统计学04第四章抽样与抽样分布

合集下载

田间试验与统计方法第四章理论分布和抽样分布

田间试验与统计方法第四章理论分布和抽样分布
• 如果每次抽5个单株,抽n=400次,则理论上我们能够得 到y=2的次数应为: • 理论次数=400×P(2)=400×0.3364=134.56(次)

•表4.2 调查单位为5株的概率分布表(p=0.35,q=0.65)


受害株数(y)
•图4.1 棉株受危害的概率分布图 •(p=0.35,n=5)

•(•三) 小概率事件实际不可能性原理
•小概率事件----随机事件的概率表示随机事件在试验中出现的 可能性大小。随机事件的概率很小如,小于0.05或0.01或0.001
•小概率原理----统计学上,把小概率事件在一次试验中看成是 实际不可能发生的事件,称为小概率事件实际不可能性原理, 简称小概率原理。
估计的概率称为实验概率或统计概率,以
表示。
•此处P代表概率,P(A)代表事件A的概率,P(A)变化的范围为 0~1,即0≤P(A)≤1。

பைடு நூலகம்
(二) 概率的古典定义
概率的统计定义是在大量的试验中以频率的稳定性为基础上提出来的。
不需要做试验,根据随机事件本身的特性就可以确定事件出 现的概率,称为古典概率。
这就要求有一个能够刻划事件发生可能性大小的数量指标, 这指标应该是事件本身所固有的,且不随人的主观意志而改变 ,人们称之为概率(probability)。
事件A的概率记为P(A)。

•二、概率 (一)概率的统计定义
思考:投掷一枚硬币,出现正面的概
率是多大?(0表示反面,1表示正 面)反复做它,那么所有出现正面 的结果平均值是多少?

结果事前不可预言,呈偶然性、不确定性

例,种子发芽,抛硬币

随机现象或不确定性现象,有如下特点: (1)在一定的条件实现时,有多种可能的结果发生,事前人们不 能预言将出现哪种结果;对一次或少数几次观察或试验而言, 其结果呈现偶然性、不确定性; (2) 但在相同条件下进行大量重复试验时,其试验结果却呈现出 某种固有的特定的规律性——频率的稳定性,通常称之为随机 现象的统计规律性。

统计学1-7章的填空、判断题 4

统计学1-7章的填空、判断题   4

第四章抽样与抽样分布一、单项选择题1.抽样调查的目的在于(a )。

A、了解总体的基本情况B、用样本指标推断总体指标C、对样本进行全面调查D、了解样本的基本情况2.假定10亿人口大国和100万人口小国的居民年龄变异程度相同,现在各自用重复抽.样方法抽取本国的1%人口计算平均年龄,则抽样误差(c)。

A、两者相等B、前者大于后者C、前者小于后者D、不能确定3、抽样调查,随着样本量的增加,调查的误差(a)A、减小B、不变C、扩大D、不确定4、对某单位职工的文化程度进行抽样调查,得知其中80%的人是高中毕业,抽样平均误差为2%,当概率为95.45%(Z=2)时,该单位职工中具有高中文化程度的比重是( c )A、等于78%B、大于84%C、在76%与84%之间D、小于76%5、某银行想知道平均每户活期存款余额和估计其总量,根据存折账号的顺序,每50本存折抽出一本登记其余额。

这样的抽样组织形式是( c )A、类型抽样B、整群抽样C、机械抽样D、纯随机抽样6、农户家计调查中,按地理区域划分所进行的区域抽样,其抽样组织方式属于(d)A、简单随机抽样B、类型抽样C、等距抽样D、整群抽样7、抽样平均误差是指样本平均数或样本成数的( c )A、平均数B、平均差C、标准差D、标准差系数8、在不重复抽样中,抽样单位数从5%增加到25%,抽样平均误差( c )。

A、增加39.7%B、增加约3/5C、减少约3/5D、没有什么变化9、(甲)某高校新生1000人,从理科中随机抽取60人,文科中随机抽取40人,进行英语水平测试;(乙)从麦地总垅长中每3000市尺测竿落点处前后5尺长垅的产量进行实割实测;(丙)为研究城市青年业余时间活动情况,某城市每第10个居委会被抽取,并询问住在那里所有从16岁到30岁的青年人。

上述哪项属于类型抽样?( a )A、甲B、乙C、乙、丙D、甲、乙、丙10、抽样调查所遵循的基本原则是( b )A、准确性原则B、随机性原则C、可靠性原则】D、灵活性原则11、在其它条件不变的情况下,如果允许误差范围缩小为原来的1/2,则样本容量(a )A、扩大为原来的4倍B、扩大为原来的2倍C、缩小为原来的1/2倍D、缩小为原来的1/4倍12、对一批产品按不重复抽样方法抽取200件进行调查,其中废品8件,已知样本容量是产品总量的1/20,当F(Z)=95.45%时,不合格率的抽样极限误差是( d )A、1.35%B、1.39%C、2.70%D、2.78%13、抽样平均误差,确切地说是所有样本指标(样本平均数和样本成数)的( b)。

