叶面积指数LAI测量仪器介绍

合集下载

植物叶面积指数仪功能特点及作用

植物叶面积指数仪功能特点及作用

植物叶面积指数仪功能特点及作用在植物生长发育过程中,叶面积的大小是影响植物正常生长和产量高低的直接因素,叶面积小不好,但叶面积过大又会造成群体内光照条件恶化,影响光合作用和产量。

测定出植物的叶面积就能够检测出植物的生长状态,从而评估出相应的生态环境。

所以在现代农业发展中,植物叶面积指数仪变得越来越重要。

下面是托普云农TOP-1300植物叶面积指数仪功能特点及用途:一、TOP-1300植物叶面积指数仪的功能特点1、无损测量:叶面积指数、叶片平均倾角以及冠层结构。

2、任意角度测量:探头体积小巧,摄像头可自动保持水平。

3、数据查看:USB接口,测量时连接电脑实时查看图像,即时选取所需图像并保存。

4、外接大容量锂电池,适用于野外工作和长时间测量。

5、测量冠层不同高度,可得到群体内光透过率和叶面积指数垂直分布图。

6、测量数据精确:配有专用分析软件,有选择所需图像区域的功能(天顶角可分10区,方位角可分10区),可屏蔽不合理的冠层部分,仅对有效图像区域进行分析。

二、TOP-1300植物叶面积指数仪作用:一方面简便了植物叶面积测量的工作难度。

以往对植物叶面积的测定我们一般是用过手工去测量,这样的检测方法通常费时费力,而且对植物具有一定的破坏性,不适宜植物生长变化的大面积测量。

另外一方面通过测定和分析叶面积的变化,还能够掌握植物的生长,为制定科学的栽培技术措施等提供依据。

植物叶面积指数仪如今已广泛应用于作物、植物群体冠层受光状况的测量分析以及农林业科研工作。

三、TOP-1300植物叶面积指数工作原理:植物叶面积指数又叫植物冠层分析仪采用国际上一致采用的原理(比尔定律以及冠层孔隙率与冠层结构相关的原理),通过专用鱼眼镜头成像和CCD图像传感器测量冠层数据和获取植物冠层图像,利用软件对所得图像和数据进行分析计算,得出冠层相关指标和参数。

具有精确、省时省力、快捷方便的特点。

四、TOP-1300植物叶面积指数技术参数:镜头角度:150°(特殊需求可自选180°镜头)分辨率:768×494pix测量范围:天顶角由0°~75°(可分割成十个区域);方位角360°(可分割十个区域)PAR感应范围:感应光谱400nm~ 700nm测量范围:0~2000μmol/㎡·S电源:7.4V锂电池组传输接口:USB工作温度:0~55℃。

叶面积指数测定方法及叶面积指数仪介绍

叶面积指数测定方法及叶面积指数仪介绍

叶面积指数测定方法及叶面积指数仪介绍在农业生产中,叶面积指数是植物生产力的一个重要参数,很多农业种植工作人员都会通过对叶面积指数的测定来对植物进行合理的农事作业。

叶面积指数的测定方法有很多种,可分为直接测量和间接测量,不过在这些测定方法中,目前市场上应用比较广泛的就是使用叶面积指数测定仪来测定,本文就和大家简单介绍一下叶面积指数测定仪仪及其他叶面积指数测定方法。

托普云农TOP-1300叶面积指数测定仪采用国际上一致采用的原理(比尔定律以及冠层孔隙率与冠层结构相关的原理),通过专用鱼眼镜头成像和CCD图像传感器测量冠层数据和获取植物冠层图像,利用软件对所得图像和数据进行分析计算,得出冠层相关指标和参数。

具有准确、省时省力、快捷方便的特点。

具体地叶面积指数测定可测量叶面积指数、叶片平均倾角、散射辐射透过率、不同太阳高度角下的直射辐射透过率、不同太阳高度角下的消光系数、叶面积密度的方位分布、冠层内外的光合有效辐射(PAR)等。

当然除了以上所介绍的使用叶面积指数测定仪来测定叶面积指数之外,还有其他测定方法,具体如下:1、点接触法:点接触法是用细探针以不同的高度角和方位角刺入冠层,然后记录细探针从冠层顶部到达底部的过程中针尖所接触的叶片数目。

2、消光系数法:该法通过测定冠层上下辐射以及与消光系数该法通过测定冠层上下辐射以及与消光系数相关的参数来计算叶面积指数。

3、经验公式法:经验公式法利用植物的胸径、树高、边材面积、冠幅等容易测量的参数与叶面积或叶面积指数的相关关系建立经验公式来计算。

4、遥感方法:卫星遥感方法为大范围研究LA I提供了有效的途径。

主要有2种遥感方法可用来估算叶面积指数,一种是统计模型法。

另一种是光学模型法。

5、光学仪器法:光学仪器法按测量原理分为基于辐射测量的方法和基于图像测量的方法。

冠层分析仪--叶面积指数(LAI)自动测量仪器汇总

冠层分析仪--叶面积指数(LAI)自动测量仪器汇总

冠层分析仪叶面积指数(LAI)自动测量仪器I SmartLAI Smart系统充分利用当前成熟的智能终端设备的成像与高性能计算功能,实现植被叶面积指数实时计算;并且提供操作与数据处理选择,方便根据实际情况进行测量设置。

LAI Smart由硬件和软件组成,其中硬件包括信息采集智能终端、用户操作控制台与仪器支架;软件包括信息采集软件模块、无线传输控制模块以及实时计算存储模块。

LAI Smart具有数据实时计算功能,用户可以即时看到数据处理结果,同时,LAI Smart支持数据无线传输,在有手机网络信号的情况下,数据可以根据用户的设置,远程传输到远端服务器,在保证测量数据安全的情况下,提供了数据实时共享的可能性。

I-Net植物联网观测矩阵——LAI Net是由多个Zigbee无线传感器网络节点组成,通过在研究区部署多个观测节点,形成一种密集的观测矩阵,能够实现长时间序列的大范围内的叶面积指数自动测量。

出发点传统的植被冠层分析系统均是依靠人工手持式的进入观测场地进行测量,这种传统的方式比较适合小范围内的较低时间频次的测量。

当需要进行大的空间范围、较高的时间频次的观测的时候,传统的方式需要消耗大量的人力和物力,且未必能够获取到满足要求的地面观测数据。

例如,在对遥感卫星获取的地面植被叶面积指数验证的时候,为了获取与卫星对应的空间范围与时间范围的数据,传统的依靠单点的观测方法,会显得力不从心。

系统组成利用当前应用较为广泛的无线传感器网络(物联网)技术,开发的一种植被联网观测矩阵,简称LAI Net。

LAI Net是由部署在植被研究区的一系列无线传感器节点组成,各个节点一方面能够实现独立的观测,另一方面又可以通过ZigBee 网络自动组网,因此,在整个研究区域之内,形成一个自组网的植被冠层观测矩阵,网络的部署结构如图所示。

LAI Net由三类传感器节点组成,分别为:(1)冠层上节点,用来接收太阳的下行总辐射;(2)冠层下节点,用来接收植被冠层的透过辐射;(3)数据汇聚节点,用来接收并无线发射上述两类节点的测量数据。

