相似单元测试题精选.docx

合集下载

(完整word版)相似三角形单元测试卷(含答案)

(完整word版)相似三角形单元测试卷(含答案)

相似三角形单元测试卷(共100分)一、填空题:(每题5分,共35分)1、已知a =4,b =9,c 是a b 、的比例中项,则c = .2、一本书的长与宽之比为黄金比,若它的长为20cm ,则它的宽 是 cm (保留根号).3、如图1,在ΔABC 中,DE ∥BC ,且AD ∶BD =1∶2,则S S ADE ∆=四边形DBCE : .图1 图2 图34、如图2,要使ΔABC ∽ΔACD ,需补充的条件是 .(只要写出一种)5、如图3,点P 是RtΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条.图4 图5 图66、如图4,四边形BDEF 是RtΔABC 的内接正方形,若AB =6,BC =4,则DE = .7、如图5,ΔABC 与ΔDEF 是位似三角形,且AC =2DF ,则OE ∶OB = . 二、选择题: (每题5分,共35分)8、若k bac a c b c b a =+=+=+,则k 的值为( ) A 、2 B 、-1 C 、2或-1 D 、不存在9、如图6,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( )A 、21 B 、31 C 、32 D 、41 图7 图8 图910、如图7,△ABC 中,DE ∥FG ∥BC ,且DE 、FG 将△ABC 的面积三等分,若BC=12cm ,则FG 的长为( )A 、8cmB 、6cmC 、64cmD 、26cm 11、下列说法中不正确的是( )A .有一个角是30°的两个等腰三角形相似;B .有一个角是60°的两个等腰三角形相似;C .有一个角是90°的两个等腰三角形相似;D .有一个角是120°的两个等腰三角形相似.12、如图9, D 、E 是AB 的三等分点, DF∥EG∥BC , 图中三部分的面积分别为S 1,S 2,S 3, 则S 1:S 2:S 3( ) A.1:2:3 B.1:2:4 C.1:3:5 D.2:3:413、两个相似多边形的面积之比为1∶3,则它们周长之比为( )A .1∶3B .1∶9C .1D .2∶314、下列3个图形中是位似图形的有( )A 、0个B 、1个C 、2个D 、3个 三、解答题(15题8分,16题10分,17题12分,共30分) 15、如图,已知AD 、BE 是△ABC 的两条高,试说明AD ·BC=BE ·AC16、如图所示,小华在晚上由路灯A 走向路灯B,当他走到点P 时, 发现他身后影子的顶部刚好接触到路灯A 的底部,当他向前再步行12m 到达点Q 时, 发现他身前影子的顶部刚好接触到路灯B 的底部,已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB. (1)求两个路灯之间的距离;(2)当小华走到路灯B时,他在路灯A 下的影长是多少?17.如图,在矩形ABCD 中,AB=12cm ,BC=8cm .点E 、F 、G 分别从点A 、B 、C 三点同时出发,沿矩形的边按逆时针方向移动.点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,△EFG 的面积为S (cm 2) (1)当t=1秒时,S 的值是多少?(2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点E 、B 、F 为顶点的三角形与以点F 、C 、G 为顶点的三角形相似?请说明理由.AB C ED参考答案一、 填空题:(1)、1或4或16;(2)、±6;(3)、-94;(4)、1.6或2.5;(5)、)15(10 ; (6)、1:8;(7)、∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB ;(8)、31.5; (9)、0.2;(10)、3;(11)、2.4;(12)、1:2三、作图题: 23、(略) 四、解答题:24、证明:∵AD 、BE 是△ABC 的高 ∴∠ADC=∠BEC ∵∠C=∠C∴△ADC ∽△BEC ∴AD :BE=AC :BC ∴AD ×BC=BE ×AC25、解:由图得,AB=5,AC=25,BC=5,EF=2,ED=22,DF=10, ∴AB :EF=AC :ED=BC :DF=5:2∴△ABC ∽△DEF26、解:过点C 作C E ∥AD 交AB 于点E ,则CD=AE=2m ,△BCE ∽△B /BA / ∴A / B /:B /B=BE :BC 即,1.2:2= BE :4 ∴BE=2.4∴AB=2.4+2=4.4答:这棵树高4.4m 。

(试题4)《相似》单元测试以及答案

(试题4)《相似》单元测试以及答案

九年级(下)相似整章水平测试一、选择题(每小题3分,共24分)1.下列各组线段中,能成比例的是( ) A .3,6,7,9 B .2,5,6,8 C .3,6,9,18 D .11,12,13,142.如图1,△ABC 中,P 为AB 上一点,在下列四个条件中: (1)∠ACP =∠B ; (2)∠APC =∠ACB ; (3)AC 2=AP ·AB ; (4)AB ·CP =AP ·CB .能使△APC 与△ACB 相似的条件是( ) A .(1)(2)(3) B .(1)(3)(4) C .(2)(3)(4) D .(1)(2)(4)3.一个运动场的实际面积是6 400m 2,那么它在比例尺1∶1 000的地图上的实际面积是( ) A .6.4m 2 B .640cm 2 C .64cm 2 D .8cm 2 4.若两个图形成位似关系,则下列说法不正确的是( ) A .每对对应点所在的直线都相交于同一点 B .两个图形上的对应线段必定平行C .两个图形上的对应线段之比等于位似比D .两个图形的面积比等于位似比5.下列四组图形中不一定相似的是( ) A .有一个角等于40°的两个等腰三角形 B .有一个角为50°的两个直角三角形C .直角三角形被斜边上的高分成的两个直角三角形D .有一个角是60°的两个等腰三角形6.能判定△ABC 与△A ′B ′C ′相似的条件是( )A .ABACA B A C ='''' B .AB A B AC A C ''='',且∠A =∠C ′ C .ABBCA B A C ='''',且∠B =∠A ′ D .AB ACA B A C ='''',且∠B =∠B ′ 7.如图2,已知四边形ABCD 是梯形,若S △AOD ∶S △ACD =1∶3,则S △AOD ∶S △BOC 等于( ) A .1∶2 B .1∶3 C .1∶4 D .1∶98.如图3,是巴西FURNAS 电力公司的标志及结构图,作者用一大一小两颗星巧妙地重叠组合,自然地把高压输电塔与五角星—这一光明的象征联系在一起,那么结构图中的两个阴影三角形的面积之比S S 小大为( )A.13B.12C.512-D.352-二、填空题(每小题3分,共24分)9.三角形三边中点的连线所构成的三角形的面积与原三角形面积的比是.10.如图4,AC、BD相交于点O,要使△AOB∽△DOC,则要补充的条件可以是.11.如图5表示△COD和它放大后得到的△AOB,则它们的相似比是.12.雨后初晴,一学生在运动场上玩耍,从他前面2m远一块小积水处,他看到了旗杆顶端的倒影.如果旗杆底端到积水的距离为40m,该生的眼部高度是1.5m,那么旗杆的高度是m.13.矩形的半张纸和整张纸相似,那么整张纸的长是宽的倍.14.如图6,AF⊥BD,DE⊥AB,则图中相似的三角形有对.15.如图7,测量小玻璃管的口径的量具ABC上,AB的长为10mm,AC被分为60等份.如果小管口DE正好对着量具上30份处(DE∥AB),那么小管口径DE的长是mm.16.如图8,将正三角形的每一边三等分,而以其居中的那一条线段为底边再作等边三角形,然后以其代替底边,再将六角形的每边三等分,重复上述的作法,如此继续下去,就得到雪花曲线.如图8第一个三角形的边长为6,则第一个图形的周长是,第二个图形的周长是,第n个图形的周长是.三、解答题(本大题共52分)17.(本题6分)如图9,已知∠ABC=∠ACD,若AD=3cm,AB=7cm,试求AC的长.18.(本题6分)画出图10(1)、10(2)中的位似中心.19.(本题8分)如图11,△ABC ∽△DEF ,23AB DE ,BG 、EH 分别是∠ABC 、∠DEF 的角平分线,求△ABG 与△DEH 的周长比和面积比.20.(本题8分)如图12所示,在台球赛中,一球在A 点处,要从 A 射出,经球台边挡板 CD 反射,击中球B ,已知AC =10厘米,BD =15厘米,CD =50厘米,问反射点E 距点C 多远才能击中球B ?21.(本题10分)张华同学想利用树影测量树高,他在某一时刻测得长为1米的竹竿影长0.9米,但当他马上测量树影时,因树靠近一幢建筑物.影子不全落在地面上,有一部分影子在墙上,如图13,他先测得墙上的影高1.2米,又测得地面部分的影长2.7米,求得树高是多少?22.(本题14分)如图14,在平面直角坐标系内,已知点A (0,6),点B (8,0),AB =10.动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1)求直线AB 的解析式;(2)当t 为何值时,△APQ 与△AOB 相似,并求出此时点P 与点Q 的坐标.附加题:(本题20分,不计入总分)23.小胖和小瘦去公园玩标准的跷跷板游戏(如图15),两同学越玩越开心,小胖对小瘦说:“真可惜!我只能将你最高翘到1米高,如果我俩各边的跷跷板都再伸长相同的一段长度,那么我就能将你翘到1米25,甚至更高!” (1)你认为小胖的话对吗?请你作图分析说明;(2)你能否找出将小瘦翘到1米25高的方法?试说明.参考答案:一、1~8.CACDA CCD 二、9.1:410.答案不惟一,如A D =∠∠11.3512.3013.214.6 15.516.18,24,14183n -⎛⎫⨯ ⎪⎝⎭三、17.21cm .18.略.19.ABC △与DEH △的面积比4:9=.20.反射点E 在距点C 20厘米处才能击中球B . 21.树高是4.2米.22.(1)直线AB 的解析式为364y x =-+. (2)由题意,知AP t =,102AQ t =-.可分两种情况讨论:①当APQ AOB =∠∠时,有APQ AOB △∽△,此时3011t =(秒),36011P ⎛⎫⎪⎝⎭,,40361111Q ⎛⎫⎪⎝⎭,. ②当AQP AOB =∠∠时,有APQ AOB △∽△,如图2,此时5013t =(秒),28013P ⎛⎫ ⎪⎝⎭,,24601313Q ⎛⎫⎪⎝⎭,. 23.解:(1)小胖的话不对,理由略.(2)方案一:保持BO 长度不变,将OA 延长一半至E ,即只将小瘦一边伸长一半. 方案二:理由略,只将支架升高0.125米.。

相似单元测试题及答案

相似单元测试题及答案

相似单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪项不是相似图形的特点?A. 形状相同B. 面积相等C. 大小相同D. 角度相同2. 相似比的定义是什么?A. 两个图形对应边长的比B. 两个图形对应角的比C. 两个图形对应面积的比D. 两个图形对应周长的比3. 若两个三角形相似,它们的对应角相等,对应边成比例,那么它们的对应高也成比例吗?A. 是B. 否4. 相似图形的面积比与边长比的平方相等,这是根据什么定理得出的?A. 相似定理B. 勾股定理C. 毕达哥拉斯定理D. 面积比定理5. 两个相似多边形的对应边数必须相等吗?A. 是B. 否二、填空题(每题2分,共10分)6. 如果两个三角形的相似比是2:3,那么它们的对应边长之比是________。

7. 相似图形的周长比等于它们的________。

8. 两个相似圆的面积比是25:36,那么它们的半径比是________。

9. 根据相似图形的性质,如果两个图形相似,那么它们的对应角________。

10. 在相似三角形中,如果一个三角形的边长是另一个三角形边长的1.5倍,那么它们的面积比是________。

三、简答题(每题5分,共10分)11. 解释为什么相似三角形的对应角相等。

12. 描述如何判断两个多边形是否相似。

四、计算题(每题10分,共20分)13. 已知三角形ABC与三角形DEF相似,且AB:DE = 2:3,求三角形ABC的面积与三角形DEF的面积之比。

14. 如果一个矩形的长是另一个矩形长的1.5倍,宽是另一个矩形宽的0.8倍,求这两个矩形的面积比。

五、论述题(每题15分,共15分)15. 论述相似图形在建筑设计中的应用及其重要性。

答案:一、选择题1. B2. A3. A4. D5. A二、填空题6. 2:37. 相似比8. 5:69. 相等10. 2.25:1三、简答题11. 相似三角形的对应角相等,因为相似三角形的定义就是它们的对应角相等,这是相似三角形的基本性质之一。

