty =22t +42(t 是参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos ⎝⎛⎭⎫θ+π4.(1)判断直线l 与曲线C 的位置关系;(2)设M (x ,y )为曲线C 上任意一点,求x +y 的取值范围. 解:(1)直线l 的普通方程为x -y +42=0. 曲线C 的直角坐标方程为⎝⎛⎭⎫x -222+⎝⎛⎭⎫y +222=1.圆心⎝⎛⎭⎫22,-22到直线x -y +42=0的距离d =|52|2=5>1, 所以直线l 与曲线C 的位置关系是相离.(2)设M ⎝⎛⎭⎫22+cos θ,-22+sin θ,(θ为MC 与x 轴正半轴所成的角) 则x +y =2sin ⎝ ⎛⎭⎪⎫θ+π4. 因为0≤θ<2π, 所以x +y ∈[-2,2].5.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ). (1)写出C 的极坐标方程,并求l 与C 的交点M ,N 的极坐标;(2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值. 解:(1)因为x =ρcos θ,y =ρsin θ,所以C 的极坐标方程为ρ=2cos θ.直线l 的直角坐标方程为y =x .联立方程组⎩⎪⎨⎪⎧y =x ,x 2-2x +y 2=0, 解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1.所以点M ,N 的极坐标分别为(0,0),⎝⎛⎭⎪⎫2,π4. (2)由(1)易得|MN |= 2.因为P 是椭圆x 23+y 2=1上的动点, 设P 点坐标为(3cos θ1,sin θ1).则P 到直线y =x 的距离d =|3cos θ1-sin θ1|2,所以S △PMN =12|MN |d =12×2×|3cos θ1-sin θ1|2=⎪⎪⎪⎪⎪⎪2cos ⎝⎛⎭⎪⎫θ1+π62≤1,当θ1=k π-π6,k ∈Z 时,S △PMN 取得最大值1.1.(2017·高考全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.解:(1)消去参数t 得l 1的普通方程l 1:y =k (x -2);消去参数m 得l 2的普通方程l 2:y =1k(x +2).设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k (x +2).消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎪⎨⎪⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ-sin θ)-2=0得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,从而cos 2θ=910,sin 2θ=110, 代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5,所以交点M 的极径为 5.2.(2018·安徽省两校阶段性测试)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos t y =3+2sin t(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos(θ+π4)=- 2. (1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△P AB 面积的最小值.解:(1)由⎩⎪⎨⎪⎧x =-5+2cos ty =3+2sin t ,消去参数t ,得(x +5)2+(y -3)2=2, 所以圆C 的普通方程为(x +5)2+(y -3)2=2.由ρcos (θ+π4)=-2,得ρcos θ-ρsin θ=-2, 所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2),化为极坐标为A (2,π),B ⎝ ⎛⎭⎪⎫2,π2, 设点P 的坐标为(-5+2cos t ,3+2sin t ),则点P 到直线l 的距离为d =|-5+2cos t -3-2sin t +2|2=|-6+2cos (t +π4)|2. 所以d min =42=22, 又|AB |=2 2.所以△P AB 面积的最小值是S =12×22×22=4. 3.(2018·南昌市第一次模拟)在平面直角坐标系xOy 中,曲线C 1过点P (a ,1),其参数方程为⎩⎨⎧x =a +2t y =1+2t(t 为参数,a ∈R ).以O 为极点,x 轴非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|P A |=2|PB |,求实数a 的值.解:(1)因为曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a +2ty =1+2t , 所以其普通方程为x -y -a +1=0. 因为曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0, 所以ρ2cos 2θ+4ρcos θ-ρ2=0, 所以x 2+4x -x 2-y 2=0, 即曲线C 2的直角坐标方程为y 2=4x .(2)设A ,B 两点所对应的参数分别为t 1,t 2, 由⎩⎪⎨⎪⎧y 2=4x ,x =a +2t y =1+2t, 得2t 2-22t +1-4a =0. Δ=(22)2-4×2(1-4a )>0,即a >0,由根与系数的关系得⎩⎨⎧t 1+t 2=2t 1·t 2=1-4a 2.根据参数方程的几何意义可知|P A |=2|t 1|,|PB |=2|t 2|, 又|P A |=2|PB |可得2|t 1|=2×2|t 2|, 即t 1=2t 2或t 1=-2t 2.所以当t 1=2t 2时,有⎩⎨⎧t 1+t 2=3t 2=2t 1·t 2=2t 22=1-4a 2,解得a =136>0,符合题意. 当t 1=-2t 2时,有⎩⎨⎧t 1+t 2=-t 2=2t 1·t 2=-2t 22=1-4a 2,解得a =94>0,符合题意.1 36或9 4.综上所述,实数a的值为。
