2020考研数学真题及答案
2020考研数学(三)真题(含解析)
,
而 cos f '(x) cos f '(x) ,故 cos f '(x) 也为偶函数,故 cos f '(x) f (x) 为非奇非偶函数。
(4) 已知幂级数 nan (x 2)n 的收敛区间为(−2,6) ,则 an (x 1)2n 的收敛区间为
n1
n1
(A).(-2,6) (B).(-3,1) (C).(-5,3) (D).(-17,15)
(C) x k11 k23 k34
【答案】 C
(D) x k12 k23 k34
4
(5)设 4 阶矩阵 A (aij ) 不可逆, a12 的代数余子式 A12 0 ,1,2,3,4 是矩阵 A 的列向量组, A*为
A 的伴随矩阵,则 A* x 0 的通解为(
)
(A) x k11 k22 k33
(B) x k11 k22 k34
f ( x)a f ( x) a
ua u a
【解析二】由拉格朗日中值公式得 sin f (x) sin a ( f (x) a)cos ,其中 介于 a 与 f (x) 之间,
由 lim f (x) a b ,知 lim f (x) a 0 ,即 lim f (x) a ,故 lim a ,
)
xa x a
xa
xa
(A) bsin a (B) bcos a (A) bsin f (a) (A) bcos f (a)
【答案】B
【解析一】由 lim f (x) a b ,知 lim f (x) a 0 ,即 lim f (x) a ,
xa x a
2020年考研数学一真题及答案(全)
全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim 2x b ax a +→-==,得12ab =.(2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-. (C) ()()11f f >-. (D) ()()11f f <-.【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为 (A) 12. (B) 6.(C) 4.(D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<. (C) 025t =. (D) 025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处. (5)设α为n 维单位列向量,E 为n 阶单位矩阵,则 (A) TE -αα不可逆. (B) TE +αα不可逆. (C) T 2E +αα不可逆. (D) T2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫ ⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似. (D) A 与C 不相似,B 与C 不相似. 【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化,B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B . (8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是 (A)21()nii X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ; 221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()xy C C -=+【详解】特征方程2230r r ++=得1r =-,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydy xdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a. 【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x + 【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2 【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k kn n→∞+.【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②,令'0y =,得233,1x x ==±.当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=,令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =. 所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明: (I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,()lim 0,'(0)0,x f x f x +→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。
2020考研数学一真题及解析【完整版】
( x, y2
y))
|
0
3.答案:A 解析:
f (x, y)在(0, 0) 处可微. f (0, 0)=0
lim f (x, y) f (0, 0) f x(0, 0) x f y(0, 0) y 0
x0 y0
x2 y2
即 lim f (x, y) f x(0, 0) x f y(0, 0) y 0
4 12 6
P(BAC) P(B AUC) P(B) P[B(AUC)] P(B) P(BA) P(BC) P(ABC) 1 0 1 0 1
4 12 6
P(CBA) P(C BUA) P(C) P[CU (BUA)] P(C) P(CB) P(CA) P(ABC) 1 1 1 0 1
1
2 f y 2
48y
当 x 0, y 0时.A 0.B 1.C 0
AC B2 0 故不是极值.
当x1y 1 时 6 12
A 1.B 1.C 4.
AC
B2
0.A
1
0故
1, 6
1 12
是极小值点
极小值
f
1 6
,
1 12
1 3 6
8
1 12
3
6 1 12
1 216
16.(本题满分 10 分)
x0 y0
x2 y2
n x, y, f (x, y) f x(0, 0)x f y(0, 0) y f (x, y)
n x, y, f (x, y)
lim
0 存在
( x, y)(0,0)
x2 y2
选 A.
4.设 R 为幂级数 anr n 的收敛半径,r 是实数,则( ) n1
明过程或演算步骤. 15.(本题满分 10 分)
2020年考研数学一真题及答案解析
(4)【答案】(A).
【解析】若 anrn 发散,则 r R ,否则,若 r R ,由阿贝尔定理知, anrn
n 1
n 1
绝对收敛,矛盾. 故应选(A).
(5)若矩阵 A 经过初等列变换化成 B ,则
()
(A)存在矩阵 P ,使得 PA B.
(B)存在矩阵 P ,使得 BP A.
(C)存在矩阵 P ,使得 PB A.
x a2 a1
y b2 b1
z c2 c1
与直线 L2
:
x a3 a2
y b3 b2
z c3 c2
相交于一
ai
点,法向量 αi
bi
,
i
1, 2,3 .则
ci
()
(A) α1 可由 α2 , α3 线性表示.
(B) α2 可由 α1, α3 线性表示.
(C) α3 可由 α1, α2 线性表示. (6)【答案】(C).
f x
,
f y
, 1
0,0
fx0, 0, fy 0, 0 , 1 ,故
n x, y, f x, y fx0, 0 x fy 0, 0 y f x, y x2 y2 ,
3
n x, y, f x, y
x2 y2
则 lim
lim
0. 故应选(A).