叶面积检测仪的相关使用测量介绍

叶面积检测仪的相关使用测量介绍

叶面积检测仪的相关使用测量介绍叶面积检测仪是一种用于测量植物叶片表面面积的设备。

它可以用于研究植物生长发育、叶片形态、水分利用效率等诸多方面。

叶面积检测仪的使用方法比较简单,下面我们将介绍该设备的使用测量方法。

1. 设备准备使用叶面积检测仪需要一些准备工作。

首先,需要将设备的电源和计算机连接好,确保设备处于正常工作状态。

其次,需要准备好要测量的植物样品。

在样品准备方面,可以将叶片从植物上剪下,然后将其保持在湿润的条件下(例如浸泡在一些水中),以避免在测量过程中叶片的水分流失。

最后,需要将叶片放入叶面积检测仪的设备中,准备开始测量。

2. 设备操作在将样品放入设备中后,需要对设备进行操作,并保证测量的准确性。

首先需要选择测量程序,将计算机与设备连接并调整参数,例如:像素和图像亮度来适应不同的光线和拍摄环境。

具体的操作方法可以参考设备说明书的指导。

其次,需要对样品位置进行调整,确保设备能够拍摄到需要的区域,并按下拍摄按钮,等待设备完成拍摄。

在完成拍摄后,可以进行预览或剪裁等操作,确保得到的图像最佳。

3. 数据分析在完成拍摄和预览后,即可开始对图像进行数据分析。

这里需要使用特定的软件对图像进行处理,然后将数据转化为叶片面积等具体数字。

对于数据分析的方法,可以参考设备使用说明书,或寻求专业的数据分析师的帮助。

4. 总结叶面积检测仪是一种常用的植物生长测量设备,它可以帮助科学家在研究植物生长过程中获得重要的数据。

该设备的使用方法比较简单,但在操作过程中还是需要注意保持数据的准确性,避免因为操作不当导致得到的数据不准确。

如果您想要深入研究植物和叶片的生长发育过程,叶面积检测仪将成为您重要的工具。

LAI-2200C植物冠层分析仪DQR

LAI-2200C植物冠层分析仪DQR

Who’s Minding the Planet?
孤立木测量3---孤树测量
孤树测量由于冠层的形状是不均匀的,Vector路径长需要您来指定,见 下图所示提供坐标值,即可以利用重计算软件进行修改了。
Who’s Minding the Planet?
针叶树测量的考虑
由于针叶树种叶片的排列是高度有序的,这违背了LAI-2200的测量基本 假设。因此,根据辐射模型,测量可能存在LAI的低估现象。LAI-2200测量 的实际上是“Shoot面积指数”,而不是“Needle area index”。建议在LAI 的基础上乘以系数R来修正。
仪器组成
Who’s Minding the Planet?
Who’s Minding the Planet?
2250光学探头构造图
Who’s Minding the Planet?
7°:0°--13° 38°:32°--44° 68°:62°--74°
23°:16°--29° 53°:46°--59°
测量参数
测量叶面积指数(LAI) 计算叶面积标准误(SEL) 测量无截取散射(DIFN) 测量平均叶倾角(MTA) 计算平均倾角标准误(SEM) 表观聚类因子(ACF) GPS数据(latitude/longtitude/altitude)
叶面积指数(LAI)
LAI回答“有多少叶片”,尽管LAI字面上是 指“叶面积指数”,但LAI-2200是测量所有挡光 的物体。LAI没有单位,可认为是叶面积/地面积。
使用180度或更小视野的遮盖帽(遮挡树干),传感器紧贴树干。下图 右显示了两种方法,但是要注意的是如果采用方法2的话,那么您需要利用 重计算程序把看不到叶片的第5环蒙蔽掉。
如果附近有其他的树,那么您应该使用视野更小的遮盖帽以避免这种误 差(见下图左)。但是要注意的是您需要根据视野的大小来确定B阅对称的,那么您应该采用不同的 文件来进行测量并做平均,见下图中。

植物冠层分析仪的测量原理 分析仪工作原理

植物冠层分析仪的测量原理 分析仪工作原理

植物冠层分析仪的测量原理分析仪工作原理叶面积指数(Leaf Area Index,LAI)是一个紧要的生态系统结构参数,定义为某一树木或林分的叶片在地面上投影的总面积。

叶面积指数不仅直接反映植物的生长情形,而且影响着植物的很多生物、物理过程,如光合作用、呼吸作用、蒸腾作用、碳氮循环和降水截获等。

由于叶面积的指数是一个很好反映植物对于环境变化响应的指标,又与植被的光合作用、蒸腾作用、水分利用及净初级生产力、碳氮循环直接相关;特别是在讨论植被生产力与遥感数据的关系模型方面,叶面积指数显示了巨大的应用前景,因此,叶面积指数的快速和精准测定显得特别紧要。

LAI是讨论从叶片水平推移到森林冠层的紧要参数,是一个无量纲、随着叶子数量的变化而变化的参数。

LAI值变化范围:针叶林的为0.6,16.9;落叶林为6,8;年收获的作物为2,4;绝大部分生物群系为3,19、LAI测量方法包括直接测量法和间接测量法。

直接测量法通过先测定全部叶片的叶面积,再计算LAI,叶面积测量方法有求积仪测定法、称重法、方格计算法、排水法、阅历公式计算法、异速生长法等。

其中常用的有利用叶片形状的标准形状法、依据叶面积与叶重之间关系的称重法以及利用叶面积与胸径的回归关系推算叶面积的易速生长法。

因要剪下全部待测叶片,直接测量多数属于毁坏性测量,或至少会干扰冠层,叶片角度的分布,从而影响数据的质量,直接测量法费时、费劲。

间接测量法,利用冠层结构与冠层内辐射与环境的相互作用这一可定量耦合关系,通过测定辐射的相关数据推断冠层的结构特征,实在有顶视法和底视法。

间接测量法可以避开直接测量法所造成的大规模破坏植被的缺点,不受时间的限制,取得数据量大,仪器简单操作,便利快捷,还可以测定一年中森林冠层LAI的季节变化。

红外气体分析仪原理红外线气体分析仪,是利用红外线进行气体分析。

它基于待分析组分的浓度不同,吸取的辐射能不同.剩下的辐射能使得检测器里的温度上升不同,动片薄膜两边所受的压力不同,从而产生一个电容检测器的电信号。

LAI——SUNSCAN(冠层分析仪)使用介绍知识分享

LAI——SUNSCAN(冠层分析仪)使用介绍知识分享

LAI & Sunscan
How does it work ?
计算公式如下:
f e f e • (1 ) K(x , )[1gdir •(1a )L] b
La b
A x L e ( ) 3 B(x )LCa(x ) a
《SPAC课程》研究性学习
LAI & Sunscan
What is Sunscan ?
Sunscan =
SS1 Sunscan探头
掌上电脑
BF3漫反射传感器
《SPAC课程》研究性学习
LAI & Sunscan
What can Sunscan do for us ?
Sunscan(植物冠层分析仪)是一台通过菜 单操作的线性光合有效辐射测量仪,用于测 量作物生长的限制因素的有价值的信息。
地面检测
接触法
典型仪器--Sunscan 非接触法
地面检测间接非接触法主
要使用基于冠层内光透射的 光学模型方法。
光学模型方法应用基于冠 层组分随机分布假设的比尔朗伯定律( Beer-Lambert-law ) 指数递减模型以及基于叶角 分布函数的光分布模型。
考虑了冠层辐射的截取与
入射光的成分、光属性和冠 层结构的关系, 使用光量子传 感器、电容传感器和激光传 感器等传感器测量到地面的 辐射( 直射、散射和总辐射) 。
基本功能:1、测量植物冠层中光线的 拦截情况,即快速实时测量有效光合辐2、计算冠层的叶面积指数LAI值。
注:PAR(光合有效辐射)——太阳辐射中能被绿色植物用来进行光 合作用的那部分能量成为光合有效辐射,photosynthetically active radiation 的缩写。
叶片总面积 即:LAI = 土地面积

叶面积测量仪的相关使用介绍

叶面积测量仪的相关使用介绍

叶面积测量仪的相关使用介绍
概述
叶面积是描述叶片表面积的指标,对于植物生长研究、生态研究以及农业生产等领域具有重要的实际意义。

而叶面积测量仪是一种专业对叶面积进行测试和测量的仪器。

仪器结构
叶面积测量仪一般由上盘、下盘、观察窗、测定器、计算器等组成。

其中,上下盘可以夹住叶片,测定器用来计算叶面积,计算结果可以通过计算器来显示。

使用步骤
第一步:选择叶片样本
在进行叶面积测量之前,需要选择适合测试的叶片样本。

第二步:安装调试
将叶片置于下盘之上,并将上盘压紧,确保叶片牢固地夹住,然后使用测定器进行测试。

第三步:记录数据
测试完成后,将测试结果记录下来,可以通过计算器来进行保存。

注意事项
使用叶面积测量仪时需要注意以下几点:
1.仪器操作需要稳定且准确,以免影响测试结果。

2.选择叶片时需要注意叶片是否完整,抽样是否均匀。

3.测量之前,需要将仪器进行检查和测试,确保测量结果准确。

4.使用时,避免在明亮的阳光下使用仪器,以免对测试结果产生影响。

5.使用完毕后,需要进行清洗和消毒。

结论
叶面积测量仪是现代生物研究的重要工具,具有简便、准确、高效等特点。

使用本仪器,可以快速测量叶片的表面积,为植物研究和农业生产提供有力的支持。

叶面积指数LAI测量仪器介绍

叶面积指数LAI测量仪器介绍

叶面积指数LAI测量仪器介绍目的是给出各种测量LAI的仪器的直观介绍。

LA I 是一个无量纲、动态变化的参数, 随着叶子数量的变化而变化。

另外, 植物叶子的生长与植物种类自身特性、外部环境条件以及人为管理方式有关。

再加上LA I 的不同定义和假设导致了LAI 值测量的极大差异。

植物LAI 的地面测量方法有2 类: 直接测量和间接测量。

本文简要介绍LAI2200(LAI2000)、SUNSCAN、TRAC、AccuPAR和DHP仪器并且给出一些选择建议。

目前,遥感科学国家重点实验室关于LAI测量的仪器有LAI2000、LAI2200、TRAC和LI3000A。

1,LAI2200(LAI2000)LAI2200植物冠层分析仪基于成熟的LAI-2000技术平台,利用“鱼眼”光学传感器(垂直视野范围148度,水平视野范围360度,波谱响应范围320nm~490nm)测量树冠上、下5个角度的透射光线,利用植被树冠的辐射转移模型(间隙率)计算叶面积指数、空隙比等树冠结构参数。