《直线和圆锥曲线的参数方程》 知识清单
![《直线和圆锥曲线的参数方程》 知识清单](https://img.taocdn.com/s3/m/292d394ee3bd960590c69ec3d5bbfd0a7856d575.png)
《直线和圆锥曲线的参数方程》知识清单一、直线的参数方程1、直线参数方程的标准形式若直线过点\(M(x_0,y_0)\),倾斜角为\(\alpha\),则直线的参数方程为\(\begin{cases}x = x_0 + t\cos\alpha \\ y = y_0 +t\sin\alpha\end{cases}\)(\(t\)为参数)。
参数\(t\)的几何意义:\(t\)表示直线上动点\(M(x,y)\)到定点\(M_0(x_0,y_0)\)的有向线段\(\overrightarrow{M_0M}\)的数量。
当点\(M\)在点\(M_0\)上方时,\(t\gt 0\);当点\(M\)在点\(M_0\)下方时,\(t\lt 0\);当点\(M\)与点\(M_0\)重合时,\(t = 0\)。
2、直线参数方程的一般形式对于直线的一般方程\(Ax + By + C = 0\),可以通过引入参数\(t\),将其转化为参数方程\(\begin{cases}x = x_0 + at \\ y =y_0 + bt\end{cases}\)(\(t\)为参数),其中\(a\)、\(b\)为实数,且满足\(a^2 + b^2 = 1\)。
二、圆锥曲线的参数方程1、椭圆的参数方程中心在原点,焦点在\(x\)轴上的椭圆\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a\gt b\gt 0\))的参数方程为\(\begin{cases}x = a\cos\theta \\ y = b\sin\theta\end{cases}\)(\(\theta\)为参数)。
参数\(\theta\)的几何意义:\(\theta\)表示椭圆上动点\(M(x,y)\)对应的离心角,即\(M\)与原点连线与\(x\)轴正半轴的夹角。
中心在原点,焦点在\(y\)轴上的椭圆\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a\gt b\gt 0\))的参数方程为\(\begin{cases}x = b\cos\theta \\ y = a\sin\theta\end{cases}\)(\(\theta\)为参数)。
圆锥曲线知识点公式大全
![圆锥曲线知识点公式大全](https://img.taocdn.com/s3/m/00d8e4e2d0f34693daef5ef7ba0d4a7302766c2f.png)
圆锥曲线知识点公式大全圆锥曲线是平面上的一类曲线,包括椭圆、双曲线和抛物线。
它们都可以由一个动点(焦点)和一条定点到动点距离与到一条给定直线距离之比(离心率)确定。
1.椭圆的定义方程:(x/a)² + (y/b)² = 1,其中a和b分别是椭圆的两条半轴的长度。
2.长轴和短轴:长轴的长度是2a,短轴的长度是2b。
焦距是c,满足c² = a² - b²。
3.离心率:离心率用e表示,e² = 1 - (b²/a²)。
离心率是一个衡量椭圆形状的指标,e=0表示圆。
4.双曲线的定义方程:(x/a)² - (y/b)² = 1或(y/b)² - (x/a)² = 1,其中a和b分别是双曲线的两条半轴的长度。
5.双曲线的焦点和离心率:双曲线有两个焦点和两条渐近线,焦点到双曲线上的任意一点的距离与焦距之差的绝对值恒等于离心率。
6.抛物线的定义方程:y² = 4ax或x² = 4ay,其中a是抛物线的焦点到准线的垂直距离。
7.抛物线的焦点和准线:焦点是抛物线上的一个特殊点,准线是与焦点对称的一条直线。
以上是圆锥曲线的基本知识点和公式。
除此之外,还有一些拓展的知识点:-增量曲线:当焦点和准线都在y轴上时,圆锥曲线的公式可以表达为任意形式的增量曲线,如二次抛物线、双曲线等。
-参数方程:圆锥曲线也可以用参数方程表示,其中x = x(t)和y = y(t)是关于参数t的函数,通常t的取值范围是一个区间。
-极坐标方程:圆锥曲线也可以用极坐标方程表示,其中r = r(θ)是关于极角θ的函数。
-高斯曲率:圆锥曲线在不同点处的曲率有所不同,而高斯曲率是描述曲面曲率性质的一个指标。
对于圆锥曲线来说,高斯曲率恒为常数。
希望以上信息能对你有所帮助!如果您还有其他问题,请随时提问。
直线和圆的参数方程重要知识
![直线和圆的参数方程重要知识](https://img.taocdn.com/s3/m/83cdf59f9fc3d5bbfd0a79563c1ec5da51e2d670.png)
1.直线的参数方程
(1)过点 M0(x0,y0),倾斜角为 α 的直线 l 的参数方程为
x=x0+tcos α y=y0+t sin α
(t 为参数)
.
