江苏省淮安市淮阴区2020-2021学年八年级下学期期中数学试题
2020-2021学年八年级下期中数学试卷及答案解析
2020-2021学年八年级下学期期中考试数学试卷一.选择题(共6小题,满分18分,每小题3分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.式子“①3x +y =2;②3x >y ;③4x +2y ;④4x ﹣3y ≥1;⑤4x <0,”属于不等式的有( ) A .2个B .3个C .4个D .5个3.下列计算正确的是( ) A .(−32)﹣1=32B .1a+1b =2a+bC .a 2−b 2a−b=a +bD .(−120)0=04.如图,AC =AD ,BC =BD ,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .AB 垂直平分CDD .CD 平分∠ACB5.下列各式中,正确的有( )①(3b 22a )3=3b 62a 3;②(2x x+y )2=4x 2x 2+y 2;③−a+b −a−b =a+b a−b ;④−x+y x−y =−1;⑤x+y x+y=0;⑥(x−y)−2(x+y)−2=(x+y)2(x−y)2. A .1个 B .2个C .3个D .4个6.如图,在等边△ABC 中,AD ⊥BC 于D ,延长BC 到E ,使CE =12BC ,F 是AC 的中点,连接EF 并延长EF 交AB 于G ,BG 的垂直平分线分别交BG ,AD 于点M ,点N ,连接GN ,CN ,下列结论:①EG ⊥AB ;②GF =12EF ;③∠GNC =120°;④GN =GF ;⑤∠MNG =∠ACN .其中正确的个数是( )A .2个B .3个C .4个D .5个二.填空题(共6小题,满分18分,每小题3分)7.某校组织开展了“诗词大会”的知识竞赛初赛,共有20道题.答对一题加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x 道题,根据题意,可列出关于x 的不等式为 . 8.若关于x 的分式方程2x−3+x+m 3−x=2有增根,则m 的值为 .9.如图所示,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,HG =24cm ,WG =8cm ,WC =6cm ,求阴影部分的面积为 cm 2.10.如图.网格上的小正方形边长均为1,△ABC 和△DEF 的顶点都在格点上.若△DEF 是由△ABC 向右平移a 个单位,再向下平移b 个单位得到的.则ba 的值为11.不等式组﹣1<x <4的整数解有 个.12.如图,已知点O 为△ABC 内角平分线的交点,过点O 作MN ∥BC ,分别交AB 于AC 点M 、N ,若AB =12,AC =14,则△AMN 的周长是 .三.解答题(共5小题,满分30分,每小题6分) 13.(6分)计算题(1)分解因式:2x 2y ﹣8xy +8y (2)解方程:x x−1=3x 2−2x+114.(6分)先化简,再求值:(2−x−1x+1)÷x 2+6x+9x 2−1,其中x =2.15.(6分)如图,△ABC 的顶点坐标分别为A (0,1),B (3,3),C (1,3). (1)画出△ABC 关于点O 的中心对称图形△A 1B 1C 1. (2)①画出△ABC 绕原点O 逆时针旋转90°的△A 2B 2C 2; ②直接写出点B 2的坐标为 .16.(6分)是否存在这样的整数m ,使方程组{x +y =m +22x −y =5m +4的解满足x ≥0,y >0;若存在,求m 的取值;若不存在,请说明理由.17.(6分)如图,在Rt △ABC 中,∠C =90°,点D 是CB 的中点,将△ACD 沿AD 折叠后得到△AED ,过点B 作BF ∥AC 交AE 的延长线于点F .求证:BF =EF .四.解答题(共3小题,满分24分,每小题8分) 18.(8分)如图,请根据图象所提供的信息解答下列问题:(1)交点P的坐标(1,1)是二元一次方程组:的解;(2)不等式kx+b<0的解集是;(3)当x时,kx+b≥mx﹣n;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.19.(8分)若一多项式除以2x2﹣3,得到的商式为x+4,余式为3x+2,求此多项式.20.(8分)若3x−5x2−2x−3=ax−3−bx+1(a,b为常数),求(a+2b)b的值.五.解答题(共2小题,满分18分,每小题9分)21.(9分)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?22.(9分)如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B (b,0),且a、b满足a2﹣4a+4+√2b+2=0.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证CF=12BC;②直接写出点C到DE的距离.六.解答题(共1小题,满分12分,每小题12分)23.(12分)如图①,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是;②线段AC,CD,CE之间的数量关系是.(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.2020-2021学年八年级下学期期中考试数学试卷参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,又是中心对称图形,故此选项正确; B 、不是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,不是中心对称图形,故此选项错误; D 、不是轴对称图形,是中心对称图形,故此选项错误; 故选:A .2.式子“①3x +y =2;②3x >y ;③4x +2y ;④4x ﹣3y ≥1;⑤4x <0,”属于不等式的有( ) A .2个B .3个C .4个D .5个【解答】解:式子“3x >y ;4x ﹣3y ≥1;4x <0,”属于不等式, 故选:B .3.下列计算正确的是( ) A .(−32)﹣1=32B .1a+1b=2a+bC .a 2−b 2a−b=a +bD .(−120)0=0 【解答】解:A 、原式=−23,错误; B 、原式=a+bab ,错误; C 、原式=(a+b)(a−b)a−b =a +b ,正确;D 、原式=1,错误; 故选:C .4.如图,AC =AD ,BC =BD ,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .AB 垂直平分CDD .CD 平分∠ACB【解答】解:∵AC =AD ,BC =BD , ∴AB 是线段CD 的垂直平分线, 故选:C .5.下列各式中,正确的有( )①(3b 22a )3=3b 62a 3;②(2x x+y )2=4x 2x 2+y 2;③−a+b −a−b =a+b a−b ;④−x+y x−y =−1;⑤x+y x+y=0;⑥(x−y)−2(x+y)=(x+y)2(x−y). A .1个B .2个C .3个D .4个【解答】解:①(3b 22a )3=27b 68a 3,故选项错误;②(2x x+y )2=4x 2x 2+2xy+y 2,故选项错误;③−a+b −a−b =a−b a+b,故选项错误;④−x+y x−y =−1,故选项正确;⑤x+y x+y=1,故选项错误;⑥(x−y)−2(x+y)=(x+y)2(x−y),故选项正确;所以正确的有2个. 故选:B .6.如图,在等边△ABC 中,AD ⊥BC 于D ,延长BC 到E ,使CE =12BC ,F 是AC 的中点,连接EF 并延长EF 交AB 于G ,BG 的垂直平分线分别交BG ,AD 于点M ,点N ,连接GN ,CN ,下列结论:①EG ⊥AB ;②GF =12EF ;③∠GNC =120°;④GN =GF ;⑤∠MNG =∠ACN .其中正确的个数是( )A.2个B.3个C.4个D.5个【解答】解:①∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,AC=BC,∵CE=12BC,F是AC的中点,∴CF=CE,∴∠E=∠CFE,∵∠ACB=∠E+∠CFE=60°,∴∠E=30°,∴∠BGE=90°,∴EG⊥AB,故①正确;②设AG=x,则AF=FC=CE=2x,∴FG=√3x,BE=6x,Rt△BGE中,BG=3x,EG=3√3x,∴EF=EG﹣FG﹣3√3x−√3x=2√3x,∴GF=12EF,故②正确;③如图,过N作NH⊥AC于H,连接BN,等边三角形ABC,∵AD⊥BC,∴AD平分∠BAC,BN=CN,∵MN⊥AB,∴NH=NM,∵MN是BG的垂直平分线,∴BN=NG,∴BN=CN=NG,在Rt△NGM和Rt△NCH中,{MN=NHGN=NC,∴Rt△NGM≌Rt△NCH(HL),∴∠GNM=∠CNH,∴∠MNH=∠CNG,∵∠ANM=∠ANH=60°,∴∠CNG=120°,故③正确;④∵MN是BG的垂直平分线,∴BM=MG=32x,∴AM=x+32x=52x,等边△ABC中,AD⊥BC,∴∠BAD=30°,∴MN=5√3x 6,∴GN=√GM2+MN2=(32x)2+(53x6)2=√39x2≠FG,故④不正确;⑤∵BN=CN=NG,∴∠DCN=∠DBN,∠NBM=∠NGM,∵∠ACN=∠ACB﹣∠DCN=60°﹣∠DBN=∠ABN=∠NGM,∵MG=32x,MN=5√36x,∴MG≠MN,∴∠NGM≠∠MNG,∴∠MNG≠∠ACN,故⑤不正确;其中正确的有:①②③,一共3个,故选:B.二.填空题(共6小题,满分18分,每小题3分)7.某校组织开展了“诗词大会”的知识竞赛初赛,共有20道题.答对一题加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x道题,根据题意,可列出关于x的不等式为10x﹣5(20﹣x)>160.【解答】解:设他答对x道题,则答错或不答的题数为(20﹣x)道,根据题意,可列出关于x的不等式为10x﹣5(20﹣x)>160,故答案为:10x﹣5(20﹣x)>160.8.若关于x的分式方程2x−3+x+m3−x=2有增根,则m的值为﹣1.【解答】解:方程两边都乘(x﹣3),得2﹣x﹣m=2(x﹣3)∵原方程增根为x=3,∴把x=3代入整式方程,得2﹣3﹣m=0,解得m=﹣1.故答案为:﹣1.9.如图所示,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为168cm2.【解答】解:∵直角梯形ABCD沿AD方向平移到梯形EFGH,∴HG=CD=24,∴DW=DC﹣WC=24﹣6=18,∵S阴影部分+S梯形EDWF=S梯形DHGW+S梯形EDWF,∴S阴影部分=S梯形DHGW=12(DW+HG)×WG=12×(18+24)×8=168(cm2).故答案为168.10.如图.网格上的小正方形边长均为1,△ABC 和△DEF 的顶点都在格点上.若△DEF 是由△ABC 向右平移a 个单位,再向下平移b 个单位得到的.则ba 的值为23【解答】解:由图知△DEF 是由△ABC 向右平移3个单位,再向下平移2个单位得到的, ∴a =3、b =2, 则ba=23,故答案为:23.11.不等式组﹣1<x <4的整数解有 4 个.【解答】解:在﹣1<x <4范围内的整数只有0,1,2,3, 所以等式﹣1<x <4的整数解有4个, 故答案为4.12.如图,已知点O 为△ABC 内角平分线的交点,过点O 作MN ∥BC ,分别交AB 于AC 点M 、N ,若AB =12,AC =14,则△AMN 的周长是 26 .【解答】解:∵BO 平分∠ABC , ∴∠MBO =∠CBO , ∵MN ∥BC , ∴∠MOB =∠CBO , ∴∠MOB =∠MBO , ∴OM =BM , 同理CN =NO ,∴BM+CN=MN,∴△AMN的周长是AN+MN+AM=AN+CN+OM+ON=AB+AC=12+14=26.故答案为:26.三.解答题(共5小题,满分30分,每小题6分)13.(6分)计算题(1)分解因式:2x2y﹣8xy+8y(2)解方程:xx−1=3x2−2x+1【解答】解:(1)原式=2y(x2﹣4x+4)=2y(x﹣2)2;(2)去分母得:2x=﹣3x+2x﹣2,解得:x=−2 3,经检验x=−23是分式方程的解.14.(6分)先化简,再求值:(2−x−1x+1)÷x2+6x+9x2−1,其中x=2.【解答】解:(2−x−1x+1)÷x2+6x+9x2−1=2(x+1)−(x−1)x+1⋅(x+1)(x−1)(x+3)2=2x+2−x+1x+1⋅(x+1)(x−1)(x+3)2=x+3 x+1⋅(x+1)(x−1)(x+3)2=x−1 x+3,当x=2时,原式=2−12+3=15.15.(6分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3).(1)画出△ABC关于点O的中心对称图形△A1B1C1.(2)①画出△ABC绕原点O逆时针旋转90°的△A2B2C2;②直接写出点B2的坐标为(﹣3,3).【解答】解:(1)如图,△A 1B 1C 1为所作; (2)①画如图,△A 2B 2C 2为所作;②点B 2的坐标为(﹣3,3). 故答案为(﹣3,3).16.(6分)是否存在这样的整数m ,使方程组{x +y =m +22x −y =5m +4的解满足x ≥0,y >0;若存在,求m 的取值;若不存在,请说明理由.【解答】解:解方程组{x +y =m +22x −y =5m +4得:{x =2m +2y =−m ,根据题意,得:{2m +2≥0−m >0,解得:﹣1≤m <0, 则整数m =﹣1.17.(6分)如图,在Rt △ABC 中,∠C =90°,点D 是CB 的中点,将△ACD 沿AD 折叠后得到△AED ,过点B 作BF ∥AC 交AE 的延长线于点F .求证:BF =EF .【解答】证明:如图,连接DF,∵D是CB的中点,∴CD=BD.∵将△ACD沿AD折叠后得到△AED,∴CD=ED,∠AED=∠C=90°,∴BD=ED,∠DEF=90°,∵BF∥AC,∠C=90°,∴∠CBF=180°﹣∠ACB=90°,∴∠DBF=∠DEF=90°,在Rt△DBF和Rt△DEF中,{DF=DFDE=DB,∴Rt△DBF≌Rt△DEF(HL),∴BF=EF.四.解答题(共3小题,满分24分,每小题8分)18.(8分)如图,请根据图象所提供的信息解答下列问题:(1)交点P的坐标(1,1)是二元一次方程组:{y=2x−1y=−12x+32的解;(2)不等式kx+b<0的解集是x>3;(3)当x≤1时,kx+b≥mx﹣n;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.【解答】解:(1)把A (0,﹣1),P (1,1)分别代入y =mx ﹣n 得{−n =−1m −n =1,解得{m =2n =1,所以直线l 1的解析式为y =2x ﹣1,把P (1,1)、B (3,0)分别代入y =kx +b 得{k +b =13k +b =0,解得{k =−12b =32, 所以直线l 2的解析式为y =−12x +32,所以交点P 的坐标(1,1)是一元二次方程组{y =2x −1y =−12x +32的解; (2)不等式kx +b <0的解集为x >3; (3)当x ≤1时,kx +b ≥mx ﹣n ;(4)当y =0时,2x ﹣1=0,解得x =12,则M 点的坐标为(12,0);当x =0时,y =−12x +32=32,则N 点坐标为(0,32),所以四边形OMPN 的面积=S △ONB ﹣S △PMB =12×3×32−12×(3−12)×1 =1.故答案为{y =2x −1y =−12x +32;x >3;≤1.19.(8分)若一多项式除以2x 2﹣3,得到的商式为x +4,余式为3x +2,求此多项式. 【解答】解:根据题意得:(2x 2﹣3)(x +4)+3x +2=2x 3+8x 2﹣10. 20.(8分)若3x−5x 2−2x−3=a x−3−bx+1(a ,b 为常数),求(a +2b )b 的值.【解答】解:a x−3−bx+1=ax+a−bx+3b(x−3)(x+1)=(a−b)x+a+3bx 2−2x−3,∵3x−5x 2−2x−3=a x−3−bx+1,∴{a −b =3a +3b =−5, 解得,{a =1b =−2,∴(a +2b )b =[1+2×(﹣2)]﹣2=(﹣3)﹣2=19.五.解答题(共2小题,满分18分,每小题9分)21.(9分)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同. (1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?【解答】解:(1)设甲品牌消毒剂每瓶的价格为x 元;乙品牌消毒剂每瓶的价格为(3x ﹣50)元, 由题意得:300x=4003x−50,解得:x =30,经检验,x =30是原方程的解且符合实际意义, 3x ﹣5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元; (2)设购买甲种品牌的消毒剂y 瓶,则购买乙种品牌的消毒剂(40﹣y )瓶, 由题意得:30y +40(40﹣y )=1400, 解得:y =20, ∴40﹣y =40﹣20=20,答:购买了20瓶乙品牌消毒剂.22.(9分)如图1,在平面直角坐标系中,直线AB 分别交y 轴、x 轴于点A (0,a ),点B(b,0),且a、b满足a2﹣4a+4+√2b+2=0.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证CF=12BC;②直接写出点C到DE的距离.【解答】解:(1)∵a2−4a+4+√2b+2=0,∴(a−2)2+√2b+2=0,∵(a﹣2)2≥0,√2b+2≥0,∴a﹣2=0,2b+2=0,∴a=2,b=﹣1;(2)由(1)知a=2,b=﹣1,∴A(0,2),B(﹣1,0),∴OA=2,OB=1,∵△ABC是直角三角形,且∠ACB=45°,∴只有∠BAC=90°或∠ABC=90°,Ⅰ、当∠BAC=90°时,如图1,∵∠ACB =∠ABC =45°, ∴AB =CB ,过点C 作CG ⊥OA 于G , ∴∠CAG +∠ACG =90°, ∵∠BAO +∠CAG =90°, ∴∠BAO =∠ACG , 在△AOB 和△BCP 中, {∠CGA =∠AOB =90°∠ACG =∠BAO AC =AB, ∴△AOB ≌△CGA (AAS ), ∴CG =OA =2,AG =OB =1, ∴OG =OA ﹣AG =1, ∴C (2,1),Ⅱ、当∠ABC =90°时,如图2,同Ⅰ的方法得,C (1,﹣1);即:满足条件的点C (2,1)或(1,﹣1) (3)①如图3,由(2)知点C (1,﹣1), 过点C 作CL ⊥y 轴于点L ,则CL =1=BO ,在△BOE 和△CLE 中, {∠OEB =∠LEC ∠EOB =∠ELC BO =CL, ∴△BOE ≌△CLE (AAS ), ∴BE =CE , ∵∠ABC =90°, ∴∠BAO +∠BEA =90°, ∵∠BOE =90°, ∴∠CBF +∠BEA =90°, ∴∠BAE =∠CBF , 在△ABE 和△BCF 中, {∠BAE =∠CBF AB =BC ∠ABE =∠BCF, ∴△ABE ≌△BCF (ASA ), ∴BE =CF , ∴CF =12BC ;②点C 到DE 的距离为1.如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,由①知BE=CF,∵BE=12BC,∴CE=CF,∵∠ACB=45°,∠BCF=90°,∴∠ECD=∠DCF,∵DC=DC,∴△CDE≌△CDF(SAS),∴∠BAE=∠CBF,∴CK=CH=1.六.解答题(共1小题,满分12分,每小题12分)23.(12分)如图①,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是60°;②线段AC,CD,CE之间的数量关系是AC=CD+CE.(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.【解答】解:(1)①∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由旋转知,AD=AE,∠DAE=60°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴∠ACE=∠B=60°,故答案为60°;②由(1)知,△ABD≌△ACE,∴BD=CE,∴BC=BD+CD=CE+CD,∵△ABC是等边三角形,∴AC=BC,∴AC=CE+CD,故答案为AC=CE+CD;(2)在△ABC中,AB=AC,∠BAC=90°,∴BC=√2AC,由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴BD=CE,∴BC=BD+CD=CE+CD,∴√2AC=CE+CD;(3)由(2)知,△ABD≌△ACE,∴∠ACE=∠ABD,在△ABC中,AB=AC,∠BAC=90°,∴∠ABD=∠ACB=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,∵∠DAE=90°,∴∠BCE+∠DAE=180°,∴点A,D,C,E在以DE为直径的圆上,∵AC与DE交于点F,∴AF是直径DE上的一点到点A的距离,即:当AF⊥DE时,AF最小,∴∠CFD=90°,∴∠CDF=90°﹣∠ACB=45°,∵∠ADE=45°,∴∠ADC=90°,∴四边形ADCE是矩形,∴AF最小=12AC=4.。
2020-2021学年八年级下期中考试数学试卷及答案解析
2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,是一元二次方程是()A.2x+3y=4B.x2=0C.x2﹣2x+1>0D.1x=x+22.下列结论不正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相垂直的平行四边形是菱形C.平行四边形对角相等对边相等D.矩形的对角线相等3.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐4.已知一次函数y=kx+b,y随x的增大而减小,且b<0,则在直角坐标系内它的大致图象是()A.B.C.D.5.在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A .9.7m ,9.8mB .9.7m ,9.7mC .9.8m ,9.9mD .9.8m ,9.8m6.如图,直线y =kx +b (k <0)经过点P (1,1),当kx +b ≥x 时,则x 的取值范围为( )A .x ≤1B .x ≥1C .x <1D .x >17.关于x 的方程x 2+2(m ﹣1)x +m 2﹣m =0有两个实数根α,β,且α2+β2=12,那么m 的值为( )A .﹣1B .﹣4C .﹣4或1D .﹣1或48.两条直线y 1=ax ﹣b 与y 2=bx ﹣a 在同一坐标系中的图象可能是图中的( )A .B .C .D .9.下列各点在直线y =2x +6上的是( )A .(﹣5,4)B .(﹣7,20)C .(23,223)D .(−72,1) 10.在平面直角坐标系中,正方形A 1B 1C 1D 1,D 1E 1E 2B 2,A 2D 2C 2D 2,D 2E 3E 4B 3,A 3B 3C 3D 3,…,按如图所示的方式放置,其中点B1在y轴上,点C1,E1,E2,C2,E3,E4,C3,…,在x轴上已知正方形A1,B1,C1,D1,的边长为1,∠OB1C1=30°,B1C1∥B2C2∥B3C3,…,则正方形A n B n∁n D n的边长是()A.(12)n B.(12)n−1C.(√33)n D.(√33)n﹣1二.填空题(共8小题,满分24分,每小题3分)11.关于x的一次函数y=(k+2)x﹣2k+1,其中k为常数且k≠﹣2①当k=0时,此函数为正比例函数;②无论k取何值,此函数图象必经过(2,5);③若函数图象经过(m,a2),(m+3,a2﹣2)(m,a为常数),则k=−83;④无论k取何值,此函数图象都不可能同时经过第二、三、四象限.上述结论中正确的序号有.12.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为s甲2=0.2,S乙2=0.08,成绩比较稳定的是(填“甲”或“乙”).13.某公司要招聘1名广告策划人员,某应聘者参加了3项素质测试,成绩如下(单位:分)测试项目创新能力综合知识语言表达测试成绩708090若创新能力、综合知识和语言表达的成绩按5:3:2计算,则该应聘者的素质测试平均成绩是分.14.写出一个一元二次方程,它的二次项系数为1,其中一个根为﹣3,另一个根为2,这个一元二次方程是.15.如图,菱形ABCD的对角线长分别为2和4,EF∥DC分别交AD,BC于点E,F,在EF上任取两点G,H,那么图中阴影部分的面积为.16.如图,直线l:y=−√3x,点A1的坐标为(﹣1,0),过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴正半轴于点A3;…,按此作法进行下去点A2020的坐标为.17.《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为.18.在正方形ABCD中,点G在AB上,点H在BC上,且∠GDH=45°,DG、DH分别与对角线AC交于点E、F,则线段AE、EF、FC之间的数量关系为.三.解答题(共9小题,满分66分)19.(7分)解方程(1)用直接开平方法解3(x﹣1)2﹣6=0;(2)用配方法解x2﹣6x+3=0;(3)用公式法解9x2+10x=4;(4)用因式分解法解2x2﹣5x=0.20.(7分)如图,在菱形ABCD中,过点B作BE⊥AD于E,过点B作BF⊥CD于F,求证:AE=CF.21.(7分)已知关于x的一元二次方程x2﹣(2k+1)x+12k2﹣2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1﹣x2=3,求k的值.22.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?23.(7分)如图,在矩形ABCD中,AD=6,CD=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD 的边AB ,CD ,DA 上,AH =2,连结CF .(1)当DG =2时,求证:四边形EFGH 是正方形;(2)当△FCG 的面积为2时,求DG 的值.24.(7分)如图,在平面直角坐标系中,过点A (0,6)的直线AB 与直线OC 相交于点C(2,4)动点P 沿路线O →C →B 运动.(1)求直线AB 的解析式;(2)当△OPB 的面积是△OBC 的面积的14时,求出这时点P 的坐标; (3)是否存在点P ,使△OBP 是直角三角形?若存在,直接写出点P 的坐标,若不存在,请说明理由.25.(7分)已知关于x 的方程(a 2﹣1)(x x−1)2﹣(2a +7)(x x−1)+1=0有实根. (1)求a 取值范围;(2)若原方程的两个实数根为x 1,x 2,且x 1x 1−1+x 2x 2−1=311,求a 的值.26.(7分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB 和线段CD 分别表示小泽和小帅离甲地的距离y (单位:千米)与时间x (单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为 千米/小时;点C 的坐标为 ;(2)求线段AB 对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?27.(10分)如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,是一元二次方程是()A.2x+3y=4B.x2=0C.x2﹣2x+1>0D.1x=x+2【解答】解:A、含有两个未知数,不是一元二次方程;B、符合一元二次方程的定义,是一元二次方程;C、含有不等号,不是一元二次方程;D、含有分式,不是一元二次方程.故选:B.2.下列结论不正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相垂直的平行四边形是菱形C.平行四边形对角相等对边相等D.矩形的对角线相等【解答】解:A.对角线互相垂直平分且相等的四边形是正方形,故本选项错误;B.对角线互相垂直的平行四边形是菱形,故本选项正确;C.平行四边形对角相等,对边相等,故本选项正确;D.矩形的对角线相等,故本选项正确;故选:A.3.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐【解答】解:∵甲、乙两队的方差分别是1.7、2.4,∴S甲2<S乙2,∴甲队身高更整齐;故选:B.4.已知一次函数y=kx+b,y随x的增大而减小,且b<0,则在直角坐标系内它的大致图象是()A.B.C.D.【解答】解:∵一次函数y=kx+b,y随x的增大而减小,且b<0,∴k<0,b<0,∴该函数图象经过第二、三、四象限,故选:B.5.在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A.9.7m,9.8m B.9.7m,9.7m C.9.8m,9.9m D.9.8m,9.8m【解答】解:把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,9.7m出现了2次,最多,所以众数为9.7m,故选:B.6.如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为()A.x≤1B.x≥1C.x<1D.x>1【解答】解:由题意,将P(1,1)代入y=kx+b(k<0),可得k+b=1,即k﹣1=﹣b,整理kx+b≥x得,(k﹣1)x+b≥0,∴﹣bx+b≥0,由图象可知b>0,∴x﹣1≤0,∴x≤1,故选:A.7.关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或4【解答】解:∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.8.两条直线y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A .B .C .D .【解答】解:根据一次函数的图象与性质分析如下:A .y 1=ax ﹣b :a >0,b <0;y 2=bx ﹣a :a <0,b <0.A 错误;B .y 1=ax ﹣b :a >0,b <0;y 2=bx ﹣a :a >0,b <0.B 正确;C .y 1=ax ﹣b :a >0,b >0;y 2=bx ﹣a :a <0,b <0.C 错误;D .y 1=ax ﹣b :a >0,b >0;y 2=bx ﹣a :a >0,b <0.D 错误; 故选:B .9.下列各点在直线y =2x +6上的是( ) A .(﹣5,4)B .(﹣7,20)C .(23,223) D .(−72,1)【解答】解:A 、当x =﹣5时,y =2×(﹣5)+6=﹣4, ∴点(﹣5,4)不在直线y =2x +6上; B 、当x =﹣7时,y =2×(﹣7)+6=﹣8, ∴点(﹣7,20)不在直线y =2x +6上; C 、当x =23时,y =2×23+6=223, ∴点(23,223)在直线y =2x +6上;D 、当x =−72时,y =2×(−72)+6=﹣1, ∴点(−72,1)不在直线y =2x +6上. 故选:C .10.在平面直角坐标系中,正方形A 1B 1C 1D 1,D 1E 1E 2B 2,A 2D 2C 2D 2,D 2E 3E 4B 3,A 3B 3C 3D 3,…,按如图所示的方式放置,其中点B 1在y 轴上,点C 1,E 1,E 2,C 2,E 3,E 4,C 3,…,在x 轴上已知正方形A 1,B 1,C 1,D 1,的边长为1,∠OB 1C 1=30°,B 1C 1∥B 2C 2∥B 3C 3,…,则正方形A n B n ∁n D n 的边长是( )A .(12)nB .(12)n−1C .(√33)nD .(√33)n ﹣1【解答】解:∵正方形A 1B 1C 1D 1的边长为1,∠OB 1C 1=30°,B 1C 1∥B 2C 2∥B 3C 3, ∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°, ∴D 1E 1=C 1D 1sin30°=12,则B 2C 2=B 2E 2cos30°=√33=(√33)1,同理可得:B 3C 3=13=(√33)2, 故正方形A n B n ∁n D n 的边长是:(√33)n ﹣1, 故选:D .二.填空题(共8小题,满分24分,每小题3分)11.