利用随机FV-2200软件,可对数据进行深入处理分析。

该仪器由美国LI-COR公司开发。

仪器组成如下图所示。

测量注意事项:尽可能避免直射的阳光,尽量在日出日落时或者多云的天气(阴天)进行测量,如果避免不了,需要注意:1,使用270度的遮盖帽或者更小视野的遮盖帽;2,背对着阳光进行测量,遮挡住日光和操作者本身;3,对植物冠层进行遮阴处理;4,如果云分布不均匀导致光线不均匀的天气条件下要等待云彩飘过并且遮挡了阳光时再进行测量。

在非均匀、不连续植被情况下以及复杂地形区的测量结果不理想。

2,SUNSCAN根据冠层吸收的Beer法则(Beer’s law for canopy absorption)、Wood 的SunScan冠层分析方程以及Campbell的椭圆叶面角度分布方程(Campbell’s Ellipsoidal LAD equations),使用光量子传感器来测量、计算和分析植物冠层截获和穿透的光合有效辐射及叶面积指数。

lai2000叶面积指数仪使用指南

lai2000叶面积指数仪使用指南

叶面积指数仪使用指南基本操作步骤如何进行实际测量如何测量孤立的树数据传输1.基本操作步骤连接传感器把仪器正面向上放好分别为XÎÒÃÇʹÓõÄÊÇÒ»¸öLAI-2000传感器 开关仪器l 按下ON键l 按下FCT键就可以关闭仪器一种情况是需要输入参数下面一行是输入提示行当输入的是字母时这时就要用到SHIFT键了按错键的消除键就是如果误按了可以按另一种情况是查看显示的信息按向下移动操作的行一般是上面的那一行使信息左右移动这里先不说调整执行列表 按下SETUP键键可以依次看到00行09行按下ENTER键进行操作01 X cal 这里保持默认值就行了就只对X操作值或者别的我们都不去管04 Resolution 为了精度的提高来选择字母月份只是要注意格式06 Set Dists 先不于考虑我们也不要再去调整08 1,2Channels 先不于考虑设置操作模式将会显示如下列表我们只对11和12这两项进行设置键使这一行在显示的上端按下ENTER键所以使用默认值将会出现新的对话框Seq=我们在测量LAI时先测量1个植物树冠上面的测量数据B所以输入输入完后按ENTER键进行测量一个LAI需要重复的次数0 0.0Reps=1为了准确我们现在输入2ÔÙ½øÐмÆËã°´ENTER键返回OPER的执行列表A和B的意义就是在树冠上面的测量值和下面的测量值的区别标志这在下面的叙述中经常会碰到告诉我们所采集资料的种类和位置提示输入所测的植物的种类再按下ENTER键输入位置这些都是为了帮助我们以后使用资料的方便然后检查监视模式使用BREAK键使用键选择查看上面一行的信息和下面列出各行的含义测出的值… ……………………………X1 X传感器在7Y5 Y传感器在68… …………………………… 1 BNC 信道#1X5 X传感器在68 2 BNC信道#2其中所以Y5的值是OFF¼üʹÏÔʾÆÁÄ»ÉÏÃæÒ»ÐÐÊÇX1的值就可以大致上来监视传感器的可靠性了盖上盖子它们的值就应该变小这样简单的操作可以提前避免把坏仪器带到野外首先看到的是我们设置过的植物的种类和测量的位置信息最多不超过7位数仪器将显示现在所显示的两行中real time linesummary line实时显示行*左边的数字代表了得到的A值的数量和得到的B值的数量使用当实时行在上面时来选择该序号总结摘要行从左到右的意义是B资料对已经测量了LAI SEL这时然后按下ENTER键或者传感器杆上的按钮传感器在植被上方时记录下A值根据前面的设置然后在下方测4次即*在上面一行时反之把传感器放在下方因为前面设置了仪器将进行计算最终的结果这样我们就得到了一个目标的叶面积指数重复上面操作就行了记录一个资料时这时我们可以听到2声蜂鸣第二声是读数完成的声音必须保持传感器水平不动如果一直不放松直到读数完成记录文件会自动存储下来当显示屏幕提示输入文件序号时用键观察详细结果显示模式有5种评注2) 角度和距离4) 角度和缝隙默认的是第一种模式下面对第一种的各项进行说明35时间l WHAT=GRSEE 提示1中的物种的种类l WHERE=PLOT8 提示2中的测量的位置l LAI=2.59 叶面积指数l SEL=.13 叶面积指数的标准差l DIFN=.151 天空可见度l MYA=61 平均倾角l SEM=5 平均倾角的标准差l SMP=8 使用的采样数据对l A*=2.62 另一个可选的叶面积指数2进行实际测量因为我们使用的是一个传感器进行测量这里只讨论错误的读数和实际操作中需要考虑的问题B读数应该比A读数小在树上有大缝隙的时候所以A»òÕßÏàµÈ在实际操作时l 天空的状况发生变化l 操作失误B次序错误l 测量B读数时这也是操作失误当一个或多个光圈的B读数大于A读数时如果产生这种结果的原因是因为操作错误或天空状况的改变引起的重新开始测量可以设置参数使错误的光圈上的最大透过率为1.0BAD READING ÓÐÈý¸öÑ¡ÏîBeep,Ignoreµ±ÒÇÆ÷·¢ÏÖ´íÎóµÄ¶ÁÊýʱ·¢³öBEEP2) 应该使用在树叶稀少的情况下并不提示操作员 3) 和上一个设置类似在此不于讨论需要调整测量的方式通常需要测量多个B资料进行均值处理得到LAI的值对于树叶很浓而又有大的空隙时以致于可以把树叶和空隙结合起来考虑孤立的树和灌木对于这种情况也可以测量树叶浓度这在后面单独列出来讨论需要多少B资料首先考虑被计算LAI的地面的面积有多大是一部分然后考虑1个B资料代表该面积的几分之几每个B资料可以代表1个采样资料如果使用视角盖的话所占的比例因所选用的视角盖的角度而定而且半径约等于树冠的高度A=f*A代表被采样的地面面积.75.25视角盖H是树冠的高度一个未使用视角盖的B数据(f=1)在一个1米高的树冠旁边5米处或者说总面积的12%ÄÇô1个数据就只代表总面积的0.5%Ê÷¹ÚµÄ¸ß¶È·Ç³£ÖØÒªÊ÷Ò¶¾ùÔȵÄÇøÓòÐèÒªµÄB资料比不均匀的区域需要的B资料要少置信水平LAI的真值应与观测值的误差在操作步骤如下保证包含树冠的最稀疏的和最浓密的部分2) 计算SEL/LAI3) 使用下面的查找表来决定B的数量(N)SEL/LAI N SEL/LAI N SEL/LAI N SEL/LAI N SEL/LAI N .01 2 .03 5 .05 8 .07 13 .09 190.2 3 .04 6 .06 11 .08 16 0.1 23在什么地方测量解决问题有两种方法另一种是随机任意布点测量下表提供了树叶和传感器的最小距离和传感器视角和天顶角的对应关系45) 360 180 使用270»òÕßÔÚ½øÐÐAʹ²Ù×÷Ô±Õ¼¾ÝµÄÊÓÒ°·¶Î§±£³ÖÒ»ÖÂ通常情况下因此可以在树下测量草的LAI¾¡Á¿±Ü¿ªÑô¹âÖ±ÉäµÄ»·¾³»òÕßÔÚÈÕ³öºÍÈÕÂäʱ½øÐвâÁ¿ÓÐʱºò±ØÐëÔÚÌ«ÑôÖ±ÉäµÄ»·¾³Ï²âÁ¿×ÊÁÏ1) 在无云的晴空下的视角盖使用1802) 无论何时测量用视角挡住你和太阳3) 无论是在A读数还是B读数注意要在两种情况下保持一致这是因为LAI值低估的越大零散的云如果可能的话如果云移动得太快B读数的时间间隔暗分布的变化一个方法是使用窄的视角盖遮住传感器的探测器1) 使用合适的视角盖B读数一次在暗的天空条件下测量这次在亮的天空条件下测量两次传感器观测都要在同一块天空区域下B读数的时间间隔最小可测区域的大小在树冠的下面传感器的视角就象一个倒置的圆锥这是因为传感器的最大视角时74其正切值是3.48ËùÒÔÓÃ3作为实际使用的值就够了一个1米高的树冠把传感器放在很小区域内的中间这时可以使用90×¢ÒâÈç¹û´«¸ÐÆ÷µÄÊӽDZ»Ê÷Ò¶³ä·ÖµØµ²×¡µÄ»°Õâ¸öºÜÈÝÒײâÊÔÒÔ30Èç¹û¿´²»µ½ÇøÓòµÄ±ßÔµ另一种方法就是在计算LAI时这样的话但是下E dit M askҪʹ´«¸ÐÆ÷µÄÇãбµ½ºÍʵ¼ÊµØÃæƽÐÐ树冠间的缝隙在计算LAI的算法中而事实上超重即树叶中空隙的权重很大这样就导致了LAI的低估使用视角盖限制传感器的视角要幺是稀疏的部分视角盖1) 在探测镜头上盖上452) 在FCT 16中设置Force Trnsmt=13) 在传感器的视野里有很稀疏的树叶的环境下得到DIFN值即使视野里没有树叶也行再在一个或者多个位置进行测量5) 使用树冠空隙误差表根据经验则空隙的影响可以忽略必须使用45ÕâÀï¼ÓÈëÎҵĹ۵ã视角盖必然会大大地增加工作量那就不必使用视角盖了呈行列的植被对于呈行列的植被测量时最好的方法是如下左图所示测量所有的B资料时而且要在AÈçÉÏÓÒͼ如果要考虑树冠间的空隙决定是否需要使用45雨它们就会阻碍10%或者更多的辐射光线因此必须考虑其产生的误差另一方面只要不把它放在深水里针叶林针叶林的树叶排列不是随机任意的根据假定的辐射传输模型进行测量将会高估了针叶林树冠的透过率就会低估针叶林的LAI¸ù¾Ý¾-Ñé¿ÉÖªºìËÉ 1.491.67和1.60ʹÓõÄÊÇÊ÷Ò¶µÄ×ܵıíÃæ»ý»¹ÊÇͶӰÃæ»ýµ«Êǵ±ºá½ØÃæÐÎ×´ÊÇÔ²ÐÎʱ使用哪一种面积根据研究目的的不同而定光线阻挡研究light interception studies而总的表面积适用于大气中的沉淀物研究LAI-2000估计的是针叶生长方向上的投影面积指数乘以系数R 1.50的值使用转换因子F³ËÒÔͶӰÃæ»ýÖ¸Êý高的树冠和森林在测量高的树冠时可以使用双传感器系统另一个在树冠下测B资料在此我们不采用这种方法使用C2000程序也可以有效地解决该问题1) 设置连续起来就是2) 在C2000程序中内插中间的A资料如何放置传感器来测量A资料在这个点上传感器的视野里除了天空以外没有树叶或者其它物体看下图天顶角只要在这两条斜线之间只有天空没有树冠就可以满足了所以也就是说把传感器放在空地的中央方向上最近的树冠的边缘和它的距离要大于7倍的树冠高度那么我们可以用视角盖来遮住一部分树冠视角盖因为这时只需要考虑半径就行了 注意B资料的时候要保证视角盖一致如果有倾角这些也是在其它时候要注意的如果太阳在地平线以下也就是说但是LAI将被低估在早上或傍晚和白天测的结果相差在10%50%ʹÓõ×Ë®×¼Æ÷»òÕßÈËÕ¾ÔÚÍÁ¶ÑÉÏÒ²¿ÉÒÔÓøË×ÓÉýÆ𴫸ÐÆ÷3.测量孤立的树要测量孤立的树首先讨论LAI和树叶密度的概念区别LAI可以表示出均一的大范围的植被覆盖密度因为不同的地面上对应的树叶数量不同如图所示就要用到一个新的参数树叶面积密度(foliage area density, or foliage density)ËùÒÔµ¥Î»ÊÇÃ×-1Èç¹ûÒ»¸ùÊ÷µÄÊ÷Ò¶Ãæ»ýÊÇ2米2它的树叶密度就是0.4米-1±ØÐëÒýÈë¾àÀëÏòÁ¿ÕâÒ»¸ÅÄî¾ÍÊÇÔÚ²âÁ¿LAI时的统计资料中的DISTS项角度就是各个光圈对应的天顶角和68ÔÚ¼ÆËãµÄ½á¹ûÀﵫÊÇËüµÄ±êʶ·û»¹ÊÇLAI°ë¾¶Îª0.7米所以以此为一个简单的示例设置这5个值均为0.7·½·¨ÀàËÆÓÚ²âÁ¿LAI¶øÇÒÒª°Ñ´«¸ÐÆ÷·ÅÔÚ¹àľµÄÖмä其中的LAI值就是树叶密度值如果它们不是默认值1.0861.662和2.669那么LAI就应该解释为树叶密度SEL就是树叶密度的标准差把传感器放在树冠下面的树干旁边测量B资料应该把传感器放在靠近树干并且在大树枝下边不要让树干和树枝占据了传感器视野的主要部分一种是放在低的树枝上面如左图所示使用90视角盖会减小采样树冠的大小而且很独立下面展示了使用90ÈçÏÂ×óͼÈç¹ûÊ÷¹Ú²»¶Ô³ÆÈçÏÂÓÒͼƽ¾ùÊ÷Ò¶ÃܶȴÓÿ¸öÎļþÖеõ½µÄÊ÷Ò¶ÃܶȵÄƽ¾ùÖµ»ñµÃʹÓÃÒ»¸ö×ø±êϵͳµÃµ½³ä·ÖµÄ×ø±êµãÀ´±íʾÊ÷¹ÚµÄÐÎ×´C2000程序用这些资料得到路径长度和树叶密度B数据视角盖2) 得到树冠的平均形状Y坐标点描述树冠的侧面形状3) 把文件输入到计算机4) 运行C2000程序在对应的提示下输入8个数据点坐标值程序会自动计算出树冠体积8.87米2和路径长度 6) 使用Compute命令来计算这个文件7) Print Standard把文件输出到下一页那么得到的结果就是还标着LAIDLLAI=树叶密度*树冠体积/DLASNRHGTVOLUME¸ù¾ÝÊ÷¹Ú²àÃæͼµÄ×ø±êµãµÃµ½树冠在地面上的投影面积NPTS Y侧面坐标点的数量也可以经过RS-232传到计算机DCEÓÉ3针输出连接LAI-2000到数据终端设备只要有一个缆线就够了那么必须有一个零讯号调制解调器缆线使用计算机要把数据从LAI-2000传输到计算机上而且要有程序从RS-232端口接收在1000-90磁盘中的COMM程序提供了这个功能传输步骤如下FCT 33然后传输需要的文件 1000-90&2000-90这些都是DOS程序包在1000-90中是一个数据通信程序C2OOO±à¼-ºÍÖؼÆËã³ÌÐòC2000除了具有LAI-2000控制台的功能以外当LAI-2000数据文件读到计算机存储器中以后举例如下提示信息和响应信息把不在同一个文件中的A¸ù¾ÝB数据的时间来添加A数据时间选择性地删除一些记录或者根据用户输入的树冠尺度自动计算路径长度 u 选择出哪些光圈要被忽略u 重新计算也可以根据内插的树冠数据Set A/B=1.0u 从原来LAI控制台中不能获取的数据结果可以在这里根据用户的格式输出来或者树叶密度LADCanopy Gap Error10。