初中数学相似形单元测试.docx

初中数学相似形单元测试.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx 题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:在比例尺1:10000的地图上,相距2cm的两地的实际距离是()。

A.200cm B.200dm C.200m D.200km试题2:已知线段a=10,线段b是线段a上黄金分割的较长部分,则线段b的长是()。

A.B.C.D.试题3:若则下列各式中不正确的是()。

A.B.C.D.试题4:下列图形一定相似的是()。

A.所有的直角三角形B.所有的等腰三角形C.所有的矩形 D.所有的正方形三角形三边之比3:5:7,与它相似的三角形最长边是21cm,另两边之和是()。

A.15cm B.18cm C.21cm D.24cm试题6:△ABC∽△A1B1C1,相似比为2:3,△A1B1C1∽△A2B2C2,相似比为5:4,则△ABC与△A2B2C2的相似比为()。

A.B.C. D.试题7:如图,P是Rt△ABC的斜边BC上异于B,C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()。

A.1条 B.2条 C.3条D.4条试题8:如图,电灯P 在横杆AB 的正上方,AB在灯光下的影子为CD,AB ∥CD,AB=2m,CD=5m,点P到CD的距离是3m,则P到AB的距离是()。

A. B. C. D.试题9:若,则=_________。

试题10:已知,则=_________。

若且,则∶=_________。

试题12:2和8的比例中项是_________;线段2㎝与8㎝的比例中项为_________。

试题13:如果两个相似三角形的面积比为3∶4,则它们的周长比为_________。

试题14:若,且∠A=45°,∠B=30°,则∠C′=_________。

第27章相似测试题

第27章相似测试题

D B C A N M O 第27章《相似》单元测试题 一、选择题(每小题3分,共30分)1、如图,已知AB ∥CD ∥EF ,那么下列结论正确的是( )A .AD DF =BC CEB .BC CE =DF ADC .CD EF =BC BE D .CD EF =AD AF2、已知△ABC ∽△DEF ,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为( )(A)1:2 (B)1:4 (C)2:1 (D)4:13、如图,小正方形的边长均为1,则下列图中的三角形(阴影部份)与ABC △相似的是( )4、如图,△ABC 中,A ,B 两个极点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边长放大到原先的2倍,记所得的像是△A ′B ′C .设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 5、如图,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部份)与原矩形相似,则留下矩形的面积是( )A .2 cm 2B .4 cm 2C . 8 cm 2D .16 cm 2六、如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 别离是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形 B .四边形MBON 和四边形MODN 都是菱形 C .四边形AMON 与四边形ABCD 是位似图形D .四边形MBCO 和四边形NDCO 都是等腰梯形7、如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =, AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32B .76C .256D .2 八、美是一种感觉,当人体下半身长与身高的比值越接近时,越给人一种美感.如图,某女士身高165cm ,下半身长x 与身高l 的比值是,为尽可能达到好的成效,她应穿的高跟鞋的高度大约为( )A .4cmB .6cmC .8cmD .10cm 九、如图正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O , 则 AO DO 等于( ) A .2 5 3 B .13 C .23 D .12 10、一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A .第4张B .第5张C .第6张D .第7张二、填空题(每小题3分,共18分)B .C .D . AB C A .A B F C D E O1一、在□ABCD 中,E 在DC 上,若:1:2DE EC =,则:BF BE = .1二、如图,在ABC △中,DE BC ∥,若123AD DE BD ===,,,则BC = .13、在平面直角坐标系中,△ABC 极点A 的坐标为(2,3),若以原点O 为位似中心,画△ABC 的位似图形A B C '''△,使△ABC 与A B C '''△的相似比等于12,则点A ′的坐标为 . 14、如图,Rt ABC △中,90ACB ∠=°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =△四边形,则CF AD= . 1五、将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为极点的三角形与△ABC 相似,那么BF 的长度是 . 1六、如图,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论: ①AFC C ∠=∠;②DF CF =;③ADE FDB △∽△;④BFD CAF ∠=∠.其中正确的结论是 (填写所有正确结论的序号).三、(本大题共3小题,第17题6分,第17、18题各7分,共20分)17、如图,在△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC .1八、如图,在矩形ABCD 中,点E F 、别离在边AD DC 、上,ABE DEF △∽△,692AB AE DE ===,,,求EF 的长.【关键词】矩形的性质1九、如图,△ABC 内接于⊙O ,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC 相似吗?请证明你的结论.A D E CB 第12题 第14题 E (第15题图) A B ′ CF B四、(本大题共3小题,每小题8分,共24分)20、小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发觉对面墙上有这栋楼的影子,针对这种情形,他设计了一种测量方案,具体测量情形如下:如示用意,小明边移动边观看,发觉站到点E 处时,能够使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.现在,测得小明落在墙上的影子高度CD =,CE =,CA =30m (点A E C 、、在同一直线上). 已知小明的身高EF 是,请你帮小明求出楼高AB (结果精准到).2一、如图,网格中的每一个小正方形的边长都是1,每一个小正方形的极点叫做格点.△ACB 和△DCE 的极点都在格点上,ED 的延长线交AB 于点F .(1)求证:△ACB ∽△DCE ;(2)求证:EF ⊥AB .2二、如图,△ABC 在方格纸中(1)请在方格纸上成立平面直角坐标系,使A (2,3),C (6,2),并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A ′B ′C ′;(3)计算△A ′B ′C ′的面积S .五、(本大题共2小题,每小题9分,共18分)23、如图,△ABC 中,∠C =90°,AC =4,BC =3。

(完整word版)九年级数学相似三角形单元测试题及答案

(完整word版)九年级数学相似三角形单元测试题及答案

九年级数学相似单元测试(1)一.选择题(每小题3分洪30分) 1.在比例尺为 A.1250km b 3 1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( C. 12.5km D.1.25km 2•已知a 2 B.125km =c = 0,则匕空的值为 4 cA. 4 5 3. 已知/ ABC 的三边长分别为 相似,那么/ A ' B ' C '的第三边长应该是B.11 2D. 1 2 2,,6,2,/A ' B ' C '的两边长分别是 ( C.2 1 和.3,如果/ ABC 与/ A ' B ' C ' ) A. 24. 在相同时刻,物高与影长成正比 C.-6D.三 2 3 如果高为 1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为 ( ) D 15米 D A 20米 B 18米 5. 如图,/ACB= Z ADC=90 ° ,BC=a,AC=b,AB=c,要使/ ABC s/CAD, 只要CD 等于 ( ) 2 2 2A. —B.—C.abD.— c a c c 6. —个钢筋三角架三长分别为20cm,50cm,60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和 50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ( ) A. 一种 B.两种 C.三种 D.四种 7、 用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在 A 原图形的外部 B 原图形的内部 C 原图形的边上 D 任意位置 8、 如图,口 ABCD 中,EF // AB , DE : EA = 2 : 3, EF = 4,贝U CD 的长( )A 16 A.亍 C 16米 C . 10 D . 16 窗户的高在在室地直线上影长则那的高貉为窗户的下檐到教严面勺距离 C . 2米 D . 1.5 米BC=1米(点B CABC 的边BC10、 某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ 上,△ ABC 中边BC=60m ,高AD=30m ,则水池的边长应为( ) A 10m B 20m C 30m D 40m 二傾空题(每小题3分洪30分) 11、 已知冬=3,则= y 4 y 12、 .已知点C 是线段AB 的黄金分割点,且AC>BC,则AC : AB= _________ . 13、 .把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 ___________________ .14、 如图,/ABC 中,D,E 分别是AB,AC 上的点(DE.JBC ),当 ________ 或 ________ 或 _______ 时,/ ADE 与/ ABC 相似. 15、 在厶ABC 中,/ B = 25° , AD 是BC 边上的高,并且AD 2 = BD • DC ,则/ BCA 的度数为 _______________ 。

图形的相似单元测试(含答案)

图形的相似单元测试(含答案)

图形的相似单元测试一、选择题1、【基础题】在比例尺为1:5000的地图上,量得甲,乙两地的距离为25 cm ,则甲、乙两地的实际距离是 ( ) A. 1250千米 B. 125千米 C. 12.5千米 D. 1.25千米2、【基础题】已知135=ab ,则ba b a +-的值是( ) ★ A. 32 B. 23 C. 49 D. 943、【基础题】如右图,在△ABC 中,看DE ∥BC ,12AD BD =,DE =4 cm ,则BC 的长为 ( ) A .8 cm B .12 cm C .11 cm D .10 cm4、【基础题】如右图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( ) A .1:1B .1:2C .1:3D .1:45、【基础题】如下图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( ) ★★★6、【基础题】下列结论不正确的是( ) ★ A. 所有的矩形都相似 B. 所有的正方形都相似 C. 所有的等腰直角三角形都相似 D. 所有的正八边形都相似7、【基础题】下列说法中正确的是( ) ★A. 位似图形可以通过平移而相互得到;B. 位似图形的对应边平行且相等C. 位似图形的位似中心不只有一个D. 位似中心到对应点的距离之比都相等8、【综合题Ⅰ】如右上图,ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件中,不能推出△ABP 与△ECP 相似的是( ) ★★★A. ∠APB =∠EPC ;B. ∠APE =90°C. P 是BC 的中点D. BP ︰BC =2︰3 9、【综合题Ⅱ】如右上图,Rt △ABC 中,AB ⊥AC ,AB =3, AC =4,P 是BC 边上一点,作PE ⊥AB 于E ,PD ⊥AC 于D ,设BP =x ,则PD+PE =( ) A.35x + B. 45x -C.72D.21212525x x -10、【综合题Ⅲ】如图,在Rt ABC △内有边长分别为a ,b ,c 的三个正方形.则a 、b 、c 满足的关系式是( )AB CA. b a c =+B. b ac =C. 222b a c =+D. 22b a c == 二、填空题11、【基础题】在同一时刻,高为1.5m 的标杆的影长为2.5m ,一古塔在地面上影长为50m ,那么古塔的高为 .12、【基础题】两个相似三角形面积比是9∶25,其中一个三角形的周长为36cm ,则另一个三角形的周长是 . 13、【综合题Ⅰ】如左下图,在△ABC 中,AB =5,D 、E 分别是边AC 和AB 上的点,且∠ADE =∠B ,DE =2,那么AD·BC = .14、【基础题】如右上图,在△ABC 和△DEF 中,G 、H 分别是边BC 和EF 的中点,已知AB =2DE ,AC =2DF ,∠BAC =∠EDF . 那么AG :DH = ,△ABC 与△DEF 的面积比是 .15、【基础题】把一个三角形改做成和它相似的三角形,如果面积缩小到原来的21倍,边长应缩小到原来的____倍. 16、【综合Ⅱ】如左下图在Rt △ABC 中, ∠ACB =90°,CD ⊥AB 于D ,若AD =1,BD =4,则CD = .17、【基础题】如右上图,一人拿着一支厘米小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上12厘米的长度恰好遮住电线杆,已知手臂长约60厘米,则电线杆的高为 .18、【基础题】已知一本书的宽与长之比为黄金比,且这本书的长是20 cm ,则它的宽为_____cm.(结果保留根号) 19、【综合Ⅲ】顶角为36°的等腰三角形称为黄金三角形,如图,在△ABC 中,AB =AC =1,∠A =36°,BD 是三角形ABC 的角平分线,那么AD =__ 20、【提高题】如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,213243A B A B A B ∥∥.若212A B B △、323A B B △的面积分别为1、4,则图中三个阴影三角形面积之和为 .(第20题图)OA 1 A 2A 3A 4 AB B 1 B 2 B 3 14三、解答题21、【基础题】(2008无锡)如图,已知点E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于点F ,求证△ABF ∽△EAD .22、【综合Ⅰ】如图27-106所示,已知E 为ABCD 的边CD 延长线上的一点,连接BE 交AC 于O ,交AD 于F .求证BO 2=OF ·OE .23、如图,在平面直角坐标系中,已知OA=12 cm ,OB=6 cm ,点P 从O 点开始沿OA 边向点A 以1cm/s 的速度移动,点Q 从点B 开始沿BO 边向点O 以1cm/s 的速度移动,如果P 、Q 同时出发,用t (单位:秒) 表示移动的时间(06t ≤≤),那么: (1)当t 为何值时, △POQ 与△AOB 相似?(2)设△POQ 的面积为y ,求y 关于t 的函数解析式。