关于x 的一次函数y =(k +2)x ﹣2k +1,其中k 为常数且k ≠﹣2 ①当k =0时,此函数为正比例函数; ②无论k 取何值,此函数图象必经过(2,5);③若函数图象经过(m ,a 2),(m +3,a 2﹣2)(m ,a 为常数),则k =−83; ④无论k 取何值,此函数图象都不可能同时经过第二、三、四象限. 上述结论中正确的序号有 ②③④ .【解答】解:①当k =0时,此函数为y =2x +1,不是正比例函数,故本结论错误; ②∵y =(k +2)x ﹣2k +1=(x ﹣2)k +2x +1, ∴当x =2时,y =5,∴无论k 取何值,此函数图象必经过(2,5),故本结论正确; ③∵函数图象经过(m ,a 2),(m +3,a 2﹣2)(m ,a 为常数),∴{(k +2)m −2k +1=a 2①(k +2)(m +3)−2k +1=a 2−2②, ②﹣①,得3(k +2)=﹣2,解得k =−83,故本结论正确; ④如果此函数图象同时经过第二、三、四象限, 那么{k +2<0−2k +1<0,此不等式组无解,所以无论k 取何值,此函数图象都不可能同时经过第二、三、四象限,故本结论正确. 即上述结论中正确的序号有②③④. 故答案为②③④.12.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为s 甲2=0.2,S 乙2=0.08,成绩比较稳定的是 乙 (填“甲”或“乙”). 【解答】解:∵S 甲2=0.2,S 乙2=0.08, ∴S 甲2>S 乙2,∴成绩比较稳定的是乙; 故答案为:乙.13.某公司要招聘1名广告策划人员,某应聘者参加了3项素质测试,成绩如下(单位:分)测试项目 创新能力 综合知识 语言表达 测试成绩708090若创新能力、综合知识和语言表达的成绩按5:3:2计算,则该应聘者的素质测试平均成绩是 77 分.【解答】解:根据题意,该应聘者的素质测试平均成绩是:70×510+80×310+90×210=77(分). 故答案为:77.14.写出一个一元二次方程,它的二次项系数为1,其中一个根为﹣3,另一个根为2,这个一元二次方程是 x 2+x ﹣6=0 . 【解答】解:设这个方程为ax 2+bx +c =0. ∵该方程的二次项系数为1,两根分别为﹣3和2, ∴a =1,−ba =−3+2,ca=−3×2,∴b=1,c=﹣6,∴这个方程为x2+x﹣6=0.故答案为:x2+x﹣6=0.15.如图,菱形ABCD的对角线长分别为2和4,EF∥DC分别交AD,BC于点E,F,在EF上任取两点G,H,那么图中阴影部分的面积为2.【解答】解:∵四边形ABCD是菱形,对角线长分别为2和4,∴AB∥DC,AD∥BC,菱形ABCD的面积=12×2×4=4,∵EF∥DC,∴EF∥DC∥AB,∴四边形ABFE和四边形CDEF是平行四边形,∴△ABH的面积=12平行四边形ABFE的面积,△CDG的面积=12平行四边形CDEF的面积,∴△ABH的面积+△CDG的面积=12菱形ABCD的面积=2,∴图中阴影部分的面积=4﹣2=2;故答案为:2.16.如图,直线l:y=−√3x,点A1的坐标为(﹣1,0),过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴正半轴于点A3;…,按此作法进行下去点A2020的坐标为(﹣22019,0).【解答】解:已知点A 1坐标为(﹣1,0),且点B 1在直线y =−√3x 上,可知B 1点坐标为(﹣1,√3),由题意可知OB 1=√12+(√3)2=2,故A 2点坐标为(﹣2,0), 同理可求的B 2点坐标为(﹣2,2√3),按照这种方法逐个求解便可发现规律,A 2020点坐标为(﹣22019,0), 故答案为(﹣22019,0).17.《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt △ABC 的两条直角边的长分别为5和12,则它的内接正方形CDEF 的边长为6017.【解答】解:∵四边形CDEF 是正方形, ∴CD =ED ,DE ∥CF ,设ED =x ,则CD =x ,AD =5﹣x , ∵DE ∥CF ,∴∠ADE =∠C ,∠AED =∠B , ∴△ADE ∽△ACB , ∴DE BC =AD AC , ∴x 12=5−x5,x =6017, 故答案为:6017.18.在正方形ABCD 中,点G 在AB 上,点H 在BC 上,且∠GDH =45°,DG 、DH 分别与对角线AC 交于点E 、F ,则线段AE 、EF 、FC 之间的数量关系为 EF 2=AE 2+CF 2 .【解答】解:如图,将△DCH 绕点D 顺时针旋转90°,得△DAM ,则△DAM ≌△DCH 则DM =DH ,AM =CH ,∠CDH =∠ADM在DM 上截取DN =DF ,连接NE ,AN 在△DAN 和△DCF 中 {DA =DC∠ADN =∠CDF DN =DF; ∴△DAN ≌△DCF (SAS ) ∴AN =CF ,∠DAN =∠DCF =45° 又∵∠DAC =45° ∴∠NAE =90° ∴AN 2+AE 2=NE 2 ∵∠GDH =45°, ∴∠NDE =45° 在△DNE 和△DFE 中 {DN =DF∠NDE =∠FDE DE =DE ∴△DNE ≌△DFE ∴NE =EF 又∵AN =CF ∴CF 2+AE 2=EF 2故答案为:EF2=AE2+CF2.三.解答题(共9小题,满分66分)19.(7分)解方程(1)用直接开平方法解3(x﹣1)2﹣6=0;(2)用配方法解x2﹣6x+3=0;(3)用公式法解9x2+10x=4;(4)用因式分解法解2x2﹣5x=0.【解答】解:(1)∵3(x﹣1)2=6,∴(x﹣1)2=2则x﹣1=±√2,∴x1=1+√2,x2=1−√2;(2)∵x2﹣6x=﹣3,∴x2﹣6x+9=﹣3+9,即(x﹣3)2=6,则x﹣3=±√6,∴x1=3+√6,x2=3−√6;(3)∵9x2+10x﹣4=0,∴a=9,b=10,c=﹣4,则△=102﹣4×9×(﹣4)=244>0,∴x=−b±√b2−4ac2a=−10±2√6118=−5±√619,即x1=−5+√619,x2=−5−√619;(4)∵2x2﹣5x=0,∴x(2x﹣5)=0,则x=0或2x﹣5=0,解得x1=0,x2=2.5.20.(7分)如图,在菱形ABCD中,过点B作BE⊥AD于E,过点B作BF⊥CD于F,求证:AE=CF.【解答】证明:∵菱形ABCD , ∴BA =BC ,∠A =∠C , ∵BE ⊥AD ,BF ⊥CD , ∴∠BEA =∠BFC =90°, 在△ABE 与△CBF 中 {∠BEA =∠BFC ∠A =∠C BA =BC, ∴△ABE ≌△CBF (AAS ), ∴AE =CF .21.(7分)已知关于x 的一元二次方程x 2﹣(2k +1)x +12k 2﹣2=0. (1)求证:无论k 为何实数,方程总有两个不相等的实数根; (2)若方程的两个实数根x 1,x 2满足x 1﹣x 2=3,求k 的值. 【解答】解:(1)∵△=[﹣(2k +1)]2﹣4×1×(12k 2﹣2)=4k 2+4k +1﹣2k 2+8 =2k 2+4k +9=2(k +1)2+7>0,∵无论k 为何实数,2(k +1)2≥0, ∴2(k +1)2+7>0,∴无论k 为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x 1+x 2=2k +1,x 1x 2=12k 2﹣2, ∵x 1﹣x 2=3, ∴(x 1﹣x 2)2=9,∴(x 1+x 2)2﹣4x 1x 2=9, ∴(2k +1)2﹣4×(12k 2﹣2)=9,化简得k 2+2k =0, 解得k =0或k =﹣2.22.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是 1.45kg ,众数是 1.5kg . (2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?【解答】解:(1)∵这20条鱼质量的中位数是第10、11个数据的平均数,且第10、11个数据分别为1.4、1.5, ∴这20条鱼质量的中位数是1.4+1.52=1.45(kg ),众数是1.5kg ,故答案为:1.45kg ,1.5kg . (2)x =1.2×1+1.3×4+1.4×5+1.5×6+1.6×2+1.7×220=1.45(kg ), ∴这20条鱼质量的平均数为1.45kg ;(3)18×1.45×2000×90%=46980(元),答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元.23.(7分)如图,在矩形ABCD 中,AD =6,CD =8,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求DG的值.【解答】(1)证明:在矩形ABCD中,有∠A=∠D=90°,∴∠DGH+∠DHG=90°.在菱形EFGH中,EH=GH∵AH=2,DG=2,∴AH=DG,∴Rt△AEH≌Rt△DHG(HL).∴∠AHE=∠DGH.∴∠AHE+∠DHG=90°.∴∠EHG=90°.∴四边形EFGH是正方形.(2)过F作FM⊥DC于Q,则∠FQG=90°.∴∠A=∠FQG=90°.连接EG.由矩形和菱形性质,知AB∥DC,HE∥GF,∴∠AEG=∠QGE,∠HEG=∠FGE,∴∠AEH=∠QGF.∵EH=GF,∴△AEH≌△QGF(AAS).∴FQ=AH=2.∵S△FCG=12CG•FQ=12×CG×2=2,∴CG=2.24.(7分)如图,在平面直角坐标系中,过点A (0,6)的直线AB 与直线OC 相交于点C(2,4)动点P 沿路线O →C →B 运动.(1)求直线AB 的解析式;(2)当△OPB 的面积是△OBC 的面积的14时,求出这时点P 的坐标; (3)是否存在点P ,使△OBP 是直角三角形?若存在,直接写出点P 的坐标,若不存在,请说明理由.【解答】解:(1)∵点A 的坐标为(0,6),∴设直线AB 的解析式为y =kx +6,∵点C (2,4)在直线AB 上,∴2k +6=4,∴k =﹣1,∴直线AB 的解析式为y =﹣x +6;(2)由(1)知,直线AB 的解析式为y =﹣x +6,令y =0,∴﹣x +6=0,∴x =6,∴B (6,0),∴S △OBC =12OB •y C =12,∵△OPB 的面积是△OBC 的面积的14, ∴S △OPB =14×12=3, 设P 的纵坐标为m ,∴S △OPB =12OB •m =3m =3,∴m =1,∵C (2,4),∴直线OC 的解析式为y =2x ,当点P 在OC 上时,x =12,∴P (12,1), 当点P 在BC 上时,x =6﹣1=5,∴P (5,1),即:点P (12,1)或(5,1);(3)∵△OBP 是直角三角形,∴∠OPB =90°,当点P 在OC 上时,由(2)知,直线OC 的解析式为y =2x ①,∴直线BP 的解析式的比例系数为−12,∵B (6,0),∴直线BP 的解析式为y =−12x +3②,联立①②,解得{x =65y =125, ∴P (65,125),当点P 在BC 上时,由(1)知,直线AB 的解析式为y =﹣x +6③,∴直线OP 的解析式为y =x ④,联立③④解得,{x =3y =3, ∴P (3,3),即:点P 的坐标为(65,125)或(3,3).25.(7分)已知关于x 的方程(a 2﹣1)(x x−1)2﹣(2a +7)(x x−1)+1=0有实根.(1)求a 取值范围; (2)若原方程的两个实数根为x 1,x 2,且x 1x 1−1+x 2x 2−1=311,求a 的值.【解答】解:(1)设x x−1=y ,则原方程化为:(a 2﹣1)y 2﹣(2a +7)y +1=0 (2),①当方程(2)为一次方程时,即a 2﹣1=0,a =±1.若a =1,方程(2)的解为y =19,原方程的解为x =−18满足条件;若a =﹣1,方程(2)的解为y =15,原方程的解为x =−14满足条件;∴a =±1.②当方程为二次方程时,a 2﹣1≠0,则a ≠±1,要使方程(a 2﹣1)y 2﹣(2a +7)y +1=0 (2)有解,则△=(2a +7)2﹣4(a 2﹣1)=28a +53≥0,解得:a ≥−5328,此时原方程没有增根,∴a 取值范围是a ≥−5328.综上,a 的取值范围是a ≥−5328.(2)设x 1x 1−1=y 1,x 2x 2−1=y 2,则则y 1、y 2是方程(a 2﹣1)y 2﹣(2a +7)y +1=0的两个实数根,由韦达定理得:y 1+y 2=2a+7a 2−1, ∵y 1+y 2=311, ∴2a+7a 2−1=311, 解得:a =−83或10,又∵a ≥−5328,∴a =10.26.(7分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB 和线段CD 分别表示小泽和小帅离甲地的距离y (单位:千米)与时间x (单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为 16 千米/小时;点C 的坐标为 (0.5,0) ;(2)求线段AB 对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?【解答】解:(1)由图可得,小帅的骑车速度是:(24﹣8)÷(2﹣1)=16千米/小时,点C 的横坐标为:1﹣8÷16=0.5,∴点C 的坐标为(0.5,0),故答案为:16千米/小时,(0.5,0);(2)设线段AB 对应的函数表达式为y =kx +b (k ≠0),∵A (0.5,8),B (2.5,24),∴{0.5k +b =82.5k +b =24, 解得:{k =8b =4, ∴线段AB 对应的函数表达式为y =8x +4(0.5≤x ≤2.5);(3)当x =2时,y =8×2+4=20,∴此时小泽距离乙地的距离为:24﹣20=4(千米),答:当小帅到达乙地时,小泽距乙地还有4千米.27.(10分)如图①,已知直线y =﹣2x +4与x 轴、y 轴分别交于点A 、C ,以OA 、OC 为边在第一象限内作长方形OABC .(1)求点A 、C 的坐标;(2)将△ABC 对折,使得点A 的与点C 重合,折痕交AB 于点D ,求直线CD 的解析式(图②);(3)在坐标平面内,是否存在点P (除点B 外),使得△APC 与△ABC 全等?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【解答】解:(1)A(2,0);C(0,4)(2分)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4﹣x,根据题意得:(4﹣x)2+22=x2解得:x=5 2此时,AD=52,D(2,52)(2分)设直线CD为y=kx+4,把D(2,52)代入得52=2k+4(1分)解得:k=−3 4∴直线CD解析式为y=−34x+4(1分)(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=52,PD=BD=4−52=32,AP=BC=2由AD×PQ=DP×AP得:52PQ=3∴PQ=6 5∴x P=2+65=165,把x=165代入y=−34x+4得y=85此时P(165,85) (也可通过Rt △APQ 勾股定理求AQ 长得到点P 的纵坐标) ③当点P 在第二象限时,如图同理可求得:CQ =85∴OQ =4−85=125此时P(−65,125)综合得,满足条件的点P 有三个,分别为:P 1(0,0);P 2(165,85);P 3(−65,125).。
2020-2021苏科版八年级数学下学期期中试卷(含答案)
苏科版八年级下学期数学期中试卷一、选择题1、下列电视台的台标,是中心对称图形的是( )A. B. C. D.2、下列问题用普查(即全面调查)较为合适的是( )A .了解高州市中小学生对“创文”知识的了解情况B .检验一批药品针对新型冠状病毒肺炎的治疗效果C .了解50位同学对于垃圾分类知识的掌握情况D .检测一批地板砖的强度3、有两个事件,事件A :367人中至少有2人生日相同;事件B :抛掷一枚均匀的硬币,落地后正面朝上.下列说法正确的是( ) A .事件A ,B 都是必然事件 B .事件A ,B 都是随机事件C .事件是A 必然事件,事件B 是随机事件D .事件是A 随机事件,事件B 是必然事件 4、如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .245、要使分式23-x 有意义,则x 的取值范围是( ) A .x ≠﹣2 B .x >2C .x <2D .x ≠26、若函数()21-+=m x m y 是反比例函数,则=m ( ) A .1±B .3±C .1-D .17、已知关于x 的函数y =k (x +1)和y =﹣(k ≠0)它们在同一坐标系中的大致图象是( )A .B .C .D .8、如图,函数1(0)y x x =>和3(0)y x x=>的图象分别是1l 和2l .设点P 在2l 上,//PA y 轴交1l 于点A ,//PB x轴,交1l 于点B ,PAB ∆的面积为( )A .12B .23 C .13D .34二、填空题9、已知菱形ABCD 的对角线相交于点O ,AC =8cm ,BD =6cm ,则菱形的面积为 cm 2.10、如图,在下列条件中,能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB=CDB .∠AOB=∠COD ,∠AOD=∠COBC .OA=OC ,OB=OD D .AB=AD ,CB=CD11、若用去分母法解分式方程xmx x -=--332会产生增根,则m 的值为 . 12、如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象都经过点A (-1,2),若y 1>y 2,则x 的取值范围是____________.13、如图,点A 在双曲线y =5x 上,点B 在双曲线y =8x上,且AB ∥x 轴,则△OAB 的面积为________.14、点P (1,a )在反比例函数y =kx的图象上,它关于y 轴的对称点在一次函数y =2x +4的图象上,则此反比例函数的表达式为________.15、如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是 .16、如图,在△ABC 中,∠BAC=90°,AB=AC=3,D 为BC 边上一点,且:1:2BD DC =,以D 为一个顶点作正方形DEFG ,且DE=BC ,连接AE ,将正方形DEFG 绕点D 旋转一周,在整个旋转过程中,当AE 取得最大值时AG 的长为_______.三、解答题17、解分式方程(4分):(1)2101x x -=+. (2)2216124x x x --=+-18、(5分)先化简,再求值:12)112(22+-+÷--a a aa a a ,其中12-+a a =0.19、(8分)疫情期间,某学校根据同学学习情况,计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如图两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并通过计算补全条形统计图; (2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生4800人,请你估计该校对在线阅读最感兴趣的学生人数.20、(6分)马小虎的家距离学校1400米,一天马小虎从家去上学,出发8分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他.已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.21、(5分)如图,AB,CD相交于点O,AC∥DB,AO=BO,E,F分别是OC,OD的中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.22、(6分)如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图.(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1;(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.23(6分)如图,在△ABC中,M是AC边上的一点,连接BM.将△ABC沿AC翻折,使点B落在点D处,当DM∥AB时,求证:四边形ABMD是菱形.24、(10分)已知(,2)A a a -、(2,)B a -两点是反比例函数my x=与一次函数y kx b =+图象的两个交点. (1)求一次函数和反比例函数的解析式; (2)求ABO ∆的面积;(3)观察图象,直接写出不等式0mkx b x+->的解集.25、(10分)如图,在四边ABCD 中,AB ∥DC ,AB =AD ,对角AC 、BD 交于O ,AC 平∠BAD . (1)求证:四边形ABCD 是菱形;(2)过点C 作CE ⊥AB 交AB 的延长线于点E ,连接OE ,若AB =2,BD =4,求OE 的长.26、(12分)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)若PB=PQ,点F是BP的中点,连结EF、AF,①求证:四边形AFEP是平行四边形;②求PE的长.苏科版八年级下学期数学(解析)一、选择题1、下列电视台的台标,是中心对称图形的是( )A. B. C. D.【答案】D【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,因此,四个选项中只有D 符合.故选D .2、下列问题用普查(即全面调查)较为合适的是( )A .了解高州市中小学生对“创文”知识的了解情况B .检验一批药品针对新型冠状病毒肺炎的治疗效果C .了解50位同学对于垃圾分类知识的掌握情况D .检测一批地板砖的强度 【答案】C【分析】选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查【详解】A 、学生较多,故宜选用抽样调查;B 、实验要损耗药品,故宜选用抽样调查; C 、人数较少且要具体到每个人,故宜用全面调查:D 、有破坏性,宜采用抽样调查.故选:C .3、有两个事件,事件A :367人中至少有2人生日相同;事件B :抛掷一枚均匀的硬币,落地后正面朝上.下列说法正确的是( ) A .事件A ,B 都是必然事件 B .事件A ,B 都是随机事件C .事件是A 必然事件,事件B 是随机事件D .事件是A 随机事件,事件B 是必然事件 【答案】C【分析】运用必然事件和随机事件的定义判断即可.【详解】解:事件A :367人中至少有2人生日相同,是必然事件;事件B :抛掷一枚均匀的硬币,落地后正面朝上,是随机事件;故答案为C .4、如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .24 【答案】C【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED ,再根据等角对等边的性质可得CE=CD ,然后利用平行四边形对边相等求出CD 、BC 的长度,再求出▱ABCD 的周长. 【详解】解:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,BC=AD=6,AB=CD , ∴∠ADE=∠CED ,∴∠CDE=∠CED ,∴CE=CD , ∵AD=6,BE=2,∴CE=BC-BE=6-2=4,∴CD=AB=4, ∴▱ABCD 的周长=6+6+4+4=20. 故选:C .5、要使分式23-x 有意义,则x 的取值范围是( ) A .x ≠﹣2 B .x >2 C .x <2 D .x ≠2【分析】根据分式有意义的条件即可求出答案. 解:由题意可知:x ﹣2≠0 ∴x ≠2 故选:D .6、若函数()21-+=m x m y 是反比例函数,则=m ( ) A .1±B .3±C .1-D .1【分析】根据反比例函数的定义列方程即可得到结论. 【答案】解:∵函数y =(m +1)x |m |﹣2是反比例函数,∴|m |﹣2=﹣1,m +1≠0, ∴m =1, 故选:D .7、已知关于x 的函数y =k (x +1)和y =﹣(k ≠0)它们在同一坐标系中的大致图象是( )A .B .C .D .【分析】先根据反比例函数的性质判断出k 的取值,再根据一次函数的性质判断出k 取值,二者一致的即为正确答案.【答案】解:当k >0时,反比例函数的系数﹣k <0,反比例函数过二、四象限,一次函数过一、二、三象限,原题没有满足的图形;当k <0时,反比例函数的系数﹣k >0,所以反比例函数过一、三象限,一次函数过二、三、四象限. 故选:A .8、如图,函数1(0)y x x =>和3(0)y x x=>的图象分别是1l 和2l .设点P 在2l 上,//PA y 轴交1l 于点A ,//PB x轴,交1l 于点B ,PAB ∆的面积为( )A .12B .23 C .13D .34【分析】将点P (m ,n )代入反比例函数(x >0)用m 表示出n 即可表示出点P 的坐标,然后根据PB ∥x 轴,得到B 点的纵坐标为,然后将点B 的纵坐标带人反比例函数的解析式(x >0)即可得到点B 的坐标,同理得到点A 的坐标;根据PB =m ﹣,P A =,利用S △P AB =P A •PB 即可得到答案.【答案】解:设点P (m ,n ),∵P 是反比例函数y =(x >0)图象上的点, ∴n =, ∴点P (m ,); ∵PB ∥x 轴, ∴B 点的纵坐标为,将点B 的纵坐标代入反比例函数的解析式y =(x >0)得:x =, ∴B (,),同理可得:A (m ,); ∵PB =m ﹣=,P A =﹣=,∴S △P AB =P A •PB =×.故选:B .二、填空题9、已知菱形ABCD 的对角线相交于点O ,AC =8cm ,BD =6cm ,则菱形的面积为 cm 2. 【分析】由菱形面积公式即可得出答案.【解析】∵四边形ABCD 是菱形,对角线AC =8cm ,BD =6cm , ∴菱形ABCD 的面积=21AC ×BD =21×8×6=24(cm 2), 故答案为:24.10、如图,在下列条件中,能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB=CDB .∠AOB=∠COD ,∠AOD=∠COBC .OA=OC ,OB=OD D .AB=AD ,CB=CD 【答案】C【分析】由平行四边形的判定可求解.【详解】A 、由AD ∥BC ,AB=CD 不能判定四边形ABCD 为平行四边形;B 、由∠AOB=∠COD ,∠AOD=∠COB 不能判定四边形ABCD 为平行四边形;C 、由OA=OC ,OB=OD 能判定四边形ABCD 为平行四边形; D 、AB=AD ,CB=CD 不能判定四边形ABCD 为平行四边形; 故选:C .11、若用去分母法解分式方程xmx x -=--332会产生增根,则m 的值为 . 【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出m 的值.解:去分母得:x ﹣2=﹣m ,由分式方程有增根,得到x ﹣3=0,即x =3, 把x =3代入整式方程得:﹣m =1,解得:m =﹣1. 故答案为:﹣1.12、如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象都经过点A (-1,2),若y 1>y 2,则x 的取值范围是____________.[答案]-1<x<0或x>1[解析]根据反比例函数图象与正比例函数图象交点规律:两个交点关于原点对称,可得另一交点的坐标为(1,-2).由图象可得在点A 的右侧、y 轴的左侧及另一交点的右侧时,相同横坐标的反比例函数的值都大于正比例函数的值,故当y 1>y 2时,-1<x<0或x>1.13、如图,点A 在双曲线y =5x 上,点B 在双曲线y =8x上,且AB ∥x 轴,则△OAB 的面积为________.[答案]32[解析]延长BA 交y 轴于点C.S △OAC =12×5=52,S △OCB =12×8=4,则S △OAB =S △OCB -S △OAC =4-52=32.14、点P (1,a )在反比例函数y =kx的图象上,它关于y 轴的对称点在一次函数y =2x +4的图象上,则此反比例函数的表达式为________.[解析]点P 关于y 轴的对称点是(-1,a),代入一次函数表达式y =2x +4中,得a =-1×2+4=2,故点P 的坐标为(1,2).将点(1,2)代入反比例函数表达式y =kx中,得k =xy =2.故此反比例函数的表达式为y =2x.15、如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是 .解:条件是AD =BC .∵EH 、GF 分别是△ABC 、△BCD 的中位线,∴EH ∥=BC ,GF ∥=BC ,∴EH ∥=GF ,∴四边形EFGH 是平行四边形.要使四边形EFGH 是菱形,则要使AD =BC ,这样,GH =AD , ∴GH =GF ,∴四边形EFGH 是菱形.16、如图,在△ABC 中,∠BAC=90°,AB=AC=3,D 为BC 边上一点,且:1:2BD DC =,以D 为一个顶点作正方形DEFG ,且DE=BC ,连接AE ,将正方形DEFG 绕点D 旋转一周,在整个旋转过程中,当AE 取得最大值时AG 的长为_______.【答案】23【分析】当点E 在线段AD 延长线上时,AE 取得最大值,画出图形,过点A 作AM BC ⊥于点M ,求出BC 的长度,利用等腰直角三角形的性质和勾股定理,求出AD 的长,进而可得AG 的长.【详解】解:当点E 在线段AD 延长线上时,AE 取得最大值.过点A 作AM BC ⊥于点M ,如图所示:90BAC ∠=︒,3AB AC ==,223332BC ∴=+=322BM CM ∴=,∴322AM = :1:2BD DC =,DE BC =,2BD ∴=32DE EF DG FG ====3122222DM ∴=Rt ADM ∆中,2231(2)(2)522AD =+ 在Rt ADG ∆中,()()222253223AG AD DG =+=+23三、解答题17、解分式方程(4分):(1)2101x x -=+. (2)2216124x x x --=+- 【解析】(1)2101x x -=+. (1)两边都乘以(1)x x +,得:2(1)0x x +-=,解得:2x =-,检验:2x =-时,(1)20x x +=≠,所以原分式方程的解为2x =-;(2)2216124x x x --=+- (2)两边都乘以(2)(2)x x +-,得:2(2)16(2)(2)x x x --=+-,解得:2x =-,检验:2x =-时,(2)(2)0x x +-=,2x ∴=-是分式方程的增根,则原分式方程无解.18、(5分)先化简,再求值:12)112(22+-+÷--a a a a a a ,其中12-+a a =0. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再由等式得出a 2=1﹣a ,代入计算可得. 解:原式=[﹣]÷ =• =, 当12-+a a 时,a 2=1﹣a ,则原式==﹣1.19、(8分)疫情期间,某学校根据同学学习情况,计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如图两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并通过计算补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生4800人,请你估计该校对在线阅读最感兴趣的学生人数.【答案】(1)90人,补全图形见解析;(2)48︒;(3)1280人.【分析】(1)由在线答题的人数有18人,占比20%,可得本次调查的总人数,再求解在线听课的人数,补全统计图即可;(2)先求解在线讨论占样本的百分比,由360︒乘以这个百分比即可得到答案;(3)先求解对在线阅读最感兴趣的学生占样本的百分比,利用总人数乘以这个百分比即可得到答案.【详解】解:(1)由在线答题的人数有18人,占比20%,所以本次调查的学生总人数为:18=9020%(人),所以在线听课的有:9024181236---=(人),补全图形如下:(2)因为12360=4890⨯︒︒,所以扇形统计图中“在线讨论”对应的扇形圆心角的度数为:48.︒(3)因为:244800=128090⨯(人),所以4800人中对在线阅读最感兴趣的学生有1280人.20、(6分)马小虎的家距离学校1400米,一天马小虎从家去上学,出发8分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他.已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.【分析】设马小虎的速度为x米/分,则爸爸的速度是2x米/分,根据时间=路程÷速度结合爸爸比马小虎晚出发8分钟,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依题意,得:﹣=8,解得:x=75,经检验,x=75是原方程的解,且符合题意.