重点辅导
1
2 参数的几何意义 直线的参数方程中参数 t 的几何意义是:
直线上动点M到定点M0(x0,y0)的距离就是参数t的绝对值
M• 450 P x
O
的坐标为x, y,根据条件知
台风中心M移动形成的直线
图2 15
l 的方程为
x 300 40t cos1350 ,
y 40t sin1350 ,
t 为参数,t 0
x 300 20 2t ,
即 y 20 2t ,
t 为参数,t 0
重点辅导
18
当点M 300 20 2t,20 2t 在圆O内或在圆O上时,有
t为参数
②
思考 由M 0M te,你能得到直线l的参数 方 程②中 参 数t 的 几 何 意 义 吗?
重点辅导
4
因为e cos,sin ,所以| e | 1.由 M0M
te,得到| M0M || t | .所以,直线上的动点M 到定点M0的距离,等于② 中参数t 的绝对值.
当 0 时,sin 0,所以,直线l的单位
(2)设l与圆 x 2 y2 =4相交于两点A,B,求点P
到A,B两点的距离之积.
解:(1)直线的参数方程是
x=1+
3 2t
y=1+12t
(t 是参数).
重点辅导
7
(2)因为点 A,B 都在直线 l 上,所以可设它们对应的参数为 t1 和 t2,则点 A,B 的坐标分别为 A1+ 23t1,1+12t1,B1+ 23t2,1+21t2. 以直线 l 的参数方程代入圆的方程 x2+y2=4, 整理得到 t2+( 3+1)t-2=0.① 因为 t1 和 t2 是方程①的解,从而 t1t2=-2. 所以|PA|·|PB|=|t1t2|=|-2|=2.
参数方程、极坐标含教案
![参数方程、极坐标含教案](https://img.taocdn.com/s3/m/bdfba6320912a216147929ae.png)
参数方程、极坐标一、知识结构1.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bt y y atx x 00(t 为参数) ② 2.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆 12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) 3.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可. 点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图) 极坐标和直角坐标的互化(1)互化的前提条件 ①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式 ⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρ 二、知识点(一)曲线的参数方程,参数方程与普通方程的互化 例 椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ( )A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)例 在方程sin cos 2x y θθ=⎧⎨=⎩(θ为参数)所表示的曲线一个点的坐标是( )A.(2,-7)B.(31,32)C.(21,21) D.(1,0)(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化 例 曲线的极坐标方程ρ=4sin θ化 成直角坐标方程为( )A.x 2+(y+2)2=4B.x 2+(y-2)2=4C.(x-2)2+y 2=4D.(x+2)2+y 2=4例 极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆三、能力训练 (一)选择题1.极坐标方程ρcos θ=34表示( ) A.一条平行于x 轴的直线 B.一条垂直于x 轴的直线 C.一个圆 D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心 3.极坐标方程ρ=sin θ+2cos θ所表示的曲线是( ) BA.直线B.圆C.双曲线D.抛物线 4.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为( ) C A.(1,3π),r=2 B.(1,6π),r=1 C.(1, 3π),r=1 D.(1, -3π),r=25.若直线⎩⎨⎧=+=bty at x 4( (t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为( )A.3π B.32πC.3π或32π D. 3π或35π6.点()3,1-P ,则它的极坐标是( ) A .⎪⎭⎫⎝⎛3,2π B .⎪⎭⎫ ⎝⎛34,2πC .⎪⎭⎫ ⎝⎛-3,2πD .⎪⎭⎫ ⎝⎛-34,2π7.极坐标方程⎪⎭⎫⎝⎛-=θπρ4cos 表示的曲线是( ) A .双曲线 B .椭圆 C .抛物线 D .圆 8.圆)sin (cos 2θθρ+=的圆心坐标是A .⎪⎭⎫ ⎝⎛4,1πB .⎪⎭⎫ ⎝⎛4,21πC .⎪⎭⎫ ⎝⎛4,2πD .⎪⎭⎫⎝⎛4,2π9.在极坐标系中,与圆θρsin 4=相切的一条直线方程为A .2sin =θρB .2cos =θρC .4cos =θρD .4cos -=θρ10、)0(4≤=ρπθ表示的图形是A .一条射线B .一条直线C .一条线段D .圆 11、直线αθ=与1)cos(=-αθρ的位置关系是A 、平行B 、垂直C 、相交不垂直D 、与有关,不确定(二)填空题12.直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),过点(4,-1)且与l 平行的直线在y 轴上的截距为 ;13.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为 ;直线上一点P(x ,y)与点M(-1,2)的距离为 .14、曲线的θθρcos 3sin -=直角坐标方程为_ 15、在极坐标系中,点P ⎪⎭⎫⎝⎛611,2π到直线1)6sin(=-πθρ的距离等于____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M
O
Px
例8 如图所示,AB,CD是中心为O的椭圆的两条相交弦, 交点为P.两弦AB,CD与椭圆长轴的夹角分别为∠ 1, ∠2,且∠1= ∠2.