抽样与抽样分布

抽样与抽样分布

抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。

抽样的目的是通过样本来推断总体的特征和性质。

在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。

一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。

这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。

常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。

2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。

这样可能导致样本的代表性不足,从而产生较大的估计误差。

有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。

二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。

统计量可以是样本均值、样本方差等。

抽样分布的性质对于进行统计推断和假设检验非常重要。

2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。

中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。

3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。

这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。

4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。

通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。

为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。

三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。

以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。

通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。

2. 假设检验假设检验是统计学中常用的推断方法之一。

通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。

统计学抽样分布

统计学抽样分布

常见的样本统计量
X
X
i 1
n
i
Xf f
P n1 n
n
n

S2
X
i 1
i X
n 1
X X f
2
f 1
S S2
假如抽取30名,得到样本平均数、标准差和成数是
x 1554420 x
n 30 s ( x x) 2 n 1 p 19 / 30 0.63
p
(1 ) N n
n ( N 1
)
与样本均值分布的方差一样,对于无限总体进行不重复 抽样时,可以按重复抽样来处理。
附注:正态分布理论与中心极限定理
1、正态分布的密度函数
f ( x)
1
式中 x 为正态分布的平均数, 是它的标 准差。这两个参数决定正态分布密度函 ( x, 2 ) 数的形状。也可简记为N
1
2
3
4
1.0 1.5 2.0 2.5 3.0 3.5 4.0
X
= 2.5
σ2 =1.25
X 2.5
2 X 0.625
显然,不同的样本对应着不同的样本统计量,而由于 样本抽取的随机性,样本统计量即为一种随机变量。 一般地,样本统计量的可能取值及其取值概率,形成 其概率分布,统计上称为抽样分布(sampling distribution)。 ▲正是抽样分布及其特征使得用样本统计量估计总 体参数的“精确程度”能够给予概率上的描述。 ▲由于样本统计量的随机性及其抽样分布的存在,同 样可计算其均值、方差、标准差等数字特征来反映该 分布的中心趋势和离散趋势。
结论:
1、样本平均数的期望值
由于不同的样本可得到不同的样本均值,因此, 考察样本均值的期望就显得非常重要。 用 x 表示样本均值的期望值,X 表示总体均值, 可证明在简单随机抽样中。