答:马小虎的速度是75米/分.21、(5分)如图,AB,CD相交于点O,AC∥DB,AO=BO,E,F分别是OC,OD的中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.证明:(1)∵AC ∥DB ,∴∠C =∠D ,在△AOC 和△BOD 中,⎪⎩⎪⎨⎧=∠=∠∠=∠BO AO D B AOC DC 0∴△AOC ≌△BOD ;(2)∵△AOC ≌△BOD ,∴CO =DO.∵E ,F 分别是OC ,OD 的中点,∴OF =12 OD ,OE =12 OC ,∴EO =FO ,又∵AO =BO ,∴四边形AFBE 是平行四边形.22、(6分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图.(1)以A 点为旋转中心,将△ABC 绕点A 顺时针旋转90°得△AB 1C 1,画出△AB 1C 1;(2)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2.【答案】(1)△AB 1C 1如图所示;见解析;(2)△A 2B 2C 2如图所示;见解析.【分析】(1)依据△ABC 绕点A 顺时针旋转90°,即可得到△AB 1C 1;(2)依据中心对称的性质进行作图,即可得到△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2.【详解】(1)△AB 1C 1如图所示;(2)△A 2B 2C 2如图所示.23(6分)如图,在△ABC 中,M 是AC 边上的一点,连接BM .将△ABC 沿AC 翻折,使点B 落在点D 处,当DM ∥AB 时,求证:四边形ABMD 是菱形.证明:如图,由折叠的性质,得AB =AD ,BM =DM ,∠1=∠2.∵DM ∥AB ,∴∠1=∠3,∴∠2=∠3,∴AD =DM ,∴AB =AD =BM =DM ,∴四边形ABMD 是菱形.24、(10分)已知(,2)A a a -、(2,)B a -两点是反比例函数m y x=与一次函数y kx b =+图象的两个交点. (1)求一次函数和反比例函数的解析式;(2)求ABO ∆的面积;(3)观察图象,直接写出不等式0m kx b x +->的解集.【分析】(1)由点A 的坐标利用反比例函数图象上点的坐标特征即可求出m 的值;由点B 的坐标结合反比例函数图象上点的坐标特征即可得出关于n 的一元一次方程,解方程即可求出点B 的坐标,再由点A 、B 的坐标利用待定系数法即可求出一次函数解析;(2)求得C 的坐标,然后根据三角形面积公式求得即可;(3)结合函数图象的上下位置关系结合交点的坐标,即可得出不等式的解集;【答案】解:(1)∵A (a ,﹣2a )、B (﹣2,a )两点在反比例函数y =的图象上,∴m =﹣2a •a =﹣2a ,解得a =1,m =﹣2,∴A (1,﹣2),B (﹣2,1),反比例函数的解析式为y =﹣.将点A (1,﹣2)、点B (﹣2,1)代入到y =kx +b 中,得:,解得:,∴一次函数的解析式为y =﹣x ﹣1.(2)在直线y =﹣x ﹣1中,令y =0,则﹣x ﹣1=0,解得x =﹣1,∴C (﹣1,0),∴S △AOB =S △AOC +S △BOC =×1×2+×1=;(3)观察函数图象,发现:当x<﹣2或0<x<1时,反比例函数图象在一次函数图象的上方,∴不等式kx+b﹣>0的解集为x<﹣1或0<x<2.25、(10分)如图,在四边ABCD中,AB∥DC,AB=AD,对角AC、BD交于O,AC平∠BAD.(1)求证:四边形ABCD是菱形;(2)过点C作CE⊥AB交AB的延长线于点E,连接OE,若AB=2,BD=4,求OE的长.【解析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DCA,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=2,利用勾股定理求出OA,即可得出结论.【答案】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=4,∴OB=BD=2,在Rt△AOB中,AB=2,OB=1,∴OA===4,∴OE=OA=4.26、(12分)如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A 、D 不重合),射线PE 与BC 的延长线交于点Q .(1)求证:△PDE ≌△QCE ;(2)若PB =PQ ,点F 是BP 的中点,连结EF 、AF ,①求证:四边形AFEP 是平行四边形;②求PE 的长.【分析】(1)由正方形的性质、中点的定义及对顶角相等得出全等的判定条件即可得出答案;(2)①分别根据等腰三角形的性质、正方形的性质、全等三角形的性质及三角形的中位线定理等知识点得出两组对边分别平行,从而证得结论;②设AP =x ,分别用含x 的式子表示出PD 、CQ 、BQ 及EF ,再根据平行四边形的性质及勾股定理求得PE 的长即可.【解析】(1)证明:∵四边形ABCD 是正方形,∴∠D =∠ECQ =90°,∵E 是边CD 的中点,∴DE =CE ,又∵∠DEP =∠CEQ ,∴△PDE ≌△QCE (ASA );(2)①证明:∵PB =PQ ,∴∠PBQ =∠Q ,∵在正方形ABCD 中,AD ∥BC ,∴∠APB =∠PBQ =∠Q =∠EPD ,∵△PDE ≌△QCE ,∴PE =QE ,∵点F 是BP 的中点,∠PAB =90°,∴AF =PF =BF ,EF ∥BQ ,∴∠APF =∠PAF ,∴∠PAF =∠EPD ,∴PE ∥AF ,又∵EF ∥BQ ∥AD ,∴四边形AFEP 是平行四边形;②设AP =x ,则PD =1﹣x ,∴CQ =1﹣x ,∴BQ =2﹣x .∵EF 是△PBQ 的中位线,∴EF =21(2﹣x ), ∵四边形AFEP 是平行四边形,∴EF =AP , ∴21(2﹣x )=x ,∴x=32. 在Rt △PDE 中,DE=21,PD 2+DE 2=PE 2, ∴2241)321(PE =+-, ∴PE=613.。
2020-2021学年八年级下学期期中数学试卷及答案
2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分) 1.若m >n ,则下列不等式正确的是( ) A .m ﹣4<n ﹣4B .m 4>n4C .4m <4nD .﹣2m >﹣2n2.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠CB .AD ⊥BCC .AD 平分∠BACD .AB =2BD3.不等式组{2x −4≤0x +2>0的解集在数轴上用阴影表示正确的是( )A .B .C .D .4.如图,点E ,F ,G ,Q ,H 在一条直线上,且EF =GH ,我们知道按如图所作的直线l 为线段FG 的垂直平分线.下列说法正确的是( )A .l 是线段EH 的垂直平分线B .l 是线段EQ 的垂直平分线C .l 是线段FH 的垂直平分线D .EH 是l 的垂直平分线5.已知a <b ,则下列不等式不成立的是( ) A .a ﹣1<b ﹣1B .a2<b2C .a ﹣b <0D .1−a 3<1−b 36.如图,将三角形ABE 向右平移1cm 得到三角形DCF ,如果三角形ABE 的周长是10cm ,那么四边形ABFD的周长是()A.12cm B.16cm C.18cm D.20cm7.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确8.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)9.已知一次函数y=ax+b的图象经过一、二、三象限,且与x轴交于点(﹣2,0),则不等式ax>b的解集为()A.x>﹣2B.x<﹣2C.x>2D.x<210.如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD 上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为()A.14B.13C.12D.10二.填空题(共5小题,满分15分,每小题3分)11.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=.12.已知a+b+c=0,a>b>c,则ca的取值范围是.13.若关于x的不等式组{2x−k>0x−2≤0有且只有五个整数解,则k的取值范围是.14.如图,是由边长为1个单位长度的小正方形的网格,在格点中找一点C,使△ABC是等腰三角形,这样的点C有个.15.如图所示,在平面直角坐标系中,A(4,0),B(0,2),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是.三.解答题(共7小题,满分63分,每小题9分)16.(9分)(1)分解因式:ax2﹣2ax+a;(2)解不等式组:{x+3≤2(x+2)x3+1>3x−14,并写出所有非负整数解.17.(9分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,1),B(﹣1,3),C(﹣1,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若A对应的点A2坐标为(﹣4,﹣5),画出△A2B2C2;(2)若△A1B1C1绕某一点旋转可以得到△A2B2C2,直接写出旋转中心坐标.(3)在x轴上有一点P使得P A+PB的值最小,直接写出点P的坐标.18.(9分)如图,在△ABC中,AB=AC,AB的垂直平分线分别交AB、AC于点E、点D,∠A=36°.求证:AD=BC.19.(9分)(1)已知3m=6,9n=2,求32m﹣2n+1的值;(2)已知a+b=6,ab=8,求a2+b2与(a﹣b)2的值.20.(9分)如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=20√39,求S△ABC.21.(9分)随着夏季的来临,某公司决定购买10套设备生产电风扇,现有甲、乙两种型号的设备,其中每套的价格、日生产量如表:甲型乙型价格(万元/套)m n生产量(台/日)120100经调查:购买两套甲型设备比购买一套乙型设备多6万元,购买一套甲型设备和购买三套乙型设备共需10万元.(1)求m,n的值;(2)经预算,该公司购买生产设备的资金不超过26万元,且每日的生产量不低于1020台,为了节约资金,请你为公司设计一种最省钱的购买方案.22.(9分)如图,△ABC中,AB=30cm,AC=20cm,以BC为边作等边△BCD,连接AD,求AD的最大值,最小值分别是多少?2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分) 1.若m >n ,则下列不等式正确的是( ) A .m ﹣4<n ﹣4B .m 4>n4C .4m <4nD .﹣2m >﹣2n【解答】解:∵m >n ,∴m ﹣4>n ﹣4;14m >14n ;4m >4n ,﹣2m <﹣2n .故选:B .2.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠CB .AD ⊥BCC .AD 平分∠BACD .AB =2BD【解答】解:∵△ABC 中,AB =AC ,D 是BC 中点 ∴∠B =∠C ,(故A 正确) AD ⊥BC ,(故B 正确) ∠BAD =∠CAD (故C 正确) 无法得到AB =2BD ,(故D 不正确). 故选:D .3.不等式组{2x −4≤0x +2>0的解集在数轴上用阴影表示正确的是( )A .B .C .D .【解答】解:{2x −4≤0①x +2>0②,由①得x ≤2,由②得x >﹣2, 故此不等式组的解集为:故选:C .4.如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l 为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线【解答】解:如图:A.∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=OG+GH,即EO=OH,∴l为线段EH的垂直平分线,故此选项正确;B.∵EO≠OQ,∴l不是线段EQ的垂直平分线,故此选项错误;C.∵FO≠OH,∴l不是线段FH的垂直平分线,故此选项错误;D .∵l 为直线,EH 不能平分直线l , ∴EH 不是l 的垂直平分线,故此选项错误; 故选:A .5.已知a <b ,则下列不等式不成立的是( ) A .a ﹣1<b ﹣1B .a2<b2C .a ﹣b <0D .1−a 3<1−b 3【解答】解:∵a <b ,∴a ﹣1<b ﹣1,12a <12b ,a ﹣b <0,1−a 3>1−b 3.故选:D .6.如图,将三角形ABE 向右平移1cm 得到三角形DCF ,如果三角形ABE 的周长是10cm ,那么四边形ABFD 的周长是( )A .12cmB .16cmC .18cmD .20cm【解答】解:∵△ABE 的周长=AB +BE +AE =10(cm ),由平移的性质可知,BC =AD =EF =1(cm ),AE =DF ,∴四边形ABFD 的周长=AB +BE +EF +DF +AD =10+1+1=12(cm ). 故选:A .7.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【解答】解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.8.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)【解答】解:由图可知,大正方形减小正方形剩下的部分面积为:a2﹣b2;拼成的长方形的面积为:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:D.9.已知一次函数y=ax+b的图象经过一、二、三象限,且与x轴交于点(﹣2,0),则不等式ax>b的解集为()A.x>﹣2B.x<﹣2C.x>2D.x<2【解答】解:∵一次函数y=ax+b的图象经过一、二、三象限,则函数y随x的增大而增大,∴a>0.把点(﹣2,0),代入即可得到:﹣2a+b=0.即2a﹣b=0.不等式ax>b的解集就是求函数y=ax﹣b>0,故当x>2时,不等式ax>b成立.则不等式ax>b的解集为x>2.故选:C.10.如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD 上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为()A.14B.13C.12D.10【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故选:D.二.填空题(共5小题,满分15分,每小题3分)11.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=(a+1)100.【解答】解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98]=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.12.已知a+b+c=0,a>b>c,则ca 的取值范围是﹣2<ca<−12.【解答】解:∵a+b+c=0,∴a>0,c<0 ①∴b=﹣a﹣c,且a>0,c<0∵a>b>c∴﹣a﹣c<a,即2a>﹣c②解得ca>−2,将b=﹣a﹣c代入b>c,得﹣a﹣c>c,即a<﹣2c③解得ca <−12,∴﹣2<ca<−12.故答案为:﹣2<ca<−12.13.若关于x的不等式组{2x−k>0x−2≤0有且只有五个整数解,则k的取值范围是﹣6≤k<﹣4.【解答】解:解不等式2x﹣k>0得x>k 2,解不等式x﹣2≤0,得:x≤2,∵不等式组有且只有5个整数解,∴﹣3≤k2<−2,解得﹣6≤k<﹣4,故答案为:﹣6≤k<﹣4.14.如图,是由边长为1个单位长度的小正方形的网格,在格点中找一点C,使△ABC是等腰三角形,这样的点C有6个.【解答】解:AB=√5,以B为顶点,BC=BA,这样的C点有4个;以A为顶点,AC=AB,这样的C点有2个;以C为顶点,CA=CB,这样的点不存在,但与前面的重合;所以使△ABC的等腰三角形,这样的格点C的个数有6个.故答案为6.15.如图所示,在平面直角坐标系中,A(4,0),B(0,2),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是y=2x﹣8.【解答】解:∵A(4,0),B(0,2),∴OA=4,OB=2,过点C作CD⊥x轴于点D,∵∠ABO +∠BAO =∠BAO +∠CAD ,∴∠ABO =∠CAD ,在△ACD 和△BAO 中{∠ABO =∠CAD ∠AOB =∠CDA AB =AC,∴△ACD ≌△BAO (AAS )∴AD =OB =2,CD =OA =4,∴C (6,4)设直线AC 的解析式为y =kx +b ,将点A ,点C 坐标代入得{4k +b =06k +b =4, ∴{k =2b =−8, ∴直线AC 的解析式为y =2x ﹣8.故答案为:y =2x ﹣8.三.解答题(共7小题,满分63分,每小题9分)16.(9分)(1)分解因式:ax 2﹣2ax +a ;(2)解不等式组:{x +3≤2(x +2)x 3+1>3x−14,并写出所有非负整数解. 【解答】解:(1)ax 2﹣2ax +a =a (x 2﹣2x +1)=a (x ﹣1)2;(2){x +3≤2(x +2)①x 3+1>3x−14②, 解不等式①得,x ≥﹣1,解不等式②得,x <3将两个不等式的解集在数轴上表示为:∴不等式组的解集为﹣1≤x <3:∴非负整数解有:0,1,2.17.(9分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,1),B(﹣1,3),C(﹣1,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若A对应的点A2坐标为(﹣4,﹣5),画出△A2B2C2;(2)若△A1B1C1绕某一点旋转可以得到△A2B2C2,直接写出旋转中心坐标(﹣1,﹣2).(3)在x轴上有一点P使得P A+PB的值最小,直接写出点P的坐标(−134,0).【解答】解:(1)如图所示,△A1B1C1,△A2B2C2即为所求.(2)如图所示,点Q即为所求,其坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2);(3)如图所示,点P即为所求,设直线A′B的解析式为y=kx+b,将点A′(﹣4,﹣1),B(﹣1,3)代入,得:{−4k +b =−1−k +b =3, 解得:{k =43b =133, ∴直线A ′B 的解析式为y =43x +133, 当y =0时,43x +133=0, 解得x =−134,∴点P 的坐标为(−134,0). 故答案为:(−134,0). 18.(9分)如图,在△ABC 中,AB =AC ,AB 的垂直平分线分别交AB 、AC 于点E 、点D ,∠A =36°.求证:AD =BC .【解答】证明:∵AB 的垂直平分线分别交AB 、AC 于点E 、点D ,∴DB =DA ,∴△ABD 是等腰三角形;∵∠A =36°,∴∠ABD =∠A =36°,∠ABC =∠C =(180°﹣36°)÷2=72°,∴∠BDC =∠A +∠ABD =72°,∴∠C =∠BDC ,∴BD =BC ,∴AD =BC .19.(9分)(1)已知3m =6,9n =2,求32m ﹣2n +1的值;(2)已知a +b =6,ab =8,求a 2+b 2与(a ﹣b )2的值.【解答】解:(1)∵3m =6,9n =2,∴32m﹣2n+1=(3m)2÷9n×3=36÷2×3=54;(2)将a+b=6平方得:(a+b)2=a2+b2+2ab=36,把ab=8代入得:a2+b2+16=36,即a2+b2=20;∴(a﹣b)2=a2+b2﹣2ab=20﹣16=4.20.(9分)如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=20√39,求S△ABC.【解答】解:(1)∵∠B=50°,∠C=70°,∴∠BAC=60°∵AD是△ABC的角平分线,∴∠BAD=12∠BAC=30°∵DE⊥AB,∴∠DEA=90°∴∠EDA=90°﹣∠BAD=60°(2)过点D作DF⊥AC于点F.∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=20√3 9,又AB=10,AC=8,∴S△ABC=12×10×20√39+12×8×20√39=20√321.(9分)随着夏季的来临,某公司决定购买10套设备生产电风扇,现有甲、乙两种型号的设备,其中每套的价格、日生产量如表:甲型 乙型 价格(万元/套)m n 生产量(台/日) 120 100经调查:购买两套甲型设备比购买一套乙型设备多6万元,购买一套甲型设备和购买三套乙型设备共需10万元.(1)求m ,n 的值;(2)经预算,该公司购买生产设备的资金不超过26万元,且每日的生产量不低于1020台,为了节约资金,请你为公司设计一种最省钱的购买方案.【解答】解:(1)根据题意知{m −n =6m +3n =10, 解得:{m =7n =1; (2)设购买甲型设备x 台、乙型设备(10﹣x )台,根据题意,得:{7x +10−x ≤26120x +100(10−x)≥1020, 解得:1≤x ≤83,∵x 为整数,∴x =1或x =2,即有两种购买方案:方案一:购买1台甲型设备、9台乙型设备,购买总费用为1×7+9×1=16万元; 方案二:购买2台甲型设备、8台乙型设备,购买总费用为2×7+8×1=22万元; 所以购买1台甲型设备、9台乙型设备最省钱.22.(9分)如图,△ABC 中,AB =30cm ,AC =20cm ,以BC 为边作等边△BCD ,连接AD ,求AD 的最大值,最小值分别是多少?【解答】解:∵△BCD为等边三角形,∴DC=DB,∠BDC=60°,把△DAC绕点D逆时针旋转60°得到△DEB,如图,连接AE,∴DA=DE,∠ADE=60°,BE=AC=20,∴△DAE为等边三角形,∴AD=AE,∵AB+BE≥AE或AB﹣BE≤AE(当且仅当A、B、E共线时取等号),∴AE的最大值为30+20=50,AE的最小值为30﹣20=10.。
江苏省淮安市2021版八年级下学期数学期中考试试卷C卷
江苏省淮安市2021版八年级下学期数学期中考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (2分) (2017七下·迁安期末) 若a>b,则下列不等式成立的是()A . a﹣3<b﹣3B . a>b﹣1C .D . ﹣2a>﹣2b3. (2分)若分式的值为0,则x的值为()A . 2B . 2或-2C . -2D . 04. (2分)下列各式中能用完全平方公式分解的是().A . 4x2+4x-1B . x2+xy+y2C . -2x2+4x-2D . 2x2+4x+15. (2分)使代数式有意义的x的取值范围是()A . x≥0B . x≠C . x取一切实数D . x≥0且x≠6. (2分)下列叙述正确的语句是()A . 无限小数是无理数B . 等腰三角形的高、中线、角平分线互相重合C . 全等三角形对应边上的高相等D . 两腰相等的两个等腰三角形全等7. (2分)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A . cmB . cmC . cmD . 4 cm8. (2分)不论a,b为何有理数,a2+b2﹣2a﹣4b+c的值总是非负数,则c的最小值是()A . 4B . 5C . 6D . 无法确定9. (2分)小明家端午节聚会,需要12个粽子.小明发现某商场正好推出粽子“买10赠1”的促销活动,即顾客每买够10个粽子就送1个粽子.已知粽子单价是5元/个,按此促销方法,小明至少应付钱()A . 45元B . 50元C . 55元D . 60元10. (2分)下列命题中,不正确的是()A . 关于直线对称的两个三角形一定全等B . 两个圆形纸片随意平放在水平桌面上构成轴对称图形C . 若两图形关于直线对称,则对称轴是对应点所连线的垂直平分线D . 等腰三角形一边上的高,中线及这边对角平分线重合11. (2分)若关于x,y的方程组有非负整数解,则正整数m为()A . 0,1B . 1,3,7C . 0,1,3D . 1,312. (2分)如图,⊙O直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足M,OM:OD=3:5,则AB 的长是()A . cmB . cmC . cmD . cm二、填空题 (共4题;共7分)13. (1分)将多项式2x2y﹣6xy2分解因式,应提取的公因式是 ________ .14. (1分)等腰梯形的一个锐角为60°,一腰长为24cm,一底长为39cm,则另一底长为________.15. (4分) (2018八下·深圳月考) 函数y=kx+b和函数y=ax+m的图象如图所示,求下列不等式(组)的解集(1) kx+b<ax+m的解集是________;(2)的解集是________;(3)的解集是________;(4)的解集是________.16. (1分) (2019八上·右玉期中) 如图,在中,,,点的坐标为,点的坐标为,点的坐标是________.三、解答题 (共7题;共63分)17. (5分) (2019八上·台安月考) 分解因式:18. (10分) (2016九上·萧山期中) 已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.19. (5分)(2017·菏泽) 先化简,再求值:(1+ )÷ ,其中x是不等式组的整数解.20. (12分) (2020九上·桂林期末) 如图,在边长为1个单位长度的小正方形网格中,的顶点均在格点上,在建立平面直角坐标系后,点的坐标为 .(1)将向左平移3个单位得到,画出;(2)在第三象限内,以为位似中心,将放大到原大的2倍,画出放大后对应的;(3)写出的坐标________,的坐标________.21. (15分) (2019八上·海安月考) 如图1,A(﹣2,0),B(0,4),以B点为直角顶点在第二象限作等腰直角△ABC.(1)求C点的坐标;(2)在坐标平面内是否存在一点P,使△PAB与△ABC全等?若存在,求出P点坐标,若不存在,请说明理由;(3)如图2,点E为y轴正半轴上一动点,以E为直角顶点作等腰直角△AEM,过M作MN⊥x轴于N,求OE ﹣MN的值.22. (6分)(1)请你写出一个以为解二元一次方程组________;(2)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程组解决的问题,并写出这个问题的解答过程.23. (10分) (2016八下·防城期中) 已知:如图,Rt△ABC中,∠C=90°,AC=12,BC=5,求:(1)Rt△ABC的面积;(2)斜边AB的长.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共7分)13-1、14-1、15-1、15-2、15-3、15-4、16-1、三、解答题 (共7题;共63分)17-1、18-1、18-2、19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、第11 页共11 页。
2020-2021学年八年级下期中考试数学试卷及答案
2020-2021学年八年级下学期期中考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.下列调查,应采用全面调查的是()A.对我市七年级学生身高的调查B.对我国研制的“C919”大飞机零部件的调查C.对我市各乡镇猪肉价格的调查D.对我国“东风﹣41”洲际弹道导弹射程的调查【解答】解:A、对我市七年级学生身高的调查,因范围较广,不宜采用全面调查,故A 不符合题意;B、对我国研制的“C919”大飞机零部件的调查,因涉及安全问题,宜采用全面调查,故B符合题意;C、对我市各乡镇猪肉价格的调查,因范围较广,不宜采用全面调查,故C不符合题意;D、对我国“东风﹣41”洲际弹道导弹射程的调查,因破坏性较强,宜采用抽样调查,故D不符合题意;故选:B.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.3.“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是()A.必然事件B.不可能事件C.随机事件D.无法确定【解答】解:“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是必然事件,故选:A.4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;B、只有矩形,正方形的对角线相等,故本选项错误;C、只有菱形,正方形的对角线互相垂直,故本选项错误;D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.故选:A.5.在同一直角坐标系中,函数y=kx+1和函数y=kx(k是常数且k≠0)的图象只可能是()A.B.C.D.【解答】解:当k>0时,一次函数过一二三象限,反比例函数过一三象限;当k<0时,一次函数过一二四象限,反比例函数过二四象限;故选:B.6.若反比例函数y=kx的图象经过(﹣1,3),则这个函数的图象一定过()A.(﹣3,1)B.(−13,3)C.(﹣3,﹣1)D.(13,3)【解答】解:∵反比例函数y=kx的图象经过(﹣1,3),∴k=﹣1×3=﹣3,∴反比例函数解析式为y=−3 x.当x=﹣3时,y=−3−3=1,∴反比例函数y =−3x 的图象经过点(﹣3,1),反比例函数y =−3x的图象不经过点(﹣3,﹣1);当x =−13时,y =−3−13=9, ∴反比例函数y =−3x 的图象不经过点(−13,3); 当x =13时,y =−313=−9,∴反比例函数y =−3x 的图象不经过点(13,3). 故选:A .7.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,连接BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A .45°B .60°C .70°D .90°【解答】解:∵将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′, ∴∠BAB ′=∠CAC ′=120°,AB =AB ′, ∴∠AB ′B =12(180°﹣120°)=30°, ∵AC ′∥BB ′,∴∠C ′AB ′=∠AB ′B =30°,∴∠CAB ′=∠CAC ′﹣∠C ′AB ′=120°﹣30°=90°. 故选:D .8.将矩形OABC 如图放置,O 为原点,若点A 的坐标是(﹣1,2),点B 的坐标是(2,72),则点C 的坐标是( )A .(4,2)B .(2,4)C .(32,3)D .(3,32)【解答】解:如图:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥⊥x 轴于点F ,过点A 作AN ⊥BF 于点N ,过点C 作CM ⊥x 轴于点M ,∵∠EAO +∠AOE =90°,∠AOE +∠MOC =90°, ∴∠EAO =∠COM , 又∵∠AEO =∠CMO , ∴∠AEO ∽△COM , ∴EO AE=CM MO=12,∵∠BAN +∠OAN =90°,∠EAO +∠OAN =90°, ∴∠BAN =∠EAO =∠COM , 在△ABN 和△OCM 中 {∠BNA =∠CMO ∠BAN =∠COM AB =OC, ∴△ABN ≌△OCM (AAS ), ∴BN =CM ,∵点A (﹣1,2),点B 的纵坐标是72,∴BN =32, ∴CM =32, ∴MO =3,∴点C 的坐标是:(3,32).故选:D .二.填空题(共9小题)9.在一个不透明的袋子中有1个红球,2个绿球和3个白球,这些球除了颜色外完全一样,摇匀后,从袋子中任意摸出1个球,你认为取出 白 颜色的球的可能性最大. 【解答】解:∵一只不透明的袋子中有1个红球,2个绿球和3个白球,这些球除颜色外都相同,∴P (红球)=16,P (绿球)=26=13,(白球)=36=12, ∴摸到白球的可能性最大. 故答案为:白.10.在整数20180419中,数字“1”出现的频率是14.【解答】解:∵在整数20180419中,数字“1”出现了2次, ∴数字“1”出现的频率是28=14;故答案为:14.11.已知反比例函数y =3x ,x >0时,y > 0,这部分图象在第 一 象限,y 随着x 值的增大而 减小 .【解答】解:反比例函数y =3x,x >0时,y >0,这部分图象在第一象限,y 随着x 值的增大而减小.故答案为:>;一;减小.12.