x, y0,0
x2 y2
x, y0,0
x2 y2
(4) 设 R 为幂级数 an xn 的收敛半径, r 是实数,则 n 1
()
(A) anrn 发散时, r R . n 1
(B) anrn 发散时, r R . n 1
(C) r R 时, anrn 发散. n 1
2020年考研数学(一)真题及解析
2020年考研数学(一)真题一、选择题:1~8小题,每小题4分,共32分. 下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。
1. +→0x 时,下列无穷小量中最高阶是( )A.()⎰-xt dt e 012B.0ln(1x dt +⎰C.⎰xdt t sin 02sin D.⎰-xdt t cos 103sin【答案】D【解析】()A 22++3200(1)(1)1lim lim33xxt t x x e dt e dt x x →→--==⎰⎰,可知0x +→,2301(1)~3x t e dt x -⎰, ()B ++500222limlim ln(155xx x xx dt→→==+⎰,可知5202ln(1~5x dt x +⎰,0x +→ ()C +++s 3in 2200020sin sin(sin )co cos 1limlim lim 333s x x x xx x t dt x x x →→→===⋅⎰,可知sin 2301sin ~3x t dt x ⎰,0x +→()D ++1co 50s 0limlim x x x →→-===⎰,可知1cos 50~x -⎰,0x +→ 通过对比,⎰-xdt t cos 103sin 的阶数最高,故选()D2. 设函数()x f 在区间()1,1-内有定义,且()0lim 0=→x f x ,则( )A. 当()0lim=→xx f x ,()x f 在0=x 处可导.B. 当()0lim2=→xx f x ,()x f 在0=x 处可导.C. 当()x f 在0=x 处可导时,()0lim=→xx f x .D. 当()x f 在0=x 处可导时,()0lim2=→xx f x .【答案】C 【解析】当()f x 在0x =处可导时,由()0(0)lim 0x f f x →==,且0()(0)()(0)limlim 0x x f x f f x f x x →→-'==-,也即0()lim x f x x →存在,从而()0lim0=→xx f x ,故选C 3. 设函数(),f x y 在点()0,0处可微,()00,0=f ,()0,01,,⎪⎪⎭⎫⎝⎛-∂∂∂∂=y f x f n 非零向量d 与n 垂直,则( )A.()()()()0,,,lim220,0,=+⋅→yx y x f y x n y x 存在. B.()()()()0,,,lim220,0,=+⨯→yx y x f y x n y x 存在.C. ()()()()0,,,lim220,0,=+⋅→yx y x f y x d y x 存在. D.()()()()0,,,lim220,0,=+⨯→yx y x f y x d y x .【答案】A【解析】函数(),f x y 在点()0,0处可微,()00,0=f ,(,)(0,0)(0,0)(0,0)0x y f x y f f x f y→→''---=,00(,)(0,0)(0,0)0x y f x y f x f y→→''--=由于()(),,,n x y f x y ⋅=(0,0)(0,0)(,)x y f x f y f x y ''+-,所以()()()()0,,,lim220,0,=+⋅→yx y x f y x n y x 存在4. 设R 为幂级数1nn n a r∞=∑的收敛半径,r 是实数,则( )A.1nn n a r∞=∑发散时,R r ≥. B.1nn n a r∞=∑发散时,R r ≤.C.R r ≥时,1nn n a r∞=∑发散. D. R r ≤时,1nn n a r∞=∑发散.【答案】A【解析】R 为1nn n a r∞=∑的收敛半径,所以1nn n a r∞=∑在(,)R R -必收敛,所以1nn n a r∞=∑发散时,R r ≥.故选A5. 若矩阵A 经初等列变换化成B ,则( )A. 存在矩阵P ,使得B PA =.B.存在矩阵P ,使得A BP =.C.存在矩阵P ,使得A PB =.D. 方程组0=Ax 与0=Bx 同解. 【答案】B【解析】A 经过初等列变换化成B ,存在可逆矩阵1P 使得1AP B =,令11PP -=,得出A BP =,故选B6. 已知直线12121212:c c b b y a a x L -=-=-与直线23232322:c c b b y a a x L -=-=-相交于 一点,法向量i i i i a b c α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,3,2,1=i . 则 A. 1a 可由32,a a 线性表示. B. 2a 可由31,a a 线性表示. C.3a 可由21,a a 线性表示. D. 321,,a a a 线性无关. 【答案】C【解析】令22211112:x a y b c L t a b c ---===,即有21212121=+a a x y b t b t z c c αα⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由2L 方程得32323223=+a a x y b t b t z c c αα⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两条线相交,得2132++t t αααα=即2123123+(1)t t t t ααααααα-=⇔+-=,故选C 7. 设A ,B ,C 为三个随机事件,且()()()41===C P B P A P ,()0=AB P , ()()121==BC P AC P ,则A ,B ,C 中恰有一个事件发生的概率为 A. 43. B. 32. C. 21. D. 125. 【答案】D【解析】()()()(())P ABC P ABUC P A P A BUC ==-111()()()()004126P A P AB P AC P ABC =--+=--+=()()()(())P BAC P B AUC P B P B AUC ==-111()()()()004126P B P AB P BC P ABC =--+=--+=()()()(())P CAB P C AUB P B P C AUB ==-1111()()()()04121212P C P CB P CA P ABC =--+=--+=所以1115()()()661212P ABC P ABC P ABC ++=++= 8. 设n x x x ,,,21 为来自总体X 的简单随机样本,其中()()2110====X P X P , ()x Φ表示标准正态分布函数,则利用中心极限定理可得⎪⎭⎫⎝⎛≤∑=100155i i X P 的近似值为A. ()11Φ-.B. ()1Φ.C.()2,01Φ-.D.()2,0Φ. 【答案】B【解析】由题意12EX =,14DX =,根据中心极限定理1001~(50,25)i i X N =∑,所以⎪⎭⎫ ⎝⎛≤∑=100155i i X P=10050(1)iX P ⎛⎫- ⎪≤=Φ⎝⎭∑二、填空题:9~14小题,每小题2分,共24分.请将解答写在答题纸指定位置上. 9. ()=⎥⎦⎤⎢⎣⎡+--→x e x x 1ln 111lim 0 . 【答案】-1【解析】()()()()2000ln 11ln 1111lim lim lim 1ln 1(1)ln 1x x x x x x x x e x e e x e x x →→→⎡⎤⎡⎤+-++-+-==⎢⎥⎢⎥-+-+⎣⎦⎣⎦ =()2222001111ln 1122lim lim 1xx x x x x x x e x x→→----++-+==-10. 设()⎪⎩⎪⎨⎧++=+=1ln 122t t y t x ,则==122t dx y d .【答案】【解析】1dy dy dt dx dx dt t ===22231=dy dy d d d y dt dx dt dx dx dt dx t t t⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭===--得212t d y dx==11. 若函数()x f 满足()()()()00>=+'+''a x f x f a x f ,且()m f =0,()n f ='0,则()f x dx +∞=⎰.【答案】n am +【解析】特征方程210a λλ++=,则1212,1a λλλλ+=-⋅=,所以两个特征根都是负的。
2020考研数学(一)答案解析
π
1
2
π
E ( XY ) E ( X sin X )2π
x sin x
dx
02x sin xdx
π
π
2
2
π
2
π
π
02xd cos x
x cos x|0202cos xdx
π
π
2
sin x|
π
2
.
02
π
π
9
故 cov( X , Y )2π0π2.
三、解答题
(15)(本题满分10分)
f ( x) 0.
x
x
综上,
f ( x )d x
f ( x ) af ( x)
lim
f
( x ) af ( x )
f (0) af (0)
am n.
0
0
x
2f
12.f(x,y)0xyext2dt,则
.
x y
(1,1)
(12)【答案】4e.
【解析】因为
2f
2f
,又
f
ex xy2xxex3y2,
x y
y x
x , y0,0x2y2
x , y0,0
x2y2
(4) 设R为幂级数anxn的收敛半径,r是实数,则
(
)
n1
(A)anrn发散时,
r
R.
n 1
(B)anrn发散时,
r
R.
n 1
(C)
r
R时,anrn发散.
n 1
(D)
r
R时,anrn发散.
n 1
(4)【答案】(A).
【解析】若anrn发散,则
2020年考研数学三真题及答案解析
设 k1(α1 α2 ) k2α2 0 ,即 k1α1 (k1 k2 )α2 0 ,
由于 α1, α2 线性无关,故 k1 k2 0 可知 α1 α2 , α2 线性无关.
α3 是 A 属于特征值 1的特征向量,即 Aα3 α3 ,因此 A(α3) (α3 ) ,即 α3 也是 A 属于特征值 1的特征向量
1 0 0
属于特征值
1的特征向量,则满足
P 1 AP
=
0
1
0
的可逆矩阵
P
为
(
)
0 0 1
(A) α1 α3, α2 , α3 .
(B) α1 α2 , α2, α3 .