概率与统计中的随机抽样与抽样分布

概率与统计中的随机抽样与抽样分布

概率与统计中的随机抽样与抽样分布概率与统计学是一门研究数据收集、分析和解释的学科,而随机抽样与抽样分布是其中关键的概念。

本文旨在探讨随机抽样和抽样分布在概率与统计中的作用和应用。

1. 随机抽样在概率与统计学中,随机抽样是一种方法,通过从总体中随机选择样本来推断总体的特征。

随机抽样的目的是保证样本具有代表性,从而使得样本能够准确地反映总体的特征。

在实践中,随机抽样通常通过随机数生成器来实现,确保每个个体都有相同的机会被选入样本。

2. 简单随机抽样简单随机抽样是随机抽样的一种基本方法。

在简单随机抽样中,每个个体被选入样本的概率是相等的,且个体的选择是相互独立的。

简单随机抽样可以有效减少个体的偏倚,使样本更具代表性。

3. 抽样分布抽样分布是指在随机抽样过程中,某一统计量的分布情况。

在概率与统计中,我们常常关注样本均值、样本方差等统计量的分布情况,从而推断总体的特征。

根据中心极限定理,当样本容量足够大时,抽样分布可以近似服从正态分布。

这一性质使得我们能够应用正态分布的性质进行统计推断。

4. 抽样分布的应用抽样分布在概率与统计中有广泛的应用。

通过对随机抽样得到的样本统计量进行分析,我们可以进行总体均值的估计、比较不同样本的差异、构建置信区间、进行假设检验等。

这些应用使得我们能够通过分析样本数据,推断总体的特征,做出科学决策。

总结:概率与统计中的随机抽样与抽样分布是统计学中的重要概念。

随机抽样保证样本具有代表性,而抽样分布则帮助我们推断总体的特征。

掌握随机抽样与抽样分布的原理和应用,对于数据分析和统计推断具有重要意义。

在实践中,我们需要注意样本的随机性和样本容量的大小,以保证抽样的准确性和结果的可靠性。

通过深入研究和应用随机抽样和抽样分布的理论,我们能够更好地理解和分析数据,为决策提供科学的依据。

统计学抽样与抽样分布

统计学抽样与抽样分布
查费用
3. 需要包含所有低阶段抽样单位的抽样框;同时由于
实行了再抽样,使调查单位在更广泛的范围内展开
4. 在大规模的抽样调查中,经常被采用的方法
概率抽样(小结)
非概率抽样
n也叫非随机抽样,是指从研究目的出发,根据调查者的 经验或判断,从总体中有意识地抽取若干单位构成样本。
n重点调查、典型调查、配额抽样(是按照一定标准或一 定条件分配样本单位数量,然后由调查者在规定的数额内 主观地抽取样本)、方便抽样(指调查者按其方便任意选 取样本。如商场柜台售货员拿着厂家的调查表对顾客的调 查)等就属于非随机抽样。
样本分量:其中每一个Xi是一个随机变量,称为样本 分量。
样本观察值:一次抽样中所观察到的样本数据x1、x2、 x3称为样本观察值。 对于某一既定的总体,由于抽样的方式方法不同,样 本容量也可大可小,因而,样本是不确定的、而是可5
一、 几个概念
(二)样本总体与样本指标
样本指标(统计量)。在抽样估计中,用来反 映样本总体数量特征的指标称为样本指标,也 称为样本统计量或估计量,是根据样本资料计 算的、用以估计或推断相应总体指标的综合指 标。
3
总体和参数(续)
通常所要估计的总体指标有
X
NX
一、 几个概念
(二)样本总体与样本指标
样本总体。简称样本(Sample),它是按照随机原则, 从总体中抽取的部分总体单位的集合体 。
样本容量:样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
(二)抽样平均误差(抽样标准误)
抽样平均误差是反映抽样误差一般水平的指标(因为 抽样误差是一个随机变量,它的数值随着可能抽取的 样本不同而或大或小,为了总的衡量样本代表性的高 低,就需要计算抽样误差的一般水平)。通常用样本 估计量的标准差来反映所有可能样本估计值与其中心 值的平均离散程度。

统计学中抽样和抽样分布基础知识

统计学中抽样和抽样分布基础知识
从无限总体的抽样 无限总体的随机样本 如果从一个无限总体中抽取一个容量为n的样本,使得以下条件被满足 抽取的每个个体来自于同一总体 每个个体的抽取是独立的
样本均值的抽样分布
定义:样本均值的所有可能值的概率分布 样本均值的数学期望:对于简单随机样本时,样本均值的数学期望与总体均值相等 样本均值样本中具有感兴趣特征的个体个数/样本容量 样本比率的抽样分布:是样本比率的所有可能值的概率分布
样本比率的数学期望:样本比率的数学期望与总体比率相等 样本比率的标准差
有限总体:有限总体修正系数*无限总体样本比率的标准差 无限总体:根号下p(1-p)/n 样本比率的抽样分布的形态 当样本容量足够大,同时np≥5和n(1-p)大于等于5时,样本比率的抽样分布可以 用正态分布近似
统计学中抽样和抽样分布基础知识
抽样基本属于
抽样总体:抽取样本的总体 抽样框:用于抽选样本的个体清单 参数:总体的数字特征
抽样
从有限总体的抽样 建议采用概率抽样 简单随机样本:从容量为N的有限总体中抽取一个容量为n的样本,如果容量为n 的每一个可能的样本都以相等的概率被抽出,则称该样本为简单随机样本 无放回抽样和有放回抽样 无放回抽样:被抽取对象已经选入样本,不希望该对象被多次选入 有放回抽样:对已经出现过的随机数仍选入样本
点估计
样本统计量:为了估计总体参数,计算样本的特征 抽样总体和目标总体
目标总体是我们想要推断的总体 抽样总体是指实际抽取样本的总体 点估计的性质 无偏性:样本统计量是相应总体参数的无偏估计量 有效性:采用标准误差较小的点估计量,给出的估计值与总体参数更接近 一致性:大样本容量给出的点估计与总体均值更接近
其他抽样方法
分层随机抽样:总体中的个体首先被分成层,总体中的每一个体属于且仅属于某一 层,从每一层抽一个简单随机样本 整群抽样:总体中的个体首先被分成单个组,总体中的每一个个体属于且仅属于某 一群,有群为单位抽取一个简单随机样本 系统抽样:对容量很大的总体,第一个个体为随机抽样,总体个体排列时个体的随 机顺序 方便抽样:非概率抽样 判断抽样:对总体非常了解主观确定总体中认为最具代表性的个体组成样本