LAI——SUNSCAN(冠层分析仪)使用介绍ppt课件

LAI——SUNSCAN(冠层分析仪)使用介绍ppt课件

新模型和算法的 设计, 以提高测
均能工作。
量速度。
展望
间接测量LAI 技术会不断随着现代科技的 发展向高精度、更快速、范围广的方向发展, 其应用也会越来越得到重视。间接测量的方 法是测量LAI 的重要手段, 其中的光学模型方 法最具有潜力, 因为它具有速度快, 通用性强, 非破坏性的优点。
LAI——SUNSCAN(冠层分析仪)使用介绍
《SPAC课程》研究性学习
LAI & Sunscan
What is Sunscan ? What can Sunscan do for us ? How does it work ?
LAI——SUNSCAN(冠层分析仪)使用介绍
《SPAC课程》研究性学习
LAI & Sunscan
What is Sunscan ?
地面检测
接触法
优点:具有非破坏性;使用 无须叶子是随机分布的假设
后LAI 与K 呈简单的线性关系,
非接触法 计算简便。
缺点:只有采样数足够大时
才能置信, 并且对较高的冠层
LAI——SUNSCAN(冠层分析仪)使用介绍 实施比较困难。
《SPAC课程》研究性学习
LAI & Sunscan
直接法 间接法
How to get LAI ?
直接法 间接法
叶子的采集 &
叶面积的测量
空间检测
如由Wilson 提出倾斜点嵌块法,。该法使用长 尖针( 点嵌块) 在已知高度角和方位角的植物 冠层上探击, 然后计算碰击到冠层元素的次数。 LA I 测量公式如下: L = K / G(θ) 式中, L 为LAI, K 为接触次数, G(θ) 为投影函 数, θ为天顶角。