(C) α1 α3, α3, α2 .
(D) α1 α2 , α3, α2 .
(6)【答案】(D).
【解析】α1, α2 是 A 属于特征值 1 的线性无关的特征向量,即 Aα1 α1, Aα2 α2 , 故 A(α1 α2 ) α1 α2 ,即 α α2 也是 A 属于特征值 1 的特征向量.
(D) x k1α2 k2α3 k3α4 ,其中 k1, k2 , k3 为任意常数.
(5)【答案】(C).
【解析】由 A 不可逆知, r A 4 ,又元素 a12 对应的代数余子式 A12 0 ,故 r A 3 ,从而 r A 3 .
n, r A n,
由 r A* 1, r A n 1, 可知 r A* 1.
xa
xa
xa
xa
xa
b lim cos b cos a. a
故应选(B).
1
(2)若 f x e x1 ln 1 x , 则 f x 第二类间断点的个数为
ex 1 x 2
2020考研数一真题答案及详细解析
一、选择题(1)【答案】D【解析】(方法一)利用结论:若f(x)和g(x)在x=O某邻域内连续,且当x-o时,f位)~g(x)'则J勹(t)dt �r g(t)dt.(A)『(/-l)dt� 『t 2dt =气3(B)『ln(l +万)dt �rt 令dt=气5(C) f"工s int 2dt �厂r t 2dt�f c 2d t =丘。
3(D)J :-co sx /忒臣了d t -I -c os rt i d t �I :''l令d t=岊(占)寺x故应选CD).(方法二)设J(x)和<p (x)在x =O某邻域内连续,且当x-0时,f(x)和<p (x)分别是x 的m阶和n阶无穷小,则『(,-)J(t)dt 是x -0时的n(m+ 1)阶无穷小.。
CA)r C / -1) d t , m = 2 , n = 1 , 则n(m+ 1) = 3. 。
ln(l + #)dt,m =立,n= 1, 则n(m+l)=立。
2 2.CC)厂sint 2dt, m =2, n =1 , 则n(m+ 1)=3.。
1一cos,·3叫产t,m=一,n= 2, 则n(m+l)=5.。
2故应选(D).(2)【答案】C【解析】(方法一)直接法若f(x)在x=O处可导,则f(x)在x=O处连续,且f(O)=lim f(x) = 0.工-o故应选(C).f(x) -f(O) = limf(x)j'(O) = Jim;-0X—r•OXf(x)f(x) lim=lim ——•X =j'(0)• 0 = 0工-o,/了.,·-oX�(方法二)排除法取f (x)= {X3, X # 0,则l im f位)=o ,且1,X= 0J-0 x 3f(x ) x 3lim·f(x)=lim _。
J了工-o�= O ,lim 一=lim —=22 工-oXr--0 X但f(x)在x=O处不可导,因为f(x)在X = 0处不连续,则排除选项(A),CB).若取f(x)= x , 则lim f(x)= 0, 且f(x)在x =O处可导,但J-0• 5 •叫排除CD )'故应选CC).(3)【答案】A2 ,·-·OX.r-0 X.r -•O X【解析】利用函数z = .I 一位,y)在(x 。
2020年数学一真题含答案
2020年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选选项前的字母填在答题纸指定的位置上.(1)当+0x →下列无穷小的阶最高的是().(A )2(1)dt xt e -⎰(B)(0ln 1dtx+⎰(C )sin 2sin dtxt ⎰(D)1cos 0-⎰【答案】(D )【详解】(A)22'20((1))1(0)xt x e dt e x x +-=-→⎰(B)3'2(ln(1)ln(1(0)x x x +=+→⎰(C)sin 2'220(sin )sin(sin )cos (0)xt dt x x x x +=→⎰(D).1cos '40()(0)x cx x -+=→⎰(2)函数()f x 在(1,1)-有定义,且0lim ()0x f x →=,则().(A)若0x →=,则()f x 在0x =可导;(B )若2()lim0x f x x →=,则()f x 在0x =可导;(C )若()f x 在0x =可导,则0x →=;(D )若()f x 在0x =可导,则20()lim0x f x x→=.【答案】(C )【详解】(A )反例()||f x x =(B )反例0,0()1,00,0x f x x x <⎧⎪==⎨⎪>⎩(D)反例2()f x x=(3)函数(,)f x y 在(0,0)可微,(0,0)0f =,(0,0)(,,1)f fn x y →∂∂=-∂∂非零向量α→与n →垂直,则()(A)(,)limx y →存在(B)(,)limx y →存在(C)(,)limx y →(D)(,)limx y →存在【答案】(A )【详解】因为(,)f x y 在(0,0)可微所以0x y →→''-⋅-⋅=又因为(,,(,))(,)x y n x y f x y x f y f f x y →''⋅=⋅-⋅-所以00x y →→''⋅-⋅-=从而00x y →→=即(,)lim 0x y →=,故选(A ).(4)设R 为幂级数nnn a x∞=∑收敛半径,r 为实数,则()(A )当220nn n ar∞=∑发散时,则||r R ≥(B )当220nnn ar ∞=∑收敛时,则||r R ≤(C )当||r R ≥时,则220nnn ar ∞=∑发散(D )当||r R ≤时,则220n nn ar ∞=∑收敛【答案】(D )【详解】由级数收敛半径的性质得D 正确。
2020考研数学一真题解析
a1
b1
c1
a2
b2
c2
所以 x0 a1k a2 a2l a3; y0 b1k b2 b2l b3; z0 c1k c2 c2l c3 ,
从而有3 k1 (1 l)2 ,选(C)。
1
(7)设 A, B,C 为三个随机事件,且 P A P B P C , P AB 0,
4
P AC P BC 1 ,则 A, B,C 中恰有一个事件发生的概率为( )
12
3
(A)
4
2
(B)
3
1
(C)
2
5
(D)
12
第3页
【答案】(D)
【解析】设 A, B,C 中恰有一个事件发生的概率为 p ,则
Born to win
p P( ABC) P(ABC) P( ABC) , ABC AB, P( AB) 0 P( ABC) 0 ,
n 1
(5)若矩阵 A 经初等变换化成 B ,则( ) (A)存在矩阵 P ,使得 PA B (B)存在矩阵 P ,使得 BP A (C)存在矩阵 P ,使得 PB A (D)方程组 Ax 0 与 Bx 0 同解
【答案】(B)
Born to win
【解析】由题意可知,对于矩阵 A 进行列变换得到矩阵 B ,则存在初等矩阵 Q1, Q2 ,, Qt ,
n 1
(C)当 r R 时, a2nr2n 发散
n 1
(D)当 r R 时, a2nr2n 收敛