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC 的度数为 100或40 度.【解答】解:∵四边形ABCD 是平行四边形, ∴∠BCA =∠CAD =40°, ①如图1,∠BAC =∠BCA =40°, ∠B =180°﹣40°×2=100°, 则∠ADC =100°;②如图2,∠B =∠BCA =40°, 则∠ADC =40°.综上所述,∠ADC 的度数为100或40度. 故答案为:100或40.13.如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC=6,BD =8,则OE的长为 2.5.【解答】解:∵四边形ABCD是菱形,AC=6,BD=8,∴AO=OC=3,OB=OD=4,AO⊥BO,又∵点E是AB中点,∴OE是△DAB的中位线,在Rt△AOD中,AB=√OA2+OB2=√32+42=5,则OE=12AB=2.5.故答案为:2.5.14.已知y与x+1成反比例函数,且当x=1时,y=2,则当x=0时,y=4.【解答】解:设反比例函数解析式为y=kx+1(k≠0),∵当x=1时,y=2,∴2=k1+1,解得k=4,∴反比例函数解析式为y=4x+1,把x=0代入y=4x+1得:y=4,故答案为:4.15.如图,正方形ABCD ,∠EAF =45°,当点E ,F 分别在对角线BD 、边CD 上,若FC =6,则BE 的长为 3√2 .【解答】解:作△ADF 的外接圆⊙O ,连接EF 、EC ,过点E 分别作EM ⊥CD 于M ,EN ⊥BC 于N (如图) ∵∠ADF =90°, ∴AF 为⊙O 直径,∵BD 为正方形ABCD 对角线, ∴∠EDF =∠EAF =45°, ∴点E 在⊙O 上, ∴∠AEF =90°,∴△AEF 为等腰直角三角形, ∴AE =EF ,在△ABE 与△CBE 中{AB =CB∠ABE =∠CBE BE =BE ,∴△ABE ≌△CBE (SAS ), ∴AE =CE , ∴CE =EF , ∵EM ⊥CF ,CF =6, ∴CM =12CF =3,∵EN ⊥BC ,∠NCM =90°, ∴四边形CMEN 是矩形, ∴EN =CM =3, ∵∠EBN =45°, ∴BE =√2EN =3√2, 故答案为:3√2.16.点P ,Q ,R 在反比例函数y =kx (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为275.【解答】解:∵CD =DE =OE , ∴可以假设CD =DE =OE =a , 则P (k 3a,3a ),Q (k2a,2a ),R (ka,a ),∴CP =k 3a ,DQ =k 2a ,ER =ka, ∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.17.如图,反比例函数y =kx 位于第二象限的图象上有A ,B 两点,过A 作AD ⊥x 轴于点D ,过点B 作BC ⊥y 轴于点C .已知,S △OCD =32,S △OAB =12,则反比例函数解析式为 y =−9x .【解答】解:作BE ⊥x 轴于E , 设A (m ,km ),∵S △OCD =32,∴12OD •OC =32,即12(﹣m )•OC =32,∴OC =−3m , ∴B (−mk3,−3m ), ∵S △OAB =12,∴S 梯形ABED =S △OAB ﹣S △AOD +S △BOE =12, ∴12(k m −3m)(m +mk3)=12,解得k =±9,∵反比例函数y =k x位于第二象限. ∴k =﹣9,∴反比例函数的解析式是y =−9x , 故答案为y =−9x.三.解答题(共6小题,满分46分)18.(7分)某校绿色行动小组组织一批人参加植树活动,完成任务的时间y (h )是参加植树人数x (人)的反比例函数,且当x =20人时,y =3h .(1)若平均每人每小时植树4棵,则这次共计要植树240棵;(2)当x=80时,求y的值;(3)为了能在1.5h内完成任务,至少需要多少人参加植树?【解答】解:(1)由题意可得:20×4×3=240;故答案为:240;(2)设y与x的函数表达式为:y=kx(k≠0),∵当x=20时,y=3.∴3=k 20∴k=60,∴y=60 x,当x=80时,y=6080=34;(3)把y=1.5代入y=60x,得1.5=60 x,解得:x=40,根据反比例函数的性质,y随x的增大而减小,所以为了能在1.5h内完成任务,至少需要40人参加植树.19.(8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.【解答】解:(1)读图可得:A类有60人,占30%,则本次一共调查了60÷30%=200人,因此本次一共调查了200名学生.(2)“B”有200﹣60﹣30﹣10=100人,如图1所示.(3)每天参加体育锻炼在1小时以下占15%,每天参加体育锻炼在0.5小时以下占5%,则3000×(15%+5%)=3000×20%=600人,因此学校有600人平均每天参加体育锻炼在1小时以下.20.(12分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【解答】解:(1)如图所示,△A′B′C′即为所作;点B的对应点B'的坐标的坐标为(0,﹣6);(2)如图所示,点D的坐标为(﹣5,﹣3)或(﹣7,3)或(3,3).21.(6分)如图,在矩形ABCD中,AB=6,BC=10.(1)如图1,若点H在边BC上,且AH=AD,DG⊥AH,求DG的长.(2)如图2,连接BD,作BD的垂直平分线与边AD.BC分别相交于E、F,连接BE、DF.求证:四边形EBFD是菱形.【解答】解:(1)∵四边形ABCD是矩形,∴AD ∥BC ,∴∠DAG =∠AHB ,在△ADG 和△HAB 中,{∠DAG =∠AHB ∠DGA =∠B AD =AH,∴△ADG ≌△HAB (AAS ),∴DG =AB =6;(2)∵EF 是BD 的垂直平分线,∴BO =DO ,BE =DE ,∵AD ∥BC ,∴∠EDO =∠FBO ,在△DEO 和△BFO 中,{∠EDO =∠FBO DO =BO ∠DOE =∠BOF,∴△DEO ≌△BFO (ASA ),∴OE =OF ,∴四边形BFDE 是平行四边形,又∵BE =DE ,∴四边形BFDE 是菱形.22.【阅读】如图1,四边形OABC 中,OA =a ,OC =8,BC =6,∠AOC =∠BCO =90°,经过点O 的直线l 将四边形分成两部分,直线l 与OC 所成的角设为θ,将四边形OABC 的直角∠OCB 沿直线l 折叠,点C 落在点D 处,我们把这个操作过程记为FZ [θ,a ].【理解】若点D与点A重合,则这个操作过程为FZ[45°,8];【尝试】(1)若点D与OA的中点重合,则这个操作过程为FZ[45°,16];(2)若点D恰为AB的中点(如图2),求θ的值;【应用】经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,直线l 与AB相交于点F,试画出图形并解决下列问题:①求出a的值;②若P为边OA上一动点,连接PE、PF,请直接写出PE+PF的最小值.(备注:等腰直角三角形的三边关系满足1:1:√2或√2:√2:2)【解答】解:(1)点D与OA的中点重合,如图1,由折叠得:∠COP=∠DOP=45°,∠C=∠ODP=90°,∴CP=PD,∵OP=OP,∴Rt△OCP≌Rt△ODP(HL),∴OC=OD=8,∵D为OA的中点,∴OA=a=16,则这个操作过程为FZ[45°,16];故答案为:45°,16;(2)延长MD、OA,交于点N,如图2.∵∠AOC =∠BCO =90°,∴∠AOC +∠BCO =180°,∴BC ∥OA ,∴∠B =∠DAN .在△BDM 和△ADN 中,{∠B =∠DAN BD =AD ∠BDM =∠ADN,∴△BDM ≌△ADN (ASA ),∴DM =DN .∵∠ODM =∠OCM =90°,∴根据线段垂直平分线的性质可得OM =ON ,∴根据等腰三角形的性质可得∠MOD =∠NOD .由折叠可得∠MOD =∠MOC =θ,∴∠COA =3θ=90°,∴θ=30°;【应用】①过点B 作BH ⊥OA 于点H ,如图3.∵∠COA=90°,∠COF=45°,∴∠FOA=45°.∵点B与点E关于直线l对称,∴∠OF A=∠OFB=90°,∴∠OAB=45°,∴∠HBA=90°﹣45°=45°=∠HAB,∴BH=AH.∵CO⊥OA,BH⊥OA,∴CO∥BH.∵BC∥OA,∴四边形BCOH是平行四边形,∴BH=CO=8,OH=CB=6,∴OA=OH+AH=OH+BH=6+8=14.∴a的值为14.②过点B作BH⊥OA于点H,过点F作OA的对称点Q,连接AQ、EQ,OB,如图4,则有∠QAO=∠F AO=45°,QA=F A,∴∠QAF=90°.在Rt△BHA中,AB=√BH2+AH2=8√2.在Rt△OF A中,∠AFO=90°,∠AOF=∠OAF=45°=7√2,∴AF=OF=2∴AQ=AF=7√2.在Rt△OCB中,OB=√OC2+BC2=√82+62=10.在Rt△OFB中,BF=AB﹣AF=8√2−7√2=√2.由折叠可得EF=BF=√2,∴AE=AF﹣EF=7√2−√2=6√2.在Rt△QAE中,EQ2=AE2+AQ2=(6√2)2+(7√2)2=170.根据两点之间线段最短可得:当点E、P、Q三点共线时,PE+PF=PE+PQ最短,最小值为线段EQ长.∴PE+PF的最小值的是√170.23.(13分)【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数.(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A =30°,∠C=18°,则∠P的度数为24°.【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为∠P=14(3x+y).(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论∠P=90°+12∠C−32∠A.【解答】解:(1)如图1中,∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)如图2中,设∠BAP =∠P AD =x ,∠BCP =∠PCD =y ,则有{x +∠B =y +∠P x +∠P =y +∠D, ∴∠B ﹣∠P =∠P ﹣∠D ,∴P =12(∠B +∠D )=12(28°+20°)=24°.故答案为24°(3)如图3中,设∠CBJ =∠JBF =x ,∠ADP =∠PDE =y .则有{∠P +x =∠A +y ∠P +180°−x =∠C +180°−y, ∴2∠P =∠A +∠C ,∴∠P =12(30°+18°)=24°.(4)如图4中,设∠CAP =α,∠CDP =β,则∠P AB =3α,∠PDB =3β,则有{∠P +β=∠C +α∠P +3α=∠B +3β, ∴4∠P =3∠C +∠B ,∴∠P =14(3x +y ),故答案为∠P =14(3x +y ).(5)如图5中,延长AB 交PD 于J ,设∠PBJ =x ,∠ADP =∠PDE =y .则有∠A +2x =∠C +180°﹣2y ,∴x +y =90°+12(∠C ﹣∠A ),∵∠P +x +∠A +y =180°,∴∠P =90°−12∠C −12∠A .故答案为∠P =90°−12∠C −12∠A .。
【苏教版】数学八年级下学期《期中检测试题》附答案解析
2020-2021学年第二学期期中测试苏教版八年级试题一、选择题(本大题共6小题,每小题3分,共18分,在每小题所给出的四个选项中,只有一个选项是正确的,请将正确答案填到答题纸上对应处)1. 在1x ,12,21x x+,3xy π,3x y +中,分式的个数有( ) A. 5个 B. 4个 C. 3个 D. 2个2. 今年某初中有近1千名考生参加中考,为了了解这些考生的数学成绩,从中抽取50名考生的数学成绩进行统计分析,以下说法正确的是( )A. 这50名考生是总体的一个样本B. 近1千名考生是总体C. 每位考生的数学成绩是个体D. 50名学生是样本容量 3. 如果把分式22x x y+中的x 和y 都扩大3倍,那么分式的值( ) A. 扩大9倍 B. 扩大3倍 C. 不变D. 缩小3倍 4. 下列说法中,不正确的是( )A. 两组对边分别平行的四边形是平行四边形B. 一组对边平行另外一组对边相等的四边形是平行四边形C. 对角线互相平分且垂直的四边形是菱形D. 有一组邻边相等的矩形是正方形5.如图,□ABCD 绕点A 逆时针旋转32°,得到□AB ′C ′D ′,若点B ′与点B 对应点,若点B ′恰好落在BC 边上,则∠C =( )A. 106°B. 146°C. 148°D. 156°6. 如图,正方形ABCD 的边长为5,E 是AD 边上一点,AE =3,动点P 由点D 向点C 运动,速度为每秒2个单位长度,EP 的垂直平分线交AB 于M ,交CD 于N .设运动时间为t 秒,当PM ∥BC 时,t 的值为( )A. 2B. 2C. 3D. 3 2二、填空题(本大题共10小题,每小题3分,共30分,请将答案填到答题纸上对应处)7. 当x=_____时,分式22xx+-的值为0.8. 用反证法证明“一个三角形中至多有一个钝角”时,应假设.9. 某班在大课间活动中抽查了10名学生每分钟跳绳次数,得到如下数据(单位:次):88,9l,93,102,108,117,121,130,146,188.则跳绳次数在90~110这一组的频率是_____.10. 已知y=2x m﹣1是y关于x的反比例函数,则m=_____.11. 如图,▱ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E.若△CDE的周长为8cm,则▱ABCD的周长为_____cm.12. 若36m-有意义,则m能取的最小整数值是_____.13. 如图,已知矩形ABCD,P、R分别是BC和DC上的动点,E、F分别是P A、PR的中点.如果DR=5,AD=12,则EF的长为_____.14. 若关于x的分式方程311x ax x--=-有增根,则a=___.15. 已知点(x,y)为反比例函数y=4x图象上的一点,若y≥1,则x的取值范围是_____.16. 如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当CEB'△为直角三角形时,BE的长为____三、解答题(本大题共有10小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17. 计算下面各题.(1)1(6215)362-⨯-; (2)1422842x x x x +-- 18. (1)解方程:11322x x x-+=--. (2)已知x +y =3,xy =1,求222234x xy y x xy y ++-+的值. 19. 先化简,再求值:(2m m -﹣224m m -)÷2m m +,请在2,﹣2,0,3当中选一个合适的数代入求值. 20. 正方形网格中(网格中的每个小正方形边长是1),△ABC 的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC 绕点A 逆时针旋转90°的△A 1B 1C 1;作出△ABC 关于原点O 成中心对称的△A 2B 2C 2; (2)点B 1的坐标为__________,点C 2的坐标为__________.21. 育人中学开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是 ______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?22. 了加快城镇化建设,某镇对一条道路进行改造,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a 天后,再由甲、乙两工程队合作施工y 天,完成此项工程,试用含a 的代数式表示y ;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元? 23. 如图,△ABC 中,AB=AC ,E 、F 分别是BC 、AC 的中点,以AC 为斜边作Rt △ADC .(1)求证:FE=FD ;(2)若∠CAD=∠CAB=24°,求∠EDF 的度数.24. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作//DE AC 且12DE AC =,连接CE 、OE ,连接AE 交OD 于点F .(1)求证:OE CD =;(2)若菱形ABCD 的边长为2, 60ABC ∠=︒.求AE 的长.25. 如图,已知反比例函数1(0)k y x x =>的图象与反比例函数2(0)k y x x=<的图象关于y 轴对称,(1,4)A ,(4,)B m 是函数1(0)k y x x =>图象上的两点,连接AB ,点(2,)C n -是函数2(0)k y x x=<图象上的一点,连接AC ,BC .(1)求m ,n 的值;(2)求AB 所在直线的表达式;(3)求ABC ∆的面积.26. 平面直角坐标系xOy 中,横坐标为a 的点A 在反比例函数y 1═k x (x >0)的图象上,点A′与点A 关于点O 对称,一次函数y 2=mx+n 的图象经过点A′.(1)设a=2,点B (4,2)在函数y 1、y 2的图象上.①分别求函数y 1、y 2的表达式;②直接写出使y 1>y 2>0成立的x 的范围;(2)如图①,设函数y 1、y 2的图象相交于点B ,点B 的横坐标为3a ,△AA'B 的面积为16,求k 的值; (3)设m=12,如图②,过点A 作AD ⊥x 轴,与函数y 2的图象相交于点D ,以AD 为一边向右侧作正方形ADEF ,试说明函数y 2的图象与线段EF 的交点P 一定在函数y 1的图象上.答案与解析一、选择题(本大题共6小题,每小题3分,共18分,在每小题所给出的四个选项中,只有一个选项是正确的,请将正确答案填到答题纸上对应处)1. 在1x,12,21xx+,3xyπ,3x y+中,分式的个数有()A. 5个B. 4个C. 3个D. 2个【答案】C【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:在1x,12,21xx+,3xyπ,3x y+中,分式的有1x,21xx+,3x y+,故选C.【点睛】本题主要考查了分式的定义,注意π不是字母,而是常数.2. 今年某初中有近1千名考生参加中考,为了了解这些考生的数学成绩,从中抽取50名考生的数学成绩进行统计分析,以下说法正确的是()A. 这50名考生是总体的一个样本B. 近1千名考生是总体C. 每位考生的数学成绩是个体D. 50名学生是样本容量【答案】C【解析】分析: 总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象. 从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量. 详解: A选项,这50名考生的数学成绩是总体的一个样本,故选项错误;B选项,近1千名考生的数学成绩是总体,故选项错误;C选项,每位考生的数学成绩是个体,正确;D选项,样本容量是:50,故选项错误;故选C.点睛: 本题考查了总体、个体、样本和样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的, 不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3. 如果把分式22xx y+中的x和y都扩大3倍,那么分式的值()A. 扩大9倍B. 扩大3倍C. 不变D. 缩小3倍【答案】B【解析】【分析】x和y都扩大3倍,即将式子中的x、y分别用3x,3y代替,即可求得【详解】分别用3x,3y代替式子中的x、y,得222(3)2333x xx y x y ⨯=⨯++,即分式的值扩大3倍.故选B.【点睛】本题考查分式的基本性质,解决本题的关键是掌握并灵活运用分式的基本性质.4. 下列说法中,不正确的是()A. 两组对边分别平行的四边形是平行四边形B. 一组对边平行另外一组对边相等的四边形是平行四边形C. 对角线互相平分且垂直的四边形是菱形D. 有一组邻边相等的矩形是正方形【答案】B【解析】【分析】平行四边形判定:1.两组对边分别平行的四边形是平行四边形(定义判定法);2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.所有邻角(每一组邻角)都互补的四边形是平行四边形;6.对角线互相平分的四边形是平行四边形.正方形判定:1.有一个内角是直角的菱形是正方形.2.邻边相等的矩形是正方形.3.对角线相等的菱形是正方形.4.对角线相互垂直的矩形是正方形.5.对角线相互垂直平分的平行四边形是正方形.菱形判定:1.四条边相等的四边形是菱形.2.对角线互相垂直的平行四边形是菱形(对角线互相垂直且平分的四边形是菱形).3.一组邻边相等的平行四边形是菱形.4.对角线平分一组对角的平行四边形是菱形. 【详解】A、正确.两组对边分别平行的四边形是平行四边形;B、错误.比如等腰梯形,满足条件,不是平行四边形;C、正确.对角线互相平分且垂直的四边形是菱形;D、正确.有一组邻边相等的矩形是正方形;故选B.【点睛】本题考查了平行四边形与特殊的平行四边形的判定,牢固掌握判定定理即可解题.5.如图,□ABCD绕点A逆时针旋转32°,得到□AB′C′D′,若点B′与点B是对应点,若点B′恰好落在BC边上,则∠C=( )A. 106°B. 146°C. 148°D. 156°【答案】A【解析】∵▱ABCD绕点A逆时针旋转32°,得到▱AB′C′D′′,∴AB=AB′,∠BAB′=32°,∴∠B=∠AB′B=(180°-32°)÷2= 74°.∵四边形ABCD为平行四边形,∴AB∥CD,∴∠B+∠C=180°,∴∠C=180°-74°=106°.故选A.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行四边形的性质.6. 如图,正方形ABCD的边长为5,E是AD边上一点,AE=3,动点P由点D向点C运动,速度为每秒2个单位长度,EP的垂直平分线交AB于M,交CD于N.设运动时间为t秒,当PM∥BC时,t的值为()A. 2B. 2C. 3D. 3 2【答案】B【解析】【分析】连接ME,根据已知MN垂直平分PE,故根据垂直平分线定理可得ME=MP,当MP∥BC时,四边形BCPM 是矩形,BC=MP=5,在直角△AEM中可求得AM=4,即DP=4,即可解出本题.【详解】如图,连接ME,∵MN垂直平分PE,∴MP=ME,当MP∥BC时,四边形BCPM是矩形,∴BC=MP=5,∴ME=5,又∵AE=3,∴AM=4=DP,∴t=4÷2=2(s),故选B.【点睛】本题考查了正方形中的简单动点问题,解决本题的关键是灵活利用垂直平分线的性质求线段长度,从而求得动点运动的路程及时间.二、填空题(本大题共10小题,每小题3分,共30分,请将答案填到答题纸上对应处)7. 当x=_____时,分式22xx+-的值为0.【答案】-2【解析】【分析】根据分式的意义可得到x﹣2≠0,即x≠2,根据题意分式值为0可知x+2=0,解得x=﹣2,符合题意. 【详解】由分子x+2=0,解得x=﹣2,而x=﹣2时,分母x﹣2=﹣2﹣2=﹣4≠0.所以x=﹣2.【点睛】本题考查了分式,本题的解题关键是牢记分式有意义的条件,检验分式的解是否为增根问题.8. 用反证法证明“一个三角形中至多有一个钝角”时,应假设.【答案】三角形中至少有两个是钝角.【解析】【分析】用反证法证明的第一步就是作出与原命题相矛盾的假设,【详解】解:根据反证法就是从结论的反面出发进行假设,∴证明“一个三角形中至多有一个钝角”,应假设:一个三角形中至少有两个钝角.故答案为一个三角形中至少有两个钝角9. 某班在大课间活动中抽查了10名学生每分钟跳绳次数,得到如下数据(单位:次):88,9l,93,102,108,117,121,130,146,188.则跳绳次数在90~110这一组的频率是_____.【答案】0.4【解析】【分析】根据频率=频数÷总次数即可求解.【详解】跳绳次数在90~110这一组的同学有4个,则频率=4÷10=0.4.故答案为0.4.【点睛】本题考查了频率的计算公式,掌握即可解得此题.10. 已知y=2x m﹣1是y关于x反比例函数,则m=_____.【答案】0【解析】【分析】根据反比例函数的定义可得m﹣1=﹣1即可求解m.【详解】∵y=2x m﹣1是y关于x的反比例函数,∴m﹣1=﹣1.解得m=0,故答案为0.【点睛】本题考查了反比例函数的定义,反比例函数的解析式满足自变量的次数为-1,根据此知识点即可解题.11. 如图,▱ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E.若△CDE的周长为8cm,则▱ABCD的周长为_____cm.【答案】16【解析】【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分、对边相等,即可得OB=OD,AB=CD,AD=BC,又由OE⊥BD,即可得OE是BD的垂直平分线,然后根据线段垂直平分线的性质,即可得BE=DE,又由△CDE的周长为8cm,即可求得平行四边形ABCD的周长.【详解】∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵OE⊥BD,∴BE=DE,∵△CDE的周长为8cm,即CD+DE+EC=8cm,∴平行四边形ABCD的周长为:AB+BC+CD+AD=2(BC+CD)=2(BE+EC+CD)=2(DE+EC+CD)=2×8=16cm.故答案为16.【点睛】本题考查了平行四边形的性质与垂直平分线的性质,将要求周长转化为已知线段长度解题即可. 12. 36m m能取的最小整数值是_____.【答案】2【解析】【分析】根据二次根式有意义的条件可得3m﹣6≥0,解得m的取值范围,求得m能取的最小整数值.【详解】解:由题意得,3m﹣6≥0,解得m≥2,所以,m能取的最小整数值2.故答案为2.【点睛】本题考查了二次根式有意义的条件,掌握二次根式中被开方数为非负数即可解题.13. 如图,已知矩形ABCD,P、R分别是BC和DC上的动点,E、F分别是P A、PR的中点.如果DR=5,AD=12,则EF的长为_____.【答案】6.5【解析】【分析】根据题意,连接AR,在直角△ADR中,DR=5,AD=12,根据勾股定理可得AR=13,又因为E、F分别是PA、PR的中点,即为△PAR的中位线,故EF=12 AR.【详解】∵∠D=90°,DR=5,AD=12,∴AR22AD DR+,∵E、F分别是PA、PR的中点,∴EF=12AR=6.5,故答案为6.5.【点睛】本题考查了三角形中位线长度的求取,本题的解题关键是不要因为动点问题的包装而把题目想的复杂,根据中位线的性质解题即可.14. 若关于x的分式方程311x ax x--=-有增根,则a=___.【答案】1 【解析】【分析】【详解】根据解分式方程的步骤得:311x ax x--=-,解得:32xa=+,关于x的分式方程311x ax x--=-有增根,则31+2=a或3+2=a(无解),解得a=1,故答案为1.15. 已知点(x,y)为反比例函数y=4x图象上的一点,若y≥1,则x的取值范围是_____.【答案】0<x≤4【解析】【分析】根据题意反比例函数图像经过一、三象限,y随x的增加而减小,故若y≥1,即x>0且41x≥,解得0<x≤4.【详解】∵反比例函数y=4x,k>0,∴当x>0时,y>0,当x<0时,y<0,∵y≥1,∴x>0,41x≥,解得:x≤4,综上可知:0<x≤4,故答案为0<x≤4.【点睛】本题考查反比例函数的图像与性质,充分掌握即可解题,本题也可通过画出函数图像草图解题.16. 如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当CEB'△为直角三角形时,BE的长为____【答案】3或32.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC ,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x ,则EB′=x ,CE=4-x ,然后在Rt △CEB′中运用勾股定理可计算出x .②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC ,在Rt △ABC 中,AB=3,BC=4,∴2243+,∵∠B 沿AE 折叠,使点B 落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x ,则EB′=x ,CE=4-x ,在Rt △CEB′中,∵EB′2+CB′2=CE 2,∴x 2+22=(4-x )2,解得3x 2=, ∴BE=32; ②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为32或3.故答案为:32或3.三、解答题(本大题共有10小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17. 计算下面各题.(1)(2【答案】(1)-【解析】【分析】(1)先将原式去括号以及分母有理化,再进行合并同类项即可.(2)先将原式化简成最简二次根式,再进行合并同类项.【详解】(1)﹣=﹣=﹣(2=【点睛】本题考查的是二次根式的加减法,在解答此类题目时要先把各二次根式化为最简二次根式,再进行计算.18. (1)解方程:11322xx x-+=--.(2)已知x+y=3,xy=1,求222234x xy yx xy y++-+的值.【答案】(1)无解;(2)10 3【解析】【分析】(1)解分式方程,先去分母,利用等式的性质,两边同时乘以x-2来去分母,转化为一元一次方程解得x =2并检验,发现解为原方程增根,故原方程无解.(2)先将体重代数式进行整理,将各项利用完全平方式整理为x+y 与xy 的形式,再代入求值即可.【详解】(1)去分母得:1+3x ﹣6=x ﹣1,解得:x =2,经检验x =2是增根,分式方程无解;(2)∵x+y =3,xy =1,∴原式=22()()6x y xy x y xy+++- =9196+- =103. 【点睛】本题考查了解分式方程及代数式求值,解分式方程的解题关键是一定要进行检验,判断是否有增根的问题;代数式求值问题,代数式中的字母表示的数没有明确告知,而是隐含在题设中,把所求的代数式变形整理出题设中的形式,利用“整体代入法”求代数式的值.19. 先化简,再求值:(2m m -﹣224m m -)÷2m m +,请在2,﹣2,0,3当中选一个合适的数代入求值. 【答案】2m m -;当m =3时,原式=3. 【解析】【分析】 先化简分式,然后根据分式有意义的条件即可求出m 的值,从而可求出原式的值. 【详解】解:原式=(22(2)(2)m m m m m ---+)×2m m+ =2m m -×2m m +﹣2(2)(2)m m m -+×2m m+ =22m m +-﹣22m - =2m m -, ∵m≠±2,0,∴当m=3时,原式=3.【点睛】本题主要考查了分式化简求值,准确计算是解题的关键.20. 正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC绕点A逆时针旋转90°的△A1B1C1;作出△ABC关于原点O成中心对称的△A2B2C2;(2)点B1的坐标为__________,点C2的坐标为__________.【答案】(1)见详解;(2)B1(-2,-3),C2(2,-2)【解析】【分析】(1)根据网格结构找出点A、B、C绕点A逆时针旋转90°后的点A1、B1、C1的位置,然后顺次连接即可,再找出点A、B、C关于原点O成中心对称的点A2、B2、C2的位置,然后顺次连接即可;(2)根据平面直角坐标系写出点B1、C2的坐标.【详解】解:(1)如下图所示△AB1C1,△A1B2C2,即为所求;(2)如下图所示:B1(-2,-3),C2(2,-2);故答案为(-2,-3),(2,-2).【点睛】此题主要考查了旋转变换,正确得出对应点位置解题关键.21. 育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是 ______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?【答案】(1)40% , 144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.【解析】试题分析:(1)利用100%减去D 、C 、B 三部分所占百分比即可得到最喜欢A 项目的人数所占的百分比;所在扇形统计图中对应的圆心角度数用360°×40%即可; (2)根据频数=总数×百分比可算出总人数,再利用总人数减去D 、C 、B 三部分的人数即可得到A 部分的人数,再补全图形即可;(3)利用样本估计总每个体的方法用1000×样本中喜欢踢毽子的人数所占百分比即可.解:(1)100%﹣20%﹣10%﹣30%=40%,360°×40%=144°;(2)抽查的学生总人数:15÷30%=50, 50﹣15﹣5﹣10=20(人).