(04)第4章+抽样与抽样分布

(04)第4章+抽样与抽样分布

4-6
统计学
STATISTICS
例题分析
♦ 假定我们刚刚已取了飞机制造所用的铆钉的25个 假定我们刚刚已取了飞机制造所用的铆钉的25个
一组的样本。检测铆钉的抗剪强度,破坏每个铆 钉所需的力是响应变量。对这组样本,可以求得 各种描述性的测量(均值、方差等)。 ♦ 然而,我们的感兴趣的是总体,并不是样本自身。 被测试的铆钉在测试时已被破坏,不能再用在飞 机的制造上,所以我们肯定不能测试所有的铆钉。 我们必须从这组样本或几组这样的样本来决定总 体的某些特性。 ♦ 因此,我们必须设法推断信息,也即基于样本的 观测结果作出总体的推断
(例题分析) 例题分析)
计算出各样本的均值,如下表。 计算出各样本的均值,如下表。并给出样本均 值的抽样分布
4 - 32
样本均值的抽样分布
统计学
STATISTICS
(例题分析) 例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 设一个总体,含有4个元素(个体) 数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4 。总 个个体分别为x 体的均值、 体的均值、方差及分布如下 总体分布
4 - 17
统计学
STATISTICS
分层抽样
分层抽样
统计学
STATISTICS
(stratified sampling) sampling)
♦ 分层抽样:在抽样之前先将总体的单位按 分层抽样:
某种特征或某种规则划分为若干层(类), 然后从不同的层中独立、随机地抽取一定 数量的单位组成一个样本,也称分类抽样 数量的单位组成一个样本,也称分类抽样 sampling) (stratified sampling) ♦ 在分层或分类时,应使层内各单位的差异 尽可能小,而使层与层之间的差异尽可能 大

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断统计学是一门研究收集、分析和解释数据的学科,而抽样和抽样分布则是统计学中至关重要的概念。

本文将探讨统计学原理教案中的抽样和抽样分布,以揭示学生如何进行抽样和利用抽样分布进行推断。

首先,我们来理解抽样的概念。

在统计学中,抽样是指从总体中选择一部分个体进行观察和研究。

总体是指我们感兴趣的整体,而样本则是从总体中选取的一部分个体。

通过抽样,我们可以通过研究样本来推断总体的特征,这是由于抽样的随机性能够保证样本与总体的代表性。

接下来,让我们了解抽样的方法。

常见的抽样方法包括简单随机抽样、系统抽样、分层抽样和整群抽样等。

每种抽样方法都有其特点和适用范围。

简单随机抽样是一种随机选择样本的方法,每个个体被选择的概率相同。

系统抽样是按照一定的规律选择样本,例如每隔一定数量选择一个个体。

分层抽样是将总体分成若干层次,然后从每个层次中抽取样本。

整群抽样则是将总体分成若干群体,然后随机选择一些群体并全面调查其中的个体。

选择合适的抽样方法可以更好地保证样本的代表性和可靠性。

抽样之后,我们需要了解抽样分布的概念。

在统计学中,抽样分布是指根据大量抽样的结果所得到的分布。

常见的抽样分布包括正态分布、t分布和F分布等。

其中,正态分布是抽样分布的重要特例,它在许多情况下都可以作为近似的抽样分布来使用。

t分布则用于小样本情况下的推断,它相比于正态分布更为宽阔且更适用于样本数据较少的情况。

F分布常用于分析方差比较和回归模型中的显著性分析。

抽样分布的重要性在于它可以帮助我们进行推断。

根据抽样分布的性质,我们可以利用统计推断方法进行参数估计和假设检验。

参数估计是根据样本的统计量来估计总体的参数值,例如通过样本均值估计总体均值。

假设检验是用来判断总体参数是否在某个范围内或是否相等的统计方法。

通过抽样分布的理论知识,我们可以进行参数估计和假设检验,并对总体进行推断。

在统计学原理教案中,抽样和抽样分布是学生学习的重点内容。

第四章 抽样与抽样分布习题及答案

第四章 抽样与抽样分布习题及答案
答案:对
5.参数是总体的某种特征值,而统计量是一个不含未知参数的样本函数。
答案:对
6.在计算样本容量时,成数方差P(1-P)在完全缺乏资料的情况下,可用成数方差P(1-P)的极大值0.5 0.5来代替。
答案:对
A.前者高说明后者小
B.前者高说明后者大
C.前者变化而后者不变
D.两者没有关系
答案:a
6.在简单随机重复抽样下,欲使抽样平均误差缩小为原来的三分之一,则样本容量应( )。
A.增加8倍
B.增加9倍
C.增加倍
D.增加2.25倍
答案:b
7.当总体单位数较大时,若抽样比为51%,则对于简单随机抽样,不重复抽样的平均误差约为重复抽样的( )。
3.抽样极限误差是( )。
A.调查性误差
B.一定可靠程度下的抽样误差可能范围
C.最小抽样误差
D.等于抽样平均误差
答案:b
4.在其它条件相同的情况下,重复抽样的抽样平均误差和不重复抽样的相比( )。
A.前者一定大于后者
B.前者一定小于后者
C.两者相等
D.前者可能大于、也可能小于后者
答案:a
5.抽样推断的精确度和极限误差的关系是( )。
抽样与抽样分布习题及答案
单选题
1.抽样调查抽选样本时,遵循的原则是( )。
A.随机原则
B.同质性原则
C.系统原则
D.主观性原则
答案:a
2.抽样误差是指( )。
A.在调查过程中由于观察、测量等差错所引起的误差
B.在调查中违反随机原则出现的系统误差
C.随机抽样而产生的代表性误差
D.人为原因所造成的误差
答案:c
A.51%
B.49%