n 1
【答案】(A)
【解析】因为 R 为幂级数 an xn 的收敛半径,所以
n1
第2页
R 为幂级数 a2n x2n 的收敛半径,
n 1
当 a2nr2n 发散时,由阿贝尔定理得 r R ,选(A)。
2020考研数学(三)答案解析
2020 年全国硕士研究生入学统一考试数学(三)试题与参考答案一、选择题(1)设limf (x) ab ,则lim sin f ( x ) sin a( )x a x ax ax a (A )b sin a . (B )b cos a .(C )b sin f a .(D )b cos f a .(1)【答案】(B ).【解析】由拉格朗日中值定理知,存在 介于a 与 f (x) 之间,使得sin f ( x ) sin a cosf ( x ) a .由lim f (x) a b ,则有lim f (x) a . x a x a x a从而有lim sin f ( x ) sin a x ax alim cos f ( x ) a bax a xb lim cos b cos a.alim cosxa故应选(B ).e ln 1 x (2)若f x x 1 , 则 f x 第二类间断点的个数为()e x 1 x 2 (A )1.(B )2.(C )3.(D )4.1(2)【答案】(C ).【解析】由 f x 表达式知,间断点有 x 0, 1, 2.11 x1xe x 1 ln e e 1,故 x 0 为可去间断点; 因lim f xlimlimx 11 ex 0x 0 xx 0x x 221 1 x因 lim f x lim e x 1 ln ,故 x 1 为第二类间断点;e x 1 x 2 x 1x 11 1 x因 lim f x lim e x 1 ln ,故 x 1 为第二类间断点;e x 1 x 2 x 1x 11 1 x因lim f x lim e x 1 ln ,故 x 2 为第二类间断点;e x 1 x 2x 2x 2综上,共有 3 个第二类间断点. 故应选(C ).(3)设奇函数 f x 在,上具有连续导数,则()(A ) x cos f t ft dt 是奇函数.(B ) xcos f t ft dt 是偶函数.(C ) xcos f t f t dt 是奇函数.(D ) x cos f t f t dt 是偶函数.(3)【答案】(A ).【解析】因为 f x 在 , 上具有连续导数,且为奇函数,故 f x 为偶函数,又cosf x 也为偶函数,从而cos f t f t 为偶函数,进而xcos f t f t dt 是奇函数.故应选(A ).2x 2 n(4)设幂级数na n的收敛区间为2, 6 ,则a n x12n的收敛区间为()n 1n 12, 65, 317,15(A).(B)3,1 .(C).(D).(4)【答案】(B).【解析】由幂级数性质知,幂级数 na n x n与 a n x n有相同的收敛半径.n 1n 1n的收敛区间为 2, 6因 na n x 2,故有 na n x n的收敛半径R 4 ,从而n 1n 1a n x n的收敛半径R 4 ,故当x124时,级数 a n x 1 2n收敛,所以其收敛n 1n 1区间为3,1.故应选(B).(5)设 4 阶矩阵A a ij不可逆,元素a12对应的代数余子式A120 ,α1, α 2, α3, α4为矩阵 A 的列向量组, A*为 A 的伴随矩阵,则 A* x 0 的通解为()(A)x k1α1k 2α2k3α3,其中k1 , k 2 , k3为任意常数.(B)x k1α1k 2α2k3α4,其中k1 , k 2 , k3为任意常数.(C)x k1α1k 2α3k3α4,其中k1 , k 2 , k3为任意常数.(D)x k1α 2 k 2α3k3α4,其中k1 , k 2 , k3为任意常数.(5)【答案】(C).【解析】由 A 不可逆知,r A 4 ,又元素a12对应的代数余子式 A120 ,故r A 3 ,从而r A 3 .n,r A n,*r A n 1,*1 .由r A1,可知r A0,r A n 1,故A* x 0 的基础解系含有3个解向量.因α1, α 2, α3, α4为矩阵 A 的列向量组,则α1, α3, α4可看作 A12对应矩阵列向量组的延长组,故α1, α3, α4线性无关.3又A* A = A*α1, α2 , α3, α4 A E 0, 故α1, α3, α4均为 A* x 0 的解.综上,α1, α3, α4为 A* x 0 的一个基础解系,故 A* x 0 的通解为 x k1α1 k 2α3 k3α4,其中k1 , k 2 , k3为任意常数.故应选(C).(6)设A为 3 阶矩阵,α1,α2为A的属于特征值 1 的线性无关的特征向量,α3为A的100属于特征值 1的特征向量,则满足P1010的可逆矩阵 P 为()AP =001(A)α1α3,α2,α3 .(B)α1α2,α2,α3 .(C)α1α3,α3,α2 .(D)α1α2,α3,α2 .(6)【答案】(D).【解析】α1, α2是 A 属于特征值1的线性无关的特征向量,即Aα1α1 , Aα2α2,故A(α1α 2) α1α2,即α1α2也是 A 属于特征值1的特征向量.设k1(α1α 2 ) k2α2 0 ,即k1α1 ( k1 k2)α2 0 ,由于α1, α2线性无关,故k1k20 可知α1α2, α2线性无关.α3是 A 属于特征值 1的特征向量,即Aα3α3,因此A( α3 )( α3 ) ,即α3也是 A 属于特征值 1的特征向量100可取P ( α α, α , α) ,则 P 是可逆矩阵,且满足P1AP010.1232001故应选(D).(7)设A,B,C为三个随机事件,且P A P B P C 14,P AB0, P AC P BC121,则 A, B , C 恰有一个事件发生的概率为()(A)3.(B)2.(C)1.(D)5. 432124(7)【答案】(D ).【解析】事件 A, B , C 中仅有一个发生的概率可用至少一个发生的概率减去至少发生两个的概率表示,即P ( ABC A BC ABC ) P ( A B C ) P ( AB AC BC),而 P ( A B C ) P ( A) P ( B ) P (C ) P ( AB ) P ( AC ) P ( BC ) P ( ABC) ,因 P ( AB) 0 ,故P ( ABC) 0 ,从而P ( A B C)34 0 121121 0 127 ,P ( AB AC BC ) P ( AB ) P ( AC )P ( BC )P ( ABC )P ( ABC )P ( ABC ) P ( ABC)0 121 12116 ,故 P ( ABC ABC ABC) 127 16 125. 故应选(D ).1(8)设随机变量 X , Y 服从二维正态分布 N 0, 0;1, 4;,下列随机变量中服从标准2正态分布且与 X 独立的是()(A ) 5X Y . (B ) 5X Y . 5 5(C ) 3X Y .