人教版九年级下册数学《相似》单元测试卷(含答案)

人教版九年级下册数学《相似》单元测试卷(含答案)

人教版九年级下册数学《相似》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知a b c k b ca ca b===+++,则直线2y kx k =+一定经过( )A .1第,2象限B .2第,3象限C .3第,4象限D .1第,4象限A .13B .2C .5D .33.若:2:3x y =,则下列各式不成立的是( )A .53x y y += B .13y x y -= C . 123x y = D .1314x y +=+ 4.如图,在平行四边形ABCD 中,4AC =,6BD =,P 是BD 上的任一点,过点P 作EF AC ∥,与平行四边形的两条边分别交于点E 、F ,设BP x =,EF y =,则能反映y 与x 之间关系的图象是( )A .B .C .D . 5.如图,已知ABC ∆中,:1:3AE EB =,:2:1BC CD =,AD 与CE 相交于F ,则AF EFFCFD+的值为( )A .52 B .1 C .32D .2 6.如图,小明站在C 处看甲、乙两楼顶上的点A 和点E C E A ,、、三点在同一直线上,点B D 、分别在点E A 、的正下方,且D B C 、、三点在同一直线上,B C 、相距20米,D C 、相距40米,乙楼BE 高15米,则甲楼AD 的高为(小明身高忽略不计)( )A .40米B . 20米C . 15米D . 30米 7.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) A .第一、二象限 B .第一、二、三象限 C .第二、三、四象限 D .第三、四象限8.若两个相似三角形的面积之比为14∶,则它们的周长之比为( )A .12∶B .14∶C .15∶ D .116∶ 9.某校每位学生上、下学期各选择一个社团,下表为该校学生上、下学期各社团的人数比例.若该校上、下学期的学生人数不变,相较于上学期,下学期各社团B .舞蹈社不变,溜冰社不变C .舞蹈社增加,溜冰社减少D .舞蹈社增加,溜冰社不变A DEFCB10.已知,AB 是⊙O 的直径,且C 是圆上一点,小聪透过平举的放大镜从正上方看到水平桌面上的三角形图案的B ∠(如图所示),那么下列关于A ∠与放大镜中的B ∠关系描述正确的是( )A.090A B ∠+∠=B.=A B ∠∠C.090A B ∠+∠>D.A B ∠+∠的值无法确定二 、填空题(本大题共5小题,每小题3分,共15分)11.如图所示,乐器上的一根弦80AB cm =,两个端点A B ,固定在乐器面板上,支撑点C 是靠近点B 的黄金分割点(即AC 是AB 与BC 的比例中项),支撑点D 是靠近点A 的黄金分割点,则AC = cm ,DC = cm .12.在ABC △和DEF △中,22AB DE AC DF A D ==∠=∠,,,如果ABC △的周长是16,面积是12,那么DEF △的周长、面积依次为 .13.如图,已知梯形ABCD 中,AD BC ∥,对角线AC 、BD 分别交中位线EF 于点H 、G ,且121EG GH HF =∶∶∶∶,那么AD BC ∶等于 .14.如图,在ABC △中,CD 是高,CE 为ACB ∠的角平分线,若15,20,12AC BC CD ===,则CE 的长等于 .15.如图,点1234,,,A A A A 在射线OA 上,点123,,B B B 射线OB 上,且112233A B A B A B ∥∥,CDHGFE DCBA ABCD E21A B ∥32A B 43A B ∥.若212323,A B B A B B △△的面积分别为1,4,则图中三个阴影三角形面积之和为 .三 、解答题(本大题共7小题,共55分)16.已知,如图,四边形ABCD ,两组对边延长后交于E 、F ,对角线BD EF ∥,AC的延长线交EF 于G .求证:EG GF =.17.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒.⑴若4a =厘米,1t =秒,则PM =______厘米;⑵若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比; ⑶若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围;⑷是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由.4321G FECDBAP N NMQDC BAQPMDCBA18.如图所示,已知四边形BDEF 是菱形,12DC BD =,且4DC =,求AF 的长.19.如图,在ABC △中,AD 平分BAC ∠,AD 的垂直平分线交AD 于E ,交BC 的延长线于F ,求证:2FD FB FC =⋅.20.如图, Rt ABC △中,90C ∠=︒,有一内接正方形DEFC ,连接AF 交DE 于G ,15AC = ,10BC =,求GE .21.如图所示,以长为2的定线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F F ,使PF PD =,以AF 为边作正方形AMEF ,点M 在AD 上.(1)求,AM DM 的长;(2)点M 是AD 的黄金分割点吗?为什么?ABCDEF EFD C B AGABC DEP22.在ABC ∆中,120BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,求证:AD AB AC=+.D CB A人教版九年级下册数学《相似》单元测试卷答案解析一 、选择题1.B;当0a b c ++≠时,根据比例的等比性质,得:()122a b c k a b c ++==++,此时直线为112y x =+,直线一定经过1,2,3象限. 当0a b c ++=时,即a b c +=-,则1k =-,此时直线为2y x =--,即直线必过2,3,4象限.综合两种情况,则直线必过第2,3象限. 【解析】分情况讨论:3.D;根据比例的性质公式:bd b d =⇔=;b d b d=⇔=可知,,A B C 正确,只有D 错误. 4.C;设AC 交BD 于O ,∵四边形ABCD 是平行四边形, ∴132OD OB BD ===,当P 在OB 上时, ∵EF AC ∥,∴BP BF EF OB BC AC ==,∴34x y =,∴43y x =, 当P 在OD 上时,同法可得:DP DF EF OD DC AC ==,∴634x y -=,∴483y x =-+,∵两种情况都是一次函数,图象是直线.故选CPFEDCBA5.C;这类题的解法:找适当的点,作适当的平行线,构造基本图形解题,或者直接运用梅氏定理来解题. 6. D ;BC BECD AD=20BC DB == 15BE = ∴30AD = 7.A;由已知得()b c t a +=;()c a t b +=;()a b t c +=,三式相加得:()2a b c t a b c ++=++,①当0a b c ++≠时,12t =;②当0a b c ++=时,a b c +=-,1t =-. ∴一次函数2y tx t =+为1y x =-+或1124y x =+ ∵1y x =-+过第一、二、四象限;1124y x =+过第一、二、三象限; ∴一次函数2y tx t =+的图象必定经过的象限是第一、二象限.【解析】先根据等式求出t 的值,从而得到一次函数的解析式,再根据一次函数的性质分析经过的象限即可.(注意有两种情况). 8.A10.A二 、填空题11.40;点C 是靠近点B 的黄金分割点,∴:AC AB =,即8040AC AB ==,又∵点D 是靠近点A 的黄金分割点,∴160-40BD =,∴8080160DC AC BD AB =+-=-=12.8;3【解析】根据已知可证ABC DEF △∽△,且ABC △和DEF △的相似比为2,再根据相似三角形周长的比等于相似比,面积的比等于相似比的平方即可求DEF △的周长、面积.13.1∶3;∵根据平行线分线段成比例定理可得:EG 、GF 分别是ABD △和DBC △的中位线.那么2AD EG =,2BC GF =. ∴:21:[221]1:3AD BC =⨯⨯+=()()由勾股定理知9,16AD BD ==.所以,25AB AD BD =+=. 故由勾股定理的逆定理知ACB △为直角三角形,且90ACB ∠=︒. 作EF BC ⊥,垂足为F .设EF x =.由1452ECF ACB ∠=∠=︒,得CF x =.于是,20BF x =-. 因为EF AC ∥,所以,EF BF AC BC =,即206015207x x x -=⇒=.因此,7CE ==.15.10.5∵212A B B △,323A B B △的面积分别为1,4 又∵22332132,A B A B A B A B ∥∥ ∴2233212323,OB A OB A A B B A B B ∠=∠∠=∠ ∴122233B B A B B A △∽△ ∴1222233312B B A B B B A B == FE DCBA∴233412A A A A = ∵22323322323331,4A B A B A B S A B A B B S A B ==△△△的面积是4 ∴223323122A B A A B B S S ==△△(等高的三角形的面积的比等于底边的比)同理可得:3343232248A B A A B B S S ==⨯=△△,1122121110.522A B A A B B S S ==⨯=△△∴三个阴影面积之和为0.52810.5++=.【解析】由平行得到相似的三角形.已知212A B B △△A 2B 1B 2,323A B B △的面积分别为1,4,且两三角形相似,因此可得出223312A B A B =,由于223A B A △与233B A B △是等高不等底的三角形,所以面积之比即为底之边比,因此这两个三角形的面积比为1:2,根据323A B B △的面积为4,可求出223A B A △的面积,同理可求出334A B A △和112A B A △的面积.即可求出阴影部分的面积.三 、解答题16.证法一:过C 作MN EF ∥交AE 、AF 于M N ,, 则有MC EM FN CNBD EB FD BD===, ∴MC CN =, 又∵MN EF ∥, ∴MC AC CNEG AG GF==, ∴EG GF =.证法二:由塞瓦定理的充分性可得:1EG FD AB GF DA BE ⋅⋅=.又因为AB ADBE DF=,代入上式得1EG FD AD GF DA DF ⋅⋅=,即1EGGF=.所以.EG GF =NM G FECD B A17.⑴ 34PM =,⑵ 2t =,使PNB PAD △∽△,相似比为3:2⑶ ∵PM AB CB AB AMP ABC ∠=∠⊥,⊥,,AMP ABC △∽△,∴PM AM BN AB =即PM a t t a -=,∵()t a t PM a -=, ∵(1)3t a QM a-=- 当梯形PMBN 与梯形PQDA 的面积相等,即()()22QP AD DQ MP BN BM ++= ()33(1)()22t a t t a a t t t a a -⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭==化简得66a t a =+, ∵3t ≤,∴636a a+≤,则6a ≤,∴36a <≤, ⑷ ∵36a <≤时,梯形PMBN 与梯形PQDA 的面积相等∴梯形PQCN 的面积与梯形PMBN 的面积相等即可,则CN PM = ∴()3ta t t a -=-,把66a t a=+代入,解之得a =±a = 所以,存在a,当a =PMBN 与梯形PQDA 的面积、梯形PQCN 的面积相等.18.由平行线的性质能判定AFE △和EDC △的任意两个角相等,证明AFE EDC△∽△得到对应线段成比例21FE AF DC DE ==,4DC =,8FE DE BD BF ====,所以16AF =. 19.连接AF∵EF 垂直平分AD ,∴AF DF =,∴4DAF ∠=∠,即423∠=∠+∠,又∵41B ∠=∠+∠,∴231B ∠+∠=∠+∠,∵AD 平分BAC ∠,∴12∠=∠,∴3B ∠=∠,4321AEB DC F又∵CFA AFB ∠=∠,∴CFA AFB ∆∆∽,∴2FA FC FB =⋅.又∵AF DF =,∴2FD FB FC =⋅20.设正方形的边长为a ,则15-AD a =∵DE BC ∥ ∴AD DE AC BC = 15-1510a a = 解得6a =又在AFB △中GE BF ∥ 有GE AE DE BF AB BC==, GE AD BP AC =∴9415GE = 125GE =21.1,3AM DM =M 是AD 的黄金分割点.(1)在Rt APD △中,1,2AP AD ==,由勾股定理知:PD ==∴1AM AF PF AP PD AP ==-=-,3DM AD AM =-=故1,3AM DM ==(2)点M 是AD 的黄金分割点.由于AM DM AD AM = ∴点M 是AD 的黄金分割点.【解析】(1)要求AM 的长,只需求得AF 的长,又AF PF AP =-,PF PD ==1,3AM AF DM AD ===(2)根据(1)中的数据得:,AM DM AD AM =根据黄金分割点的概念,则点M 是AD 的黄金分割点.22.解法一:本题可根据角平分线类相似的模型首先试着作出辅助线:过点D 作AB 的平行线,由于所给120BAC ∠=︒平分之后有两个60的特殊角,可判定ADE △为等边三角形,再根据相似和平行导出线段的比例关系,最关键的一步是,将所得的两组线段整体相加,得到一个新的等式,最后发现问题得证.解法二:分别以,AB AC 为边向外作两个等边三角形,即ABM △和ACN △,由平分后的角度为60,可轻易证明AD BM CN ∥∥得到两组比例线段CD AD BC BM=和BD AD BC CN=,两者相加后又重新得到一个新的等式,再根据等边三角形的特点代换相等的线段,最后问题也得证. (本题只给出第一种解法的步骤).【解析】过点D 作AB 的平行线,交AC 于点E . ∵120BAC ∠=︒,BAD CAD ∠=∠, ∴60BAD CAD ∠=∠=︒∵DE AB ∥,∴60ADE BAD ∠=∠=︒∴AD AE DE == ∵DE CD DE AB AB BC ⇒=∥,AE BD AC BC = ∴1DE AE CD BD AB AC BC BC+=+= 等式两边同除以AD ,则有:111AB AC AD += E D C B ANM DC B A。