统计学原理chart4

统计学原理chart4

样本 46,34 46,38 46,42 46,46 46,50 50,34 50,38 50,42 50,46 50,50
X 42(元) X N
2( X ) ( X
X )2 32(元2 ) N
样本平 均数 x 40 42 44 46 48 42 44 46 48 50
三、不重置抽样分布
样本 样本平 均数 x 样本 样本 均数 x
(一)样本平均数的分布
某班组5个工人的日工资为 34,38 34、38、42、46、50元。 34,42
X 42(元) X N
2
34,46 34,50 38,34 38,42 38,46 38,50
36 38 40 42 36 40 42 44 38 40 44 46
( x x )2 f (x) 4(元) f
(二)两个重要结论:
1.重置抽样的样本平均数的平均数等于总体平
均数,即
x X,E(x) X
2.重置抽样的抽样平均数的标准差等于总体标
准差除以样本单位数的平方根。即
(X )
x n
抽样平均数的标准差反映所有的样本平均数与 总体平均数的平均误差,又称为抽样平均误差 (或抽样标准误差),即
x
2 ( X ) N n
n ( N 1
)
2 ( X ) ( N n) x (x ) n
N 1
2 ( X ) (1 n ) 当N很大时,N 1 N ,有, n
N
n/N称为抽样比。
(三)不重置抽样样本成数的分布
对于(0,1)分布的总体,总体平均数为:X P P
某班组5个工人的日工资 为34、38、42、46、50元。

04第四章 分层抽样

04第四章  分层抽样

W S 1 =∑ h h nh N h
L
2
2
1 2 Wh S h = 2 ∑ N h
L
S N h (N h nh ) h ∑ nh h
L
2
可见,在分层抽样中,总体均值估计量的方差只与各层 内的方差有关,而同层间方差无关.而总体方差又是由 层内方差与层间方差两部分构成的.所以,估计量的方 差小于总体方差. 2,总体总和估计量的方差 有了总体均值估计量的方差,就可推导出总体总和估计 量的方差:
第 h 层的总体均值;
1 yh = nh
2 h
∑y
hi
第 h 层的样本均值; 第 h 层的总体方差;
1 Nh S = (Yhi Yh ) 2 ∑ N h 1 i =1
1 nh s = ∑ ( yhi yh ) 2 nh 1 i =1
2 h
L Nh
第 h 层的样本方差.
Y = ∑∑ y hi 为总体总量;
此时:
l L ( y ) = ∑ W 1 f h s = ∑ Wh s h 1 ∑ W s 2 V st h h h h nh nh N h h h L 2 2 2
1 = 2 N
2
s N h ( N h nh ) h ∑ nh h
L
L
2
s V (Yst ) = N V ( y st ) = ∑ N h ( N h n h ) h nh h
h
L
为各层内成数方差的平均.
(二)最优分配 1,一般情形 在分层随机抽样中,在给定的费用条件下,使估计量的方 差达到最小,或在精度要求(常用方差表示)一定条件下, 使总费用最小的各层样本量的分配称为最优分配. 在分层随机抽样中,费用函数可能是简单线性的,也可能 是其它复杂形式,这里主要考虑简单线性的费用函数:

抽样与抽样分布

抽样与抽样分布

抽样与抽样分布抽样是统计学中一种重要的数据收集方法,通过从总体中选择一部分样本来代表整体,可以更方便、更经济地进行数据分析和推断。

而抽样分布则是与抽样密切相关的概念,指的是样本统计量的概率分布。

本文将从抽样的定义和目的、抽样方法和抽样分布的性质等方面进行探讨。

一、抽样的定义和目的抽样是统计学中利用一定的方法和技术从总体中选取一部分个体作为样本,以了解总体特征或者对总体进行推断的过程。

抽样的目的在于通过对样本的观测和研究来推断总体的特征,而无需对整个总体进行调查。

抽样可以减少调查或实验的成本、节约时间,并且在一定程度上能够保证结果的可靠性和精确度。

二、抽样方法1. 简单随机抽样:简单随机抽样是指从总体中随机选择样本,使每一个样本都有相同的概率被选中。

简单随机抽样通常需要使用随机数表、随机数发生器或者抽签等方法来实现。

2. 系统抽样:系统抽样是按照一定的规则和系统性地从总体中选择样本,例如每隔一个固定的间隔选取一个样本。

系统抽样的优点在于操作简单,但是如果总体中存在某种周期性或者规律性的分布,可能会导致抽样结果的偏差。

3. 整群抽样:整群抽样是将总体根据某些特征进行分类,然后从每个分类中随机选择一定数量的群体作为样本。

整群抽样适用于总体中存在明显的群体结构的情况,可以提高样本的代表性。

4. 分层抽样:分层抽样是按照某种特征将总体分为若干层,然后从每一层中随机选择一定数量的样本。

分层抽样可以更好地体现总体的结构和差异,提高样本的代表性和准确性。

三、抽样分布的性质抽样分布是样本统计量的概率分布,其具有以下几个重要性质:1. 无偏性:如果样本统计量的期望值等于总体参数的真值,那么称该统计量是无偏的。

即样本统计量是对总体参数的无偏估计。

无偏性是抽样分布的重要性质,保证了样本统计量的可靠性和准确性。

2. 一致性:当样本数量趋向无穷大时,样本统计量的值趋向于总体参数的真值。

即样本统计量在大样本情况下能够接近总体参数,具有一致性。

抽样和抽样估计

抽样和抽样估计
假如:1:已经得到了如下旳成果: 总体均值(population mean): =51800 总体原则差(Population standard deviation): =4000
2、同步,有1500人参加了企业培训,则 参加企业培训计划旳百分比为:P =1500/2500=0.60
上述总体均值、总体原则差、百分比均称为总体旳 参数
样本均值旳原则差可用来测度样本均值与总 体均值旳“距离”,即可用来计算可能旳误差, 它也被称为均值原则误(standard error of the mean)。
3、样本均值抽样分布旳实际应用
样本统计量旳估计值与其所要测度旳总体参数值之间旳 绝对差距,被称为抽样误差(sampling error)。
参数是总体旳数值特征 A parameter is a numerical characteristic of a population。
如:例3中旳中层干部平均年薪,年薪原则差及受培训人数 所占百分比均为该企业中层干部这一总体旳参数。
●抽样估计就是要经过样本而非总体来估计总体参数。
一、简朴随机抽样(Simple Random Sampling)
同步,因为n/N=30/2500=0.012<=0.05,所以样本 原则差为
又因为n·p=300.6=18, n(1-p)=30 0.4=12 所以,样本百分比服从如下正态分布:
p ~ N (0.6, 0.0892 )
四、点估计量旳性质:估计量优劣旳衡量 用样本统计量(sample statistics)能够作为其相 应旳总体旳点估计量(point estimator)。 但要估计总体旳某一指标,并非只能用一种样本 指标,而可能有多种指标可供选择,即对同一总体 参数,可能会有不同旳估计量。

统计学之抽样与抽样分布

统计学之抽样与抽样分布
a. n/N > 30 b. N/n < 0.05 c. n/N < 0.05 d. n/N > 0.05
正确答案: d. n/N > 0.05
8. 从一个均匀分布的总体中抽取一个样本容量为45的样本, 从什么分布?
a. 指数分布 b. 正态分布 c. 均匀分布 d. 无法判断
正确答案: b. 正态分布
考察所有900个申请者
• 考试成绩
• 总体平均成绩
xi 990
900
• 总体标准差
(xi )2 80 900
考察所有900个申请者
• 无相同工作经验的申请者比例
• 总体比例
p 648 .72 900
使用随机数表随机选择30个申请者作为样本进行研 究,从书上随机数表第三列开始
统计学之抽样与抽样分 布
2021年7月19日星期一
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布
样本平均值x 的抽样分布 样本比例 p 的抽样分布
抽样方法
n = 100
n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参 数进行很好的估计
点估计
• x 作为 的点估计值 x xi 29,910 997
30 30
• s 作为 的点估计值
s
(xi x )2 163,996 75.2
29
29
• p 作为p 的点估计值
p 20 30 .68
值得注意的是,不同的随机数会导致不同的抽样,也就会 数的不同的点估计值