如图所示:(3)1000×10%=100(人).答:全校最喜欢踢毽子的学生人数约是100人.22. 为了加快城镇化建设,某镇对一条道路进行改造,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a 天后,再由甲、乙两工程队合作施工y 天,完成此项工程,试用含a 的代数式表示y ;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?【答案】(1)甲、乙两工程队单独完成此项工程各需要60天、30天;(2)y =20-3a ;(3)甲工程队至少要独做36天后,再由甲、乙两队合作完成剩下的此项工程.【解析】【分析】(1)设乙工程队单独完成此项工程需要x 天,则甲工程队单独完成此项工程需要(x+30)天,20天甲的工作量加乙的工作量等于工作总量1列方程得:20(1x +130x +)=1,解得x 1=30,x 2=-20,然后进行检验确定满足题意的x,再计算x+30;(2)设工作总量为1,则可得到甲、乙两工程队的工作效率分别为160,130,用剩余的工作量除以 甲、乙两工程队的工作效率的和得到y;(3)设甲工程队单独施工a 天后,再由甲、乙两工程队合作施工完成剩下的工程,利用(2)的结论得到1×a +(1+2.5)(20-3a )≤64,然后解不等式确定a 的最小值. 【详解】解:(1)设乙独做x 天完成此项工程,则甲独做(x +30)天完成此项工程.由题意得:20(1x +130x +)=1, 整理得:x 2-10x -600=0,解得:x 1=30,x 2=-20,经检验:x 1=30,x 2=-20都是分式方程的解,但x 2=-20不符合题意舍去,x +30=60答:甲、乙两工程队单独完成此项工程各需要60天、30天.(2)由题意得:111()1606030a y ++=, 整理得:y =20-3a .(3)设甲工程队单独施工a 天后,再由甲、乙两工程队合作施工完成剩下的工程,施工费不超过64万元.由题意得:1×a +(1+2.5)(20-3a )≤64. 解得:a≥36.答:甲工程队至少要独做36天后,再由甲、乙两队合作完成剩下的此项工程,才能使施工费不超过64万元.【点睛】本题考查了分式方程的应用:列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.要掌握常见问题中的基本关系,如行程问题:速度=路程÷时间;工作量问题:工作效率=工作量÷工作时间等等.也考查了一元一次不等式的应用.23. 如图,△ABC 中,AB=AC ,E 、F 分别是BC 、AC 的中点,以AC 为斜边作Rt △ADC .(1)求证:FE=FD ;(2)若∠CAD=∠CAB=24°,求∠EDF 的度数.【答案】(1)证明见解析;(2)54°.【解析】【分析】(1)根据三角形的中位线定理得到FE=12AB ,根据直角三角形的性质得到FD=12AC ,等量代换即可; (2)根据平行线的性质得到∠EFC=∠BAC=24°,根据直角三角形的性质得到∠DFC=48°,根据等腰三角形的性质计算即可.【详解】解:(1)∵E 、F 分别是BC 、AC 的中点,∴FE=12AB , ∵F 是AC 的中点,∠ADC=90°, ∴FD=12AC , ∵AB=AC ,∴FE=FD ;(2)∵E 、F 分别是BC 、AC 的中点,∴∠EFC=∠BAC=24°,∵F 是AC 的中点,∠ADC=90°,∴FD=AF .∴∠ADF=∠DAF=24°,∴∠DFC=48°,∴∠EFD=72°,∵FE=FD ,∴∠FED=∠EDF=54°.【点睛】本题考查的是三角形中位线定理和直角三角形的性质的应用,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.24. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作//DE AC 且12DE AC =,连接CE 、OE ,连接AE 交OD 于点F .(1)求证:OE CD =;(2)若菱形ABCD 的边长为2, 60ABC ∠=︒.求AE 的长.【答案】(1)证明见解析(27【解析】试题分析:(1)先求出四边形OCED 是平行四边形,再根据菱形的对角线互相垂直求出∠COD =90°,证明OCED 是矩形,可得OE =CD 即可;(2)根据菱形的性质得出AC =AB ,再根据勾股定理得出AE 的长度即可.(1)证明:在菱形ABCD 中,OC =12AC . ∴DE =OC .∵DE ∥AC ,∴四边形OCED 是平行四边形.∵AC ⊥BD ,∴平行四边形OCED 是矩形.(2)在菱形ABCD 中,∠ABC =60°,∴AC =AB =2.∴在矩形OCED 中,CE =OD =223AD AO -=.在Rt △ACE 中,AE =227AC CE -=.点睛:本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.25. 如图,已知反比例函数1(0)k y x x =>的图象与反比例函数2(0)k y x x=<的图象关于y 轴对称,(1,4)A ,(4,)B m 是函数1(0)k y x x =>图象上的两点,连接AB ,点(2,)C n -是函数2(0)k y x x=<图象上的一点,连接AC ,BC .(1)求m ,n 的值;(2)求AB 所在直线的表达式;(3)求ABC ∆的面积.【答案】(1)m=1,n=2.(2)y=-x+5;(3)152【解析】 分析: (1)先把A 点坐标代入1(0)k y x x => 得k 1=4,则反比例函数解析式为y=4x(x >0),再利用反比例解析式确定B 点坐标即可求出m 的值,根据两个反比例函数的图象关于y 轴对称,可得k ₂=-4,又由点()2,C n -是函数2(0)k y x x=<图象上的一点即可求出n 的值; (2)根据A,B 两点坐标利用待定系数法即可求出一次函数解析式.(3)自A,B,C 三点分别向x 轴作垂线,垂足分别为A′,B′,C′,然后根据三角形面积公式和ABC CC A A AA B B CC B B S S S S 梯形梯形梯形''''''=+-进行计算.详解:(1)由A (1,4),B (4,m )是函数1k y x =(x>0)图象上的两点, ∴4=11k ,k 1=4, ∴4y x=(x>0) ∴m=4=14. ∵2k y x =(x<0)的图象和1k y x=(x>0)的图象关于y 轴对称, ∴点A (1,4)关于y 轴的对称点A1(-1,4)在2k y x=(x<0)的图象上, ∴4=21k -,k2=-4, ∴4(0)y x x=-< 由点C (-2,n )是函数4(0)y x x =-<图象上的一点, ∴n=2.(2设AB 所在直线的表达式为y=kx+b,将A (1,4),B (4,1)分别代入y=kx+b ,得4=14k b k b+⎧⎨=+⎩ 解这个二元一次方程组,得15k b =-⎧⎨=⎩. ∴AB 所在直线表达式为:y=-x+5(3)自A,B,C 三点分别向x 轴作垂线,垂足分别A′,B′,C′, CC′=2,AA′=4,BB′=1,C′A′=3,A′B′=3,C′B′=6.∴ABC CC A A AA B B CC B B SS S S 梯形梯形梯形''''''=+-′ =12×(2+4) ×3+12×(1+4) ×3-12×(2+1) ×6=152点睛:本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.26. 平面直角坐标系xOy 中,横坐标为a 的点A 在反比例函数y 1═k x (x >0)的图象上,点A′与点A 关于点O 对称,一次函数y 2=mx+n 的图象经过点A′.(1)设a=2,点B (4,2)在函数y 1、y 2的图象上.①分别求函数y 1、y 2的表达式;②直接写出使y 1>y 2>0成立的x 的范围;(2)如图①,设函数y 1、y 2的图象相交于点B ,点B 的横坐标为3a ,△AA'B 的面积为16,求k 的值; (3)设m=12,如图②,过点A 作AD ⊥x 轴,与函数y 2的图象相交于点D ,以AD 为一边向右侧作正方形ADEF ,试说明函数y 2的图象与线段EF 的交点P 一定在函数y 1的图象上.【答案】(1)y 1=8x,y 2=x ﹣2;②2<x <4;(2)k=6;(3)证明见解析. 【解析】 分析:(1)由已知代入点坐标即可;(2)面积问题可以转化为△AOB 面积,用a 、k 表示面积问题可解;(3)设出点A 、A′坐标,依次表示AD 、AF 及点P 坐标.详解:(1)①由已知,点B (4,2)在y 1═k x (x >0)的图象上 ∴k=8∴y 1=8x∵a=2∴点A 坐标为(2,4),A′坐标为(﹣2,﹣4)把B (4,2),A (﹣2,﹣4)代入y 2=mx+n 得,2=42m n m n+⎧⎨-=-+⎩,。
2020-2021学年八年级下期中数学试卷及答案
2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分20分,每小题2分)1.下列各式与√2是同类二次根式的是()A.√8B.√24C.√27D.√1252.一组数据2,0,1,4,3,这组数据的方差是()A.2B.4C.1D.33.下列平面直角坐标系中的图象,不能表示y是x的函数是()A.B.C.D.4.服装店为了解某品牌外套销售情况,对各种码数销量进行统计,店主最应关注的统计量是()A.平均数B.中位数C.方差D.众数5.如图所示,正方形网格中,M、N、P在格点上,则∠MPN=()A.150°B.135°C.120°D.105°6.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±47.若函数y=kx+b的图象如图所示,则关于x的不等式﹣kx+b<0的解集是()A.x<﹣6B.x>﹣6C.x<6D.x>68.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.9.如图,矩形ABCD中,连接AC,延长BC至点E,使BE=AC,连接DE.若∠BAC=40°,则∠E的度数是()A.65o B.60o C.50o D.40°10.如图,菱形ABCD的边长为2,且∠ABC=120°,E是BC的中点,P为BD上一点,且△PCE的周长最小,则△PCE的周长的最小值为()A.√3+1B.√7+1C.2√3+1D.2√7+1二.填空题(共5小题,满分15分,每小题3分)11.(3分)若√x−3在实数范围内有意义,则x的取值范围是.12.(3分)某公司要招聘1名广告策划人员,某应聘者参加了3项素质测试,成绩如下(单位:分)测试项目创新能力综合知识语言表达测试成绩708090若创新能力、综合知识和语言表达的成绩按5:3:2计算,则该应聘者的素质测试平均成绩是分.13.(3分)实数a,b在数轴上对应点的位置如图所示,则下列式子正确的是.(填序号)①ab<0;②|a|<|b|;③﹣a>b;④a﹣b>0.14.(3分)A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B 地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE ﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.15.(3分)若顺次连接四边形ABCD四边中点所得的四边形是菱形,则原四边形的对角线AC、BD所满足的条件是.三.解答题(共7小题)16.计算:(1)√12×(√75+3√13−√48);(2)(√2−1)2+√3×(√3−√6)+√8.17.某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班、(2)班进行了检测,如图表示从两班各随机抽取的10名学生的得分情况.(1)利用图中提供的信息,补全下表:班级平均数/分中位数/分众数/分初三(1)班24初三(2)班2421(2)若把24分以上(含24分)记为“优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;(3)观察如图的数据分布情况,请通过计算说明哪个班的学生纠错的得分更稳定.18.如图,四边形ABCD是矩形.(1)尺规作图:在图中,求作AB的中点E(保留作图痕迹,不写作法);(2)在(1)的条件下,连接CE,DE,若AB=2,AD=√3,求证:CE平分∠BED.19.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?20.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D 与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.21.如图,已知四边形ABCD是正方形,点E、F分别在AD、DC上,BE与AF相交于点G,且BE=AF.(1)求证:△ABE≌△DAF;(2)求证:BE⊥AF;(3)如果正方形ABCD的边长为5,AE=2,点H为BF的中点,连接GH.求GH的长.22.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B 的另一条直线交x轴正半轴于点C,且OC=3.(1)求直线BC的解析式;(2)如图1,若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G 的坐标.2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.下列各式与√2是同类二次根式的是()A.√8B.√24C.√27D.√125【解答】解:(A)原式=2√2,故A与√2是同类二次根式;(B)原式=2√6,故B与√2不是同类二次根式;(C)原式=3√3,故C与√2不是同类二次根式;(D)原式=5√5,故D与√2不是同类二次根式;故选:A.2.一组数据2,0,1,4,3,这组数据的方差是()A.2B.4C.1D.3【解答】解:x=15(2+0+1+4+3)=2,∴S2=15[(2﹣2)2+(0﹣2)2+(1﹣2)2+(4﹣2)2+(3﹣2)2]=2,故选:A.3.下列平面直角坐标系中的图象,不能表示y是x的函数是()A.B.C.D.【解答】解:A、能表示y是x的函数,故此选项不合题意;B、不能表示y是x的函数,故此选项符合题意;C、能表示y是x的函数,故此选项不合题意;D、能表示y是x的函数,故此选项不合题意;故选:B.4.服装店为了解某品牌外套销售情况,对各种码数销量进行统计,店主最应关注的统计量是()A.平均数B.中位数C.方差D.众数【解答】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:D.5.如图所示,正方形网格中,M、N、P在格点上,则∠MPN=()A.150°B.135°C.120°D.105°【解答】解:延长NP至A,连结AM,根据勾股定理可得MP=AM=√12+22=√5,AP=√32+12=√10,又∵(√5)2+(√5)2=(√10)2,∴△AMP是等腰直角三角形,∴∠APM=45°,∴∠MPN=135°.故选:B.6.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4【解答】解:A、√2与√3不能合并,所以A选项错误;B、原式=5,所以B选项正确;C、原式=√2,所以C选项错误;D、原式=4,所以D选项错误.故选:B.7.若函数y=kx+b的图象如图所示,则关于x的不等式﹣kx+b<0的解集是()A.x<﹣6B.x>﹣6C.x<6D.x>6【解答】解:由图象可知函数y=kx+b与x轴的交点为(6,0),则函数y=﹣kx+b与x 轴的交点为(﹣6,0),且y随x的增大而增大,∴当x<﹣6时,﹣kx+b<0,所以关于x的不等式﹣kx+b<0的解集是x<﹣6,故选:A.8.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.【解答】解:A、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b>0,两结论不矛盾,故正确;B、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误;C、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b<0,两结论相矛盾,故错误;D、如果过第二三四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b<0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误.故选:A.9.如图,矩形ABCD中,连接AC,延长BC至点E,使BE=AC,连接DE.若∠BAC=40°,则∠E的度数是()A.65o B.60o C.50o D.40°【解答】解:如图,连接BD,∵矩形ABCD中,∠BAC=40°,OA=OB,∴∠ABD=40°,∠DBE=90°﹣40°=50°,∵AC=BD,AC=BE,∴BD=BE,∴△BDE中,∠E=12(180°﹣∠DBE)=12(180°﹣50°)=65°,故选:A.10.如图,菱形ABCD的边长为2,且∠ABC=120°,E是BC的中点,P为BD上一点,且△PCE的周长最小,则△PCE的周长的最小值为()A.√3+1B.√7+1C.2√3+1D.2√7+1【解答】解:∵菱形ABCD中,∠ABC=120°,∴BC=CD=AD=2,∠C=180°﹣∠ABC=60°,∠ADC=∠ABC=120°,∴∠ADB=∠BDC=12∠ADC=60°,△BCD是等边三角形,∵点E是BC的中点,∴∠BDE=12∠BDC=30°,∴∠ADE=∠ADB+∠BDE=90°,如图,连接AE,交BD于点P,此时,△PCE的周长最小,∵DE=CD•sin60°=√3,CE=12BC=1,∴在Rt△ADE中,AE=√AD2+DE2=√7,∵四边形ABCD是菱形,∴BD垂直平分AC,∴P A=PC,∴△PCE周长为:PC+PE+CE=P A+PE+CE=AE+CE=√7+1,故选:B.二.填空题(共5小题,满分15分,每小题3分)11.(3分)若√x−3在实数范围内有意义,则x的取值范围是x≥3.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.12.(3分)某公司要招聘1名广告策划人员,某应聘者参加了3项素质测试,成绩如下(单位:分)测试项目创新能力综合知识语言表达测试成绩708090若创新能力、综合知识和语言表达的成绩按5:3:2计算,则该应聘者的素质测试平均成绩是77分.【解答】解:根据题意,该应聘者的素质测试平均成绩是:70×510+80×310+90×210=77(分).故答案为:77.13.(3分)实数a,b在数轴上对应点的位置如图所示,则下列式子正确的是①③.(填序号)①ab<0;②|a|<|b|;③﹣a>b;④a﹣b>0.【解答】解:由图可得:a<0<b,且|a|>|b|,∴ab<0,﹣a>b,a﹣b<0,∴正确的有:①③;故答案为:①③.14.(3分)A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B 地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE ﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是(4,160).【解答】解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(km/h),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到达A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).15.(3分)若顺次连接四边形ABCD四边中点所得的四边形是菱形,则原四边形的对角线AC、BD所满足的条件是AC=BD.【解答】解:∵E、F、H分别是边AD、AB、CD的中点,∴EF=12BD,EH=12AC,∵四边形EFGH是菱形,∴EF=EH,∵EF=12BD,EH=12AC,∴AC=BD,故答案为:AC=BD.三.解答题(共7小题)16.计算:(1)√12×(√75+3√13−√48);(2)(√2−1)2+√3×(√3−√6)+√8.【解答】解:(1)√12×(√75+3√13−√48=2√3×(5√3+√3−4√3)=12;(2)(√2−1)2+√3×(√3−√6)+√8=2﹣2√2+1+3﹣3√2+2√2=6﹣3√2.17.某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班、(2)班进行了检测,如图表示从两班各随机抽取的10名学生的得分情况.(1)利用图中提供的信息,补全下表:班级平均数/分中位数/分众数/分初三(1)班242424初三(2)班242421(2)若把24分以上(含24分)记为“优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;(3)观察如图的数据分布情况,请通过计算说明哪个班的学生纠错的得分更稳定.【解答】解:(1)初三(1)班平均分:110(21×3+24×4+27×3)=24(分);有4名学生24分,最多,故众数为24分;把初三(2)班的成绩从小到大排列,则处于中间位置的数为24和24,故中位数为24分, 填表如下:班级 平均数/分中位数/分众数/分 初三(1)班 24 24 24 初三(2)班 242421故答案为:24,24,24;(2)初三(1)班优秀学生所占的百分比是:4+310×100%=70%,初三(1)班优秀学生约是70%×40=28人; 初三(2)班优秀学生所占的百分比是:610×100%=60%,初三(2)班优秀学生约是60%×40=24人.(3)S 12=110[(21﹣24)2×3+(24﹣24)2×4+(27﹣24)2×3] =110×(27+27) =5.4;S 22=110[(21﹣24)2×3+(24﹣24)2×2+(27﹣24)2×2+(30﹣24)2×2+(15﹣24)2]=110×198 =19.8; ∵S 12<S 22,∴初三(1)班的学生纠错的得分更稳定. 18.如图,四边形ABCD 是矩形.(1)尺规作图:在图中,求作AB 的中点E (保留作图痕迹,不写作法);(2)在(1)的条件下,连接CE ,DE ,若AB =2,AD =√3,求证:CE 平分∠BED .【解答】解:(1)如图所示,点E即为所求.(2)∵E是AB的中点,∴AE=12AB=1,∵四边形ABCD是矩形,∴∠A=90°,AB=CD=2,∴DE=√AD2+AE2=2,∴DE=DC,∴∠DEC=∠DCE,∵AB∥CD,∴∠CEB=∠DCE,∴∠CEB=∠DEC,∴CE平分∠BED.19.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟10米,乙在A地时距地面的高度b为30米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?【解答】解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y={15x(0≤x <2)30x−30(2≤x≤11);(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y =10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.20.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D 与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD =x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.【解答】(1)证明:如图1中,∵∠EDE ′=∠C =90°,∴∠ADP +∠CDE =90°,∠CDE +∠DEC =90°, ∴∠ADP =∠DEC .(2)解:如图1中,当C ′E ′与AB 相交于Q 时,即65<x ≤127时,过P 作MN ∥DC ′,设∠B =α∴MN ⊥AC ,四边形DC ′MN 是矩形, ∴PM =PQ •cos α=45y ,PN =43×12(3﹣x ), ∴23(3﹣x )+45y =x ,∴y =2512x −52,当DC ′交AB 于Q 时,即127<x <3时,如图2中,作PM ⊥AC 于M ,PN ⊥DQ 于N ,则四边形PMDN 是矩形,∴PN =DM ,∵DM =12(3﹣x ),PN =PQ •sin α=35y , ∴12(3﹣x )=35y ,∴y =−56x +52. 综上所述,y ={−56x +52(127<x <3)2512x −52(65<x ≤127)21.如图,已知四边形ABCD 是正方形,点E 、F 分别在AD 、DC 上,BE 与AF 相交于点G ,且BE =AF .(1)求证:△ABE ≌△DAF ; (2)求证:BE ⊥AF ;(3)如果正方形ABCD 的边长为5,AE =2,点H 为BF 的中点,连接GH .求GH 的长.【解答】解:(1)证明:∵四边形ABCD 为正方形, ∴∠BAE =∠D =90°,AB =AD , 在Rt △ABE 和Rt △DAF 中, {BE =AFAB =AD, ∴Rt △ABE ≌Rt △DAF (HL ); (2)证明:∵Rt △ABE ≌Rt △DAF ,∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∴BE⊥AF;(3)∵BE⊥AF,∵点H为BF的中点,∴GH=12BF,∵在Rt△BCF中,BC=5,CF=CD﹣DF=5﹣2=3,根据勾股定理,得∴BF=√BC2+CF2=√34,∴GH=√34 2.22.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B 的另一条直线交x轴正半轴于点C,且OC=3.(1)求直线BC的解析式;(2)如图1,若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G 的坐标.【解答】解:(1)∵直线y=2x+4与x轴交于点A,与y轴交于点B,∴A(﹣2,0),B(0,4),∴OA=2,OB=4,∵OC =3,则C (3,0),设直线BC 的解析式为y =kx +b ,则有{3k +b =0b =4,解得{k =−43b =4,∴直线BC 的解析式为y =−43x +4;(2)设M (m ,−43m +4), ∵S △AMB =S △AOB , ∴S △ABC ﹣S △AMC =S △AOB , ∴12×5×4−12×5×(−43m +4)=12×2×4, ∴m =65, ∴M (65,125);(3)∵F A =FB ,A (﹣2,0),B (0,4), ∴F (﹣1,2),设G (0,n ),①当n >2时,如图1,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .∵四边形FGQP 是正方形,∴∠MGF +∠NGQ =90°,∠NGQ +∠NQG =90°, ∴∠MGF =∠NQG ,∵∠FMG =∠GNQ =90°,GF =GQ , ∴△FMG ≌△GNQ (AAS ), ∴MG =NQ =1,FM =GN =n ﹣2, ∴Q (n ﹣2,n ﹣1),第 21 页 共 21 页∵点Q 在直线y =−43x +4上,∴n ﹣1=−43(n ﹣2)+4,∴n =237,∴G (0,237);②当n <2时,如图2﹣2中,同法可得Q (2﹣n ,n +1),∵点Q 在直线y =−43x +4上,∴n +1=−43(2﹣n )+4,∴n =﹣1,∴G (0,﹣1).综上所述,满足条件的点G 坐标为(0,237)或(0,﹣1).。
2020-2021学年苏科版八年级下册数学期中试卷含答案
八年级下册数学期中试卷一.选择题(共10小题,满分20分,每小题2分)1.下列图形中,是中心对称图形的是()A.正三角形B.平行四边形C.正五边形D.直角三角形2.为了了解我县初一4300名学生在疫情期间“数学空课”的学习情况,全县组织了一次数学检测,从中抽取100名考生的成绩进行统计分析,以下说法正确的是()A.这100名考生是总体的一个样本B.4300名考生是总体C.每位学生的数学成绩是个体D.100名学生是样本容量3.“早发现,早报告,早隔离,早治疗”是我国抗击“新冠肺炎”的宝贵经验,其中“早”字出现的频率是()A.B.C.D.4.下面调查统计中,适合采用普查方式的是()A.华为手机的市场占有率B.乘坐飞机的旅客是否携带了违禁物品C.国家宝藏”专栏电视节目的收视率D.“现代”汽车每百公里的耗油量5.下列事件中,是必然事件的是()A.打开电视机,正在播放新闻B.父亲的年龄比儿子的年龄大C.通过长期努力学习,你一定会成为数学家D.买福利彩票,中500万大奖6.某校七年级开展“阳光体育”活动,对爱好乒乓球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.若爱好羽毛球的人数是爱好足球的人数的4倍,若爱好乒乓球的人数是21人,则下列正确的是()A.被调查的学生人数为80人B.喜欢篮球的人数为16人C.喜欢羽毛球的人数为30人D.喜欢足球的扇形的圆心角为36°7.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E;PF⊥CD于点F,连接EF,给出下列五个结论:①AP=EF;②AP⊥EF;③∠PFE=∠BAP;④PD=EC;⑤PB2+PD2=2PA2,正确的有()个.A.5B.4C.3D.28.如图,在▱ABC D中,AE⊥BC,垂足为E,AF⊥CD,垂足为F.若AE:AF=2:3,▱AB CD的周长为10,则AB的长为()A.2B.2.5C.3D.3.59.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连接OA.则四边形AOED的周长为()A.9+2B.9+C.7+2D.810.如图所示,矩形ABCD中,BC=2AB,E为BC上的一点,且AE=AD,则∠EDC的度数是()A.30°B.75°C.45°D.15°二.填空题(共10小题,满分20分,每小题2分)11.在一个不透明的袋子中有1个红球,2个白球和3个黑球,这些球除颜色外均相同,将球摇匀后,从袋子中任意摸出一个球,摸到(填“红”或“白”或“黑”)球的可能性最大.12.王老师对本班40个学生所穿校服尺码的数据统计如下:尺码S M L XL XXL XXXL频率0.050.10.20.3250.30.025则该班学生所穿校服尺码为“L”的人数有个.13.“小明家买彩票将获得500万元大奖”是事件.(填“必然”、“不可能”或“随机”)14.如图,将△ABC绕点A旋转到△AEF的位置,点E在BC边上,EF与AC交于点G.若∠B=70°,∠C=25°,则∠FGC=°.15.如图,在△ABC中,点D、E分别是边AB、AC的中点,连接DE,∠ABC的平分线BF交DE于点F,若AB=4,BC=6,则EF的长为.16.如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是18cm2,则AC长是cm.17.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE ⊥AB于E,OF⊥AD于F.则OE+OF=.18.如图,在正方形ABCD中,顶点A(﹣2,0),B(2,0),将以BC为斜边的等腰直角△BCE与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第10次旋转结束时,点E的坐标为.19.如图,正方形ABCD的边长为12,点E在边AB上,BE=8,过点E作EF∥BC,分别交BD、CD于G、F两点.若点P、Q分别为DG、CE的中点,则PQ的长为.20.如图,长方形ABCD中,AB=6,BC=2,直线l是长方形ABCD的一条对称轴,且分别与AD,BC交于点E,F,若直线l上的动点P,使得△PAB和△PBC均为等腰三角形,则动点P的个数有个.三.解答题(共1小题,满分8分,每小题8分)21.(8分)已知∠AOB=60°,P为它的内部一点,M为射线OA上一点,连接PM,以P 为中心,将线段PM顺时针旋转120°,得到线段PN,并且点N恰好落在射线OB上.(1)依题意补全图1;(2)证明:点P一定落在∠AOB的平分线上;(3)连接OP,如果OP=2,判断OM+ON的值是否变化,若发生变化,请求出值的变化范围,若不变,请求出值.四.解答题(共5小题,满分52分)22.(10分)某校为了解七年级学生体育测试情况,在七年级各班随机抽取了部分学生的体育测试成绩,按A、B、C、D四个等级进行统计(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下).并将统计结果绘制成两个如图所示的不完整的统计图,请你结合统计图中所给信息解答下列问题:(1)学校在七年级各班共随机调查了名学生;(2)在扇形统计图中,A级所在的扇形圆心角是;(3)请把条形统计图补充完整;(4)若该校七年级有800名学生,请根据统计结果估计全校七年级体育测试中B级和C 级学生各约有多少名.23.