《相似》单元达标检测(数学)及答案.doc

《相似》单元达标检测(数学)及答案.doc

第27章 《相似》单元达标检测(时间:100分钟,分值:150分)一、选择题(每题4分,共40分) 1.若560a b =≠,则a ba b+-的值是( ) A.11B.11- C.111D.111-2.若ABC DEF △∽△,且它们的面积比为94,则周长比是( ) A.8116 B.32 C.94 D.233.如图1,在Rt ABC △中,CD 是斜边上的高,DE BC ⊥,垂足为E ,则图中与ABC △相似的三角形(不包括ABC △)共有( ) A.5个 B.4个 C.3个 D.2个4.在1:1000000 地图上,A B ,两点之间的距离是5cm ,则A B ,两地的实际距离是( ) A.5千米 B.50千米 C.500千米 D.5000千米 5.把矩形的长扩大2倍,宽缩小2倍,则矩形的面积( ) A.不变 B.扩大2倍 C.缩小2倍 D.扩大4倍 6.如图2,在矩形ADBC 中,1216AC BC ==,,将此矩形 折叠,使点A 与点B 重合,则折痕EF 的长是( ) A.13 B.14 C.15 D.16 7.AD 是ABC △的高,且2AD BD DC =,则BAC ∠的度数 为( ) A.小于90B.大于90C.等于90D.不能确定8.一个矩形的长为a ,宽为()b a b >,如果把这个矩形截去一个正方形后所余下的矩形与原矩形相似,那么a b ,应满足的关系式是( ) A.220a ab b +-= B.220a ab b ++= C.220a ab b --=D.220a ab b -+=9.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使⊿ABC ∽⊿CAD, 只要CD 等于 ( )A.c b 2B.a b 2C.cabD.c a 2 10.一个钢筋三角架三 长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ( ) A.一种 B.两种 C.三种 D.四种 二、填空题(每题4分,共20分)11.要在半径为4cm 的圆形主水管的出水口接上几根半径为2cm 圆形分水管,为了尽量利用主水管的出水量,则可以接上 根分水管.12.若235x y y z +==,则______x y zx++=.13.已知坐标平面内,ABC △的各顶点坐标分别是(01)(23)(20)A B C --,,,,,,DEF △各顶点坐标分别是(02)(46)(40)D E F --,,,,,,则ABC △与DEF △的面积之比是 . 14.在四边形ABCD 中,AD BC AC ∥,和BD 相交于点O ,51512AD BC AC ===,,,则OA= ____________.15.已知△ABC 周长为1,连结△ABC 三边中点构成第二个三角形,再连结第二个三角形三边中点构成第三个三角形,以此类推,第2006个三角形的周长为 三、解答题 ( 90分) 16.、(8分)如图,测量小玻璃管口径的量具ABC ,AB 的长为10cm ,AC 被分为60等份.如果小玻璃管口DE 正好对着量具上20等份处,且DE ∥AB ,那么小玻璃管口径DE 是多大? 17.(8分)以点O 为位似中心,把如图所示的图形放大2倍.18.(8分)在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.请你在如图所示的4×4的方格纸中,画出两个相似但不全等的格点三角形(要求:所画三角形为钝角三角形,标明字母,并说明理由).19.(8分)如图3,在Rt ABC △中,CD 是斜边上的中线,DF AB ⊥,交BC 的延长线于点F ,且69CD DF ==,.求DE 的长. 20.(10分)如图4,ABC △是等边三角形,D E ,在BC 所在的直线上,且AB AC BD CE =. 试说明:ABD ECA △∽△. 21.(10分)如图,梯形ABCD 中.AB∥CD.且AB=2CD , E,F 分别是AB ,BC 的中点。

相似单元测试题(精华版)

相似单元测试题(精华版)

相似单元测试班级______________姓名_________________成绩________________________一.选择题(3*8=24)1.(2014•重庆)如图,△ABC∽△DEF,相似比为1:2.若BC=1,则EF的长是()A .1:2 B.2:3 C.1:3D .1:4第1题图第2题图第3题图第4题图2.(2012•北海)如图,梯形ABCD中AD∥BC,对角线AC、BD相交于点O,若AO:CO=2:3,AD=4,则BC等于()A.12 B.8 C.7 D. 6 3.(2014•南平)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A.1:2 B.2:3 C.1:3 D.1:44.(2014•本溪)如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A. 1 B.2 C.3 D.45.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2第5题图第6题图第7题图第8题图6(2013•荆州)如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,角∠ACB的平分线CE交AD于E,点F是AB的中点,则S△AEF:S四边形BDEF为()A.3:4B.1:2C.2:3D.1:37(2013聊城)如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD 的面积为a,则△ACD的面积为()A.a B.C.D.8(2013•柳州)小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()A.10米B.12米C.15米D.22.5米二.填空题(3*10=30)F ED CBA9.(2014•黔南州)如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD=4,DB=2,则的值为 _________ .第9题图 第10题图 第11题图 第12题图10.(2013•牡丹江)如图,在△ABC 中,D 是AB 边上的一点,连接CD ,请添加一个适当的条件 _______ __ ,使△ABC ∽△ACD .(只填一个即可)11.(2013•安顺)在平行四边形ABCD 中,E 在DC 上,若DE :EC=1:2,则BF :BE= _________ .12.(2013•天津)如图,在边长为9的正三角形ABC 中,BD=3,∠ADE=60°,则AE 的长为 _________ .13(2013•眉山)如图,△ABC 中,E 、F 分别是AB 、AC 上的两点,且21==FC AF EB AE ,若△AEF 的面积为2,则四边形EBCF 的面积为_________第13题图 第14题图 第15题图 第16题图 14.(2013•威海)如图,AC ⊥CD ,垂足为点C ,BD ⊥CD ,垂足为点D ,AB 与CD 交于点O .若AC=1,BD=2,CD=4,则AB= _________ .15(2013•厦门)如图3,在△ABC 中,DE ∥BC ,AD =1,AB =3,DE =2,则BC = .16(2013•白银)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为 米.17(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h 为 .18.(2014•武汉,第6题3分)如图,线段AB 两个端点的坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD ,则端点C 的坐标为__________________图3E DC BA第17题图 第18题图三.解答题 19(8分).(2014•南平)如图,已知△ABC 中,点D 在AC 上且∠ABD=∠C , 求证:AB 2=AD•AC .20.(10分)(2012•陕西)如图,在▱ABCD 中,∠ABC 的平分线BF 分别与AC 、AD 交于点E 、F . (1)求证:AB=AF ; (2)当AB=3,BC=5时,求的值.21 (8分)已知:如图,△PQR 是等边三角形,∠APB =120° 求证:△PAQ ∽△BPR ;PABRQ22(10分)(2013•苏州)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm.点E,F,G分别从A,B,C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s.当点F到达点C (即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB'F,设点E,F,G运动的时间为t(单位:s).(1)当t=s时,四边形EBFB'为正方形;(2)若以点E,B,F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B'与点O重合?若存在,求出t的值;若不存在,请说明理由.23(10分). (2014•广西玉林市、防城港市,第23题9分)如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.。

初中数学相似单元测试考试卷及答案 (新版)新部编版.docx

初中数学相似单元测试考试卷及答案 (新版)新部编版.docx

xx学校xx学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列四条线段中,不是成比例线段的为( )A.a=3,b=6,c=2,d=4B.a=4,b=6,c=5,d=10C.a=1,b=,c =,d=D.a=2,b=,c=,d=2试题2:如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为( )A.1 B.2 C.3 D.4试题3:如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C1D1的长是( )A.10 B.12 C. D.评卷人得分试题4:如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为( )A.(2,5) B.(2.5,5)C.(3,5) D.(3,6)试题5:如图,DE∥BC,若S△ADE∶S△ABC=4∶25,AD=4,则BD的值为( )A.5 B.6 C.7 D.8试题6:如图,根据测试距离为5 m的标准视力表制作一个测试距离为3 m的视力表,如果标准视力表中“E”的长a是3.6 cm,那么制作出的视力表中相应“E”的长b是( )A.1.44 cm B.2.16 cmC.2.4 cm D.3.6 cm试题7:如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,若AC=2,则AD的长是( )A. B. C.-1 D.+1试题8:如图所示,四边形ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件:①∠APB=∠EPC;②∠APE=∠APB;③P是BC的中点;④BP∶BC=2∶3.其中能推出△ABP∽△ECP的有( )A.4个B.3个C.2个D.1个试题9:如图,已知=,请添加一个条件,使△ADE∽△ABC,这个条件可以是____________.(写出一个条件即可)试题10:若△ABC∽△A′B′C′,且AB∶A′B′=3∶4,△ABC的周长为12 cm,则△A′B′C′的周长为____________.试题11:如图,在△ABC中,D、E分别是边AC、AB上的点,且AD=2,DC=4,AE=3,EB=1,则=____________.试题12:如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE 与点B在同一直线上.已知纸板的两条直角边DE=40 cm,EF=20 cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= m.试题13:已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O.以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系.以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为____________.试题14:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.试题15:如图,在边长均为1的小正方形网格纸中,△OAB的顶点O,A,B均在格点上,且O是直角坐标系的原点,点A在x轴上.(1)以O为位似中心,将△OAB放大,使得放大后的△OA1B1与△OAB对应线段的比为2∶1,画出△OA1B1(所画△OA1B1与△OAB 在原点两侧);(2)分别写出点A1、B1的坐标.试题16:如图,已知四边形ABCD的对角线AC、BD交于点F,点E是BD上一点,且∠BCA=∠ADE,∠CAD=∠BAE.求证:(1)△ABC∽△AED;(2)BE·AC=CD·AB.试题17:如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P,Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么(1)设△POQ的面积为y,求y关于t的函数关系式;(2)当t为何值时,△POQ与△AOB相似.试题18:已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.(1)如图1,求证:EA·EC=EB·ED.(2)如图2,若=,AD是⊙O的直径,求证:AD·AC=2BD·BC.试题1答案:B试题2答案:B试题3答案:C试题4答案:B试题5答案:B试题6答案:B试题7答案:C试题8答案:C试题9答案:答案不唯一,如:∠D=∠B等试题10答案:16 cm试题11答案:试题12答案:5.5试题13答案:(3n-1,0)试题14答案:∵AD=DB,∴∠B=∠BAD.∵∠BDA=∠1+∠C=∠2+∠ADE,又∵∠1=∠2,∴∠C=∠ADE.∴△ABC∽△EAD.试题15答案:(1)如图.(2)由题意得:A1(4,0),B1(2,-4).试题16答案:(1)∵∠BAE=∠DAC,∠BAC=∠BAE-∠CAE,∠DAE=∠DAC-∠CAE,∴∠BAC=∠DAE.∵∠ACB=∠ADE,∴△ABC∽△AED.(2)∵△ABC∽△AED,∴=.∵∠BAE=∠CAD,∴△ABE∽△ACD.∴=,即BE·AC=CD·AB.17.试题17答案:∴y=×OP×OQ=×t×(6-t)=-t2+3t(0≤t≤6 ).(2)①当△POQ∽△AOB时,=,即=,解得t=4.②当△POQ∽△BOA时,=,即=,解得t=2.∴当t=4或t=2时,△POQ与△AOB相似.试题18答案:(1)∵∠ABD=∠ACD,∠BAC=∠CDB,∴△ABE∽△DCE.∴=.∴EA·EC=EB·ED.(2)连接OB.∵OB=OD,∴∠DBO=∠BDO.又∵=,∴∠BAC=∠BCA=∠BDO=∠DBO. ∴△ABC∽△DOB.∴=.∵AD是⊙O的直径,∴==.∴AD·AC=2BD·BC.。