统计学中的抽样分布理论

统计学中的抽样分布理论

统计学中的抽样分布理论统计学是一门深奥而又广泛应用的学科,其中抽样分布理论是其中一个重要支柱。

本文将从抽样、样本统计量和抽样分布三个方面进行论述,以便更好的理解其理论和应用。

一、抽样与样本统计量统计学的基本任务之一是推断总体特征。

但由于总体数据规模庞大,难以全面观察和分析,因此我们通常采用小样本的方式来代表总体。

这就是抽样的概念。

抽样是指从总体中随机抽取一部分数据,用这一部分数据代表总体,以此估计总体的特征。

常用的抽样包括简单随机抽样、分层抽样、整群抽样等。

在抽样中,一个样本统计量的重要性凸显出来,因为它可以帮助我们更好的估计总体的特征。

比如,一个数据集的均值和标准差就是两个重要的样本统计量。

二、抽样分布抽样分布是指在所有可能的样本中,某个样本统计量的分布情况。

这里需要区分参数(population)和统计量(sample statistic)之间的关系。

参数是总体参数,是我们想要研究的总体特征,比如总体均值、总体方差等。

统计量是在样本中计算出来的数值,比如样本均值、样本方差等。

样本统计量是对总体参数的估计,不同的样本统计量可能对总体参数的估计存在一定的差异。

抽样分布不同于总体分布。

总体分布是指总体中所有变量的分布,而抽样分布是指在所有可能的样本中,某个样本统计量的分布。

抽样分布是一个特殊的概率分布,其形状和参数取决于总体分布和样本大小。

这是因为在计算样本统计量时,会受到样本数量和样本变异的影响。

在实际使用中,我们通过抽样分布来推断总体参数。

具体方法是:首先,通过采样方法得到一个样本,计算该样本统计量的值。

然后,通过数学公式推算样本统计量的抽样分布,从而得到一个概率区间。

若该样本统计量恰好位于这个区间内,则认为该样本统计量的估计值与总体参数的差异可以用统计学上的概率来表示。

这个概率就是所谓的显著性水平(signicance level)。

三、中心极限定理中心极限定理是抽样分布理论中最为重要的定理之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

90 100 110
80
80
85
90
95
90
85
90
95 100
100 90
95 100 105
110 95 100 105 110
120 100 105 110 115
2020/11/17
第四章 抽样和抽样分布
120 100 105 110 115 120
22
3.2 重置抽样下的抽样分布
样本日平均工资分布表
4农 0p 民 0名工农p签民 订工了 P进1劳n行动 P调合查同,p。有 代求3替该 60地 名P
区 差农 。民工签0约.9 4率 100的 0.9抽样1.平 5%均误
2020/11/17
第四章 抽样和抽样分布
37
3.3 不重置抽样下的抽样分布
不重置抽样下:
p p
P1 P 1 n
n N
μ σX
n
2020/11/17
第四章 抽样和抽样分布
28
3.2 重置抽样下的抽样分布
【例】某次考试的平均分为 80 分,总体标
准差为 20 分,现用重置抽样方法抽取样本容 量为 100 的样本,求样本平均数的期望和抽样 平均误差。
解: X 80 分, X 20 分, n 100
E x X 80 分
x1=100 x2=95
X 100 元
X
10 2元
80
90 100
110
120
(100,80)
( 120,90) ( 80 ,80)
…… ……
x3=100
x24=105 x25=80
Ex
100元
x
10元
E x X 100 ; x X 10 2 10
n
2
2020/11/17
1
F x P3X/4 x
1
4

2/4
3 4 当
1/4
4 4 当
0 x1 1 x2 2 x
2020/11/17
1
2
X
第四章 抽样和抽样分布
8
2.2 连续型随机变量概率分布
连续X❖型的密 随概率机度分变函布量数函的数的概性 率分质布:
1.
f
F
xx
0;x
f x dx
2. f x dx 1 ;
μ x
σ 2 X 1 n
n N
2020/11/17
第四章 抽样和抽样分布
34
3.3 不重置抽样下的抽样分布
2. 不重置抽样的平均抽样误差要在 重置抽样的抽样平均误差的基础上, 乘以修正因子
当 N 很大时,N 1 ~ N :
μp
P 1 P 1 n
n
N
2020/11/17
第四章 抽样和抽样分布
1.离散型随机变量的概率分布: X 的概率分布表
X
X1 X2 X N
P
P1
P2 PN
2020/11/17
第四章 抽样和抽样分布
3
2.2 离散型随机变量概率分布
2.概率分布函数:
F x P X x P X Xi Pi
Xi x
Xi x
概率分布函数的性质:
P x1 X x2 P X x2 P X x1
第四章
概率基础与抽样分布
第一节 随机事件及其概率(略) 第二节 随机变量的概率分布 第三节 抽 样 分 布 第四节 正 态 分 布 § 思考与练习
第四章 概率基础与抽样分布
第二节
随机变量的概率分布
2.1 离散型随机变量概率分布 2.2 连续型随机变量概率分布 2.3 随机变量的数字特征
2.1 离散型随机变量概率分布
26
3.2 重置抽样下的抽样分布 样本平均数的分布: 1. 样本平均数的期望(平均数)
等于总体平均数。
E x ( x ) X
2020/11/17
第四章 抽样和抽样分布
27
3.2 重置抽样下的抽样分布 抽样平均(标准)误差
— 抽样平均数的标准差。 2. 重置抽样的抽样平均误差等于 总体标准差除以样本单位数的平方根.
1 2
2 4
PX 2 1 1 1
22 4
2020/11/17
第四章 抽样和抽样分布
6
2.1 离散型随机变量概率分布
P
X 概率分布图
2/4
1/4
X 的概率分布图:
0
1
2
X
2020/11/17
第四章 抽样和抽样分布
7
2.1 离散型随机变量概率分布
X 的概率分布X函的数分:布函数
F(X) 0 当 x 0
x
n
( x11 … x1n )
x1
X
X1
( x21 … x2n )
x2
X3 X2