(8分)如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF;(2)若BC=2AB,∠BCD=100°,求∠ABE的度数.24.(10分)如图,矩形ABCD中,AB=BC,在边AB上截取BE,使得BE=BC,连接CE,作DF⊥EC于点F,连接BF并延长交AD于点G,连接DE.(1)求证:DE平分∠AEC;(2)若AD=,求出DG的长.25.(12分)同学们小学就知道,三角形的内角和为180°.小学通过剪拼的方式把三角形三个内角剪下来拼成一个平角,从而得出三角形内角和是180°.如图①,小明同学对于任意三角形ABC的内角和为180°进行了探究,即探究∠A+∠B+∠C=180°.探究方法如下:小明过点A作直线NM∥BC,请你帮助小明完成(1)的解答过程:【探究】(1)解:过点A作MN∥BC.【应用】(2)根据上述结论回答下列问题:①三角形ABC中,∠BAC=50°,∠B=60°,则∠C=°.②三角形ABC的三个内角之比为1:2:3,则三角形ABC是三角形.(3)在三角形ABC中,∠BAC=50°,且三角形有两个内角相等,则这个三角形的最大内角为°.(4)如图②,在三角形ABC中,∠A=60°,∠B和∠C的平分线交于点P,则∠P =°.26.(12分)已知AC=BC,AC⊥BC,直线MN经过点A.(1)作BD⊥MN,垂足为D,连接CD,在图①中补全图形,猜想∠ADC的度数并证明;(2)在直线MN绕点A旋转的过程中,当∠BCD=30°,时,直接写出DC的长.参考答案一.选择题(共10小题,满分20分,每小题2分)1.解:A、正三角形是轴对称图形,不是中心对称图形,故此选项不合题意;B、平行四边形是中心对称图形,故此选项正确;C、正五边形是轴对称图形,不是中心对称图形,故此选项不合题意;D、直角三角形不是中心对称图形,故此选项不合题意;故选:B.2.解:A.这100名考生的数学成绩是总体的一个样本,故本选项不合题意;B.4300名考生的数学成绩是总体,故本选项不合题意;C.每位学生的数学成绩是个体,故本选项符合题意;D.100是样本容量,故本选项不合题意.故选:C.3.解:“早”字出现的频率是:=,故选:D.4.解:A、对华为手机的市场占有率的调查范围广,适合抽样调查,故此选项不符合题意;B、对乘坐飞机的旅客是否携带了违禁物品的调查情况适合普查,故此选项符合题意;C、对国家宝藏”专栏电视节目的收视率的调查范围广,适合抽样调查,故此选项不符合题意;D、对“现代”汽车每百公里的耗油量的调查范围广适合抽样调查,故此选项不符合题意;故选:B.5.解:A、打开电视机,正在播放新闻,属于随机事件;B、父亲的年龄比儿子的年龄大,属于必然事件;C、通过长期努力学习,你一定会成为数学家,属于随机事件;D、买福利彩票,中500万大奖,属于随机事件;故选:B.6.解:A、被调查的学生人数为:21÷30%=70(人),故本选项错误;B、喜欢篮球的人数为:70×20%=14(人),故本选项错误;C、喜欢羽毛球和足球的人数为:70×(1﹣20%﹣30%)=35人,因为爱好羽毛球的人数是爱好足球的人数的4倍,所以喜欢羽毛球的人数为28人,故本选项错误;D、喜欢足球的扇形的圆心角为360°×=36°,故本选项正确;故选:D.7.解:①正确,连接PC,可得PC=EF,PC=PA,∴AP=EF;②正确;延长AP,交EF于点N,则∠EPN=∠BAP=∠PCE=∠PFE,可得AP⊥EF;③正确;∠PFE=∠PCE=∠BAP;④错误,PD=PF=CE;⑤正确,PB2+PD2=2PA2.故选:B.8.解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴BC+CD=10÷2=5,根据平行四边形的面积公式,得BC:CD=AF:AE=3:2.∴BC=3,CD=2,∴AB=CD=2,故选:A.9.解:∵四边形ABCD为菱形,∴AD=AB=4,AB∥CD,∵∠BAD=120°,∴∠ADB=∠CDB=30°,∵O是对角线BD的中点,∴AO⊥BD,在Rt△AOD中,AO=AD=2,OD=OA=2,∵OE⊥CD,∴∠DEO=90°,在Rt△DOE中,OE=OD=,DE=OE=3,∴四边形AOED的周长=4+2++3=9+.故选:B.10.解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠B=∠ADC=90°,∵BC=2AB,AE=AD,∴AE=2AB,∴∠AEB=30°,∵AD∥BC,∴∠DAE=∠AEB=30°,∵AD=AE,∴∠ADE=75°,∴∠EDC=15°,故选:D.二.填空题(共10小题,满分20分,每小题2分)11.解:在袋子中,黑球个数最多,所以从袋子中任意摸出一个球,可能性最大的是黑球,故答案为:黑.12.解:由表可知尺码L的频率为0.2,又因为班级总人数为40,所以该班学生所穿校服尺码为“L”的人数有40×0.2=8.故答案是:8.13.解:“小明家买彩票将获得500万元大奖”是随机事件.故答案为:随机.14.解:∵将△ABC绕点A旋转到△AEF的位置,∴AB=AE,∠B=70°,∴∠BAE=180°﹣70°×2=40°,∴∠FAG=∠BAE=40°.∵将△ABC 绕点A 旋转到△AEF 的位置,∴△ABC ≌△AEF ,∴∠F =∠C =25°,∴∠FGC =∠FAG +∠F =40°+25°=65°.故答案为:65.15.解:连接AF 并延长交BC 于H ,∵点D 、E 分别为边AB 、AC 的中点,∴DE ∥BC ,DE =BC =3,AF =FH ,在△BFA 和△BFH 中,,∴△BFA ≌△BFH (AAS ),∴BH =AB =4,∵AD =DB ,AF =FH ,∴DF =BH =2,∴EF =DE ﹣DF =1,故答案为:1.16.解:∵四边形AFCE 是正方形,∴AF =AE ,∠E =∠AFC =∠AFB =90°,∵在Rt △AED 和Rt △AFB 中,∴Rt △AED ≌Rt △AFB (HL ),∴S △AED =S △AFB ,∵四边形ABCD 的面积是18cm 2,∴正方形AFCE 的面积是18cm 2,∴AE =EC ==3(cm ),根据勾股定理得:AC ==6, 故答案为:6;17.解:如图,连接AC 交BD 于点G ,连接AO ,∵四边形ABCD 是菱形,∴AC ⊥BD ,AB =AD =10,BG =BD =8,根据勾股定理得:AG ===6,∵S △ABD =S △AOB +S △AOD , 即BD •AG =AB •OE +AD •OF ,∴16×6=10OE +10OF ,∴OE +OF =9.6. 故答案为:9.6.18.解:如图,过点E 作EF ⊥x 轴于点F ,∵A (﹣2,0),B (2,0),四边形ABCD 是正方形,∴AB =BC =4,∠CBA =∠CBF =90,∵△BCE 是等腰直角三角形,∴∠CBE =∠EBF =45°,∴△EBF 是等腰直角三角形,∴BE=BC=2,∴EF=BF=BE=2,∴OF=4,∴E(4,2),∵将以BC为斜边的等腰直角△BCE与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,∴第1次旋转结束时,点E的坐标为(2,﹣4);第2次旋转结束时,点E的坐标为(﹣4,﹣2);第3次旋转结束时,点E的坐标为(﹣2,4);第4次旋转结束时,点E的坐标为(4,2);…∴每4次一个循环,∵10÷4=2…2,∴第10次旋转结束时,点E的坐标为(﹣4,﹣2).故答案为:(﹣4,﹣2).19.解:方法一:作QM⊥EF于点M,作PN⊥EF于点N,作QH⊥PN交PN的延长线于点H,如右图所示,∵正方形ABCD的边长为12,BE=8,EF∥BC,点P、Q分别为DG、CE的中点,∴DF=4,CF=8,EF=12,∴MQ=4,PN=2,MF=6,∵QM⊥EF,PN⊥EF,BE=8,DF=4,∴△EGB∽△FGD,∴,即,解得,FG=4,∴FN=2,∴MN=6﹣2=4,∴QH=4,∵PH=PN+QM,∴PH=6,∴PQ==,故答案为:2.方法二:取DF的中点M,连接PF,取CF的中点N,连接QN,作PH⊥QN于点H,∵点P,点Q分别为DG、EC的中点,∴PM=GF,QN=EF,∵正方形ABCD的边长为12,点E在边AB上,BE=8,过点E作EF∥BC,AD为对角线,∴BE=EG=8,BE=CF=8,∴GF=4,∴PM=2,QN=6,∴MN=PH=6,QH=QN﹣HN=4,∴PQ=,故答案为:2.20.解:如图,∵直线l是长方形ABCD的一条对称轴,直线l上的动点P,∴PB=PC,∴△PBC是等腰三角形,作AB或CD的垂直平分线与直线l有一个交点,以点B为圆心,AB为半径作圆与与直线l有两个交点,则BP=AB=CD=CP,所以△PAB和△PBC均为等腰三角形,以点A为圆心,AB为半径作圆与与直线l有两个交点,则AB=AP=CD=CP,所以△PAB和△PBC均为等腰三角形,故答案为:5.三.解答题(共1小题,满分8分,每小题8分)21.解:(1)图形如图所示:(2)作PE⊥OA于E,PF⊥OB于F.∵∠PEO=∠PFO=90°,∠EOF=60°,∴∠EPF=∠MPN=120°,∴∠EPM=∠FPN,∵PM=PN,∠PEM=∠PFN=90°,∴△PEM≌△PFN(AAS),∴PE=PF,∵PE⊥OA于E,PF⊥OB于F,∴OP平分∠AB,∴点P在∠AOB的角平分线上.(3)结论:OM+ON=6,值不变.理由:∵∠PEO=∠PFO=90°,OP=OP,PE=PF,∴Rt△OPE≌Rt△OPF(HL),∴OE=OF,∵OP=2,∠POE=∠POF=30°,∴OE=OF=OP•cos30°=3,∵△PEM≌△PFN,∴ME=FN,∴OM+ON=OE﹣EM+OF+FN=2OE=6.四.解答题(共5小题,满分52分)22.解:(1)学校在七年级各班共随机调查了23÷46%=50名学生,故答案为:50;(2)360°×(1﹣46%﹣24%﹣10%)=360°×20%=72°,即在扇形统计图中,A级所在的扇形圆心角是72°,故答案为:72°;(3)A等级的学生有:50×(1﹣46%﹣24%﹣10%)=50×20%=10(人),补充完整的条形统计图如右图所示;(4)B级学生有:800×46%=368(名),C级学生有:800×24%=192(名),即估计全校七年级体育测试中B级和C级学生各约有368名、192名.23.证明:(1)∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴∠DCE=∠F,∠FBC+∠BCD=180°,∵E为AD的中点,∴DE=AE.在△DEC和△AEF中,,∴△DEC≌△AEF(AAS).∴DC=AF.∴AB=AF;(2)由(1)可知BF=2AB,EF=EC,∵∠BCD=100°,∴∠FBC=180°﹣100°=80°,∵BC=2AB,∴BF=BC,∴BE平分∠CBF,∴∠ABE=∠FBC=×80°=40°24.解:(1)∵四边形ABCD是矩形,∴AB=CD,AB∥DC,∠ABC=90°,∵BC=BE,∴CE=BC,∵AB=BC,∴CD=CE,∴∠CDE=∠CED,∵AB∥CD,∴∠CDE=∠AED,∴∠AED=∠DEC,∴DE平分∠AEC;(2)∵BC=BE,∠CBE=90°,∴∠BCE=∠BEC=45°,∵CD∥AB,∴∠DCE=∠BEC=45°,∵DF⊥CE,∴∠CDF=45°,∴DF=CF,∴CD=DF,∵AB=CD,AB=,BC=BE,∴BE=DF=CF=BC,∵∠ADC=90°,∴∠FDG=45°,∴∠BEF=∠EDF,∵BC=CF,∠BCF=45°,∴∠CBF=∠CFB=67.5°,∴∠EBF=90°﹣67.5°=22.5°,∠DFG=180°﹣67.5°﹣90°=22.5°,∴∠EBF=∠DFG,在△DFG和△EBF中,∴△DFG≌△EBF(ASA),∴DG=EF,∵EF=CE﹣CF=AB﹣BC=,∴DG=2.25.解:(1)过点A作MN∥BC.(2)①∵MN∥BC,∴∠MAB=∠B=60°,∵∠BAC=50°,∴∠NCB=180°﹣60°﹣50°=70°,∴∠C=70°.故答案为:70;②∵三角形ABC的三个内角之比为1:2:3,∴最大角为180°×=90°,则三角形ABC是直角三角形.故答案为:直角;(3)当∠BAC是顶角,∵∠BAC=50°,∴底角是(180°﹣50°)÷2=65°;当∠BAC是底角,∵∠BAC=50°,∴顶角是180°﹣50°×2=80°.则这个三角形的最大内角为65°或80°.故答案为:65或80;(4)∵在三角形ABC中,∠A=60°,∴∠ABC+∠ACB=120°,∵∠B和∠C的平分线交于点P,∴∠PBC+∠PCB=(∠ABC+∠ACB)=60°,则∠P=120°.故答案为:120.26.解:(1)补全图形,如图①所示:猜想∠ADC=45°,理由如下:连接AB,∵AC⊥BC,AC=BC,∴△ABC是等腰直角三角形,∴∠ABC=45°,∵BD⊥MN,∴∠ADB=∠ACB=90°,∴A、B、C、D四点共圆,∴∠ADC=∠ABC=45°,(2)当点B在直线MN的右侧时,如图②所示:连接AB,过点D作DE⊥AC于E,∵A、B、C、D四点共圆,∴∠BAD=∠BCD=30°,∵BD⊥MN,BD=,∴AB=2,∵△ABC是等腰直角三角形,∴AC=BC=AB=2,AD===,∵DE⊥AC,∴BC∥DE,∴∠CDE=∠BCD=30°,∴DC=2CE,设CE=x,则AE=AC+CE=2+x,CD=2x,DE===x,在Rt△AED中,AE2+DE2=AD2,即(2+x)2+(x)2=()2,解得:x=或x=(不合题意舍去),∴DC=2CE=2x=﹣1;当点B在直线MN的左侧时,连接AB,过点D作DE⊥AC于E,如图③所示:同理可得:DC=+1;综上所述,DC的长为+1或﹣1.。
2020-2021江苏省淮安市淮阴中学八年级下册期中考试数学试卷
A
A
材料 1:定义:只含有 x 的分式 (A、B 为整式, 不能化简成整式,B≠0),若整式 A 的次
B
B
数小于 B 的次数,则称该分式为真分式(规定:常数的次数为 0),否则为假分式.
(1)下列分式中,属于真分式的有 _________ (填序号);
x
①
x 2﹣2
x3
②
x 2﹣1
x﹣3
③
5x+2
3
12.若关于
x
的分式方程
2x x
m 1
5
有增根,则
m
的值为______;
13.若 a 1 3 ab 0 ,则 a + b = ______;
14.如图 ,点 A 是反 比例函数 y k 图像 上的一点 ,过点 A 作 AC⊥x x
轴,垂足为点 C,D 是线段 AC 的中点,若△AOD 的面积为 1,则 k 的 值为 _______; 15.观察下列等式:① 3 2 2 ( 2 1)2 ,② 5 2 6 ( 3 2 )2 ,
二、填空题:(本大题共 8 小题,每小题 3 分,共 24 分.请将答案填写在答题纸上)
9. 11 的整数部分是_____.
10.若点
A(1,
y1
)、B(2,
y2
)都在反比例的数
y
1 x
的图像上,则
y1
_____
y2
;(填“
>
”、
“ < ”或“ = ”)
11.若分式 3 的值是负数,那么 x 的取值范围是 _________; 2 x
(1)线段 AB 的长度是
;
(2)若格点 C 满足:AC = 5,BC = 10 ,请在网格中画出符
2020-2021学年八年级下学期期中考试数学试题及答案
2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.使函数y=√x+1x有意义的自变量x的取值范围为()A.x≠0B.x≥﹣1C.x≥﹣1且x≠0D.x>﹣1且x≠0【解答】解:由题意得,x+1≥0且x≠0,解得x≥﹣1且x≠0.故选:C.2.下列各图能表示y是x的函数是()A.B.C.D.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x 的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.3.下列各式属于最简二次根式的是()A.√8B.√x2+1C.√y2D.√1 2【解答】解:A、√8含有能开方的因数,不是最简二次根式,故本选项错误;B、√x2+1符合最简二次根式的定义,故本选项正确;C、√y2含有能开方的因式,不是最简二次根式,故本选项错误;D、√12被开方数含分母,故本选项错误;故选:B.4.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.5.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,AB=6cm,BC=8cm,则△AEF的周长是()A.14cm B.8cm C.9cm D.10cm【解答】解:由勾股定理得,AC=√AB2+BC2=√62+82=10cm,∵四边形ABCD是矩形,∴OA=OD=12AC=12×10=5cm,∵点E、F分别是AO、AD的中点,∴EF=12OD=52cm,AF=12×8=4cm,AE=12OA=52cm,∴△AEF的周长=52+4+52=9cm.故选:C.6.如图,数轴上表示实数√5的点可能是()A.点P B.点Q C.点R D.点S【解答】解:∵2<√5<3,∴数轴上表示实数√5的点可能是点Q.故选:B.7.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.【解答】解:(1)当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y =mnx 的图象过一、三象限,无符合项;(4)当m <0,n >0时,mn <0,一次函数y =mx +n 的图象一、二、四象限,正比例函数y =mnx 的图象过二、四象限,无符合项.故选:C .8.如果直线y =kx +b 经过一、二、四象限,则k ,b 的取值分别是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0【解答】解:由一次函数y =kx +b 的图象经过第一、二、四象限,又由k <0时,直线必经过二、四象限,故知k <0.再由图象过一、二象限,即直线与y 轴正半轴相交,所以b >0.故选:C .9.如图所示的图象所表示的函数的关系式为( )A .y =32|x ﹣1|(0≤x ≤2)B .y =32−32|x ﹣1|(0≤x ≤2)C .y =32−|x ﹣1|(0≤x ≤2)D .y =1﹣|x ﹣1|(0≤x ≤2)【解答】解:观察图象可知,图象上已知三点坐标为(0,0),(1,32)(2,0),代入每个解析式检验可知:A 、点(0,0)不符合函数解析式;B 、点(0,0),(1,32),(2,0),都符合函数解析式;C 、点(0,0)不符合函数解析式;D 、点(1,32)不符合函数解析式. 只有B 符合.故选:B .10.如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【解答】解:如图,连接DE,∵△PC′D是△PCD沿PD折叠得到,∴∠CPD=∠C′PD,∵PE平分∠BPC′,∴∠BPE=∠C′PE,∴∠EPC′+∠DPC′=12×180°=90°,∴△DPE是直角三角形,∵BP=x,BE=y,AB=3,BC=5,∴AE=AB﹣BE=3﹣y,CP=BC﹣BP=5﹣x,在Rt△BEP中,PE2=BP2+BE2=x2+y2,在Rt△ADE中,DE2=AE2+AD2=(3﹣y)2+52,在Rt△PCD中,PD2=PC2+CD2=(5﹣x)2+32,在Rt△PDE中,DE2=PE2+PD2,则(3﹣y)2+52=x2+y2+(5﹣x)2+32,整理得,﹣6y=2x2﹣10x,所以y=−13x2+53x(0<x<5),纵观各选项,只有D选项符合.故选:D.二.填空题(共5小题,满分15分,每小题3分)11.若点A(2,y1),B(﹣1,y2)都在直线y=﹣2x+1上,则y1与y2的大小关系是y1<y2.【解答】解:∵直线y=﹣2x+1的比例系数为﹣2,∴y随x的增大而减小,∵2>﹣1,∴y1<y2,故答案为y1<y2.12.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要612元钱.【解答】解:由勾股定理,AC=2−BC2=√132−52=12(m).则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×18=612元.故答案为:612.13.无论m为何值直线y=x+2m与直线y=﹣x+4的交点都不可能在第三象限.【解答】解:y=﹣x+4是一次函数,∵k=﹣1<0,∴图象过二、四象限,又∵b=4>0,∴图象过第一象限,∴一定不过第三象限;∴直线y =x +2m 与y =﹣x +4的交点不可能在第三象限.故答案为:三.14.如图,将一张矩形纸片ABCD 沿对角线BD 折叠,点C 的对应点为C ′,再将所折得的图形沿EF 折叠,使得点D 和点A 重合.若AB =3,BC =4,则折痕EF 的长为 2512 .【解答】解:设BC ′与AD 交于N ,EF 与AD 交于M ,根据折叠的性质可得:∠NBD =∠CBD ,AM =DM =12AD ,∠FMD =∠EMD =90°, ∵四边形ABCD 是矩形,∴AD ∥BC ,AD =BC =4,∠BAD =90°,∴∠ADB =∠CBD ,∴∠NBD =∠ADB ,∴BN =DN ,设AN =x ,则BN =DN =4﹣x ,∵在Rt △ABN 中,AB 2+AN 2=BN 2,∴32+x 2=(4﹣x )2,∴x =78,即AN =78,∵C ′D =CD =AB =3,∠BAD =∠C ′=90°,∠ANB =∠C ′ND ,∴△ANB ≌△C ′ND (AAS ),∴∠FDM =∠ABN ,∴tan ∠FDM =tan ∠ABN ,∴AN AB =MF MD ,∴783=MF 2,∴MF =712, 由折叠的性质可得:EF ⊥AD ,∴EF ∥AB ,∵AM =DM ,∴ME =12AB =32,∴EF =ME +MF =32+712=2512.故答案为:2512.15.已知一次函数y =mx +2m +8与x 轴、y 轴交于点A 、B ,若图象经过点C (2,4).过点C 作x 轴的平行线,交y 轴于点D ,在△OAB 边上找一点E ,使得△DCE 构成等腰三角形,则点E 坐标为 (0,6)或(0,2)或(2−√2,4+√2)或(2+√2,4−√2)或(1,0)或(1,5) .【解答】解:∵一次函数y =mx +2m +8的图象经过点C (2,4),∴4=2m +2m +8,解得m =﹣1,∴一次函数为y =﹣x +6,∵与x 轴、y 轴交于点A 、B ,∴A (6,0),B (0,6),如图,∵C (2,4),∴C 点在直线AB 上,以D 为圆心,以2为半径作圆,交OB 于B 和E 2,此时E (0,6)或(0,2);以B 为圆心,以2为半径作圆,交AB 于E 3和E 4,此时E(2−√2,4+√2)或(2+√2,4−√2),作DC的垂直平分线交OA于E5,交AB于E6,此时E5(1,0),E6(1,5);综上,点E坐标为(0,6)或(0,2)或(2−√2,4+√2)或(2+√2,4−√2)或(1,0)或(1,5);故答案为(0,6)或(0,2)或(2−√2,4+√2)或(2+√2,4−√2)或(1,0)或(1,5).三.解答题(共8小题,满分75分)16.(8分)计算:−√24÷√2−√13×√12+√48.【解答】解:−√24÷√2−√13×√12+√48=﹣2√6÷√2−√4+4√3=﹣2√3−2+4√3=2√3−2.17.(8分)如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?【解答】解:∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE 2+AD 2=BE 2+BC 2,设AE =x ,则BE =AB ﹣AE =(25﹣x ),∵DA =15km ,CB =10km ,∴x 2+152=(25﹣x )2+102,解得:x =10,∴AE =10km ,∴收购站E 应建在离A 点10km 处.18.(9分)四边形ABCD 为平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E .(1)求证:BE =CD ;(2)连接BF 、AC 、DE ,当BF ⊥AE 时,求证:四边形ACED 是平行四边形.【解答】证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AD ∥BC ,∵AE 平分∠BAD ,∴∠EAB =∠EAD =∠AEB ,∴AB =BE ,∴BE =CD .(2)∵BA =BE ,BF ⊥AE ,∴AF =EF ,∵AD ∥CE ,∴∠DAF =∠CEF ,在△ADF 和△ECF 中,{∠DAF =∠CEF AF =FE ∠AFD =∠CFE,∴△DAF ≌△CEF∴AD =CE ,∵AD ∥CE ,∴四边形ADEC 是平行四边形.19.(9分)如图,已知一次函数y =kx +b 的图象经过A (﹣2,﹣1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求一次函数的解析式;(2)求点C 和点D 的坐标;(3)求△AOB 的面积.【解答】解:(1)把A (﹣2,﹣1),B (1,3)代入y =kx +b 得 {−2k +b =−1k +b =3, 解得 {k =43b =53. 所以一次函数解析式为y =43x +53;(2)令y =0,则0=43x +53,解得x =−54,所以C 点的坐标为(−54,0),把x =0代入y =43x +53得y =53,所以D 点坐标为(0,53), (3)△AOB 的面积=S △AOD +S △BOD=12×53×2+12×53×1=52.20.(10分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF、BF.(1)求证:四边形BFDE是矩形;(2)若CF=6,BF=8,DF=10,求证:AF平分∠DAB.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC=√FC2+FB2=10,∴AD=BC=DF=10,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.21.(10分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟10米,乙在A地时距地面的高度b为30米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?【解答】解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y={15x(0≤x <2)30x−30(2≤x≤11);(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y =10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.22.(10分)如图1,在正方形ABCD(正方形四边相等,四个角均为直角)中,AB=8,P 为线段BC上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交AD于点N.(1)求证:BP=CQ;(2)若BP=13PC,求AN的长;(3)如图2,延长QN交BA的延长线于点M,若BP=x(0<x<8),△BMC'的面积为S,求S与x之间的函数关系式.【解答】解:(1)证明:∵∠ABC =90°∴∠BAP +∠APB =90°∵BQ ⊥AP∴∠APB +∠QBC =90°,∴∠QBC =∠BAP ,在△ABP 于△BCQ 中,{∠ABP =∠BCQAB =BC ∠BAP =∠QBC,∴△ABP ≌△BCQ (ASA ),∴BP =CQ ,(2)由翻折可知,AB =BC ',连接BN ,在Rt △ABN 和Rt △C 'BN 中,AB =BC ',BN =BN ,∴Rt △ABN ≌△Rt △C 'BN (HL ),∴AN =NC ',∵BP =13PC ,AB =8,∴BP =2=CQ ,CP =DQ =6,设AN =NC '=a ,则DN =8﹣a ,∴在Rt △NDQ 中,(8﹣a )2+62=(a +2)2解得:a =4.8,即AN =4.8.(3)解:过Q 点作QG ⊥BM 于G ,由(1)知BP =CQ =BG =x ,BM =MQ .设MQ =BM =y ,则MG =y ﹣x ,∴在Rt △MQG 中,y 2=82+(y ﹣x )2,∴y =32x +x 2. ∴S △BMC ′=S △BMQ ﹣S △BC 'Q =12BM ⋅QG −12BC′⋅QC′=12(32x +x 2)×8−12×8x , =128x −2x .23.(11分)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y 关于x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?最大利润是多少?【解答】解:(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;根据题意得{10a +20b =400020a +10b =3500, 解得{a =100b =150. 答:每台A 型电脑销售利润为100元,每台B 型电脑的销售利润为150元;(2)①根据题意得,y =100x +150(100﹣x ),即y =﹣50x +15000;②据题意得,100﹣x ≤2x ,解得x ≥3313, ∵y =﹣50x +15000,∴y 随x 的增大而减小,∵x 为正整数,∴当x =34时,y 取最大值,则100﹣x =66,此时最大利润是y =﹣50×34+15000=13300.即商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是13300元.。
2020-2021学年八年级下学期期中数学试题及答案