相似单元测试(B卷)

相似单元测试(B卷)

九年级数学相似单元测试(B 卷)(满分100分,考试时间60分钟)学校____________ 班级__________ 姓名___________一、选择题(每小题3分,共30分) 1. 下列有关相似的说法,正确的是( )A .所有的等腰三角形都相似B .有一组邻边对应成比例的两个平行四边形相似C .有一个角相等的两个菱形相似D .所有的相似图形都位似2. 如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,下列说法中不正确的是( )A .12DE BC =B .AD AEAB AC=C .△ADE ∽△ABCD .12ADE ABC S S =△△::A BCD E A BC78°第2题图第3题图3. 如图,△ABC 中,∠A =78°,AB =4,AC =6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是( )CCA .B .CC .D .4. 如图,以点O 为位似中心,将△ABC 放大得到△DEF .若AD =OA ,则△ABC与△DEF 的面积之比为( )A .1:2B .1:4C .1:5D .1:6OF E DCBA5. 如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,长方形纸片的边a ,b 应满足的条件是( ) A.a =B .a =2bC.a =D .a =4bba6. 如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于点E ,对角线BD 交AG 于点F .已知FG =2,则线段AE 的长度为( ) A .6B .8C .10D .12GFED CBA第6题图 第7题图7. 身高1.6米的某同学在某一时刻测得自己的影长为2米,此刻她想测量树AB的高度.但当她马上测量树的影长时,发现因树靠近一幢建筑物,影子一部分落在地面上,一部分落在墙上(如图).她先测得留在墙上的影子CD =0.4米,又测得地面部分的影长BC =3.5米,则树的高度为( )A .4.7米B .4米C .3.2米D .5米8. 如图,在四边形ABCD 中,AD ∥BC ,∠ABC =90°,E 是AB 上一点,且DE ⊥CE .若AD =1,BC =2,CD =3,则CE 与DE 的数量关系是( ) A .CEB .CEDEC .CE =3DED .CE =2DEABCDEABCD E FGH第8题图 第9题图9. 如图,点E ,F 分别在菱形ABCD 的边AB ,AD 上,且AE =DF ,BF 交DE于点G ,延长BF 交CD 的延长线于H ,若2AF DF =,则HFBG的值为( ) A .23 B .712 C .12 D .51210. 已知在四边形ABCD 中,∠B =90°,AC =4,AB ∥CD ,DH 垂直平分AC ,点H 为垂足.设AB =x ,AD =y ,则y 关于x 的函数关系用图象大致可表示为( )HDCB AA .B .C .D .二、填空题(每小题3分,共15分)11. 如图,四边形ABCD 与四边形EFGH 位似,其位似中心为点O ,且43OE EA =,则FGBC=_______.12. 如图,在△ABC 中,BE 平分∠ABC ,DE ∥BC ,若DE =2AD ,AE =2,则EC =________.O E HGF D CBAEDCBA13. 如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则MNPQ AEFGS S 正方形正方形的值为________.NGE C A14. 如图,若△ABC 内一点P 满足∠PAC =∠PCB =∠PBA ,则称点P 为△ABC 的布罗卡尔点.三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名.布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC 中,CA =CB ,∠ACB =120°,P 为△ABC 的布罗卡尔点,若PAPB +PC =__________.PC BA15. 矩形ABCD 中,AB =6,BC =8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为__________.三、解答题(本大题共4个小题,满分55分)16. (12分)如图,在△ABC 中,AB =AC ,点P ,D 分别是BC ,AC 边上的点,且∠APD =∠B .(1)求证:AC CD CP BP ⋅=⋅.(2)若AB =10,BC =12,当PD ∥AB 时,求BP 的长.DPCBA17. (14分)某市公共自行车的建设速度、单日租骑量等四项指标稳居全国首位.公共自行车车桩的截面示意图如图所示,AB ⊥AD ,AD ⊥DC ,点B ,C 在EF 上,EF ∥HG ,EH ⊥HG .已知AB =80 cm ,AD =24 cm ,BC =25 cm ,EH =4 cm ,求点A 到地面的距离.E DC B AF GH地面18. (14分)如图,在正方形ABCD 中,点E ,F 分别是边AD ,BC 的中点,连接DF ,过点E 作EH ⊥DF ,垂足为H ,EH 的延长线交DC 于点G . (1)猜想DG 与CF 的数量关系,并证明你的结论;(2)过点H 作MN ∥CD ,分别交AD ,BC 于点M ,N ,若正方形ABCD 的边长为10,点P 是MN 上一点,求△PDC 周长的最小值.N M HG FED C BA19. (15分)如图1,已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F . (1)证明与推断:①求证:四边形CEGF 是正方形;②推断:AGBE的值为__________; (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG 与BE 之间的数量关系,并说明理由; (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图3所示,延长CG 交AD 于点H .若AG =6,GH=BC =__________.GFDC BAE 图1ABD CEFG图2ABDCH GF E图3。