……
……
XN
(xm1 …xmn )
xm
E x X ; x X n
2020/11/17
第四章 抽样和抽样分布
25
3.2 重置抽样下的抽样分布
x
x X
X
n
X
2020/11/17
第四章 抽样和抽样分布
重置
讲 顺序
不讲 顺序
不重置
2020/11/17
第四章 概率基础和抽样分布
16
3.1 抽样及抽样分布的含义
抽样分布
— 样本统计量的概率分布。
样本统计量
— 指样本指标,是样本空间的样 本随机变量的函数。
2020/11/17
第四章 抽样和抽样分布
17
3.1 抽样及抽样分布的含义
抽样分布的计算:
1. 从总体中抽取样本容量相同的所有样 本 — 样本空间;
2.3 随机变量的数字特征
连续型随机变量的数值特征:
期望 —
E X x f x dx
方差 — σ 2 X x E X 2 f x dx
标准差 — σX x E X 2 f x dx
2020/11/17
第四章 抽样和抽样分布
13
第四章 抽样与抽样分布
第三节 抽样分布
P ( X元) 。现用 80 重 90 置 100 抽110样12方 0 法从5人
中随机抽取2人构成样本,求
1/5
样本平均数抽样分布。X 80 90 100 110 120
X
2020/11/17
第四章 抽样和抽样分布
19
3.2 重置抽样下的抽52 =样25分布
x
n = 2 (80,120)
x
(90,100)
n
不重置抽样
2X
1
n
n N
P1
n
P
1
n N
2020/11/17
第四章 抽样和抽样分布
39
2.4 方差的性质
1. n 个独立的随机变量的和的方差 等于各个变量的方差的和。
n
2
X
2 1
2 2
2 n
2 i
i 1
2020/11/17
第四章 抽样和抽样分布
40
2.4 方差的性质 (补) P109
32
3.3 不重置抽样下的抽样分布
样本平均数的分布:
1. 样本平均数的平均数等于总体 平均数。
E x ( x ) X
2020/11/17
第四章 抽样和抽样分布
33
3.3 不重置抽样下的抽样分布
2. 不重置抽样的平均抽样误差要在 重置抽样的抽样平均误差的基础上, 乘以修正因子
当 N 很大时,N 1 ~ N :
F x2 F x1
X
F x1 XXP X x1 FPx 2x1PXX x 2x2
x1
x2
2020/11/17
第四章 抽样和抽样分布
4
2.1 离散型随机变量概率分布
在统计中,通常要求 X 落入[ x1 , x2 )的概率。 对于离散型随机变量:
Px1 X x2 F x2 F x1 F X x1 F X x2
解样 : 本 已知成数P的 8抽0%样,分n布 100
E p P 80 %
为μ已 8p0知 % 某 ,P批 现1n零 用 P件 重 的 置一 抽级 样品 方率 法 一级 从品 中 率 抽0的 取.8抽 1 01样 0件0平.8,均 求 误4样%差本。
100
2020/11/17
第四章 抽样和抽样分布
第四章 抽样和抽样分布
23
3.2 重置抽样下的抽样分布
f
分布图
5
5/25
4
4/25
3
3/25
2
2/25
1
1/25
0
x
f 80 85 90 95 100 105 110 115 120
1
X
1/5
0 80
2020/11/17
90
100
110
第四章 抽样和抽样分布
120 X
24
3.2 重置抽样下的N 抽n =样m 分布
样本平均数
x
80 85 90 95 100 105 110 115 120 合计
频数 f 1 2 3 4 5 4 3 2 1 25
频率 f / Σf 1 / 25 2 / 25 3 / 25 4 / 25 5 / 25 4 / 25 3 / 25 2 / 25 1 / 25 1.00
2020/11/17
人 N 中大随机抽取2人构成样本,
并求样本220平0 均 1 工 52 资 的60分 7布.75。元
2020/11/17
第四章 抽样和抽样分布
36
相关文档
最新文档