lai2000叶面积指数仪使用指南

lai2000叶面积指数仪使用指南

叶面积指数仪使用指南基本操作步骤如何进行实际测量如何测量孤立的树数据传输1.基本操作步骤连接传感器把仪器正面向上放好分别为XÎÒÃÇʹÓõÄÊÇÒ»¸öLAI-2000传感器 开关仪器l 按下ON键l 按下FCT键就可以关闭仪器一种情况是需要输入参数下面一行是输入提示行当输入的是字母时这时就要用到SHIFT键了按错键的消除键就是如果误按了可以按另一种情况是查看显示的信息按向下移动操作的行一般是上面的那一行使信息左右移动这里先不说调整执行列表 按下SETUP键键可以依次看到00行09行按下ENTER键进行操作01 X cal 这里保持默认值就行了就只对X操作值或者别的我们都不去管04 Resolution 为了精度的提高来选择字母月份只是要注意格式06 Set Dists 先不于考虑我们也不要再去调整08 1,2Channels 先不于考虑设置操作模式将会显示如下列表我们只对11和12这两项进行设置键使这一行在显示的上端按下ENTER键所以使用默认值将会出现新的对话框Seq=我们在测量LAI时先测量1个植物树冠上面的测量数据B所以输入输入完后按ENTER键进行测量一个LAI需要重复的次数0 0.0Reps=1为了准确我们现在输入2ÔÙ½øÐмÆËã°´ENTER键返回OPER的执行列表A和B的意义就是在树冠上面的测量值和下面的测量值的区别标志这在下面的叙述中经常会碰到告诉我们所采集资料的种类和位置提示输入所测的植物的种类再按下ENTER键输入位置这些都是为了帮助我们以后使用资料的方便然后检查监视模式使用BREAK键使用键选择查看上面一行的信息和下面列出各行的含义测出的值… ……………………………X1 X传感器在7Y5 Y传感器在68… …………………………… 1 BNC 信道#1X5 X传感器在68 2 BNC信道#2其中所以Y5的值是OFF¼üʹÏÔʾÆÁÄ»ÉÏÃæÒ»ÐÐÊÇX1的值就可以大致上来监视传感器的可靠性了盖上盖子它们的值就应该变小这样简单的操作可以提前避免把坏仪器带到野外首先看到的是我们设置过的植物的种类和测量的位置信息最多不超过7位数仪器将显示现在所显示的两行中real time linesummary line实时显示行*左边的数字代表了得到的A值的数量和得到的B值的数量使用当实时行在上面时来选择该序号总结摘要行从左到右的意义是B资料对已经测量了LAI SEL这时然后按下ENTER键或者传感器杆上的按钮传感器在植被上方时记录下A值根据前面的设置然后在下方测4次即*在上面一行时反之把传感器放在下方因为前面设置了仪器将进行计算最终的结果这样我们就得到了一个目标的叶面积指数重复上面操作就行了记录一个资料时这时我们可以听到2声蜂鸣第二声是读数完成的声音必须保持传感器水平不动如果一直不放松直到读数完成记录文件会自动存储下来当显示屏幕提示输入文件序号时用键观察详细结果显示模式有5种评注2) 角度和距离4) 角度和缝隙默认的是第一种模式下面对第一种的各项进行说明35时间l WHAT=GRSEE 提示1中的物种的种类l WHERE=PLOT8 提示2中的测量的位置l LAI=2.59 叶面积指数l SEL=.13 叶面积指数的标准差l DIFN=.151 天空可见度l MYA=61 平均倾角l SEM=5 平均倾角的标准差l SMP=8 使用的采样数据对l A*=2.62 另一个可选的叶面积指数2进行实际测量因为我们使用的是一个传感器进行测量这里只讨论错误的读数和实际操作中需要考虑的问题B读数应该比A读数小在树上有大缝隙的时候所以A»òÕßÏàµÈ在实际操作时l 天空的状况发生变化l 操作失误B次序错误l 测量B读数时这也是操作失误当一个或多个光圈的B读数大于A读数时如果产生这种结果的原因是因为操作错误或天空状况的改变引起的重新开始测量可以设置参数使错误的光圈上的最大透过率为1.0BAD READING ÓÐÈý¸öÑ¡ÏîBeep,Ignoreµ±ÒÇÆ÷·¢ÏÖ´íÎóµÄ¶ÁÊýʱ·¢³öBEEP2) 应该使用在树叶稀少的情况下并不提示操作员 3) 和上一个设置类似在此不于讨论需要调整测量的方式通常需要测量多个B资料进行均值处理得到LAI的值对于树叶很浓而又有大的空隙时以致于可以把树叶和空隙结合起来考虑孤立的树和灌木对于这种情况也可以测量树叶浓度这在后面单独列出来讨论需要多少B资料首先考虑被计算LAI的地面的面积有多大是一部分然后考虑1个B资料代表该面积的几分之几每个B资料可以代表1个采样资料如果使用视角盖的话所占的比例因所选用的视角盖的角度而定而且半径约等于树冠的高度A=f*A代表被采样的地面面积.75.25视角盖H是树冠的高度一个未使用视角盖的B数据(f=1)在一个1米高的树冠旁边5米处或者说总面积的12%ÄÇô1个数据就只代表总面积的0.5%Ê÷¹ÚµÄ¸ß¶È·Ç³£ÖØÒªÊ÷Ò¶¾ùÔȵÄÇøÓòÐèÒªµÄB资料比不均匀的区域需要的B资料要少置信水平LAI的真值应与观测值的误差在操作步骤如下保证包含树冠的最稀疏的和最浓密的部分2) 计算SEL/LAI3) 使用下面的查找表来决定B的数量(N)SEL/LAI N SEL/LAI N SEL/LAI N SEL/LAI N SEL/LAI N .01 2 .03 5 .05 8 .07 13 .09 190.2 3 .04 6 .06 11 .08 16 0.1 23在什么地方测量解决问题有两种方法另一种是随机任意布点测量下表提供了树叶和传感器的最小距离和传感器视角和天顶角的对应关系45) 360 180 使用270»òÕßÔÚ½øÐÐAʹ²Ù×÷Ô±Õ¼¾ÝµÄÊÓÒ°·¶Î§±£³ÖÒ»ÖÂ通常情况下因此可以在树下测量草的LAI¾¡Á¿±Ü¿ªÑô¹âÖ±ÉäµÄ»·¾³»òÕßÔÚÈÕ³öºÍÈÕÂäʱ½øÐвâÁ¿ÓÐʱºò±ØÐëÔÚÌ«ÑôÖ±ÉäµÄ»·¾³Ï²âÁ¿×ÊÁÏ1) 在无云的晴空下的视角盖使用1802) 无论何时测量用视角挡住你和太阳3) 无论是在A读数还是B读数注意要在两种情况下保持一致这是因为LAI值低估的越大零散的云如果可能的话如果云移动得太快B读数的时间间隔暗分布的变化一个方法是使用窄的视角盖遮住传感器的探测器1) 使用合适的视角盖B读数一次在暗的天空条件下测量这次在亮的天空条件下测量两次传感器观测都要在同一块天空区域下B读数的时间间隔最小可测区域的大小在树冠的下面传感器的视角就象一个倒置的圆锥这是因为传感器的最大视角时74其正切值是3.48ËùÒÔÓÃ3作为实际使用的值就够了一个1米高的树冠把传感器放在很小区域内的中间这时可以使用90×¢ÒâÈç¹û´«¸ÐÆ÷µÄÊӽDZ»Ê÷Ò¶³ä·ÖµØµ²×¡µÄ»°Õâ¸öºÜÈÝÒײâÊÔÒÔ30Èç¹û¿´²»µ½ÇøÓòµÄ±ßÔµ另一种方法就是在计算LAI时这样的话但是下E dit M askҪʹ´«¸ÐÆ÷µÄÇãбµ½ºÍʵ¼ÊµØÃæƽÐÐ树冠间的缝隙在计算LAI的算法中而事实上超重即树叶中空隙的权重很大这样就导致了LAI的低估使用视角盖限制传感器的视角要幺是稀疏的部分视角盖1) 在探测镜头上盖上452) 在FCT 16中设置Force Trnsmt=13) 在传感器的视野里有很稀疏的树叶的环境下得到DIFN值即使视野里没有树叶也行再在一个或者多个位置进行测量5) 使用树冠空隙误差表根据经验则空隙的影响可以忽略必须使用45ÕâÀï¼ÓÈëÎҵĹ۵ã视角盖必然会大大地增加工作量那就不必使用视角盖了呈行列的植被对于呈行列的植被测量时最好的方法是如下左图所示测量所有的B资料时而且要在AÈçÉÏÓÒͼ如果要考虑树冠间的空隙决定是否需要使用45雨它们就会阻碍10%或者更多的辐射光线因此必须考虑其产生的误差另一方面只要不把它放在深水里针叶林针叶林的树叶排列不是随机任意的根据假定的辐射传输模型进行测量将会高估了针叶林树冠的透过率就会低估针叶林的LAI¸ù¾Ý¾-Ñé¿ÉÖªºìËÉ 1.491.67和1.60ʹÓõÄÊÇÊ÷Ò¶µÄ×ܵıíÃæ»ý»¹ÊÇͶӰÃæ»ýµ«Êǵ±ºá½ØÃæÐÎ×´ÊÇÔ²ÐÎʱ使用哪一种面积根据研究目的的不同而定光线阻挡研究light interception studies而总的表面积适用于大气中的沉淀物研究LAI-2000估计的是针叶生长方向上的投影面积指数乘以系数R 1.50的值使用转换因子F³ËÒÔͶӰÃæ»ýÖ¸Êý高的树冠和森林在测量高的树冠时可以使用双传感器系统另一个在树冠下测B资料在此我们不采用这种方法使用C2000程序也可以有效地解决该问题1) 设置连续起来就是2) 在C2000程序中内插中间的A资料如何放置传感器来测量A资料在这个点上传感器的视野里除了天空以外没有树叶或者其它物体看下图天顶角只要在这两条斜线之间只有天空没有树冠就可以满足了所以也就是说把传感器放在空地的中央方向上最近的树冠的边缘和它的距离要大于7倍的树冠高度那么我们可以用视角盖来遮住一部分树冠视角盖因为这时只需要考虑半径就行了 注意B资料的时候要保证视角盖一致如果有倾角这些也是在其它时候要注意的如果太阳在地平线以下也就是说但是LAI将被低估在早上或傍晚和白天测的结果相差在10%50%ʹÓõ×Ë®×¼Æ÷»òÕßÈËÕ¾ÔÚÍÁ¶ÑÉÏÒ²¿ÉÒÔÓøË×ÓÉýÆ𴫸ÐÆ÷3.测量孤立的树要测量孤立的树首先讨论LAI和树叶密度的概念区别LAI可以表示出均一的大范围的植被覆盖密度因为不同的地面上对应的树叶数量不同如图所示就要用到一个新的参数树叶面积密度(foliage area density, or foliage density)ËùÒÔµ¥Î»ÊÇÃ×-1Èç¹ûÒ»¸ùÊ÷µÄÊ÷Ò¶Ãæ»ýÊÇ2米2它的树叶密度就是0.4米-1±ØÐëÒýÈë¾àÀëÏòÁ¿ÕâÒ»¸ÅÄî¾ÍÊÇÔÚ²âÁ¿LAI时的统计资料中的DISTS项角度就是各个光圈对应的天顶角和68ÔÚ¼ÆËãµÄ½á¹ûÀﵫÊÇËüµÄ±êʶ·û»¹ÊÇLAI°ë¾¶Îª0.7米所以以此为一个简单的示例设置这5个值均为0.7·½·¨ÀàËÆÓÚ²âÁ¿LAI¶øÇÒÒª°Ñ´«¸ÐÆ÷·ÅÔÚ¹àľµÄÖмä其中的LAI值就是树叶密度值如果它们不是默认值1.0861.662和2.669那么LAI就应该解释为树叶密度SEL就是树叶密度的标准差把传感器放在树冠下面的树干旁边测量B资料应该把传感器放在靠近树干并且在大树枝下边不要让树干和树枝占据了传感器视野的主要部分一种是放在低的树枝上面如左图所示使用90视角盖会减小采样树冠的大小而且很独立下面展示了使用90ÈçÏÂ×óͼÈç¹ûÊ÷¹Ú²»¶Ô³ÆÈçÏÂÓÒͼƽ¾ùÊ÷Ò¶ÃܶȴÓÿ¸öÎļþÖеõ½µÄÊ÷Ò¶ÃܶȵÄƽ¾ùÖµ»ñµÃʹÓÃÒ»¸ö×ø±êϵͳµÃµ½³ä·ÖµÄ×ø±êµãÀ´±íʾÊ÷¹ÚµÄÐÎ×´C2000程序用这些资料得到路径长度和树叶密度B数据视角盖2) 得到树冠的平均形状Y坐标点描述树冠的侧面形状3) 把文件输入到计算机4) 运行C2000程序在对应的提示下输入8个数据点坐标值程序会自动计算出树冠体积8.87米2和路径长度 6) 使用Compute命令来计算这个文件7) Print Standard把文件输出到下一页那么得到的结果就是还标着LAIDLLAI=树叶密度*树冠体积/DLASNRHGTVOLUME¸ù¾ÝÊ÷¹Ú²àÃæͼµÄ×ø±êµãµÃµ½树冠在地面上的投影面积NPTS Y侧面坐标点的数量也可以经过RS-232传到计算机DCEÓÉ3针输出连接LAI-2000到数据终端设备只要有一个缆线就够了那么必须有一个零讯号调制解调器缆线使用计算机要把数据从LAI-2000传输到计算机上而且要有程序从RS-232端口接收在1000-90磁盘中的COMM程序提供了这个功能传输步骤如下FCT 33然后传输需要的文件 1000-90&2000-90这些都是DOS程序包在1000-90中是一个数据通信程序C2OOO±à¼-ºÍÖؼÆËã³ÌÐòC2000除了具有LAI-2000控制台的功能以外当LAI-2000数据文件读到计算机存储器中以后举例如下提示信息和响应信息把不在同一个文件中的A¸ù¾ÝB数据的时间来添加A数据时间选择性地删除一些记录或者根据用户输入的树冠尺度自动计算路径长度 u 选择出哪些光圈要被忽略u 重新计算也可以根据内插的树冠数据Set A/B=1.0u 从原来LAI控制台中不能获取的数据结果可以在这里根据用户的格式输出来或者树叶密度LADCanopy Gap Error10。