相似单元测试题-

相似单元测试题-

第二十七章 相似 单元测试题 (满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分) 1.已知2x=5y (y ≠0),则下列比例式成立的是( )A .x y25= B .x y 52= C .x 2y 5= D .x 52y =2.若a b c 234==,则a 2b 3c a++等于( )A .8B .9C .10D .113.下列各组条件中,一定能推得△ABC 与△DEF 相似的是( ) A .∠A=∠E 且∠D=∠F B .∠A=∠B 且∠D=∠F C .∠A=∠E 且AB EF ACED= D .∠A=∠E 且AB DF BCED=4.如图,正方形ABCD 的边长为2,BE=CE ,MN=1,线段MN 的两端点在CD 、AD 上滑动,当DM 为( )时,△ABE 与以D 、M 、N 为顶点的三角形相似.NMED CBAABCD5.如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )FEDCB AA .AD DE DBBC= B .BF EFBCAD =C AE BF EC FC =.D .EF DE AB BC=6.如图,在△ABC 中,DE ∥BC ,AD 1DB2=,DE=4,则BC 的长是( )EDCB AA .8B .10C .11D .127.如图,四边形ABCD ∽四边形A 1B 1C 1D 1,AB=12,CD=15,A 1B 1=9,则边C 1D 1的长是( )D 1C 1B 1A 1DCBAA .10B .12C .454D.3658.已知△ABC ∽△A ′B ′C ′且AB 1A B 2='',则S △ABC :S △A'B'C ′为( )A .1:2B .2:1C .1:4D .4:19.如图,铁路道口的栏杆短臂长1m ,长臂长16m .当短臂端点下降0.5m 时,长臂端点升高(杆的宽度忽略不计)( )0.5m16mA .4mB .6mC .8mD .12m10.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,如果AC=3,AB=6,那么AD 的值为( )D CBAA .32B .92C 33 D .3二、填空题(共6小题,每小题3分,共18分)11.在直角△ABC 中,AD 是斜边BC 上的高,BD=4,CD=9,则AD= .12.如图,直线AD ∥BE ∥CF ,BC=13AC ,DE=4,那么EF 的值是 .FEDCB A13.已知△ABC ∽△DEF ,且它们的面积之比为4:9,则它们的相似比为 .14.如图,以点O 为位似中心,将△ABC 放大得到△DEF ,若AD=OA ,则△ABC 与△DEF 的面积之比为 .OFDC BA15.如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经过平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是 米(平面镜的厚度忽略不计).P DCBA16.如图,在△ABC 中,AB=9,AC=6,BC=12,点M 在AB 边上,且AM=3,过点M 作直线MN 与AC 边交于点N ,使截得的三角形与原三角形相似,则MN= .MCBA三、解答题(共8题,共72分)17.(本题8分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,若DE ∥BC ,AD=3,AB=5,求DE BC的值.E D CB18.(本题8分)已知:平行四边形ABCD ,E 是BA 延长线上一点,CE 与AD 、BD 交于G 、F . 求证:CF 2=GF •EF .G FDCBA19.(本题8分)如图,在△ABC 中,AB=AC ,∠A=36°,BD 为角平分线,DE ⊥AB ,垂足为E .(1)写出图中一对全等三角形和一对相似比不为1的相似三角形; (2)选择(1)中一对加以证明.EDCB A20.(本题8分)如图,已知A (﹣4,2),B (﹣2,6),C (0,4)是直角坐标系平面上三点.(1)把△ABC 向右平移4个单位再向下平移1个单位,得到△A 1B 1C 1.画出平移后的图形,并写出点A 的对应点A 1的坐标;(2)以原点O 为位似中心,将△ABC 缩小为原来的一半,得到△A 2B 2C 2,请在所给的坐标系中作出所有满足条件的图形.xyCBAO21.(本题8分)在△ABC 中,点D 为BC 上一点,连接AD ,点E 在BD 上,且DE=CD ,过点E 作AB 的平行线交AD 于F ,且EF=AC .如图,求证:∠BAD=∠CAD ;CBAFED22.(本题10分)如图,在梯形ABCD 中,已知AD ∥BC ,∠B=90°,AB=7,AD=9,BC=12,在线段BC 上任取一点E ,连接DE ,作EF ⊥DE ,交直线AB 于点F . (1)若点F 与B 重合,求CE 的长;(2)若点F 在线段AB 上,且AF=CE ,求CE 的长.C BA F ED23.(本题10分)如图,已知△ABC ∽△ADE ,AB=30cm ,AD=18cm ,BC=20cm ,∠BAC=75°,∠ABC=40°. (1)求∠ADE 和∠AED 的度数; (2)求DE 的长.D EBCA24.(本题12分)在Rt △ABC 中,∠C=90°,AC=20cm ,BC=15cm ,现有动点P 从点A 出发,沿AC 向点C 方向运动,动点Q 从点C 出发,沿线段CB 也向点B 方向运动,如果点P 的速度是4cm/秒,点Q 的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t 秒.求: (1)当t=3秒时,这时,P ,Q 两点之间的距离是多少? (2)若△CPQ 的面积为S ,求S 关于t 的函数关系式.(3)当t 为多少秒时,以点C ,P ,Q 为顶点的三角形与△ABC 相似?QBCAP第27章《相似》单元测试卷解析 一、选择题1. 【答案】∵2x=5y ,∴x y 52=.故选B .2.【答案】设a b c 234===k ,则a=2k ,b=3k ,c=4k , 即a 2b 3c a++=2k 23k 34k 2k+⨯+⨯=10,故选C .3. 【答案】A 、∠D 和∠F 不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;B 、∠A=∠B ,∠D=∠F 不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;C 、由AB EF ACED=可以根据两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出△ABC 与△DEF 相似,故此选项正确;D 、∠A=∠E 且AB DF BCED=不能判定两三角形相似,因为相等的两个角不是夹角,故此选项错误; 故选:C .FEDC B A4. 【答案】∵四边形ABCD 是正方形,∴AB=BC , ∵BE=CE ,∴AB=2BE ,又∵△ABE 与以D 、M 、N 为顶点的三角形相似,∴①DM 与AB 是对应边时,DM=2DN ∴DM 2+DN 2=MN 2=1∴DM 2+14DM 2=1,解得25;②DM 与BE 是对应边时,DM=12DN ,∴DM 2+DN 2=MN 2=1, 即DM 2+4DM 2=1,解得5.∴DM 255时,△ABE 与以D 、M 、N 为顶点的三角形相似. 故选C .5. 【答案】∵DE ∥BC ,EF ∥AB ,∴四边形DEFB 是平行四边形,∴DE=BF ,BD=EF ; ∵DE ∥BC ,∴AD AE BF ABACBC==,EF CE BC ABACDE==,∵EF ∥AB ,∴AE BF ECFC=故选C .6.【答案】∵AD 1DB2=,∴AD 1AB3=,∵在△ABC 中,DE ∥BC ,∴DE AD 1BCAB3==,∵DE=4,∴BC=3DE=12.故选D .7. 【答案】∵四边形ABCD ∽四边形A 1B 1C 1D 1,∴1111AB CDA B C D =, ∵AB=12,CD=15,A 1B 1=9,∴C 1D 1=454.故选C .8.【答案】∵△ABC ∽△A ′B ′C ′,AB 1A B 2='',∴S △ABC :S △A'B'C ′==(ABA B '')2=14,故选C .9.【答案】设长臂端点升高x 米,则0.5:x=1:16,∴解得:x=8.故选;C . 10. 【答案】∵在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,∴AC 2=AD •AB , 又∵AC=3,AB=6,∴32=6AD ,则AD=32.故选:A .二、填空题11.【答案】∵△ABC 是直角三角形,AD 是斜边BC 上的高,∴AD 2=BD •CD (射影定理),∵BD=4,CD=9,∴AD=6.DCBA12.【答案】∵BC=13AC ,∴AB 2BC1=,∵AD ∥BE ∥CF ,∴AB DE BCEF=,∵DE=4,∴EF=2.故答案为:2.13.【答案】因为△ABC ∽△DEF ,所以△ABC 与△DEF 的面积比等于相似比的平方,因为S △ABC :S △DEF =2:9=(2:3)2, 所以△ABC 与△DEF 的相似比为2:3, 故答案为:2:3.14.【答案】∵以点O 为位似中心,将△ABC 放大得到△DEF ,AD=OA , ∴AB :DE=OA :OD=1:2,∴△ABC 与△DEF 的面积之比为:1:4. 故答案为:1:4.15.【答案】由题意知:光线AP 与光线PC ,∠APB=∠CPD ,∴Rt △ABP ∽Rt △CDP , ∴AB:BP=CD:PD,,∴CD=1.2×12÷1.8=8(米). 故答案为:8.16.【答案】如图1,当MN ∥BC 时,则△AMN ∽△ABC ,故AM:AB=AN:AC=MN:BC , 则3:9=MN:12,解得:MN=4, 如图2所示:当∠ANM=∠B 时,又∵∠A=∠A ,∴△ANM ∽△ABC ,∴AM:AC=MN:BC ,即3:6=MN:12, 解得:MN=6, 故答案为:4或6.图2图1N ABCMNMCBA三、解答题17.【解答】∵DE ∥BC ,∴AD:AB=DE:BC ,∵AD=3,AB=5,∴DE BC=35.18.【解答】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD , ∴GF:CF=DF:BF ,CF:EF=DF:BF ,∴GF:CF=CF:EF , 即CF 2=GF •EF .19.【解答】(1)△ADE ≌△BDE ,△ABC ∽△BCD ; (2)证明:∵AB=AC ,∠A=36°,∴∠ABC=∠C=72°, ∵BD 为角平分线,∴∠ABD=12∠ABC=36°=∠A ,在△ADE 和△BDE 中, ∠A=∠DBA,∠AED=∠BED,ED=ED , ∴△ADE ≌△BDE (AAS );∵AB=AC ,∠A=36°,∴∠ABC=∠C=72°, ∵BD 为角平分线,∴∠DBC=12∠ABC=36°=∠A ,∵∠C=∠C ,∴△ABC ∽△BCD .20.【解答】(1)△A 1B 1C 1如图所示,其中A 1的坐标为:(0,1); (2)符合条件△A 2B 2C 2有两个,如图所示.xyA 2B 2C 2C 2B 2A 2CBAC 1B 1A 1O【知识讲解】(1)直接利用平移的性质,可分别求得△A 1B 1C 1各点的坐标,继而画出图形;(2)利用位似的性质,可求得△A 2B 2C 2各点的坐标,继而画出图形.21.【解答】延长FD 到点G ,过C 作CG ∥AB 交FD 的延长线于点M , 则EF ∥MC ,∴∠BAD=∠EFD=∠M ,在△EDF 和△CMD 中,∠EFD=∠M ,∠EDF=∠MDC ,ED=DC ,∴△EDF ≌△CMD (AAS ),∴MC=EF=AC ,∴∠M=∠CAD ,∴∠BAD=∠CAD ;BAMFED22.【解答】(1)当F 和B 重合时, ∵EF ⊥DE ,∵DE ⊥BC ,∵∠B=90°,∴AB ⊥BC ,∴AB ∥DE ,∵AD ∥BC ,∴四边形ABED 是平行四边形,∴AD=EF=9,∴CE=BC ﹣EF=12﹣9=3; (2)过D 作DM ⊥BC 于M ,∵∠B=90°,∴AB ⊥BC ,∴DM ∥AB ,∵AD ∥BC ,∴四边形ABMD 是矩形,∴AD=BM=9,AB=DM=7,CM=12﹣9=3, 设AF=CE=a ,则BF=7﹣a ,EM=a ﹣3,BE=12﹣a ,∵∠FEC=∠B=∠DMB=90°,∴∠FEB+∠DEM=90°,∠BFE+∠FEB=90°,∴∠BFE=∠DEM ,∵∠B=∠DME ,∴△FBE ∽△EMD ,∴BF:EM=BE:DM , ∴(7-a):(a-3)=(12-a ):7,a=5,a=17,∵点F 在线段AB 上,AB=7,∴AF=CE=17(舍去),即CE=5.EDEF(F)D23.【解答】解:(1)∵∠BAC=75°,∠ABC=40°,∴∠C=180°﹣∠BAC﹣∠ABC=180°﹣75°﹣40°=65°,∵△ABC∽△ADE,∴∠ADE=∠ABC=40°,∠AED=∠C=65°;(2)∵△ABC∽△ADE,∴AB:AD=BC:DE,即30:18=20:DE,解得DE=12cm.24.【解答】由题意得AP=4t,CQ=2t,则CP=20﹣4t,(1)当t=3秒时,CP=20﹣4t=8cm,CQ=2t=6cm,由勾股定理得PQ=10cm;(2)由题意得AP=4t,CQ=2t,则CP=20﹣4t,因此Rt△CPQ的面积为S=12×(20-4t)×2t=(20t-4t2)cm2;(3)分两种情况:①当Rt△CPQ∽Rt△CAB时,CP:CA=CQ:CB,即(20-4t):20=2t:15,解得t=3秒;②当Rt△CPQ∽Rt△CBA时,CP:CB=CQ:CA,即(20-4t):15=2t:20,解得t=4011秒.因此t=3秒或t=4011秒时,以点C、P、Q为顶点的三角形与△ABC相似.第二十七章相似测试1 图形的相似学习要求1.理解相似图形、相似多边形和相似比的概念.2.掌握相似多边形的两个基本性质.3.理解四条线段是“成比例线段”的概念,掌握比例的基本性质.课堂学习检测一、填空题1.________________________是相似图形.2.对于四条线段a ,b ,c ,d ,如果____________与____________(如dc b a =),那么称这四条线段是成比例线段,简称__________________.3.如果两个多边形满足____________,____________那么这两个多边形叫做相似多边形.4.相似多边形____________称为相似比.当相似比为1时,相似的两个图形____________.若甲多边形与乙多边形的相似比为k ,则乙多边形与甲多边形的相似比为____________.5.相似多边形的两个基本性质是____________,____________. 6.比例的基本性质是如果不等于零的四个数成比例,那么___________. 反之亦真.即⇔=dcba ______(a ,b ,c ,d不为零).7.已知2a -3b =0,b ≠0,则a ∶b =______. 8.若,571=+xx 则x =______.9.若,532z y x ==则=-+x z y x 2______.10.在一张比例尺为1∶20000的地图上,量得A 与B 两地的距离是5cm ,则A ,B 两地实际距离为______m .二、选择题11.在下面的图形中,形状相似的一组是( )12.下列图形一定是相似图形的是( )A.任意两个菱形B.任意两个正三角形C.两个等腰三角形D.两个矩形13.要做甲、乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm,60cm,80cm,三角形框架乙的一边长为20cm,那么,符合条件的三角形框架乙共有( )A.1种B.2种C.3种D.4种三、解答题14.已知:如图,梯形ABCD与梯形A′B′C′D′相似,AD∥BC,A′D′∥B′C′,∠A=∠A′.AD=4,A′D′=6,AB=6,B′C′=12.求:(1)梯形ABCD与梯形A′B′C′D′的相似比k;(2)A′B′和BC的长;(3)D′C′∶DC.综合、运用、诊断15.已知:如图,△ABC中,AB=20,BC=14,AC=12.△ADE与△ACB相似,∠AED=∠B,DE=5.求AD,AE的长.16.已知:如图,四边形ABCD的对角线相交于点O,A′,B′,C′,D′分别是OA,OB,OC,OD的中点,试判断四边形ABCD与四边形A′B′C'D′是否相似,并说明理由.拓展、探究、思考17.如下图甲所示,在矩形ABCD中,AB=2AD.如图乙所示,线段EF=10,在EF上取一点M,分别以EM,MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD,设MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?测试2 相似三角形学习要求1.理解相似三角形的有关概念,能正确找到对应角、对应边. 2.掌握相似三角形判定的基本定理.课堂学习检测一、填空题1.△DEF ∽△ABC 表示△DEF 与△ABC ______,其中D 点与______对应,E 点与 ______对应,F 点与______对应;∠E =______;DE ∶AB =______∶BC ,AC ∶DF =AB ∶______.2.△DEF ∽△ABC ,若相似比k =1,则△DEF ______△ABC ;若相似比k =2,则=AC DF ______,=EFBC______. 3.若△ABC ∽△A 1B 1C 1,且相似比为k 1;△A 1B 1C 1∽△A 2B 2C 2,且相似比为k 2,则△ABC ______△A 2B 2C 2,且相似比为______.4.相似三角形判定的基本定理是平行于三角形____________和其他两边相交,所_________________与原三角形______. 5.已知:如图,△ADE 中,BC ∥DE ,则①△ADE ∽______; ②;)(,)(BC AB AD AE AB AD == ③⋅==CABA BD AE DB AD )(,)( 二、解答题6.已知:如图所示,试分别依下列条件写出对应边的比例式.(1)若△ADC ∽△CDB ;(2)若△ACD ∽△ABC ;(3)若△BCD ∽△BAC .综合、运用、诊断7.已知:如图,△ABC 中,AB =20cm ,BC =15cm ,AD =12.5cm ,DE ∥BC .求DE 的长.8.已知:如图,AD ∥BE ∥CF .(1)求证:;DFDEACAB(2)若AB =4,BC =6,DE =5,求EF .9.如图所示,在△APM 的边AP 上任取两点B ,C ,过B 作AM 的平行线交PM 于N ,过N 作MC 的平行线交AP 于D .求证:PA ∶PB =PC ∶PD .拓展、探究、思考10.已知:如图,E 是□ABCD 的边AD 上的一点,且23=DE AE ,CE 交BD 于点F ,BF =15cm ,求DF 的长.11.