2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分40分,每小题4分)1.等腰三角形一腰上的高与腰之比1:2,则等腰三角形顶角的度数为()A.30°B.60°或120°C.30°或150°D.150°【解答】解:当该三角形为锐角三角形时,如图1,∵sin∠A=BDAB=12,∴∠A=30°,即△ABC的顶角为30°;当该三角形为钝角三角形时,如图2,在Rt△ABD中,∵sin∠BAD=BDAB=12,∴∠BAD=30°,∴∠BAC=150°,即△ABC的顶角为150°;综上可知该三角形的顶角为30°或150°,故选:C.2.下列各组数据为三角形的三边,能构成直角三角形的是()A.4,8,7B.2,2,2C.2,2,4D.13,12,5【解答】解:A、42+72≠82,故不为直角三角形;B、22+22≠22,故不为直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形;故选:D.3.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6B.7C.8D.10【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.4.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且P A平分∠BAC,则△APD与△APE全等的理由是()A.SAS B.AAS C.SSS D.ASA【解答】解:由已知得,AP=AP,∠DAP=∠EAP,∠ADP=∠AEP所以符合AAS判定.故选:B.5.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.18【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.6.顺次连接矩形四边中点得到的四边形一定是()A.正方形B.矩形C.菱形D.平行四边形【解答】解:如图,连接AC、BD.在△ABD中,∵AH=HD,AE=EB,∴EH=12BD,同理FG=12BD,HG=12AC,EF=12AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:C.7.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,也是轴对称图形,不符合题意;B、不是中心对称图形,是轴对称图形,不符合题意;C、是中心对称图形,不是轴对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选:C.8.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m【解答】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB=2+82=10米.所以大树的高度是10+6=16米.故选:C.9.下列说法中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.四条边相等的四边形是菱形D.对角线互相垂直平分的四边形是正方形【解答】解:A、只有两组对边平行的四边形是平行四边形,故此选项错误;B、根据有一个角是直角的平行四边形是矩形,故此选项错误;C、四条边相等的四边形是菱形,此选项正确;D、根据对角线互相垂直平分且相等的四边形是正方形,故此选项错误;故选:C.10.如图,在正方形ABCD所在平面内求一点P,使点P与正方形ABCD的任意两个顶点构成△P AB,△PBC,△P AD,△PCD均是等腰三角形,则满足上述条件的所有点P的个数为()A.8个B.9个C.10个D.11个【解答】解:分为三种情况:①正方形对角线的交点P1;②作AD边的垂直平分线MN,以点D为圆心,以DC为半径画弧,交MN于点P2和P3;以点C为圆心,以DC为半径画弧,交MN于点P4和P5,如图:③同理,作AB边的垂直平分线,分别以点A和点B为圆心,AD为半径画弧,与该垂直平分线也有4个交点.综上,符合题意的所有点P的个数为:1+4+4=9(个).故选:B.二.填空题(共8小题,满分32分,每小题4分)11.若一个多边形的内角和比外角和大360°,则这个多边形的边数为6.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=360°,解得n=6.故答案为:6.12.如图,在△ABC中,∠ACB=90°,∠ABC=60°,CD⊥AB,垂足为D,若BD=1,则AD的长为3.【解答】解:∵在三角形ABC中,∠ACB=90°,∠ABC=60°,∴∠A=30°,∵CD⊥AB,∴∠BCD=30°,∴在Rt△BCD中,BC=2BD=2,∴在Rt△ABC中,AB=2BC=4,∴AD=AB﹣BD=4﹣1=3,故答案为:3.13.如图所示,△ABC和△DCB有公共边BC,且AB=DC,作AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF,那么求证AC=BD时,需要证明三角形全等的三角形是Rt△ABE≌Rt△DCF,△AEC≌△DFB..【解答】证明:∵AE⊥BC,DF⊥BC,垂足分别为E、F,∴∠AEB=∠DFC=90°,而AB=DC,AE=DF,∴Rt△ABE≌Rt△DCF,∴BE=CF,∴EC=BF,而AE=DF,∴△AEC≌△DFB.故填空答案为:Rt△ABE≌Rt△DCF,△AEC≌△DFB.14.如图,第1个图形有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形,……,则第2019个图形中有8073个三角形.【解答】解:由图可得,第1个图形有1个三角形,第2个图形中有1+4=5个三角形,第3个图形中有1+4+4=1+4×2=9个三角形,……,则第2019个图形中有:1+4×(2019﹣1)=8073个三角形,故答案为:8073.15.顺次连接四边形ABCD各边的中点得到的四边形一定是平行四边形.【解答】解:连接BD,∵E、F、G、H分别是边AD、DC、BC、AB的中点,∴EH∥BD,FG∥BD,EH=12BD,FG=12BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形,故答案为:平行四边形.16.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH 的长为 4.8cm.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=12AC=4cm,OB=OD=3cm,∴AB=5cm,∴S菱形ABCD=12AC•BD=AB•DH,∴DH=AC⋅BD2AB=4.8cm.17.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为3或6.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC=√82+62=10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故答案为:3或6.18.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为(a+b).(用含a,b的代数式表示)【解答】解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=14a,∴正方形ABCD的面积=4×14a+b=a+b.故答案为(a+b).三.解答题(共8小题,满分78分)19.(8分)如图,在▱ABCD中,AE=CF,求证:四边形DEBF是平行四边形.【解答】证明:在▱ABCD中,则AB∥CD,AB=CD,∵AE=CF,∴AB﹣AE=CD﹣CF,∴BE=DF,∵BE∥DF,∴四边形DEBF是平行四边形.20.(8分)已知:如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,∠ABC=90°,求四边形ABCD的面积.【解答】解:连接AC,在Rt△ABC中,由勾股定理得:AC=√AB2+BC2=√22+22=2√2,∵CD=1,AD=3,AC=2√2,∴AC2+CD2=AD2,∴∠ACD=90°,∴四边形ABCD的面积:S=S△ABC+S△ACD=12AB×BC+12×AC×CD=12×2×2+12×1×2√2=2+√2.21.(8分)有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC=√AE2+EC2=√62+82=10m,故小鸟至少飞行10m.22.(10分)如图,▱ABCD的两条对角线相交于O点,过O点作OE⊥AB,垂足为E,已知∠DBA=∠DBC,AB=5.(1)求证:四边形ABCD为菱形;(2)若sin∠ADB=45,求线段OE的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADB=∠DBC,∵∠DBA=∠DBC,∴∠ADB=∠DBA,∴AD=AB,∴四边形ABCD为菱形;(2)解:∵四边形ABCD为菱形,∴AC⊥BD,AD=AB=5,OB=OD,∵sin∠ADB=OAAD=45,∴OA=4,∴OB=OD=2−OA2=3,∵OE⊥AB,△OAB的面积=12AB×OE=12OA×OB,∴OE=OA×OBAB=4×35=125.23.(10分)如图,在▱ABCD中,点E是BC上的一点,连接DE,在DE上取一点F使得∠AFE=∠ADC.若DE=AD,求证:DF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠ADC,∴∠AFD=∠C,在△AFD 和△DEC 中,{∠ADF =∠DEC∠AFD =∠C AD =DE,∴△AFD ≌△DCE (AAS ),∴DF =CE .24.(10分)如图所示,有一个直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上且与AE 重合,你能求出CD 的长吗?【解答】解:在Rt 三角形中,由勾股定理可知:AB =√BC 2+AC 2=√82+62=10. 由折叠的性质可知:DC =DE ,AC =AE ,∠DEA =∠C .∴BE =4,∠DEB =90°.设DC =x ,则BD =8﹣x .在Rt △BDE 中,由勾股定理得:BE 2+ED 2=BD 2,即42+x 2=(8﹣x )2.解得:x =3.∴CD =3.25.(12分)如图,在矩形ABCD 中,AB =2,AD =4.点E ,F 分别在AD ,BC 上,点A与点C 关于EF 所在的直线对称,P 是边DC 上的一动点.(1)连接AF ,CE ,求证:四边形AFCE 是菱形;(2)当△PEF 的周长最小时,求DP CP 的值.【解答】解:(1)证明:如图,连接AF ,CE ,AC 交EF 于点O∵四边形ABCD 是矩形∴AB =CD ,AD =BC ,AD ∥BC∴∠AEO =∠CFO ,∠EAO =∠FCO∵点A 与点C 关于EF 所在的直线对称∴AO =CO ,AC ⊥EF∵∠AEO =∠CFO ,∠EAO =∠FCO ,AO =CO∴△AEO ≌△CFO (AAS )∴AE =CF ,且AE ∥CF∴四边形AFCE 是平行四边形,又∵AC ⊥EF∴四边形AFCE 是菱形;(2)如图,作点F 关于CD 的对称点H ,连接EH ,交CD 于点P ,此时△PEF 的周长最小∵四边形AFCE 是菱形∴AF =CF =CE =AE∵AF 2=BF 2+AB 2∴AF 2=(4﹣AF )2+4∴AF =52∵AD ∥BC∴△DEP ∽△CHP∴DP CP =DE CH =35. 答:当△PEF 的周长最小时,DP CP 的值为35. 26.(12分)如图,正方形ABCD 的边长为4,点E ,F 分别在边AB ,AD 上,且∠ECF =45°,CF 的延长线交BA 的延长线于点G ,CE 的延长线交DA 的延长线于点H ,连接AC ,EF ,GH .(1)填空:∠AHC=∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.【解答】解:(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°,∠DAC=∠BAC=45°,∴AC=√42+42=4√2,∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,∴△AHC∽△ACG,AH AC =ACAG,∴AC2=AG•AH.(3)①△AGH的面积不变.理由:∵S△AGH=12•AH•AG=12AC2=12×(4√2)2=16.∴△AGH的面积为16.②如图1中,当GC =GH 时,易证△AHG ≌△BGC ,可得AG =BC =4,AH =BG =8,∵BC ∥AH ,∴BC AH =BE AE =12, ∴AE =23AB =83.如图2中,当CH =HG 时,易证AH =BC =4(可以证明△GAH ≌△HDC 得到) ∵BC ∥AH ,∴BE AE =BC AH =1,∴AE =BE =2.如图3中,当CG =CH 时,易证∠ECB =∠DCF =22.5°.在BC 上取一点M ,使得BM =BE , ∴∠BME =∠BEM =45°,∵∠BME =∠MCE +∠MEC ,∴∠MCE =∠MEC =22.5°,∴CM =EM ,设BM =BE =x ,则CM =EM =√2x , ∴x +√2x =4,∴x =4(√2−1),∴AE =4﹣4(√2−1)=8﹣4√2,综上所述,满足条件的m 的值为83或2或8﹣4√2.。
2020-2021学年八年级下学期数学期中试卷(含答案)
2020-2021学年八年级下学期数学期中试卷(本卷满分:120分,考试时间:120分钟)一.选择题(共6小题,每题3分,共18分)1.下列二次根式中,是最简二次根式的是()A.√3B.√0.5C.√8D.√1 32.如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是()A.16B.14C.20D.243.利用勾股定理,可以作出长为无理数的线段.如图,在数轴上找到点A,使OA=5,过点A作直线l垂直于OA,在1上取点B,使AB=2,以原点O为圆心,以OB长为半径作弧,弧与数轴的交点为C,那么点C表示的无理数是()A.√21B.√29C.7D.294.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)所示).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成的记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若EF=4,则S1+S2+S3的值是()A .32B .38C .48D .805.如图所示,矩形ABCD 的面积为10cm 2,它的两条对角线交于点O 1,以AB 、AO 1为邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交于点O 2,同样以AB 、AO 2为邻边作平行四边形ABC 2O 2,…,依此类推,则平行四边形ABC 5O 5的面积为( )A .1cm 2B .2cm 2C .58cm 2D .516cm 26.如图,已知直线l 1∥l 2∥l 3∥l 4,相邻两条平行线间的距离都是1,正方形ABCD 的四个顶点分别在四条直线上,则正方形ABCD 的面积为A . 3B . 5C .3D .5二.填空题(共6小题,每题3分,共18分)7.将二次根式√12化为最简二次根式 .8.若√n −1m=2是二次根式的运算,则m +n = .9.如图,△ABC 的面积为16,点D 是BC 边上一点,且BD =14BC ,点G 是AB 上一点,点H 在△ABC 内部,且四边形BDHG 是平行四边形,则图中阴影部分的面积是 .10.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺,葛生其下,缠木七周,上与木齐问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平.则葛长是尺.(注:1丈等于10尺,葛缠木以最短的路径向上长,误差忽略不计)11.15.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为________.12.如图,在△ABC中,∠C=90°,AC=8,BC=6,P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足分别为M、N,则MN最小值是.第11题图第12题图三.解答题(共11小题,共84分)13.计算:(6分)(1)(13√27−√24−3√23)×√12;(2)2√3×(√12−3√75+13√108).14.(6分)已知x=√5−1,求代数式x2+2x﹣1的值.15.(6分)在平行四边形ABCD中,AB=6,AC=10,AD=8.求证:平行四边形ABCD 是矩形.16.(6分)如图,四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:四边形AECF是平行四边形.17.(6分)图①,图②都是4×6的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,且点A,B均在格点上.(1)在图①中以AB为对角线画出一个矩形,使矩形的另外两个顶点也在格点上,且所画的矩形不是正方形;(2)在图②中以AB为对角线画出一个菱形,使菱形的另外两个顶点也在格点上,且所画的菱形不是正方形;(3)图①中所画的矩形的面积为;图②中所画的菱形的周长为.18.(8分)一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图2.火柴盒的一个侧面ABCD倒下到AEFG的位置,连接CF,AB=a,BC=b,AC=c.(1)请你结合图1用文字和符号语言分别叙述勾股定理.(2)请利用直角梯形BCFG的面积证明勾股定理:a2+b2=c2.19.(8分)如图,平行四边形ABCD的对角线交于点O,以OD,CD为邻边作平行四边形DOEC,OE交BC于点F,连接BE.(1)求证:F为BC中点;(2)若OB⊥AC,OF=2,求平行四边形ABCD的周长.20.(8分)(1)如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:线段DG与CF的数量关系为;直线DG与CF所夹锐角的大小为.(2)如图②,将正方形AEFG绕点A顺时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请说明理由.(3)把图②中的正方形都换成菱形,且∠BAD=∠GAE=60°,如图③,直接写出DG:CF=.21.(9分)我们知道平方运算和开方运算是互逆运算,如:a2±2ab+b2=(a±b)2,那么√a2±2ab+b2=|a±b|,那么如何将双重二次根式√a±2√b(a>0,b>0,a±2√b>0)化简呢?如能找到两个数m,n(m>0,n>0),使得(√m)2+(√n)2=a即m+n=a,且使√m⋅√n=√b即m•n=b,那么√a±2√b=|√m±√n|,双重二次根式得以化简;例如化简:√3+2√2;∵3=1+2且2=1×2,∴3+2√2=(√1)2+(√2)2+2√1×√2∴√3+2√2=1+√2由此对于任意一个二次根式只要可以将其化成√a±2√b的形式,且能找到m,n(m>0,n>0)使得m+n=a,且m•n=b,那么这个双重二次根式一定可以化简为一个二次根式.请同学们通过阅读上述材料,完成下列问题:(1)填空:√5−2√6=;√12+2√35=;(2)化简:①√9+6√2②√16−4√15(3)计算:√3−√5√2+√3.22.(9分)定义:我们把对角线互相垂直的四边形叫做和美四边形,对角线交点称为和美四边形的中心.(1)写出一种你学过的和美四边形;(2)顺次连接和美四边形四边中点所得四边形是.A.矩形B.菱形C.正方形D.无法确定(3)如图1,点O是和美四边形ABCD的中心,E、F、G、H分别是边AB、BC、CD、DA的中点,连接OE、OF、OG、OH,记四边形AEOH、BEOF、CGOF、DHOG的面积为S1、S2、S3、S4,用等式表示S1、S2、S3、S4的数量关系(无需说明理由)(4)如图2,四边形ABCD是和美四边形,若AB=3,BC=2,CD=4,求AD的长.23.(12分)(1)猜想与证明:如图(1),摆放着两个矩形纸片ABCD和矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME 的数量关系,并证明你的结论.(2)拓展与延伸:如图(2),若将”猜想与证明“中的矩形纸片换成正方形纸片ABCD和正方形纸片ECGF,并使点F在边CD上,点M仍为AF的中点,试猜想DM与ME的数量关系,并证明你的结论.2020-2021学年八年级下学期数学期中试卷参考答案与试题解析一.选择题(共6小题)1-6 ACBCDB二.填空题(共6小题)7.2√3.8.7.9.4.10.29.11.12.24 5三.解答题(共11小题)13.解:(1)原式=(√3−2√6−√6)×2√3=(√3−3√6)×2√3=6﹣18√2;(2)原式=2√3×(2√3−15√3+2√3)=2√3×(﹣11√3)=﹣66.14.解:∵x=√5−1,∴x2+2x﹣1=(√5−1)2+2(√5−1)﹣1=5﹣2√5+1+2√5−2﹣1=3.15.证明:∵平行四边形ABCD,∴BC=AD=8,∵AB=6,AC=10,∴AC2=AB2+BC2,∴∠ABC=90°,∴平行四边形ABCD是矩形.16.证明:连接AC,交BD于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形.17.解:(1)如图①所示,矩形ACBD即为所求;(2)如图②所示,菱形AFBE即为所求;(3)矩形ACBD的面积=2×4=8;菱形AFBE的周长=4×√32+12=4√10,故答案为:8,4√10.18.解:(1)直角三角形两直角边的平方和等于斜边的平方.Rt△ABC中,∠B=90°,AB=a,BC=b,AC=c,则有b2+c2=a2.(2)∵S梯形BCFG=S△AFG+S△AFC+S△ACB=12ab+12ab+12c2=ab+12c2,S梯形BCFG=12•(FG+BC)•BG=12(a+b)(a+b)=12a2+ab+12b2,∴ab+12c2=12a2+ab+12b2,整理得:a2+b2=c2.19.解:(1)证明:∵四边形ABCD是平行四边形,∴OB=OD,∵四边形DOEC为平行四边形,∴OD∥EC,OD=EC,∴EC∥OB,EC=OB,∴四边形OBEC为平行四边形,∴BF=CF,即F为BC中点;(2)∵四边形ABCD是平行四边形,OB⊥AC,∴四边形ABCD是菱形,∵四边形OBEC为平行四边形,OB⊥AC,∴四边形OBEC为矩形,∴BC=OE=2OF,∵OF=2,∴BC=4,∴平行四边形ABCD的周长=4BC=16.20.解:(1)①延长EF交DC于H,∵四边形ABCD和四边形AEFG是正方形,∴AB∥CD,EF⊥AB,∴EH⊥CD,∴四边形DGFH是矩形,∴HF=DG,DH=FG,∵AD=CD,DH=AG,∴CH=DG,∴CH=FH,∴CF=√2DG;②连接AF,则A,F,C三点共线,∴直线DG与CF所夹锐角的大小为45°,故答案为:CF=√2DG;45°;(2)仍然成立,证明如下:过D作DH⊥DG,且DH=DG,连接GH,HC,并延长交DG、CF交于点K,∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∵DH⊥DG,∴∠GDH=90°,∴∠GDH=∠ADC,∴∠ADG=∠CDH,∴△ADG≌△CDH(SAS),∴AG=CH,∠AGD=∠CHD,∵四边形AEFG是正方形,∴AG=GF,∠AGF=90°,∵∠GDH=90°,DH=DG,∴∠DGH=∠DHG=45°,∴∠CHG=∠CDH﹣∠DHG=∠CDH﹣45°,∠HGF=360°﹣∠AGF﹣∠AGD﹣∠DGH=360°﹣90°﹣∠AGD﹣45°=225°﹣∠AGD,∴∠CHG+∠HGF=180°,∴CH∥FG,∴四边形CHGF是平行四边形,∴CF=HG,CF∥HG,在Rt△DGH中,HG2=DH2+DG2=2DG2,∴HG=√2DG,即CF=√2DG∵CF∥HG,∴∠CKG=∠DGH=45°,即直线DG与CF所夹锐角的度数为45°;(3)把△ADG绕着点D逆时针旋转120°得到△DCH,∴AG=CH,∠AGD=∠CHD,∵四边形AEFG是菱形,∴AG=FG,∴CH=GF,∠AGF=120°,∴CH =FG ,∵∠GDH =120°,DG =DH ,∴∠DGH =∠DHG =30°,∴∠CHG =∠CDH ﹣∠DHG =∠CDH ﹣30°,∠HGF =360°﹣∠AGF ﹣∠AGD ﹣∠DGH =360°﹣120°﹣∠AGD ﹣30°=210°﹣∠AGD ,∴∠CHG +∠HGF =180°,∴CH ∥FG ,∴四边形CHGF 是平行四边形,∴CF =HG ,CF ∥HG ,∴DG GH =√33. 故答案为:√33.21.解:(1)填空:√5−2√6=√3−√2;√12+2√35=√7+√5;(2)①√9+6√2=√9+2√18=√6+√3;②√16−4√15=√16−2√60=√10−√6;(3)√3−√5√2+√3=√6−252+√4+2√32=√5√2√3√2=√10−√22+√6+√22=√10+√62.故答案为√3−√2;√7+√5.22.解:(1)正方形是学过的和美四边形,故答案为:正方形;(2)顺次连接和美四边形四边中点所得四边形是矩形,故选:A.(3)由和美四边形的定义可知,AC⊥BD,则∠AOB=∠BOC=∠COD=∠DOA=90°,又E、F、G、H分别是边AB、BC、CD、DA的中点,∴△AOE的面积=△BOE的面积,△BOF的面积=△COF的面积,△COG的面积=△DOG的面积,△DOH的面积=△AOH的面积,∴S1+S3=△AOE的面积+△COF的面积+△COG的面积+△AOH的面积=S2+S4;(4)如图2,连接AC、BD交于点O,则AC⊥BD,∵在Rt △AOB 中,AO 2=AB 2﹣BO 2,Rt △DOC 中,DO 2=DC 2﹣CO 2,AB =3,BC =2,CD =4,∴可得AD 2=AO 2+DO 2=AB 2﹣BO 2+DC 2﹣CO 2=AB 2+DC 2﹣BC 2=32+42﹣22=21, 即可得AD =√21.23.解:(1)猜想:DM =ME ;证明:如图1,延长EM 交AD 于点H ,∵四边形ABCD 和CEFG 是矩形,∴AD ∥EF ,∴∠EFM =∠HAM ,又∵∠FME =∠AMH ,FM =AM ,在△FME 和△AMH 中,{∠EFM =∠HAMFM =AM ∠FME =∠AMH,∴△FME ≌△AMH (ASA ),∴HM =EM ,在RT △HDE 中,HM =EM ,∴DM =HM =ME ,∴DM =ME .(2)猜想:DM =ME ;如图2,连接AC,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.。
江苏省淮安市八年级下学期数学期中考试试卷
江苏省淮安市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020八下·沙坪坝月考) 在代数式中, xy2 ,,,2﹣分式共有()A . 2个B . 3个C . 4个D . 5个2. (2分)(2019·广西模拟) 分式的值为零,则x的值为()A . 3B . -3C . ±3D . 任意实数3. (2分) (2019七下·鹿邑期末) 在平面直角坐标系中,点所在的位置是()A . 第二象限B . 第三象限C . x轴负半轴D . y轴负半轴4. (2分) (2019八下·邵东期末) 已知点A(-5,y1)、B(-2,y2)都在直线y=- x上,则y1与y2的关系是()A .B .C .D .5. (2分)(2020·武汉模拟) 小明乘车从甲地到乙地,行车的速度v(km/h)和行车时间t(h)之间的函数图象是()A .B .C .D .6. (2分) (2019八上·东平期中) 已知方程有增根,则这个增根一定是()A . 2B . 3C . 4D . 57. (2分) (2020八下·海港期中) 一辆汽车以50 km/h的速度行驶,行驶的路程s km与行驶的时间t h之间的关系式为s=50 t,其中变量是()A . 速度与路程B . 速度与时间C . 路程与时间D . 三者均为变量8. (2分) (2017七下·常州期中) 一种病毒的长度约为0.00000432毫米,数据0.000000432用科学记数法表示为()A . 432×10﹣8B . 4.32×10﹣7C . 4.32×10﹣6D . 0.432×10﹣59. (2分) (2016八下·万州期末) 如图,点O是平行四边形ABCD的对角线的交点,则图中全等三角形共有()A . 4对B . 3对C . 2对D . 1对10. (2分)如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=−和y=的图象交于A 点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A . 3B . 4C . 5D . 6二、填空题 (共6题;共6分)11. (1分)化简:×=________12. (1分) (2019七上·北京期中) 若与互为倒数,与互为相反数,则的值为________.(填“>”“<”13. (1分) (2018八上·重庆期中) 已知点(﹣2,a),(1,b)在直线y=2x+3上,则a________b.或“=”号)14. (1分) (2020八下·高邮期末) 如图,□ABCD中,对角线BD的垂直平分线交CD于点E,连接BE.若□ABCD 的周长为20cm,则△BCE的周长为________cm.15. (1分) (2019九上·贵阳期末) 如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC、BC,若△A BC的面积为3,则k的值是________.16. (1分)如图,将△ABC绕点A顺时针旋转60°得到△AED ,若线段AB=3,则BE=________.三、解答题 (共9题;共67分)17. (10分)(2012·成都)(1)计算:(2)解不等式组:.18. (5分)(2018·吉林模拟) 先化简,再求值:,其中x= .19. (5分) (2019七上·徐汇期中) 解方程:.20. (5分)(2014·梧州) 某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.21. (5分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F,求证:OE=OF.22. (2分)已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将x吨保鲜品一次性由A地运往B地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:货运收费项目及收费标准表运输工具运输费单价元/(吨•千米)冷藏费单价元/(吨•时)固定费用元/次汽车25200火车 1.652280(1)汽车的速度为________千米/时,火车的速度为________千米/时:(2)设每天用汽车和火车运输的总费用分别为y汽(元)和y火(元),分别求y汽、y火与 x的函数关系式(不必写出x的取值范围),及x为何值时y汽>y火(总费用=运输费+冷藏费+固定费用)(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?23. (10分) (2017八下·滦县期末) 如图,A、B分别是x轴上位于原点左右两侧的两点,点P(a,4)在第一象限内,一过原点的直线y=2x与直线BD、直线AC同时过点P,直线BD交y轴于点D,且线段AO=2.(1)求△AOP的面积;(2)若S△BOP=3S△AOP ,求直线BD的解析式.24. (10分)(2020·奉化模拟) 如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°)。
江苏省淮安市淮安区八年级(下)期中数学试卷