冠层分析仪--叶面积指数(LAI)自动测量仪器汇总

冠层分析仪--叶面积指数(LAI)自动测量仪器汇总

冠层分析仪叶面积指数(LAI)自动测量仪器I SmartLAI Smart系统充分利用当前成熟的智能终端设备的成像与高性能计算功能,实现植被叶面积指数实时计算;并且提供操作与数据处理选择,方便根据实际情况进行测量设置。

LAI Smart由硬件和软件组成,其中硬件包括信息采集智能终端、用户操作控制台与仪器支架;软件包括信息采集软件模块、无线传输控制模块以及实时计算存储模块。

LAI Smart具有数据实时计算功能,用户可以即时看到数据处理结果,同时,LAI Smart支持数据无线传输,在有手机网络信号的情况下,数据可以根据用户的设置,远程传输到远端服务器,在保证测量数据安全的情况下,提供了数据实时共享的可能性。

I-Net植物联网观测矩阵——LAI Net是由多个Zigbee无线传感器网络节点组成,通过在研究区部署多个观测节点,形成一种密集的观测矩阵,能够实现长时间序列的大范围内的叶面积指数自动测量。

出发点传统的植被冠层分析系统均是依靠人工手持式的进入观测场地进行测量,这种传统的方式比较适合小范围内的较低时间频次的测量。

当需要进行大的空间范围、较高的时间频次的观测的时候,传统的方式需要消耗大量的人力和物力,且未必能够获取到满足要求的地面观测数据。

例如,在对遥感卫星获取的地面植被叶面积指数验证的时候,为了获取与卫星对应的空间范围与时间范围的数据,传统的依靠单点的观测方法,会显得力不从心。

系统组成利用当前应用较为广泛的无线传感器网络(物联网)技术,开发的一种植被联网观测矩阵,简称LAI Net。

LAI Net是由部署在植被研究区的一系列无线传感器节点组成,各个节点一方面能够实现独立的观测,另一方面又可以通过ZigBee 网络自动组网,因此,在整个研究区域之内,形成一个自组网的植被冠层观测矩阵,网络的部署结构如图所示。

LAI Net由三类传感器节点组成,分别为:(1)冠层上节点,用来接收太阳的下行总辐射;(2)冠层下节点,用来接收植被冠层的透过辐射;(3)数据汇聚节点,用来接收并无线发射上述两类节点的测量数据。

LAI-2000植物冠层仪使用说明书

LAI-2000植物冠层仪使用说明书
1



第一章 简介 ………………………………………………………… 1 第二章 基础知识 …………………………………………………… 2 1.原理简介……………………………………………………………… 2 2.假设条件……………………………………………………………… 2 3.操作方式……………………………………………………………… 3 4.一个简单数据文件格式……………………………………………… 4 第三章 认识仪器 …………………………………………………… 6 1.连接…………………………………………………………………… 6 2.软件…………………………………………………………………… 6 第四章 测量 ………………………………………………………… 9 1.探头校正……………………………………………………………… 9 2.两个探头的使用……………………………………………………… 9 3.错误数值……………………………………………………………… 9 4. 实践注意事项…………………………………………………………10 孤立树还是灌木……………………………………………………10 B 值数量……………………………………………………………10 测量位置……………………………………………………………11 视区内的异物………………………………………………………11 直射阳光……………………………………………………………11 分散云………………………………………………………………11 变幻的阴天…………………………………………………………12 小测量面积…………………………………………………………12 斜坡…………………………………………………………………12 冠层中的间隙………………………………………………………12 条播作物……………………………………………………………13 雨、雾及露…………………………………………………………13 针叶植物……………………………………………………………13 高大冠层及森林……………………………………………………14 第五章 测量单株植物…………………………………………………14 1. 叶面积指数还是叶片密度……………………………………………15 2. 距离矢量………………………………………………………………15 3. 一个简单例子…………………………………………………………15 4. 孤立树…………………………………………………………………15 5.C2000 程序例子………………………………………………………16 第六章 数据传输 ……………………………………………………16 1. 设置端口………………………………………………………………16