(D ) 3X Y .3 3(8)【答案】(C ).【解析】由二维正态的性质知 X Y ~ N ( ,2 ) ,因E ( X Y ) E ( X ) E (Y ) 0,2D ( X Y ) D ( X ) D (Y ) 2 cov( X , Y ) 1 4 2 XY D ( X ) D (Y )1 42 (12) 1 2 3,X Y 0 3 ( X Y ) ~ N (0,1) .353( X Y )又, X服从二维正态分布,而33( X Y )3cov( X , X ) cov( X , Y ) cov, X333 D ( X ) D ( X ) D (Y )3XY311 () 1 2320,故3( X Y )与 X 不相关,由二维正态的性质知,3( X Y )与 X 独立.33故应选(C).二、填空题(9)设z arctan xy sin x y ,则dz.0,π(9)【答案】π 1 dx dy .【解析】因为z xy cos x y, 1 xy sin x y 2z yx cos x y, 1 xy sin x y 2从而zπ cos ππ 1,0,πsin πx12z0 cos π1,sin π2y0,π1故dz0,ππ 1 d x d y .(10)曲线x y e2xy0在点0,1处的切线方程为.(10)【答案】y x 1.6【解析】方程 x y e 2xy0 两边对x求导,得1y e 2xy 2 y 2 xy0 ,代入 y(0) 1 ,得1y 0 2 00 ,解得 y 0 1 .从而切线方程为 y 1 1x0 , 即y x 1.(11)Q表示产量,成本C Q100 13Q ,单价为 p ,需求量Q p p80032.则工厂取得利润最大值时的产量.(11)【答案】Q8.【解析】设收益函数为R ,则R pQ ,又p8003,故R800Q3Q. Q 2Q 2要使得利润最大,则有MR MC ,即1600 3 13,解得Q 8. Q 2 2x12(12)设平面区域Dx , y y, 0 x1,则D 绕 y 轴旋转所成旋转体体1 x2积为.(12)【答案】π ln 2π3.【解析】1 2πx1x1x 31πVy0 d x 02π x dx π ln(1x2 )ππ ln 2.1 x22033 a01113. 行列式0a11.11a0110a(13)【答案】a2a24 .【解析】7a 0 1 1 a a 0 0 a 00 00 a 110 a 1 10 a 1 11 1 a 0 1 1 a 0 1 2a 0 11 0 a0 0 a a0 0 a aa a11a a 3 4a a 2 a2 4 .2 a 00 a a(14)设随机变量X的概率分布为P X k 1( k 1, 2, ) ,Y表示X除以3的余k2数,则EY.(14)【答案】8 . 7【解析】Y 的全部可能取值为0,1, 2.当X 3k 2( k 1, 2, ) 时,Y1;当 X 3k 1( k 1, 2, ) 时,Y2;当X 3k ( k 1, 2, ) 时,Y 0 .故P Y 114,P Y 212,P Y 011,3 k 2 3 k 1 3 k272727 k 1k 1k 1从而EY 8. 7三、解答题(15)(本题满分 10 分)已知(11) n e 与b为n时的等价无穷小,求a,b.n n a(15)【解析】由题意有11(1) n e e nln(1)en1 lim n limb bn nn a n a1n ln(11)1e(e n ln(1) 11)lim e lim n, n nn a n a8令1n t ,则1从而a 1 2,2e b1ln(1 t ) 1e lim t e limt 0b t a t 0a1,1 ,解之得b2e.ln(1 t ) t1t2e lim2,b t a1 b t a1t 0(16)(本题满分 10 分)求f ( x , y ) x 3 8 y 3 xy 的极值.(16)【解析】因为 f 3 x 2y , f 24 y 2 x,x y2y 0,11f x 3 x联立方程组f24 y2x0,解得驻点为 0, 0 ,,.612y在点 0, 0 处:A f xx0, 0 0,B f xy0, 01,C f yy0, 0 0, AC B2 1 0 ,故0, 0不是极值点.1 ,1在点处:612A f1,1 1 0,B f1,11,C f1,14,xx xy yy6 12 6 12 6 12211AC B 4 1 0 ,故,是极小值点,极小值为61211 1 3 1 3111f,.126122166612(17)(本题满分 10 分)已知 y f x 满足 y 2 y 5 f ( x) 0, 且有 f (0) 1, f (0) 1.(Ⅰ)求 f ( x) ;(Ⅱ)a n nπf ( x )dx ,求a n.n 19(17)【解析】(Ⅰ)由 y 2 y 5 f ( x) 0 ,得其特征方程为 2 25 0 ,解得2 16 i 1 2i.1,22故方程通解为 f ( x ) e x (C cos 2 x C sin 2 x).1 2因 f (0) 1, f (0) 1 C 1,C 1,,则有1 解得 12C 2 C 11, C 2 0,从而有 f ( x ) e x cos 2 x.(Ⅱ)因e x cos 2 xdx cos 2 xde xe x cos 2 x 2 e x sin 2 xdx e x cos 2 x 2 sin 2 xde xe x cos 2 x 2e x sin 2 x 4 e x cos 2 x d x ,故 5 e x cos 2 xdx e x cos 2 x 2e x sin 2x C 1 ,从而有e x cos 2 xd x15 e x (2 sin 2 x cos 2 x ) C ,故a n nπ e x cos 2 xd x1ex(2 sin 2 x cos 2 x)|nπ .5因 lim e x (2 sin 2 x cos 2 x) 0 ,故a1 e n π (cos2 nπ 0) 1 e nπ . nx5 511e π1进而有 a ne nπ.51 eπ 5(e π1)n 15 n 1(18)(本题满分 10 分)已知 f ( x , y )y 1 x 2 xf ( x , y )d xdy ,其中D x ,y x 2x 2 1, y 0 .D求 xf ( x , y )dx dy .D10(18)【解析】记 f ( x , y )dxdy A ,则f(x,y)y1x 2Ax ,故DA f ( x , y )dx dy( y1x 2Ax )d xd yD Dy 1 x 2 d xdy A xd xd y ,D D因积分区域D 关于 y 轴对称,故xd xd y0.D又Ay dx dy 11 d x 01x21 x 2y 1 x2 dyD1 13令x sin tπ1242212(1 x)dxπ2cos td tπ 3 1 π 3π02cos4tdt4 2 2 16.3πx 因此xf(x,y)d( xy3πx2 )d .