已知:如图,AD 是△ABC 的中线.(1)若E 为AD 的中点,射线CE 交AB 于F ,求BFAF;(2)若E 为AD 上的一点,且kED AE 1=,射线CE 交AB 于F ,求⋅BF AF测试3 相似三角形的判定学习要求1.掌握相似三角形的判定定理.2.能通过证三角形相似,证明成比例线段或进行计算.课堂学习检测一、填空题1.______三角形一边的______和其他两边______,所构成的三角形与原三角形相似.2.如果两个三角形的______对应边的______,那么这两个三角形相似.3.如果两个三角形的______对应边的比相等,并且______相等,那么这两个三角形相似.4.如果一个三角形的______角与另一个三角形的______,那么这两个三角形相似.5.在△ABC和△A′B′C′中,如果∠A=56°,∠B=28°,∠A′=56°,∠C′=28°,那么这两个三角形能否相似的结论是______.理由是________________.6.在△ABC和△A'B′C′中,如果∠A=48°,∠C=102°,∠A′=48°,∠B′=30°,那么这两个三角形能否相似的结论是______.理由是________________.7.在△ABC和△A'B′C′中,如果∠A=34°,AC=5cm,AB=4cm,∠A′=34°,A'C′=2cm,A′B′=1.6cm,那么这两个三角形能否相似的结论是______,理由是____________________.8.在△ABC和△DEF中,如果AB=4,BC=3,AC=6;DE=2.4,EF=1.2,FD =1.6,那么这两个三角形能否相似的结论是____________,理由是__________________.9.如图所示,△ABC的高AD,BE交于点F,则图中的相似三角形共有______对.9题图10.如图所示,□ABCD中,G是BC延长线上的一点,AG与BD交于点E,与DC交于点F,此图中的相似三角形共有______对.10题图二、选择题11.如图所示,不能判定△ABC∽△DAC的条件是( )A.∠B=∠DACB.∠BAC=∠ADCC.AC2=DC·BCD.AD2=BD·BC12.如图,在平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长是( )A.5 B.8.2C.6.4 D.1.813.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是( )三、解答题14.已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,(1)图中有哪两个三角形相似?(2)求证:AC2=AD·AB;BC2=BD·BA;(3)若AD=2,DB=8,求AC,BC,CD;(4)若AC=6,DB=9,求AD,CD,BC;(5)求证:AC·BC=AB·CD.15.如图所示,如果D,E,F分别在OA,OB,OC上,且DF∥AC,EF∥BC.求证:(1)OD∶OA=OE∶OB;(2)△ODE∽△OAB;(3)△ABC∽△DEF.综合、运用、诊断16.如图所示,已知AB∥CD,AD,BC交于点E,F为BC上一点,且∠EAF=∠C.求证:(1)∠EAF=∠B;(2)AF2=FE·FB.17.已知:如图,在梯形ABCD中,AB∥CD,∠B=90°,以AD为直径的半圆与BC相切于E点.求证:AB·CD=BE·EC.18.如图所示,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O 上的一点,且AD∥OC.求证:AD·BC=OB·BD.19.如图所示,在⊙O中,CD过圆心O,且CD⊥AB于D,弦CF交AB于E.求证:CB2=CF·CE.拓展、探究、思考20.已知D是BC边延长线上的一点,BC=3CD,DF交AC边于E点,且AE=2EC.试求AF与FB的比.21.已知:如图,在△ABC中,∠BAC=90°,AH⊥BC于H,以AB和AC为边在Rt△ABC外作等边△ABD和△ACE,试判断△BDH与△AEH是否相似,并说明理由.22.已知:如图,在△ABC中,∠C=90°,P是AB上一点,且点P不与点A 重合,过点P作PE⊥AB交AC于E,点E不与点C重合,若AB=10,AC=8,设AP=x,四边形PECB的周长为y,求y与x的函数关系式.测试4 相似三角形应用举例学习要求能运用相似三角形的知识,解决简单的实际问题.课堂学习检测一、选择题1.已知一棵树的影长是30m,同一时刻一根长1.5m的标杆的影长为3m,则这棵树的高度是( )A .15mB .60mC .20mD .m 3102.一斜坡长70m ,它的高为5m ,将某物从斜坡起点推到坡上20m 处停止下,停下地点的高度为( ) A .m 711 B .m 710 C .m 79D .m 233.如图所示阳光从教室的窗户射入室内,窗户框AB 在地面上的影长DE =1.8m ,窗户下檐距地面的距离BC =1m ,EC =1.2m ,那么窗户的高AB 为( )第3题图A .1.5mB .1.6mC .1.86mD .2.16m4.如图所示,AB 是斜靠在墙壁上的长梯,梯脚B 距离墙角1.6m ,梯上点D 距离墙1.4m ,BD 长0.55m ,则梯子长为( )第4题图A .3.85mB .4.00mC .4.40mD .4.50m二、填空题5.如图所示,为了测量一棵树AB 的高度,测量者在D 点立一高CD =2m 的标杆,现测量者从E 处可以看到杆顶C 与树顶A 在同一条直线上,如果测得BD =20m ,FD =4m ,EF =1.8m ,则树AB 的高度为______m .第5题图6.如图所示,有点光源S在平面镜上面,若在P点看到点光源的反射光线,并测得AB=10m,BC=20cm,PC⊥AC,且PC=24cm,则点光源S到平面镜的距离即SA的长度为______cm.第6题图三、解答题7.已知:如图所示,要在高AD=80mm,底边BC=120mm的三角形余料中截出一个正方形板材PQMN.求它的边长.8.如果课本上正文字的大小为4mm×3.5mm(高×宽),一学生座位到黑板的距离是5m,教师在黑板上写多大的字,才能使该学生望去时,同他看书桌上相距30cm垂直放置的课本上的字感觉相同?综合、运用、诊断9.一位同学想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.8m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图所示,他先测得留在墙上的影高为1.2m,又测得地面部分的影长为5m,请算一下这棵树的高是多少?10.(针孔成像问题)根据图中尺寸(如图,AB∥A′B′),可以知道物像A′B′的长与物AB的长之间有什么关系?你能说出其中的道理吗?11.在一次数学活动课上,李老师带领学生去测教学楼的高度,在阳光下,测得身高为1.65m的黄丽同学BC的影长BA为1.1m,与此同时,测得教学楼DE的影长DF为12.1m,如图所示,请你根据已测得的数据,测出教学楼DE的高度.(精确到0.1m)12.(1)已知:如图所示,矩形ABCD中,AC,BD相交于O点,OE⊥BC于E点,连结ED交OC于F点,作FG⊥BC于G点,求证点G是线段BC的一个三等分点.(2)请你仿照上面的画法,在原图上画出BC的一个四等分点.(要求:写出作法,保留画图痕迹,不要求证明)测试5 相似三角形的性质学习要求掌握相似三角形的性质,解决有关的计算或证明问题.课堂学习检测一、填空题1.相似三角形的对应角______,对应边的比等于______.2.相似三角形对应边上的中线之比等于______,对应边上的高之比等于______,对应角的角平分线之比等于______.3.相似三角形的周长比等于______.4.相似三角形的面积比等于______.5.相似多边形的周长比等于______,相似多边形的面积比等于______.6.若两个相似多边形的面积比是16∶25,则它们的周长比等于______.7.若两个相似多边形的对应边之比为5∶2,则它们的周长比是______,面积比是______.8.同一个圆的内接正三角形与其外切正三角形的周长比是______,面积比是______.9.同一个圆的内接正方形与其外切正方形的周长比是______,面积比是______.10.同一个圆的内接正六边形与其外切正六边形的周长比是______,面积比是______.11.正六边形的内切圆与它的外接圆的周长比是______,面积比是______.12.在比例尺1∶1000的地图上,1cm2所表示的实际面积是______.二、选择题13.已知相似三角形面积的比为9∶4,那么这两个三角形的周长之比为( )A.9∶4 B.4∶9 C.3∶2 D.81∶1614.如图所示,在平行四边形ABCD中,E为DC边的中点,AE交BD于点Q,若△DQE的面积为9,则△AQB的面积为( )A.18 B.27 C.36 D.4515.如图所示,把△ABC沿AB平移到△A′B′C′的位置,它们的重叠部分的面积是△ABC面积的一半,若2AB,则此三角形移动的距离AA'是( )=1A.12-B.22C.1 D.2三、解答题16.已知:如图,E、M是AB边的三等分点,EF∥MN∥BC.求:△AEF的面积∶四边形EMNF的面积∶四边形MBCN的面积.综合、运用、诊断17.已知:如图,△ABC 中,∠A =36°,AB =AC ,BD 是角平分线.(1)求证:AD 2=CD ·AC ; (2)若AC =a ,求AD .18.已知:如图,□ABCD 中,E 是BC 边上一点,且AE BD EC BE ,,21 相交于F点.(1)求△BEF 的周长与△AFD 的周长之比;(2)若△BEF 的面积S △BEF =6cm 2,求△AFD 的面积S △AFD .19.已知:如图,Rt △ABC 中,AC =4,BC =3,DE ∥AB .(1)当△CDE的面积与四边形DABE的面积相等时,求CD的长;(2)当△CDE的周长与四边形DABE的周长相等时,求CD的长.拓展、探究、思考20.已知:如图所示,以线段AB上的两点C,D为顶点,作等边△PCD.(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB.(2)当△ACP∽△PDB时,求∠APB.21.如图所示,梯形ABCD中,AB∥CD,对角线AC,BD交于O点,若S△AOD∶S=2∶3,求S△AOB∶S△COD.△DOC22.已知:如图,梯形ABCD中,AB∥DC,∠B=90°,AB=3,BC=11,DC=6.请问:在BC上若存在点P,使得△ABP与△PCD相似,求BP的长及它们的面积比.测试6 位似学习要求1.理解位似图形的有关概念,能利用位似变换将一个图形放大或缩小.2.能用坐标表示位似变形下图形的位置.课堂学习检测1.已知:四边形ABCD及点O,试以O点为位似中心,将四边形放大为原来的两倍.(1) (2)(3) (4)2.如图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE 对应边的比为k,则位似中心的坐标和k的值分别为( )A.(0,0),21B.(2,2),2C.(2,2),2D.(2,2),3综合、运用、诊断3.已知:如图,四边形ABCD的顶点坐标分别为A(-4,2),B(-2,-4),C(6,-2),D(2,4).试以O点为位似中心作四边形A'B'C'D′,使四边形ABCD与四边形A′B′C′D′的相似比为1∶2,并写出各对应顶点的坐标.4.已知:如下图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其B,C,D点的坐标分别为(1,2),(1,1),(3,1).(1)求E点和A点的坐标;(2)试以点P(0,2)为位似中心,作出相似比为3的位似图形A1B1C1D1E1,并写出各对应点的坐标;(3)将图形A1B1C1D1E1向右平移4个单位长度后,再作关于x轴的对称图形,得到图形A2B2C2D2E2,这时它的各顶点坐标分别是多少?拓展、探究、思考5.在已知三角形内求作内接正方形.6.在已知半圆内求作内接正方形.答案与提示 第二十七章 相 似测试11.形状相同的图形.2.其中两条线段的比,另两条线段的比相等,比例线段. 3.对应角相等,对应边的比相等. 4.对应边的比,全等,⋅k1 5.对应角相等,对应边的比相等.6.两个内项之积等于两个外项之积,ad =bc . 7.3∶2. 8.⋅25 9.1. 10.1 000.11.C . 12.B . 13.C .14.(1)k =2∶3;(2)A 'B '=9,BC =8;(3)3∶2. 15.⋅==750,730AE AD 16.相似.17.25=x 时,S 的最大值为⋅225测试21.相似,A 点,B 点,C 点,∠B ,EF ,DE . 2.≌,2,⋅213.∽;k 1k 2.4.一边的直线,构成的三角形,相似. 5.①△ABC ;②AC ,DE ;③EC ,CE . 6.(1);BC CA BD CD CD AD == (2);BC CD AC AD AB AC == (3)⋅==ACCDBC BD BA BC7.9.375cm .8.(1)提示:过A 点作直线AF '∥DF ,交直线BE 于E ',交直线CF 于F '. (2)7.5.9.提示:PA ∶PB =PM ∶PN ,PC ∶PO =PM ∶PN . 10.OF =6cm .提示:△DEF ∽△BCF . 11.(1);21=BF AF (2)1∶2k . 测试31.平行于,直线,相交. 2.三组,比相等. 3.两组,相应的夹角. 4.两个,两个角对应相等.5.△ABC ∽△A 'C 'B ',因为这两个三角形中有两对角对应相等. 6.△ABC ∽△A 'B 'C '.因为这两个三角形中有两对角对应相等.7.△ABC ∽△A 'B 'C ',因为这两个三角形中,有两组对应边的比相等,且相应的夹角相等.8.△ABC ∽△DFE .因为这两个三角形中,三组对应边的比相等. 9.6对. 10.6对. 11.D . 12.D . 13.A .14.(1)△ADC ∽△CDB ,△ADC ∽△ACB ,△ACB ∽△CDB ;(2)略;(3);4,54,52===CD BC AC (4);36,33,3===BC CD AD(5)提示:AC ·BC =2S △ABC =AB ·CD .15.提示:(1)OD ∶OA =OF ∶OC ,OE ∶OB =OF ∶OC ;(2)OD ∶OA =OE ∶OB ,∠DOE =∠AOB ,得△ODE ∽△OAB ; (3)证DF ∶AC =EF ∶BC =DE ∶AB . 16.略.17.提示:连结AE 、ED ,证△ABE ∽△ECD . 18.提示:关键是证明△OBC ∽△ADB .∵AB 是⊙O 的直径,∴∠D =90°. ∵BC 是⊙O 的切线,∴OB ⊥BC . ∴∠OBC =90°.∴∠D =∠OBC .∵AD ∥OC ,∴∠A =∠BOC .∴△ADB ∽△OBC .⋅=∴CBBDOB AD ∴AD ·BC =OB ·BD . 19.提示:连接BF 、AC ,证∠CFB =∠CBE20.⋅=21FB AF 提示:过C 作CM ∥BA ,交ED 于M . 21.相似.提示:由△BHA ∽△AHC 得,ACBAAH BH =再有BA =BD ,AC =AE .则:,AE BD AH BH =再有∠HBD =∠HAE ,得△BDH ∽△AEH .22..2423+-=x y 提示:可证△APE ∽△ACB ,则⋅=ACAPBC PE则).10(6)458(43,45,43x x x y x AE x PE -++-+===测试41.A . 2.B . 3.A . 4.C . 5.3. 6.12. 7.48mm .8.教师在黑板上写的字的大小约为7cm ×6cm(高×宽). 9.树高7.45m . 10..31AB B A =''11.∵EF ∥AC ,∴∠CAB =∠EFD .又∠CBA =∠EDF =90°,∴△ABC ∽△FDE .)m (2.181.11.1265.1≈⨯=⋅=∴⋅=∴BA DF BC DE DF BA DE BC 故教学楼的高度约为18.2m .12.(1)提示:先证EF ∶ED =1∶3.(2)略.测试51.相等,相似比. 2.相似比、相似比、相似比. 3.相似比. 4.相似比的平方. 5.相似比.相似比的平方. 6.4∶5. 7.5∶2,25∶4. 8.1∶2,1∶4. 9..2:1,2:1 10..4:3,2:3 11..4:3,2:3 12.100m 2.13.C. 14.C . 15.A . 16.1∶3∶5. 17.(1)提示:证△ABC ∽△BCD ;(2).215a - 18.(1);31 (2)54cm 2. 19.(1);22(2)⋅724 20.(1)CD 2=AC ·DB ;(2)∠APB =120°. 21.4∶9 22.BP =2,或,311或9.当BP =2时,S △ABP ∶S △PCD =1∶9; 当311=BP 时,S △ABP ∶S △DCP =1∶4;当BP =9时,S △ABP :S △PCD =9∶4.测试61.略. 2.C .3.图略.A '(-2,1),B '(-1,-2),C '(3,-1),D '(1,2). 4.(1));32,2(),2,3(+A E(2)).332,6(1+A B 1(3,2),C 1(3,-1),D 1(9,-1),E 1(9,2); (3)),332,10(2--A B 2(7,-2),C 2(7,1),D 2(13,1),E 2(13,-2). 5.方法1:利用位似形的性质作图法(图16)图16作法:(1)在AB 上任取一点G ',作G 'D '⊥BC ; (2)以G 'D '为边,在△ABC 内作一正方形D 'E 'F 'G '; (3)连结BF ',延长交AC 于F ;(4)作FG ∥CB ,交AB 于G ,从F ,G 各作BC 的垂线FE ,GD ,那么DEFG 就是所求作的内接正方形.方法2:利用代数解析法作图(图17)图17(1)作AH (h )⊥BC (a );(2)求h+a,a,h的比例第四项x;(3)在AH上取KH=x;(4)过K作GF∥BC,交两边于G,F,从G,F各作BC的垂线GD,FE,那么DEFG就是所求的内接正方形.6.提示:正方形EFGH即为所求.教师应该——消消气,别发火目标我知道,你为何怒吼声嘶力竭,虚张声势殊不知在众人眼中你已斯文扫地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十七章 相似全章复习
一、选择题
1.如图所示,在△ ABC 中, DE ∥ BC ,若 AD = 1, DB = 2,则
DE
的值为 ( )
BC
A .
2
B .
1
C .
1
D .
1
3
4
3 2
2.如图所示,△中
∥ ,若 ∶ = 1∶ 2,则下列结论中正确的是 ( )
ABC DE BC AD DB
A .
DE
1 B . ADE 的周长
1
BC
2
ABC
的周长
2
C .
ADE 的面积 1
D .
ADE 的周长 1
ABC 的面积
3
ABC 的周长
3
3、如图,已知 DE ∥BC , EF ∥ AB ,则下列比例式中错误的是(