【分析仪】植物冠层分析仪的参数特点介绍 分析仪维护和修理保养

【分析仪】植物冠层分析仪的参数特点介绍 分析仪维护和修理保养

【分析仪】植物冠层分析仪的参数特点介绍分析仪维护和修理保养光合有效辐射(PAR)和叶面积指数(LAI)是评估植物健康情形和植物冠层结构的紧要指标。

PAR表示有多少光能可被植物光合作用利用;LAI可用于估量冠层密度和生物量,是植物冠层结构的一项紧要表征参数。

可以同时测量PAR和LAI。

仪器出厂前经过校验,校验值储存于内存中,故在使用过程中无须校验。

植物冠层分析仪被广泛应用于农业、林业和植物学等讨论领域。

产品特点:1.经济、便携;2.实时测量PAR;3.简便直观的6键掌控;4.自动记录模式功能;5.强大的数据存储本领,1M内存;6.既可用随机所带软件,也可用计算机超级终端下载数据;7.低电消耗,4节7号碱性电池可使用2年;8.外置PAR传感器可用于探杆校准和实时测量冠层上、下的PAR值。

规格参数:数据存储容量:1M(可存2000次以上测量结果)传感器数量:80个GaAsP光敏传感器PAR传感器量程:0~>2500 μmol·m—2·s—1PAR传感器辨别率:1μmol·m—2·s—1波长范围400 ~ 700nm探杆长度:86.5cm(84cm)探杆截面:1.9*0.95cm仪器总长:99cm无人值守采样间隔:1~60 min可选产品重量:0.56 kg数据传输:RS—232数据线键盘:6键菜单驱动工作环境:0~50 ℃,0~100%RH电源:4节7号电池最小空间辨别率:1cm系统构成:1.带传感器的掌控单元2.测量探杆和外置PAR传感器3.RS—232数据线、数据传输软件、用户说明书及手提箱工作原理:探头中包括80个间隔为1 cm的PAR光量子传感器,用于测量环境光照中PAR的变化,输入讨论区域的经纬度和时间,仪器可自动计算出天顶角;通过设置叶角分布参数(X)和测量冠层上、下PAR的比率,可以计算出植物冠层的LAI值。

元素分析仪仪器的特点介绍元素分析仪是指同时或单独实现样品中几种元素的分析的仪器。

手持活体叶面积测量仪的测定方式

手持活体叶面积测量仪的测定方式

手持活体叶面积测量仪测定叶面积指数(LAI)的方式摘要:叶面积指数是研究植物冠层表面物质和能量互换的一个重要参数,被普遍应用于植物生长模型、能量平稳模型、气候模型和冠层反射模型等诸多方面的研究。

其中LAI是指leaf area index,英文缩写为LAI。

LAI又叫叶面积系数,是一块地上作物叶片的总面积与占地面积的比值。

即:叶面积指数=绿叶总面积/占地面积。

叶面积指数是反映作物群体大小的较好的动态指标。

在必然的范围内,作物的产量随叶面积指数的增大而提高。

因为,在农田作业中,咱们通常需要测定叶面积指数,以了解整块土地的作物生长情形,和最终的作物收成。

什么缘故要进行活体叶面积测定叶片是植物光合作用的场所,而在平常叶面积的大小不是越大越好,因为在叶片上进行的不单单是植物的光合作用同时也进行呼吸作用,在确信了植物的叶面积,咱们就能够够了解植物的光合反映速度了。

植物的叶面积的测量能够借助活体叶面积测定以来进行测量,可针对任何不规那么形状,任何颜色,任何厚度和水分含量的叶片表面积进行测量。

计算叶面积指数的方式叶面积指数有多种测定方式,但至今没有通用且简便的方式。

下面咱们就当前世界各地计算叶面积指数的方式,一一列举做一比较。

一、直接方式地面直接测定LAI的方式是一种经典的、成熟的和相对精准的方式,可作为间接方式的有效验证。

直接测量法卞要包括叶子的搜集和叶面积的测量。

叶子的搜集分为非破坏性搜集方式和破坏性搜集方式。

前者如落叶箱法,即利用有防风侧面的开日盒子放在植被中间,按时重复采样。

破坏性搜集方式卞要有代表植株法和区域采样法。

叶面积的测定方式有:格点法和方格法;描形称重法和仪器测定法。

其中仪器测定法最为常见。

活体叶面积仪确实是一款利用超级方便的仪器,而且能够针对任何大小、形状和颜色的叶片进行测定。

即便是叶片面积大如芭蕉叶,活体叶面积测定仪照样能够测定。

另外,面积测定还通常利用便携式叶面积仪,因此该仪器携带方便的特性,能够随时带到田间,进行测量和记录。

LAI叶面积指数介绍

LAI叶面积指数介绍

叶面积指数(LAI)基本概念叶面积指数(LAI)又叫叶面积系数,是指单位土地面积上植物叶片总面积占土地面积的倍数。

即:叶面积指数=叶片总面积/土地面积。

它是大多数生态系统生产力模型和全球气候、水文、生物地球化学和生态模型中的重要参数。

陆地生态系统生产力的模拟是全球碳循环研究中的关键问题。

而LAI作为光合作用中碳同化的重要影响因子,是生产力评估模型中的重要参数。

因此,使用生产力模型分析净生产力、净生物群区生产力几十年的变化趋势,需要输入LAI的长期连续数据。

数学模型获取LAI的方法可分为三类:接触测量法、仪器与半球数字摄影测量法、遥感反演法。

直接测量法包括比叶重法、落叶收集法、分层收割法、点接触法等,该方法的精度很高,然而需要耗费大量的人力,通常只针对单个地点或小区域,难以覆盖大的区域范围。

仪器和半球数字摄影测量法避免了直接测量法耗费大量人力的缺点,它使用一些商用测量仪器或鱼眼镜头测量多个角度上的空隙率,利用比尔定律,反算出LAI。

然而,不论是直接测量法,还是仪器和半球数字摄影测量法,得到的都是点上数据,难以扩展到面上;并且其空间覆盖范围和持续时间有限。

而使用遥感手段观测LAI,不仅不需要耗费大量人力、成本低廉,而且能对全球范围实现长期连续监测。

因此从获得长时间序列的全球LAI数据集的角度来看,遥感反演是最优且唯一可行的方法。

本项目LAI产品主要采用遥感反演方法,利用MODIS中分辨率成像光谱仪数据遥感反演的植被指数叶面积指数LAI作为植物生长长势的指标用于分析生态系统健康及其变化,生态系统参数的遥感反演是以晴空状态下的地表反射为输入,因此预先合成多天晴空状态的地表反射率,并进行去云及其它噪音处理,采用改进的最小可见光波段选择的合成算法,既能有效消除云的影响,也能有效消除云阴影的影响,叶面积指数和植被光合有效辐射吸收系数是通过反演冠层辐射传输方程获得,输入数据为合成的无云地表反射率数据。

叶面积指数LAI产品主要采用经验公式法计算,利用植物的胸径、树高、边材面积、冠幅等容易测量的参数与叶面积或叶面积指数的相关关系建立经验公式来计算。

三款叶面积仪的功能参数

三款叶面积仪的功能参数

在农业科研中,叶面积是研究叶面积指数、蒸腾速率、光合速率等植物生理相关所涉及的基础数据。

叶面积小,光合叶绿素就少,叶面积过大又会造成群体内光照条件恶化,所以合适的叶面积大小非常重要。

传统的叶面积测定,常采用叶形纸称长宽系数法、回归方程法等,这类方法普遍较为繁琐,不单耗时长,而且准确度低。

应用叶面积仪则可快速、无损的测量叶片面积大小,可为植物各项生理研究提供基础数据支持。

叶面积仪采用便携式设计,仪器操作简单,测定快速,是实验室和野外测量叶面积较为理想的仪器。

以下是三大叶面积仪的功能参数详细介绍:一、智能叶面积仪仪器型号:YMJ-CH型仪器原理:智能叶面积测量系统装有嵌入式软件的平板组成。

采用先进的图像处理技术,根据叶子特征提取、空间转换、边缘检测原理、形态学等技术综合设计的软件。

功能特点:硬件功能特点:1、安卓系统具有操作简洁化,应用人性化、智能化和可升级化;2、背光装置可选,含平板电脑。

系统功能特点:1、安卓系统具有操作简洁化,应用人性化、智能化和可升级化;2、7寸全彩色手触摸屏,800万像素,拍照后软件自动计算叶面积,输出结果;3、存储功能强大,自带16G内存卡,可将数据通过计算机导出;4、数据查看多样化:数据可储存、可查看报表,也可导出Excel 表格到计算机或WiFi 上传到服务器。

