《概率论》最大似然估计
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章: 参数估计
7.1 矩估计
7.2 最大似然估计
7.3 估计量的优良性准则
7.4 正态总体的区间估计(一) *7.5 正态总体的区间估计(二) *7.6 非正态总体的区间估计
是在总体类型已知条件下使用的一种参数估计方法 .
它首先是由德国数学家高斯在1821年提出的 , Gauss
Fisher
然而,这个方法常归功于英国统计学家费歇 . 费歇在1922年重新发现了 这一方法,并首先研究了这 种方法的一些性质 .
§7.2 最大似然估计
最大似然估计法的基本思想就最大似然原理.
例1:设有一随机事件,已知它出现的概率p的可能值是0.01和0.99,若在一次试验中该事件就出现了,这时我们估计p 为0.99为更合理.
例2: 一个老猎人带领一个新手进山打猎,遇见一只飞奔的兔子,他们各发一弹,野兔被打中了,但身上只有一个弹孔,
最可能是谁打中的呢?不用问,我们认为是老猎人打中的更合理.
同样,机器出故障,有经验的修理工首先从最易损的部件查起.公安人员破案也是从最有嫌疑的人员开始查起.
最大似然原理:一次试验就出现的事件有较大的概率。
最大似然估计
分布中的未知参数 θ
进行估计 用途:根据从总体 X 中抽取的样本 1(,,)n X X …,对总体对离散型的随机变量:就是估计出概率函数中的参数 θ对连续型的随机变量:就是估计出概率密度中的 θ
θ这里说的总体未知参数通常指的是:
小结
本讲首先介绍参数矩估计的基本思想以及求矩估计的步骤,给出多个求参数矩估计的例子;然后介绍参数极大似然估计的基本原理,求极大似然估计的基本方法,给出多个求参数极大似然矩估计的例子。
作业:p150,7.1;7.2