A AD
AE
B
CE EA C DE AD D EF CF AB AC
CF FB BC BD AB CB
4.如图所示,在△ ABC 中 D 为 AC 边上一点,若∠ DBC =∠ A ,
BC 6 , AC = 3,则 CD 长为 ( )
第 4 题图
第 6 题图
第 7 题图
A . 1
B .
3
C . 2
D .
5
2
2
5.若
P 是 Rt △
的斜边 上异于 , C 的一点,过点
P 作直线截△
,截得的三角形与原△
ABC BC B
ABC
ABC 相似,满足这样条件的直线共有 ( )
A . 1 条
B . 2 条
C . 3 条
D . 4 条
6.如图所示,△ ABC 中若 DE ∥ BC , EF ∥ AB ,则下列比例式正确的是 ( )
A .
AD
DE B .
BF
EF C .
AE
BF D .
EF
DE DB
BC
BC
AD
EC FC
AB
BC
7.如图所示,⊙ O 中,弦 AB , CD 相交于 P 点,则下列结论正确的是 ( )
A . PA · A
B = P
C · PB B . PA · PB = PC · P
D C . PA · AB = PC · CD
D . PA ∶ PB = PC ∶ PD
8.如图所示,△ ABC 中, AD ⊥ BC 于 D ,对于下列中的每一个条件
①∠ B +∠ DAC = 90°
②∠ B =∠ DAC
2
③ CD : AD =AC : AB ④ AB = BD · BC
其中一定能判定△ ABC 是直角三角形的共有 ( ) A . 3 个
B . 2 个
C . 1 个
D . 0 个
第 8 题图
9、如图, D 、 E 分别是 AB 、AC 上两点, CD 与 BE 相交于点 O ,
下列条件中不能使
ABE 和 ACD 相似的是


A. ∠ B=∠C
B.
∠ADC=∠ AEB
C. BE=CD , AB=AC
D. AD ∶ AC=AE ∶ AB
10、在矩形 ABCD 中, E 、 F 分别是 CD 、 BC 上的点, 若∠ AEF=90°,则一定有

) A ADE ∽Δ AEF B ECF ∽Δ AEF
C
ADE ∽Δ ECF
D
AEF ∽Δ ABF
11、如图 1,
ADE ∽ ABC ,若 AD 2, BD
4 ,则 ADE 与 ABC 的
相似比是( )A . 1: 2
B .1: 3
C
. 2: 3
D
. 3:2
二、填空题
1、下列命题中正确的是
①三边对应成比例的两个三角形相似
②二边对应成比例且一个角对应相等的两个三角形相似
③一个锐角对应相等的两个直角三角形相似
④一个角对应相等的两个等腰三角形相似
2.如图 9 所示,身高 1.6m 的小华站在距路灯杆 5m 的 C 点处,测得她在灯光下的影长
CD 为 2.5m ,

路灯的高度 AB 为 ______.
3.如图所示, □ ABCD 中, G 是 BC 延长线上的一点, AG 与 BD 交于点 E ,与 DC 交于点 F ,此图中的相似三角形共有 ______对.
4.如图所示, △ ABC 中,DE ∥ BC ,AE ∶ EB = 2∶ 3,若△ AED 的面积是 4m 2,则四边形 DEBC 的
面积为 ______.
5.若两个相似多边形的对应边的比是 5∶ 4,则这两个多边形的周长比是 ______ .
6、(2013?孝感)在平面直角坐标系中,已知点 E (﹣ 4,2), F (﹣ 2,﹣ 2),以原点 O 为位似中心,
相似比为 2,把△ EFO 放大,则点 E 的对应点 E ′的坐标是
7、(2013?恩施州)如图所示,在平行四边形 ABCD 中, AC 与 BD 相交于点 O ,
E 为 OD 的中点,连接
AE
并延长交 DC 于点 F ,则 DF : FC=( )
8、(2013?乌鲁木齐)如图, AB∥GH∥CD,点H在 BC上, AC与 BD交于点 G, AB=2,CD=4,则 GH的长
为.
9、(2013?绥化)如图,点 A,B,C,D 为⊙O上的四个点, AC平分∠ BAD, AC交 BD于点 E,CE=3,CD=6,
则 AE的长为()
10、(2013?新疆)如图, Rt△ABC 中,∠ ACB=90°,∠ ABC=60°,BC=2cm,D 为 BC的中点,若动点E
以 1cm/s 的速度从A点出发,沿着A→B→A的方向运动,设 E 点的运动时间为t 秒( 0≤t < 6),连接
DE,当△ BDE 是直角三角形时,t 的值为()
4、(2013?眉山)在矩形ABCD中, DC=2,CF⊥BD 分别交 BD、 AD于点 E、 F,连接 BF.
( 1)求证:△ DEC∽△ FDC;
( 2)当 F 为 AD的中点时,求sin ∠FBD 的值及 BC的长度.
11、(2013?牡丹江)如图,在△ ABC 中, D 是 AB边上的一点,连接CD,请添加一个适当的条
件,使△ ABC∽△ ACD.(只填一个即可)
12、( 2013 安顺)在平行四边形ABCD中, E 在 DC上,若 DE: EC=2:3,则 BF: BE=.
三、解答题
1.已知,如图,△ABC中, AB=2, BC=4, D为BC边上一点,BD=1.
(1)求证:△ ABD∽△ CBA;
(2) 作DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.
2.已知:如图,AB是半圆 O的直径, CD⊥AB于 D点, AD=4cm, DB=9cm,求 CB的长.
3、(2013?南宁)如图,△ ABC 三个定点坐标分别为A(﹣ 1, 3),B(﹣ 1,1), C(﹣ 3, 2).
(1)请画出△ ABC 关于 y 轴对称的△A1 B1C1;
(2)以原点 O为位似中心,将△A1B1C1放大为原来的 2 倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,
并求出 S△A1B1C1:S△A2B2C2的值.。

相关文档
最新文档