数据统计,分析智能化;5、带有手动修正功能,可进行剪切、修补、自动切叶柄等,确保测量高精度;6、有通用、深色、浅色三种算法可选,拍照后,可据叶片颜色选择合适的算法,保证精度;7、拍照后,系统可自动计算出面积,周长,叶长,叶宽,病斑、虫损,锯齿面积,虫洞个数并同屏显示;8、仪器带云平台、APP,可多通道查看管理数据;9、支持多叶片测量:将叶片置于有效范围内,平铺无重叠,左右滑动平板端数据界面可以切看每叶片的数据参数。

管理云平台功能:1、自带仪器云管理平台包含C/S架构,可将所有便携式设备及在线设备数据进行汇总分析,数据备份不丢失,查看操作方式包括网页端及手机端(安卓系统)。

植物多谱辐射计的简介

植物多谱辐射计的简介

植物多谱辐射计的简介仪器型号:TOP-2000型仪器简介:在生态学中,叶面积指数是生态系统的一个重要结构参数,用来反映植物叶面数量、冠层结构变化、植物群落生命活力及其环境效应,为植物冠层表面物质和能量交换的描述提供结构化的定量信息,并在生态系统碳积累、植被生产力和土壤、植物、大气间相互作用的能量平衡,植被遥感等方面起重要作用。

叶面积指数(leaf area index)又叫叶面积系数,是指单位土地面积上植物叶片总面积占土地面积的倍数。

即:叶面积指数=叶片总面积/土地面积。

在田间试验中,叶面积指数(LAI)是反映植物群体生长状况的一个重要指标,其大小直接叶面积指数是反映作物群体大小的较好的动态指标。

在一定的范围内,作物的产量随叶面积指数的增大而提高。

当叶面积指数增加到一定的限度后,田间郁闭,光照不足,光合效率减弱,产量反而下降。

苹果园的最大叶面积指数一般不超过5,能维持在3~4较为理想。

盛果期的红富士苹果园,生长期亩枝量维持在10~12万条之间,叶面积指数基本能达到较为适宜的指标。

氮对提高叶面积指数、光合势、叶绿素含量和生长率均有促进作用,而净同化率随施氮增加而下降。

施氮对大豆光合速率无显著影响。

随施氮增加叶面积指数提高的正效应可以抵消净同化率下降的负效应,从而最终获得一个较高的生长率。

因此,高产栽培首先应考虑获得适当大的叶面积指数。

仪器用途:1、植物生长调节剂的评估2、客观有效地对各种叶片病害的评级3、监测应用除草剂的效果4、用于土壤改善和肥力的研究5、叶面施肥的研究6、灌溉日程安排的研究7、干旱对植物生长和产量的影响8、不同基因型的特性9、试验地变异的评估配置:该系统包括辐射计、笔记本电脑、伸长杆(可伸长到3.5米)、数据连接线、使用手册。

功能特点:1、内置传感器自动校正与太阳光方向角自动校准模块。

2、仪器高矮可调节。

3、能够在少云的情况下使用。

4、8个波段与Landsat卫星热波谱图的前8条波段相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

叶面积指数LAI测量仪器介绍
目的是给出各种测量LAI的仪器的直观介绍。

LA I 是一个无量纲、动态变化的参数, 随着叶子数量的变化而变化。

另外, 植物叶子的生长与植物种类自身特性、外部环境条件以及人为管理方式有关。

再加上LA I 的不同定义和假设导致了LAI 值测量的极大差异。

植物LAI 的地面测量方法有2 类: 直接测量和间接测量。

本文简要介绍LAI2200(LAI2000)、SUNSCAN、TRAC、AccuPAR和DHP仪器并且给出一些选择建议。

目前,遥感科学国家重点实验室关于LAI测量的仪器有LAI2000、LAI2200、TRAC和LI3000A。

1,LAI2200(LAI2000)
LAI2200植物冠层分析仪基于成熟的LAI-2000技术平台,利用“鱼眼”光学传感器(垂直视野范围148度,水平视野范围360度,波谱响应范围320nm~490nm)测量树冠上、下5个角度的透射光线,利用植被树冠的辐射转移模型(间隙率)计算叶面积指数、空隙比等树冠结构参数。

利用随机FV-2200软件,可对数据进行深入处理分析。

该仪器由美国
LI-COR公司开发。

仪器组成如下图所示。

测量注意事项:
尽可能避免直射的阳光,尽量在日出日落时或者多云的天气(阴天)进行测量,如果避免不了,需要注意:1,使用270度的遮盖帽或者更小视野的遮盖帽;2,背对着阳光进行测量,遮挡住日光和操作者本身;3,对植物冠层进行遮阴处理;4,如果云分布不均匀导致光线不均匀的天气条件下要等待云彩飘过并且遮挡了阳光时再进行测量。

在非均匀、不连续植被情况下以及复杂地形区的测量结果不理想。

2,SUNSCAN
根据冠层吸收的Beer法则(Beer’s law for canopy absorption)、Wood 的SunScan冠层分析方程以及Campbell的椭圆叶面角度分布方程(Campbell’s Ellipsoidal LAD equations),使用光量子传感器来测量、计算和分析植物冠层截获和穿透的光合有效辐射及叶面积指数。

该仪器由英国Delta-T Devices公司生产。

组成包括SunScan探测器:一支1米长,内嵌64个光合有效辐射传感器的的探测器;反射系数传感器(BFS):综合了2个PAR传感器,并能很容易地计算出作物冠层的PAR及直射光与漫射光(the beam fraction)的比例关系;·数据采集终端:一种从采集和分析读数的高效、轻便的掌上电脑,内含2M内存;·SunData软件:用来对测量参数进行分析处理;三角架:用来安放BFS。

测量注意事项:
为了使其具有更为广泛的应用, 提高观测精度, 应进一步针对不同作物冠层进行参数ELADP的率定。

LAI<1 的情况下,Sunscan的测量结果较LAI-2000 更为准确。

应用SunScan测量时应在一日太阳高度角最高的时刻, 一般为12:
00~ 14: 00为宜。

测量时需要稳定的晴天。

3,TRAC
TRAC植物冠层分析仪由陈镜明教授研制,在冠层下方沿着横断面测定植物冠层吸收的光合有效辐射分量,然后将之转换为林隙比例分布,从而计算出叶面积指数等其它参数。

TRAC 通过测量聚集指数,不用假设叶片在空间随机分布,有效地解决了聚集效应的问题。

测量注意事项:
TRAC 需在天空晴朗无云条件下测量。

但当植被稀疏不连续时,尤其是在非均质程度较高的森林地区,考虑了聚集效应的TRAC、能获得更高的精度。

4,AccuPAR
线性探头中包括80个PAR光量子传感器,光谱响应范围为
400nm~700nm,分布间隔为1cm,用于接收环境光照中PAR部分的变化,仪器可以计算天顶角,通过设置也角分布参数X和测量冠层上下PAR的光斑比率(间隙率),可以计算植物冠层的LAI值。

该仪器由美国DECAGON DEVICES公司生产。

仪器测量注意事项:
可同时测量太阳直射和散射,在晴天下工作. 但由于仪器未考虑太阳半影效应影响,且针对低矮规则植被冠层开发设计,因此不宜于森林冠层LAI 的测量。

5,半球摄影方法
半球摄影方法(hemispherical canopy photography (DHP) 采用视场角接近或等于180毅的鱼眼镜头摄影,将整个半球空间投影在影像水平面上成像. 商业化鱼眼镜头有极化投影、正射投影、兰伯特等积投影和立体等角投影4 种投影方式,极化投影和立体等角投影为常见的投影方式.DHP 方法早期应用于森林冠层辐射分布测量研究,而冠层辐射分布直接取决于森林冠层LAI 及其空间分布,因此后来DHP方法被推广应用于森林冠层地面LAI 测量。

DHP 方法可单次测量上半球方向间隙率,因而其在冠层充分采样的同时可极大提高地面LAI 的测量精度及效率. 与其他光学测量方法相比,DHP 方法在冠层信息永久记录、冠层半球方向直射光及散射光分布测量、冠层聚集效应评估及结构参数测量等方面优势明显。

具体产品有如英国的HemiDIG数字植物冠层分析系统; 美国Wisconsin-Madison 大学研发的多波段植物冠层摄影仪
( multibandvegetat ion imager, MVI)和美国CID 公司的CI-100/ 110 Digital Plant Canopy Imager。

DHP 方法则适宜在黎明前、黄昏后和多云天气条件下观测。

采用DHP 方法时,相机曝光设置、相机类型、影像分辨率等观测条件均不同程度地影响LAI 测量精度。

6,直接测量方法
在冠层结构较小的作物(小麦)、草地地区使用了收获测量法比较准确。

直接测量法是一种传统的、相对精确的方法,通常作为间接测量法的有效验证。

在测量叶片面积时,通常使用的方法包括照相法、比叶面积法( SLA)等。

7,其他方法
北京师范大学遥感科学国家重点实验室屈永华提出了基于无线传感器网络的测量方法,目的是实现生长期内LAI的长期连续观测。

相关文档
最新文档