八年级(下)期中数学试卷题号一二三总分得分一、选择题(本大题共8小题,共16.0分)1.下列调查的样本具有代表性的是( )A. 了解全校同学喜欢课程情况,对某班男生进行调查B. 了解某小区居民的防火意识,从每幢居民随机抽若干人进行调查C. 了解商场的平均日营业额,选在周末进行调查D. 了解杭州城区空气质量,在江干区设点调查2.下列图形中,既是轴对称图形又是中心对称图形的是( )A. 等边三角形B. 平行四边形C. 正五边形D. 正六边形3.如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是( )A. 45°B. 55°C. 65°D. 75°4.某企业对其生产的产品进行抽检,抽检结果如下表:抽检件数1040100200300500不合格件数0123610若该企业生产该产品10000件,估计不合格产品的件数为( )A. 80件B. 100件C. 150件D. 200件5.在四边形ABCD中,若两条对角线AC=BD且AC⊥BD,则这个四边形( )A. 一定是正方形B. 一定是菱形C. 一定是平行四边形D. 可能不是平行四边形6.如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是( )A. 0B. 1C. 2D. 37.一家鞋店在一段时间内销售了某种女鞋30双,其中各种尺码的鞋的销售量,如下表所示.根据该表,有下列说法:①频数最大的尺码是23.5;②频数最大的尺码是11;③24.5的频率是1%;④1的频率是25%;⑤总次数是:22+22.5+23+23.5+24+24.5+25=164.5,其中说法正确的个数是( )尺码(cm)2222.52323.52424.525销量(双)12511731A. 1B. 2C. 3D. 48.已知正方形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,“爱琢磨”学习小组的小明说“若EG⊥FH,则EG=FH”,小红说“若EG=FH,则EG⊥FH”.则他们的说法( )A. 小明正确B. 小红正确C. 都正确D. 都不正确二、填空题(本大题共10小题,共30.0分)9.线段是中心对称图形,对称中心是它的______点.10.如图,▱ABCD中,点E在CD的延长线上,AE∥BD,AB=4,则ED的长是______.11.如图,矩形ABCD的顶点A,B在数轴上,CD=6,点A对应的数为-1,则点B所对应的数为______.12.某校为了解八年级学生体育测试情况,以八年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,结合图中所给信息可知:样本D等级的学生共有______人.13.已知在菱形ABCD中,AC、BD是菱形的对角线,AC=10,BD=12,则菱形ABCD的周长是______.14.四边形ABCD中,AD∥BC,∠D=90°,如果再添加一个条件,可以得到四边形ABCD是矩形,那么可以添加的条件是______.(不再添加线或字母,写出一种情况即可)15.如图,AB=CD,AD=BC,∠1=54°,∠2=24°,则∠B=______度.16.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=1,∠ABE=45°,则BC的长等于______.17.下列命题:(1)矩形的对角线互相平分且相等;(2)对角线相等的四边形是矩形;(3)菱形的每一条对角线平分一组对角;(4)一条对角线平分一组对角的平行四边形是菱形.其中正确的命题为______(注:把你认为正确的命题序号都填上)18.我们可以看到图1中三角形的三条中位线把这个三角形分成了4个小的三角形,而且这些小的三角形都是全等的,把三条边都分成三等分,再按图2将分点连起来,可以看到整个三角形被分成了9个小的三角形,而且这些小的三角形也都是全等的.我们还可以把三条边都分成四等分,如图3,可以看到整个三角形被分成了一个个更小的全等三角形.如果把三条边都n 等分,那么可以得到______个这种小的全等三角形.三、解答题(本大题共9小题,共74.0分)19.小花最近买了三本课外书,分别是《汉语字典》用A 表示,《流行杂志》用B 表示和《故事大王》用C 表示.班里的同学都很喜欢借阅,在五天内小花做了借书记录如下表:借阅频数书名代号星期一星期二星期三星期四星期五A 32234______ B 43323______ C12323______ (1)在表中填写五天内每本书的借阅频数.(2)计算五天内《汉语字典》的借阅频率.20.如图,DB ∥AC ,且DB =AC ,E 是AC 的中点.(1)求证:BC =DE ;(2)若四边形ADBE 是菱形,求∠ABC 的度数.21.(1)如图1,在正方形网格中,每个小正方形的边长均为1个单位.将△ABC向绕点C逆时针旋转90°,得到△A'B'C',请你画出△A'B'C'(不要求写画法).(2)如图2,已知点O和△ABC,试画出与△ABC关于点O成中心对称的图形.22.某学校对学生的课外阅读时间进行抽样调查,将收集的数据分成A、B、C、D、E五组进行整理,并绘制成如下的统计图表(图中信息不完整).阅读时间分组统计表组别阅读时间x(时)人数A0≤x<10aB10≤x<20100C20≤x<30bD30≤x<40140E x≥40c请结合以上信息解答下列问题(1)求a、b、c的值;(2)补全“阅读人数分组统计图”;(3)估计全校课外阅读时间在20小时以下(不含20小时)的学生所占比例.23.如图,已知四边形ABCD是平行四边形,△AOB是等边三角形.(1)求证:四边形ABCD是矩形.(2)若AB=5cm,求四边形ABCD的面积.24.如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED.求证:四边形ABCD是正方形.25.某班“红领巾义卖”活动中设立了一个可以自由转动的转盘.规定:顾客购物20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:转动转盘的次数n1002003004005001000落在“书画作品”区域的次数m60122180298a604落在“书画作品”区域的频率0.60.610.6b0.590.604(1)完成上述表格:a=______;b=______;(2)请估计当n很大时,频率将会接近______,假如你去转动该转盘一次,你获得“书画作品”的概率约是______;(结果全部精确到0.1)(3)如果要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加是多少度?26.如图,△ABC≌△DBC,AD平分∠BAC,AD交BC于点O.(1)如图1,求证:四边形ABDC是菱形;(2)如图2,点E为BD边的中点,连接AE交BC于点F,若∠AFO=∠ADC,在不添加任何辅助线和字母的条件下,请直接写出图2中所有长度是线段EF长度的偶数倍的线段.27.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.答案和解析1.【答案】B【解析】解:A、C、D中进行抽查,不具有普遍性,对抽取的对象划定了范围,因而不具有代表性.B、了解某小区居民的防火意识,从每幢居民随机抽若干人进行调查具有代表性.故选:B.抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.考查了抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.2.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确;故选:D.根据轴对称图形与中心对称图形的概念求解.此题考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】A【解析】解:∵四边形ABCD是平行四边形,∴∠A=∠BCD=135°,∴∠MCD=180°-∠DCB=180°-135°=45°.故选:A.根据平行四边形对角相等,求出∠BCD,再根据邻补角的定义求出∠MCD即可.本题考查平行四边形的性质、邻补角定义等知识,解题的关键是熟练掌握平行四边形性质,属于基础题,中考常考题型.4.【答案】D【解析】解:抽查总体数:10+40+100+200+300+500=1150,次品件数:0+1+2+3+6+10=22,P(抽到不合格产品)=≈0.02.则10000×0.02=200(件).∴估计不合格产品的件数为200件,故选:D.先利用频率估计概率的思想,求出从这批产品中任抽1件是不合格产品的概率,即可求解.本题考查了利用频率估计概率及概率的计算,是统计在实际生活中应用,问题的生活化可激发学生的兴趣和求知欲望,同样这样的问题也影响学生的思维方式,学会用数学的视野关注身边的数学.5.【答案】D【解析】解:A、对角线相等,且互相垂直平分的是正方形,故A不正确.B、对角线互相垂直且平分的四边形是菱形,故B不正确.C、对角线互相平分的四边形是平行四边形,故C不正确.D、对角线互相平分的四边形是平行四边形,对角线相等且垂直的四边形可能不是平行四边,故D正确.故选:D.根据正方形、菱形、平行四边形的定义、性质及判定定理来判定.对角线互相垂直且相等的平行四边形是正方形,对角线互相垂直的平行四边形是菱形,平行四边形的对角线互相平分.考查了平行四边形、菱形、正方形定义、性质,根据对角线之间的关系进行判定.6.【答案】D【解析】解:△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC=CD,∴∠ACD=180°-∠ACB-∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC,故①正确;由①可得AD=BC,∵AB=CD,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确.综上可得①②③正确,共3个.故选:D.先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;根据①的结论,可判断④正确.本题考查了平移的性质、等边三角形的性质、平行四边形的判定与性质及菱形的判定,解答本题的关键是先判断出△ACD是等边三角形,难度一般.7.【答案】A【解析】解:频数最大的尺码是23.5,最大的频数是11,故①正确、②错误;③24.5的频数是3,频率是=10%,故错误;④1的频率是25%,叙述错误;⑤总次数是1+2+5+11+7=3+1=30,故错误.正确的只有①.故选:A.根据频数的定义,频率的计算公式即可解决.读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想解决由统计图形式给出的数学实际问题.8.【答案】A【解析】证明:如图,作EM⊥CD于M,HN⊥BC于N,∵四边形ABCD是正方形,∴∠B=∠C=90°,BC=AB,∵EM⊥CD∴四边形BCME是矩形,∴EM=BC,同理HN=AB,∴EM=HN,由题意可知FH⊥EG,EM⊥HN,∴∠FHN+∠HOG=∠MEG+∠EON=90°,∵∠EON=∠HOG,∴∠FHN=∠MEG,∴△HFN≌△EGM,∴EG=HF;小明的说法是正确的;如图,在BC上找两个点F和F',使BF'=CF取AD的中点H,连接FH和F'H,易证HF=HF',作EG⊥HF',其中点E在AB上,点G在CD上,由上题可知EG=F'H=FH,但HF和EG不互相垂直,小红的说法是错误的.故选:A.如图,作EM⊥CD于M,HN⊥BC于N,可通过证明△HFN≌△EGM,可证得小明的说法;通过作辅助线,找到与EG相等但不垂直的HF,即可证得小红的说法.本题考查了正方形的性质,注意在正方形中的特殊三角形的应用,可有助于提高解题速度和准确率.9.【答案】中【解析】解:线段是中心对称图形,对称中心是它的中点.故答案为:中.直接利用中心对称图形的性质结合线段的性质得出答案.此题主要考查了中心对称图形,正确把握线段的性质是解题关键.10.【答案】4【解析】解:如图,在▱ABCD中,AB∥CD,且AB=CD.∵点E在CD的延长线上,∴AB∥ED.又∵AE∥BD,∴四边形ABDE是平行四边形,∴ED=AB=4,故答案是:4.可根据“两组对边分别平行的四边形是平行四边形”证四边形ABDE是平行四边形,则AB=ED=4.本题考查了平行四边形的判定与性质.平行四边形对应边相等,对应角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.11.【答案】5【解析】解:∵四边形ABCD是矩形,∴AB=CD=6;故B点对应的数为(-1)+6=5.由于矩形的对边相等,若CD=6,则AB的长也是6,已知了A点所对应的数,即可求出B点所对应的数.此题较简单,主要考查的是矩形的性质.12.【答案】5【解析】解:八年级(1)班学生数:10÷20%=50(人),样本D等级的学生:50×(1-46%+20%+24%)=5(人),故答案为5.八年级(1)班学生数:10÷20%=50(人),样本D等级的学生:50×(1-46%+20%+24%)=5(人).本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.13.【答案】4【解析】解::∵菱形ABCD中,BD=12,AC=10∴OB=6,OA=5,在Rt△ABO中,AB==,∴菱形ABCD的周长=4AB=4,故答案为4.由勾股定理即可求得AB的长,继而求得菱形ABCD的周长.此题考查了菱形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的性质,属于中考常考题型.14.【答案】AD=BC【解析】解:添加AD=BC,∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵∠D=90°,∴四边形ABCD是矩形,故答案为:AD=BC.添加AD=BC,再有条件AD∥BC可得四边形ABCD是平行四边形,再加上条件∠D=90°可根据有一个角是直角的平行四边形是矩形判定四边形ABCD是矩形.此题主要考查了矩形的判定,关键是掌握有一个角是直角的平行四边形是矩形.15.【答案】102【解析】解:在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴∠ACB=∠2=24°,∴∠B=180°-∠1-∠ACB=180°-54°-24°=102°,故答案为102.只要证明△ABC≌△CDA(SSS),推出∠ACB=∠2=24°,再利用三角形内角和定理即可解决问题;本题考查全等三角形的判定和性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】【解析】解:∵四边形ABCD是矩形,∴AD∥BC.∴∠DEC=∠BCE.∵EC平分∠DEB,∴∠DEC=∠BEC.∴∠BEC=∠ECB.∴BE=BC.∵四边形ABCD是矩形,∴∠A=90°.∵∠ABE=45°,∴∠ABE=∠AEB=45°.∴AB=AE=1.∵由勾股定理得:BE=,∴BC=BE=.故答案为:由矩形的性质和角平分线的定义得出∠DEC=∠ECB=∠BEC,推出BE=BC,求得AE=AB=1,然后依据勾股定理可求得BE的长.本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用;熟练掌握矩形的性质,证出BE=BC是解题的关键.17.【答案】(1)(3)(4)【解析】解:矩形的对角线互相平分且相等,(1)是真命题;对角线相等的平行四边形是矩形,(2)是假命题;菱形的每一条对角线平分一组对角,③是真命题;一条对角线平分一组对角的平行四边形是菱形,④是真命题;故答案为:(1)(3)(4).根据矩形的性质定理和判定定理、菱形的性质定理判定定理判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.18.【答案】n2【解析】解:图1把三条边都2等分,得到4=22个小的三角形,图2把三条边都3等分,得到9=32个小的三角形,图3把三条边都4等分,得到16=42个小的三角形,……则把三条边都n等分,得到n2个小的三角形,故答案为:n2.根据图、图2、图3的结果总结规律,根据规律解答.本题考查的是三角形中位线定理、全等三角形的性质,正确得到三角形中位线把三条边都几等分,得到几的平方个小的三角形是解题的关键.19.【答案】14 15 11【解析】解:(1)填表如下:书名代号星期一星期二星期三星期四星期五借阅频数A3223414B4332315C1232311(2)总数是14+15+11=40,则五天内《汉语字典》的借阅频率是:=.(1)从星期一到星期五的借阅次数的和就是频数;(2)求得借阅三种书的频数的总和,然后利用频率公式即可求解.本题是对频率、频数灵活运用的综合考查.注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.频率=.20.【答案】证明:(1)∵DB=AC,E是AC的中点∴DE=CE,且DB∥AC∴四边形DBCE是平行四边形∴BC=DE(2)∵四边形ADBE是菱形∴AB⊥DE∵DE∥BC∴AB⊥BC∴∠ABC=90°【解析】(1)由题意可得四边形DBCE是平行四边形,则结论可得(2)由四边形ADBE是菱形可得BA⊥DE,且DE∥BC可得AB⊥BC可求∠ABC的度数本题考查了平行四边形的判定,菱形的性质,关键是灵活运用这些性质解决问题.21.【答案】解:(1)(2)如图所示:【解析】此题主要考查了坐标与图形的性质以及中心对称图形的性质,根据已知得出对应点的位置是解题关键.(1)根据旋转的性质得出旋转后A,B两点对应坐标,即可得出答案;(2)根据中心对称图形的性质,连接AO,BO,CO,并延长,使OA″=OA,C″O=CO ,B″O=BO,再连接A″B″,B″C″,A″C″即可.22.【答案】解:(1)总人数是:140÷28%=500,则c=500×8%=40,A、B两类的人数的和是:500×(1-40%-28%-8%)=120,则a=120-100=20,b=500-120-140-40=200;(2)补全“阅读人数分组统计图”如下:(3)120÷500×100%=24%.【解析】(1)根据D类的人数是140,所占的比例是28%,即可求得总人数,然后根据百分比的意义求得c的值,同理求得A、B两类的总人数,则a的值即可求得,进而求得b的值;(2)根据(1)的结果即可作出;(3)根据百分比的定义即可求解.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【答案】解:(1)平行四边形ABCD是矩形.理由如下:∵四边形ABCD是平行四边形(已知),∴AO=CO,BO=DO(平行四边形的对角线互相平分),∵△AOB是等边三角形(已知),∴OA=OB=OC=OD(等量代换),∴AC=BD(等量代换),∴平行四边形ABCD是矩形(对角线相等的平行四边形是矩形);(2)因为AB=5,在Rt△ABC中,由题意可知,AC=10,则BC==5,所以平行四边形ABCD的面积S=5×5=25(cm2).【解析】(1)根据矩形的判定可知,平行四边形ABCD,再加上对角线相等可证明是矩形.(2)矩形面积的计算,底边长乘以高代入数值即可.本题考查平行四边形的性质及矩形的判定,难度一般,对于此类题目一定要重点掌握矩形的判定定理,及矩形的基本性质.24.【答案】证明:连结AC交BD于O点,如图,∵四边形ABCD是矩形,∴OA=OC,∵∠AED=∠CED,∴∠AEO=∠CEO,∴△AEC为等腰三角形,∴OE⊥AC,即AC⊥BD,∴AC和BD互相垂直平分,∴四边形ABCD为菱形,而∠ABC=90°,∴四边形ABCD是正方形.【解析】连结AC交BD于O点,如图,根据矩形的性质得OA=OC,再利用等角的补角相等,由∠AED=∠CED得到∠AEO=∠CEO,则可判断△AEC为等腰三角形,所以OE⊥AC,然后根据对角线互相垂直的矩形为正方形得到结论.本题考查了正方形的判定:先判定四边形是矩形,再判定这个矩形有一组邻边相等;先判定四边形是菱形,再判定这个菱形有一个角为直角.25.【答案】295 0.745 0.6 0.6【解析】解:(1)由题意可得,a=500×0.59=295,b=298÷400=0.745,故答案为:295,0.745;(2)由表格中的数据可得,当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“书画作品”的概率约是0.6,故答案为:0.6,0.6;(3)由题意可得,要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加:360°×0.5-360°×0.4=36°,即要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加36度.(1)根据表格中的数据可以求得a和b的值;(2)根据表格中的数据可以估计频率是多少以及转动该转盘一次,获得“书画作品”的概率;(3)根据扇形统计图和表格中的数据可以估计表示“手工作品”区域的扇形的圆心角至少还要增加的度数.本题考查利用频率估计概率、扇形统计图、可能性大小,解答本题的关键是明确题意,利用数形结合的思想解答本题.26.【答案】(1)证明:∵△ABC≌△DBC,∴AB=BD,AC=CD,∴∠BAD=∠BDA,∠CAD=∠CDA,∵AD平分∠BAC,∴∠DAB=∠DAC,∠ADC=∠ADC,在△ADB和△ADC中,,∴△ADB≌△ADC,∴AB=AC,∴AB=BD=CD=AC,∴四边形ABCD是菱形.(2)解:∵∠AFO=∠ADC=∠ADB,又∵∠AFO+∠EFO=180°,∴∠EFO+∠EDO=180°,∴∠FED+∠FOD=90°,∵四边形ABCD是菱形,∴AD⊥BC,∴∠FEO=∠FOD=90°,∵BE=ED,∴AB=AD,∴AB=AD=BD,∴△ABD是等边三角形,∴∠EBF=∠ABD=30°,在Rt△BEF中,BF=2EF,∵∠FBA=∠FAB=30°,∴FA=FB,在Rt△AFC中,CF=2AF=4EF,综上所述,长度是线段EF长度的偶数倍的线段有BF,AF,CF.【解析】(1)由△ABC≌△DBC,推出AB=BD,AC=CD,只要证明△ADB≌△ADC,推出AB=AC可得AB=BD=CD=AC即可证明.(2)首先证明△ABD是等边三角形,即可判断.本题考查了菱形的判定和性质、等边三角形的判定和性质,直角三角形30度角性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于基础题中考常考题型.27.【答案】(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD,∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中.AC=AB=2,∵EC=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=.(3)①当DE与AD的夹角为30°时,∠EFC=120°,②当DE与DC的夹角为30°时,∠EFC=30°综上所述,∠EFC=120°或30°.【解析】(1)作EP⊥CD于P,EQ⊥BC于Q,证明Rt△EQF≌Rt△EPD,得到EF=ED,根据正方形的判定定理证明即可;(2)通过计算发现E是AC中点,点F与C重合,△CDG是等腰直角三角形,由此即可解决问题.(3)分两种情形考虑问题即可;本题考查正方形的性质、矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.。
2020-2021江苏省八年级(下)期中数学试卷
2020-2021江苏省八年级(下)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置上)1.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列调查中,宜采用抽样调查的是()A.疫情期间,了解全体师生入校时的体温情况B.检测某城市的空气质量C.对运载火箭的零部件进行检查D.某企业招聘,对应聘人员进行面试3.为了了解2020年某区九年级学生学业水平考试的数学成绩,从中随机抽取了500名学生的数学成绩,下列说法正确的是()A.2020 年某区九年级学生是总体B.500名九年级学生是总体的一个样本C.每一名九年级学生的数学成绩是个体D.样本容量是500名学生4.如图,将△ABC绕着点B逆时针旋转45°后得到△A′BC',若∠A=120°,∠C=35°,则∠A′BC的度数为()A.20°B.25°C.30°D.35°5.如图,在平行四边形ABCD中,∠ODA=90°,AC=10,BD=6,则AD的长为()A.4B.5C.6D.86.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO 7.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.5cm B.4.8cm C.4.6cm D.4cm8.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD 上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④CF2=.其中正确的序号是()A.①②B.②③④C.①③④D.①②④二、填空题(本大题共8小题,每小题3分,本大题共24分,不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)9.对角线相等的四边形是矩形,这是一个事件(从“随机、不可能、必然”中选一个填入).10.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是.11.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在20%和35%,则箱子里蓝色球的个数约有个.12.如图,连接四边形ABCD各边中点,得到四边形EFGH.当四边形ABCD的对角线AC 与BD满足条件时,就能保证四边形EFGH是菱形.13.如图,菱形ABCD的对角线交于点O,AB=5,AC=6,DE⊥BC于点E,则OE=.14.如图,矩形ABCD的对角线交于点O,点E在线段AO上,且DE=DC,若∠EDO=15°,则∠DEC=.15.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F 为DE的中点.若△CEF的周长为18,则OF的长为.16.如图,在矩形ABCD中,已知AB=2,BC=4,点O、P分别是边AB、AD的中点,点H是边CD上的一个动点,连接OH,将四边形OBCH沿OH折叠,得到四边形OFEH,连接PE,则PE长度的最小值是.三、解答题(本大题共10小题,共102分,请在答题卡上指定区域内作答。
江苏省淮安市2020版八年级下学期期中数学试卷(I)卷
江苏省淮安市2020版八年级下学期期中数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·红桥模拟) 如果有意义,那么x的取值范围是()A . x>1B . x≥1C . x≤1D . x<12. (2分) (2020八下·北京期末) 下列说法中正确的是()A . 一组对边平行、一组对边相等的四边形是平行四边形B . 四个角都相等的四边形是矩形C . 菱形是轴对称图形不是中心对称图形D . 对角线垂直相等的四边形是正方形3. (2分) (2019八上·天台月考) 如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③点D在AB的垂直平分线上④如果CD=2,AB=7,则可得S△ABD=14A . 1B . 2C . 3D . 44. (2分)在数学活动课上,老师要求学生在4×4的正方形ABCD网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在各点上,而且三边与AB或AD都不平行,则画出的形状不同的直角三角形有()种.A . 3B . 4C . 5D . 65. (2分) (2018八下·邯郸开学考) 如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点上,若AB=6,BC=9,则BF的长为()。
A . 4B . 32C . 4.5D . 56. (2分)从长度分别为3、5、7、9的4条线段中任取3条作边,能组成三角形的概率为()A .B .C .D .7. (2分)(2017·孝感模拟) 如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE②四边形CDFE不可能是正方形③△DFE是等腰直角三角形④S四边形CDFE= S△ABC ,上述结论中始终正确的有()A . ①②③B . ②③④C . ①③④D . ①②④8. (2分)(2018·苏州模拟) 四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为的小正方形EFGH,已知AM为Rt△ABM较长直角边,AM= EF,则正方形ABCD的面积为()A .B .C .D .9. (2分) (2020八下·哈尔滨月考) 直角三角形两条直角边的和为7,面积为6,则斜边为().A .B . 5C .D . 710. (2分) (2017八下·钦北期末) 如图,菱形ABCD的对角线AC,BC相交于点O,E、F分别是AB、BC边上的中点,连接EF,若EF= ,BD=4,则菱形ABCD的周长为().A . 4B . 4C . 4D . 28二、填空题 (共5题;共5分)11. (1分)若x,y为实数,且y=++.求x+y的值________.12. (1分)在△ABC中,若AC=15,BC=13,AB边上的高CD=12,则△ABC的周长为________.13. (1分)(2020·邓州模拟) 如图,在矩形中,,,点为的中点,点为射线上一点,连接,,若将沿直线折叠后,点恰好落到上的点处,则的值为________.14. (1分)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为________.15. (1分)(2017·邵阳模拟) 如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为________海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).三、解答题 (共7题;共71分)16. (10分) (2015七下·孝南期中) 计算与解方程(1)计算:× ﹣|﹣ |(2)若(x﹣2)2=9,求x.17. (10分) (2019八下·罗湖期末) 如图,平行四边形的边在轴上,将平行四边形沿对角线对折,的对应线段为,且点在同一直线上,与相交于 .(1)求证:≌ ;(2)若直线的函数表达式为,求的面积.18. (10分) (2020八下·来宾期末) 如图,在△ABC中,∠ACB=90°,∠ACD=∠B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴BC=2DE=2×4=8,
故选:B.
【点睛】
本题考查三角形的中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.
5.C
【分析】
将x=5代入分式方程中进行求解即可.
【详解】
把x=5代入关于x的分式方程 =3得: ,
解得:m=﹣1,
故选:C.
【点睛】
本题考查分式方程的解,一般直接将解代入分式方程进行求解.
三、解答题
17.计算:
(1) ;
(2) ;
(3) ;
(4) .
18.解方程:
(1) =0;
(2) =1.
19.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图.
(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△点O成中心对称的△A2B2C2.
A.15B.16C.19D.20
二、填空题
9.若分式 有意义,则 的取值范围是___________.
10.如图,在△ABC中,∠C=20°,将△ABC绕点A顺时针旋转60°得到△ADE,则∠E的度数是_____.
11.在平行四边形ABCD中,AB=5,则CD=_____.
12. 、 的最简公分母是_____.
又∵□ABCD的周长为20cm,
∴AB+AD=10cm
∴△ABE的周长=10cm.
故选D.
点睛:本题考查了平行四边形的性质.平行四边形的对角线互相平分.
请在此填写本题解析!
8.A
【解析】
如图1,作AE⊥BC于E,AF⊥CD于F,
,
∵AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,
∵两个矩形的宽都是3,
6.B
【分析】
由四边形ABCD是正方形,推出∠ABD=45°,由∠ABD=∠E+∠BDE,BD=BE,推出∠BDE=∠E,即可求解.
【详解】
∵四边形ABCD是正方形,
∴∠ABD=45°,
∵∠ABD=∠E+∠BDE,
∵BD=BE,
∴∠BDE=∠E.
∴∠E= ×45°=22.5°,
故选:B.
【点睛】
本题考查了正方形的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握正方形的性质.
故选A
【点睛】
此题考查分式的值为零的条件,难度不大
3.B
【分析】
根据分式的基本性质即可求出答案.
【详解】
,
分式的值扩大4倍,
故选:B.
【点睛】
本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质.
4.B
【分析】
根据三角形的中位线定理进行求解.
【详解】
∵D、E分别是△ABC的边AB、AC的中点,
6.如图,E是正方形ABCD边AB延长线上一点,且BD=BE,则∠E的大小为( )
A.15°B.22.5°C.30°D.45°
7.如图,在周长为20cm的平行四边形ABCD中,AB≠AD,AC和BD相交于点O,OE⊥BD交AD于E,则ΔABE的周长为( )
A.4cmB.6cmC.8cmD.10cm
8.如图,由两个长为 ,宽为 的全等矩形叠合而得到四边形 ,则四边形 面积的最大值是()
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时, DEF为直角三角形?请说明理由.
参考答案
1.B
【解析】
【分析】
根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可
7.D
【解析】
分析:利用平行四边形、等腰三角形的性质,将△ABE的周长转化为平行四边形的边长之间的和差关系.
详解:∵四边形ABCD是平行四边形,
∴AC、BD互相平分,
∴O是BD的中点.
又∵OE⊥BD,
∴OE为线段BD的中垂线,
∴BE=DE.
又∵△ABE的周长=AB+AE+BE,
∴△ABE的周长=AB+AE+DE=AB+AD.
13.已知 ,则 =_____.
14.如图,在□ABCD中,AB=7,AD=11,DE平分∠ADC,则BE=__.
15.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AB边中点,菱形ABCD的周长为24,则OH的长等于___.
16.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为.
江苏省淮安市淮阴区2020-2021学年八年级下学期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列我国著名企业商标图案中,是中心对称图形的是( )
A. B. C. D.
2.若分式 的值为0,则 的取值为()
【详解】
A.不是中心对称图形,故此选项错误
B.是中心对称图形,故此选项正确;
C.不是中心对称图形,故此选项错误
D.不是中心对称图形,故此选项错误;
故选B
【点睛】
此题考查中心对称图形,难度不大
2.A
【解析】
【分析】
根据分式的值为0的条件列式求解即可.
【详解】
根据题意得,x+1=0且x−1≠0,
解得x=−1.
20.如图,在▱ABCD中,BE平分∠ABC,交AD于点E,F是BC上一点,且CF=AE,连接DF.
(1)求证DF∥BE;
(2)若∠ABC=70°,求∠CDF的度数.
21.某校为迎接市中学生田径运动会,计划由八年级(1)班的3个小组制作240面彩旗,后因1个小组另有任务,其余2个小组的每名学生要比原计划多做4面彩旗才能完成任务.如果这3个小组的人数相等,那么每个小组有学生多少名?
∴AE=AF=3,
∵S四边形ABCD=AE⋅BC=AF⋅CD,
A. B.1C. D.
3.将 中的a、b都扩大4倍,则分式的值( )
A.不变B.扩大4倍C.扩大8倍D.扩大16倍
4.如图,D、E分别是△ABC的边AB、AC的中点,若DE=4,则BC的值为( )
A.9B.8C.6D.4
5.已知关于x的分式方程 =3的解是5,则m的值为( )
A.3B.﹣2C.﹣1D.8
22.如图,在Rt ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动.同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.