可知 f ( x , y ) y 1 x 2 1 x 21616D D因积分区域D 关于 y 轴对称,xy1x2是x的奇函数,故xy 1x2 d0.D故xf ( x , y )d 3πx 2 d11dx0 1 x23πx 2 dy 16D D1613ππ3π2222116x 1 x d xπ16sin t cos t cos tdt23ππ2 sin 2 t(1 sin 2 t)dt3π (1π3 1π)3π2.8 08 2 2 4 2 2 128(19)(本题满分 10 分)设 f x 在区间 0, 2 上具有一阶连续导数,且 f 0 f 20, M max x0,2 f x.11(Ⅱ)若对任意 x0, 2 ,f x M ,则M0 .(19)【证明】(Ⅰ)因f x在0, 2上连续,故存在最大值M max x0,2 f x.若M 0,则对0,2 ,都有f0 ,命题成立.若M 0,因 f 0 f 2 0, 故存在 x0 0, 2 ,使得f x0M.当x0 0,1 ,由拉格朗日中值定理知,存在1 0, x00,1 ,使得f x0 f 0 f 1 x0 ,则有f 1f x0MM . x0x0当x0 1, 2 ,由拉格朗日中值定理知,存在2 x0 , 2 1, 2 ,使得f 2 f x0 f 2 2 x0 ,则有f 2f x0MM . 2x02x0当 x01,由拉格朗日中值定理知,存在30,1 ,使得f3 f 1 f 0 f 1M .综上,存在0, 2 ,使得f M .(Ⅱ)假设M0 ,因对任意 x0, 2 ,有f x M ,由(Ⅰ)知,当x0 0,1 或 x0 1, 2 时,存在0, 2 ,使得f M ,矛盾,从而有M 0.当x0 1时,有f1M,则 f 1M ,不妨设 f 1 M .构造函数 g x f x Mx, x0,1 .因为 g x f x M 0, 故 g x 单调不增.又 g 0 0, g 1 0 ,从而 g x 0, x 0,1 ,即 f x Mx , x 0,1 .构造函数h x f x Mx 2 M , x1, 2 .因为h x f x M0 ,故h x 单调不减.又h 1 M M2 M 0, h 2 0 ,从而h x 0, x 1, 2 ,即 fx Mx 2M .综上,当 x 0 1时, f x Mx, 0 x 1,2 M , 1 x 2.Mx因为f 1 limf x f 1 limMx MM 0,x 1x 1 x 1 x 1f 1 limf x f 1lim Mx 2M M M 0,x 1x 1x 1x 1故与 f x 在 x 1 处可导矛盾,从而当 x 0 1时,有M 0 .若 f 1 M ,则可构造 g x f x Mx, h x f x Mx 2 M , 同理可证.综上,若对任意 x 0, 2 ,f xM ,则M 0 .(20)(本题满分 11 分)设二次型 f x 1 , x 2 x 124 x 1 x 2 4x 22xy经正交变换 1Q 1化为二次型x 2y 2g y 1 , y 2 ay 124 y 1 y 2by 22, 其中ab .(Ⅰ)求a , b 的值;(Ⅱ)求正交矩阵Q .1 2 (20)【解析】(Ⅰ)设二次型 f 的矩阵为 A ,则 A24.又 f 经正交变换 X QY 化成 g y 1 , y 2 ay 12 4 y 1 y 2 by 22 , 即X QYa 2f X TAX = Y T Q T AQY Y T2 b Y .a 2 a 因此Q T AQ =2 b. 记B =22,由于Q 为正交矩阵,故 A 与B 相似且合同,btr A 故 A B又a b ,故tr B , 1 4 a b, 解得a 4, b 1或a 1, b4. 即, ab 4 0,a 4,b 1.42,且 A 与B 相似.又(Ⅱ)由(Ⅰ)知,B =21A E122 5 ,24可知, A 与B 特征值均为1 0, 25.对于1 0 ,解A0E x0,得 A 的属于特征值0的特征向量α12,1对于2 5 ,解A5E x0,得 A 的属于特征值5的特征向量α212,α12α211α1, α2已经正交化,故直接单位化,得β11β2.α12故可取 P1β1,β2,则 P1为正交矩阵,且有 P11 AP10.5对于1 0 ,解B0E x0,得B 的属于特征值0的特征向量α212,对于2 5 ,解B5E x0,得B 的属于特征值5的特征向量α12,1故可取 P2β2,β1,则 P2为正交矩阵,且有 P21BP2.5则有 P 1 AP P 1BP,因此 P P 1 AP P 1 B .1122211214 3取Q = P P15555 5 5P P T, 则1212 3 45555 5 5Q T = P1 P2T T P2 P1T ,Q 1 = P1 P2T 1P2T 1 P11P2 P1T .综上,有Q 为正交矩阵,且满足Q T AQ B .14(21)(本题满分 11 分)设 A 为 2 阶矩阵, P = α , Aα ,其中α 是非零向量,且不是 A 的特征向量. (Ⅰ)证明 P 为可逆矩阵;(Ⅱ)若 A 2 α + Aα 6α 0 ,求 P 1 AP 并判断 A 是否相似于对角阵. (21)【解析】(Ⅰ)若α 与 Aα 线性相关,则α 与 Aα 成比例,又α 是非零向量,故有 Aαkα .由特征值、特征向量的定义知,α 是 A 的属于特征值k 的特征向量,与已知矛盾,故α 与 Aα 无关,从而 P 可逆.(Ⅱ)由 A 2 α + Aα 6α 0 知, A 2 α =Aα6α, 则AP = A α , Aα Aα , A 2 α Aα , Aα 6α0 6 0 6α , Aα P ,11116记B,则有 AP = PB, 得 P 1 AP B ,故 A 与B 相似.11因为 B E6 2632 ,11可知,B 的特征值为 1 3, 2 2. 故 A 的特征值也为 1 3, 2 2.因此 A 可相似对角化.(22)(本题满分 11 分)已知因(X , Y )服从区域D : 0y 1x 2 上的均匀分布,且1, X Y 0, UX Y 0,0,1, X Y 0, VX Y 0.0,求:(Ⅰ)(U , V ) 的联合分布;(Ⅱ)UV .(22)【解析】(Ⅰ)因(X,Y)服从区域D: 0y 1x2上的均匀分布,故P{U0, V 0}P{ X Y0, X Y0}14,P{U0, V 1}P{ X Y0, X Y0}0,P{U1, V 0}P{ X Y0, X Y0}12,P{U1, V 1}P{ X Y0, X Y0}14.从而(U , V ) 的概率分布为V01U01/4011/41/2(Ⅱ)由(Ⅰ)知,01P3/41/401P1/43/401P3/41/4故E (UV ) 14 , E (U )34 , E (V )14 , D (U ) 163, D (V ) 163.131cov(U , V ) E (UV ) E (U ) E (V )1.从而444 UV3334423. (本题满分 11 分)t me,t 0,1设某种元件的使用寿命T 的分布函数为:F ( t )0, 其他.其中 , m 为参数且大于零.