求证:|PA|·|PB|=|PC|·|PD|
C
B
2O1
P
A
D
C
B
2O1
P
A
D
探究:如果把椭圆改为双曲线,是否会有类似的结论?
练习:1.直线
x 3 t sin 20
(t为参数)的倾斜角
.
y 4 t cos 20
2.写出经过点M0(-2,3),倾斜角为
3
4
的直线
的标准参数方程,并且求出直线上与点M0相距为2 的点的坐标.
3.已知直线l的参数方程是
x 1
3t
y 2 t
y
x0 y0
at bt
(1)当a2+b2=1时,则t的几何意义是有向线段 M0M 的数量.
(2)当a2+b2 ≠1时,则t不具有上述的几何意义.
可化为
x
x0
y
y0
a ( a2 b2t) a2 b2
b ( a2 b2t) a2 b2
令t= a2 b2 t
(4)求l被曲线x2-y2=-3+4 3 所截得弦长及中点坐 标.
例6 经过点M(2,1)作直线l,交椭圆 x2 y2 1 16 4
于两点A,B.如果点M恰好为线段AB的中点,求直 线l的方程.
探究:例2的解法对一般圆锥曲线适用吗?有其他 方法吗?把“中点”改为“三等分点”,直线l 的方程怎样求?
分别为t1,t2. (1)曲线的弦M1M2的长是多少? (2)线段M1M2的中点M对应的参数t的值是多少? (3)你还能提出和解决哪些问题?
例5
已知直线l的参数方程是
x
1
3t
y 2 t
(1)画出直线,指出t= -1对应的点p;
(2)求p到M(-1,2)的距离;
(3)求l的倾斜角;
高二数学(下)
新课引入 学习目标 新课讲解 典型例题 巩固练习 知识小结 作 业
M0(x0,y0) M(x,y) e=(cos α ,sin α ) MM0∥e
l
e
M
M0
α
直线的参数方程
x y
x0 y0
t t
cos sin
问:α的含义? 问:参数t的含义?
l
e
M
M0
α
例3:已知直线l过点M0(1,3),倾斜角为
3
判断方程
x 1 1t 2
(t为参数)
y
3
3 t
2
和方程
x 1t
(t为参数)是否为直线
y 3 3 t
的参数方程?如果是直线的参数方程,指出方程中 的参数t是否具有标准形式中参数t的几何意义.
x
例7 当前台风中心P在某海滨城市O向东300km处生成, 并以40km/h的速度向西偏北45°方向移动。已知距台 风中心250km以内的地方都属于台风侵袭的范围,那 么经过多长时间后该城市开始受到台风侵袭?
海滨城市O受台风侵袭大概持
y
续多长时间?
M
O
Px
思考:上例中, 如果台风侵袭的半径也发生变化(比 如:当前半径为250km,并以10km/h的速度不断增大), 那么问题又该如何解决?
(1)画出直线,指出t= -1对应的点p;
(2)求p到M(-1,2)的距离;
(3)求l的倾斜角;
例4 已知直线l:x+y-1=0与抛物线y=x2交于A,B两 点,求线段AB的长和点M(-1,2)到A,B两点的距 离之积.
探究:对于直线与曲线相交问题,例1的思路可行吗? 直线与曲线若交于M1,M2两点,对应的参数
直线的参数方程
x y
x0 y0
t t
cos sin
例1:化直线l1的普通方程 x 3 y 1 0
为参数方程,并说明参数的几何意义,说明∣t∣ 的几何意义.
例2:化直线l2的参数方程
x 3 t y 1 3 t
(t为参数)为普通方程,并求倾斜角, 说明∣t∣ 的几何意义.