(Ⅰ)求概率P{T t}与P{T s t | T s},其中s 0, t 0 ;(Ⅱ)任取n 个这种元件做寿命试验,测得它们的寿命分别为t 1, t 2 ,t n ,若m 已知,求 的最大似然估计值 .(23)【解析】(Ⅰ)1 e ( t m e ( t mP{T t } 1 P{T t } 1 F (t ) 1 )).P{T s t | T s}P{T s t , T s} P{T s t } 1 F (t s) 1 F ( s )P{T s} P{T s}( t s ) m( t s )mm( t s)m1 [1 e]ese m .s s1 [1 e ( ) m( )m]et m 1 ( t )mt 0,me,m(Ⅱ)由题意得,T 的概率密度为 f (t ) F (t )其他.0,nm 1nt it i ( )mm n i 1 e i 1 , t 0,nmni似然函数L ( )f (t i ; )i 1其他.0,nm 1nti( t i)m当t 0 时,L ( ) m ni 1ei 1,nnt iln L ( ) n ln m ln t i m 1mn ln( )m,i 1 i 1 nd ln L ( )mn n t t mnt i mii 1令m () m 1im 0 ,解之得 的最大似然估 d2 m 1i 11 n计值为mn i 1 t i m .。
2020年考研数学(三)真题(后附解析答案)
2020年全国硕士研究生招生考试数学(三)(科目代码:303)一、选择题(1〜8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项前的字母写在题后的括号内.)(1)设1口心—°= b,则lim sinfQ)—sina=().x-^a x——a x-*a3C——a(A)6sin a(B)6cos a(C)6sin/(a)iIn I14-rr I(2)函数心)=二的第二类间断点的个数为((e—1)(j?—2)(A)l(B)2(03(3)设奇函数心)在(-00,-1-00)上具有连续导数,则().(A)f[cos/"(/)+/^(Olldr是奇函数J0(E)「[cos/(i)+/(O]d^是偶函数J0(C)[[cos/"'(/)+y(t)]d/是奇函数J0(D)「[cos是偶函数J0(D)bcos/(a) ).(D)4(4)设幕级数—2)"的收敛区间为(一2,6),则工a”Q+l)2n的收敛区间为().n=\n=1(A)(-2,6)(B)(-3,l)(0(-5,3)(D)(-17,15)(5)设4阶矩阵A=(a“)不可逆,a*的代数余子式A12丰O,aj,a2,a3,a,为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*X=0的通解为().(A)X=^1a1+^2a2+^3a3,其中k x,k2,k.为任意常数(B)X=^1a1+k2a2+k3a4,其中k,,k2,k3为任意常数(C)X=bS+展as+匕。
4,其中紅,k2,k3为任意常数(D)X=k i a2k2a3+怂。
4,其中ki,k2^k3为任意常数(6)设A为3阶矩阵,a】,a?为A的属于特征值1的线性无关的特征向量,as为A的属于特征I1°°\值一1的特征向量,则满足P_1AP=0-10的可逆矩阵卩为().'o01'(A)(a j a3,a2,—a3)(B)(a〕+ct2,a2,—a3)(C)(a1+a3,—a3,a2)(D)(a T+a2»—a3,a2)(7)设A,B,C为三个随机事件,且PC A)=P(£)=P(C)=±,P(AB)=O,P(AC)=P(BC)=2,412则A,B,C中恰有一个事件发生的概率为().3215(A)Z(B)T(C)7(D)12(8)设随机变量(X,Y)服从二维正态分布N(0,0;1,4;-,则下列随机变量中服从标准正态分布且与X相互独立的是().(A)啤(X+Y)(B)尝(X—丫)55(C)y(X+Y)(D)y(X-Y)二、填空题(9〜14小题,每小题4分,共24分.请将答案写在题中的横线上.)(9)设z=arctanRy+sin(z+了)],贝0dz|(0,…)=______.(10)曲线jc y+e2iy=0在点(0,—1)处的切线方程为________.(H)设某厂家生产某产品的产量为<2,成本C(Q)=100+13Q,该产品的单价为/,需求量—2,则该厂家获得最大利润时的产量为(12)设平面区域。
2020考研数学(三)答案解析
P(A B C) 3 0 1 1 0 7 , 4 12 12 12
P(AB AC BC) P( AB) P( AC) P(BC) P( ABC) P( ABC) P( ABC) P( ABC)
0 1 1 0 1, 12 12 6
故 P( ABC ABC ABC) 7 1 5 . 故应选(D). 12 6 12
是奇函数.
x
(B) 0 cos
f
t
f
t dt
是偶函数.
x
(C) 0 cos
f
t
f
t dt
是奇函数.
(D)
x
0
cos
f
t
f
t dt
是偶函数.
(3)【答案】(A).
【解析】因为 f x 在 , 上具有连续导数,且为奇函数,故 f x 为偶函
数,又 cos f x 也为偶函数,从而 cos f t f t 为偶函数,进而
(D) x k1α2 k2α3 k3α4 ,其中 k1, k2 , k3 为任意常数.
(5)【答案】(C).
【解析】由 A 不可逆知, r A 4 ,又元素 a12 对应的代数余子式 A12 0 ,故 r A 3 ,从而 r A 3 .
n, r A n,
由 r A* 1, r A n 1, 可知 r A* 1.
e
lim
n ln(1 1 )
en
e
n
b
n
b
na
na
lim
n ln(1 1 )1
e(e n
1)
e
lim
n ln(1
1) n
1 ,
n
b
n
b
na
2020考研数学一真题及答案解析
I xf xy 2x ydydz yf (xy) 2y xdzdx zf xy z dxdy
.
【详解】将曲面 Z x2 y2 向 xoy 面投影得 Dxy
Dxy 为1
x2
y2
4
,又
Z
' x
x x2
y2
,
Z
' y
y x2 y2
I
{[ xf
(
xy)
又 G(0) G(1) 0 ,从而 G(x) 0 ,即 f (x) Mx , 0 x 1 .
因此 f(1) M ,从而 M 0 .
综上所述,最终 M 0
(20)(本题满分 11 分)
设二次型
f
x1, x2
x12
4 x1x2
4 x22
经正交变化
x1 x2
Q
y1 y2
化为二次型
,
AC A
1
B2 =3>0 0
x y
1 6 1 12
,为极小值点
f (1 , 1 ) 1 极小值为 6 12 216
(16)(本题满分 10 分)
I
计算
L
4x 4x2
y y
2
dx
x y 4x2 y2
dy
,其中
L为
x2
y2
2
,方向为逆时针方向.
【详解】补曲线 L1 : 4x2 y2 2 ,逆时针方向
(C)3 可由1 ,2 线性表示
(D)1,2 ,3 线性无关
【答案】(C).
(7)
PA
PB
PC
1 4
,
P AB
0,
P AC
2020年考研数学一真题详细答案解析
一、选择题(1)【答案】D【解析】(方法一)利用结论:若f(x)和g(x)在x=O某邻域内连续,且当x-o时,f位)~g(x)'则J勹(t)dt �r g(t)dt.(A)『(/-l)dt� 『t 2dt =气3(B)『ln(l +万)dt �rt 令dt=气5(C) f"工s int 2dt �厂r t 2dt�f c 2d t =丘。
3(D)J :-co sx /忒臣了d t -I -c os rt i d t �I :''l令d t=岊(占)寺x故应选CD).(方法二)设J(x)和<p (x)在x =O某邻域内连续,且当x-0时,f(x)和<p (x)分别是x 的m阶和n阶无穷小,则『(,-)J(t)dt 是x -0时的n(m+ 1)阶无穷小.。
CA)r C / -1) d t , m = 2 , n = 1 , 则n(m+ 1) = 3. 。
ln(l + #)dt,m =立,n= 1, 则n(m+l)=立。
2 2.CC)厂sint 2dt, m =2, n =1 , 则n(m+ 1)=3.。
1一cos,·3叫产t,m=一,n= 2, 则n(m+l)=5.。
2故应选(D).(2)【答案】C【解析】(方法一)直接法若f(x)在x=O处可导,则f(x)在x=O处连续,且f(O)=lim f(x) = 0.工-o故应选(C).f(x) -f(O) = limf(x)j'(O) = Jim;-0Xr•OXf(x)f(x) lim=lim ——•X =j'(0)• 0 = 0工-o,/了.,·-oX�(方法二)排除法取f (x)= {X, X # 0,则l im f位)=o ,且1,X= 0J-0 x 3f(x ) x 3lim·f(x)=lim _。
J了工-o�= O ,lim 一=lim —=22 工-oXr--0 X但f(x)在x=O处不可导,因为f(x)在X = 0处不连续,则排除选项(A),CB).若取f(x)= x , 则lim f(x)= 0, 且f(x)在x =O处可导,但J-0• 5 •叫排除CD )'故应选CC).(3)【答案】A2 ,·-·OX.r-0 X.r -•O X【解析】利用函数z = .I 一位,y)在(x 。
2020考研数学三真题及答案解析
旺旺id 河北师大研胜教育
积函数为偶函数的变限积分函数为奇函数。所以,本题选 A ;对于 C和D 选项, f ′(x) 为偶
函数,则 cos= f ′(x) cos f ′(−x) 为偶函数, f (x) 为奇函数,则 cos f ′(x) + f (x) 既非奇函数又
非偶函数。
∞
∞
(4).已知幂级数 ∑ nan (x − 2)n 的收敛区间为 (−2, 6) ,则 ∑ an (x + 1)2n 的收敛区间为
又 ABC ⊂ AB , P( ABC) ≤ P( AB) = 0
原式 = 1 − 1 + 1 − 1 + 1 − 1 − 1 = 5 4 12 4 12 4 12 12 12
(8) .若二维随机变量 (X ,Y ) 服从 N 0,0;1,4;− 1 ,则下列服从标准正态分布且与 X 独立的
2
是(
4
12
()
(A). 3
4
(B). 2
3
(C) . 1
2
(D). 5
12
旺旺id 河北师大研胜教育
【答案】(D)
【解析】
P( ABC) + P( ABC) + P( ABC) = P( A I B UC) + P(B I A UC) + P(C I A U B) = P( A) − P( AB) − P( AC) + P( ABC) + P(B) − P( AB) − P(BC) + P( ABC) + P(C) − P( AC) − P(BC) + P( ABC)
dx
(11)设产量为 Q ,单价为 P ,厂商成本函数为 C(Q=) 100 +13Q ,需求函数为 Q= (P) 800 − 2 ,
2020考研数学一真题及答案解析
f
(12)设函数
x, y
xy ext2 dt
0
,则
2 f xy
1,1
.
【答案】 4e
a 0 1 1
0 a 1 1 1 1 a 0
(13)行列式 1 1 0 a
.
【答案】 a4 4a2 .
(14)已知随机变量
X
服从区间
2
,
2
上的均匀分布, Y
sin
X
,则 Cov X ,Y
.
2 【答案】 .
y2 8xy 4x2 (4x2 y2)2
,
P (4x2 y 2 ) 2y(4x y) y 2 8xy 4x2 ,
y
(4x2 y 2)2
(4x2 y 2)2
I
=
L1
4x 4x2
y y2
dx
x y 4x2 y2
dy
=
1 2
(4x
y)dx
(x
y)dy
L1
1 2
1
1
(1) dxdy
(B) n1
收敛,则
r
R
(D) r R ,则 n1 a2n x2n 收敛
(5)若矩阵 A 由初等列变换为矩阵 B ,则()
(A)存在矩阵 P ,使 PA B ;
(B)存在矩阵 P ,使 BP A ;
(C)存在矩阵 P ,使 PB A ;
(D)方程组 AX 0 与 BX =0 同解;
【答案】(B).
2020 年全国硕士研究生入学统一考试
数学(一)试题
一、 选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合题目要求
的.请将所选项前的字母填在答.题.纸.指定位置上.
2020考研数学三真题及答案解析【完整版】
2020考研数学三真题及解析(完整版)一、选择题:1~8小题,第小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.1.设lim(),limsin ()sin x x f x a f x ab x a x a→∞→∞--=--则A.sin b a B.cos b a C.sin ()b f a D.cos ()b f a 答案:B解析:sin ()sin [()]limlimcos cos .x a x a f x af x a b a x a x aξ→→--==--(其中ξ介于()f x 与a 之间)∴选B2.()()11ln |1|()12x x e x f x e x -+=--第二类间断点个数A.1B.2C.3D.4答案:C 解析:0,2,1,1x x x x ====-为间断点111110000ln |1|ln |1|ln |1|lim ()lim limlim (1)(2)222x x x x x x e x e x e x e f x e x x x ----→→→→+++===-=----0x =为可去间断点1122ln |1|lim ()lim(1)(2)x x x x e x f x e x -→→+==∞--2x =为第二类间断点1111ln |1|lim ()lim 0(1)(2)x x x x e x f x e x ---→→+==--1111ln |1|lim ()lim (1)(2)x xx x e x f x e x ++-→→+==∞--1x =为第二类间断点1111ln |1|lim ()lim(1)(2)x x x x e x f x e x -→-→-+==∞--1x =-为第二类间断点3.设奇函数()f x 在(,)-∞+∞上具有连续导数,则A.[]0cos ()'()xf t f t dt +⎰是奇函数B.[]0cos ()'()xf t f t dt +⎰是偶函数C.[]0cos '()()xf t f t dt +⎰是奇函数D.[]0cos '()()xf t f t dt +⎰是偶函数答案:A 解析:()[cos ()()]d xF x f t f t t'=+⎰()cos ()()F x f x f x ''=+由()f x 为奇函数知,()f x '为偶函数.cos ()f x 为偶函数.故()F x '为偶函数.()F x 为奇数∴选A4.设幂级数1(2)nnn na x ∞=-∑的收敛区间为(-2,6),则21(1)nnn a x ∞=+∑的收敛区间为A.(-2,6)B.(-3,1)C.(-5,3)D.(-17,15)答案:B 解析:由于1111(1)11limlim 4n n n n n n n a a na a R ρ++→∞→∞+====12121lim4.4n n na R a ρρ+→∞===∴=22R '∴==,故所求收敛域为(-3,1),∴选B.5.设4阶矩阵()ij A a =不可逆,12a 的代数余子式1212340,,,,A αααα≠为矩阵A 的列向量组,*A 为A 的伴随矩阵,则*0A x =的通解为A.112233x k k k ααα=++B.112234x k k k ααα=++C.112334x k k k ααα=++D.122334x k k k ααα=++答案:C 解析:∵A 不可逆∴|A |=0∵120A ≠∴()3r A =∴*()1r A =∴*0A x =的基础解系有3个线性无关的解向量.∵*||0A A A E ==∴A 的每一列都是*0A x =的解又∵120A ≠∴134,,ααα线性无关∴*0A x =的通解为112334x k k k ααα=++,故选C.6.设A 为3阶矩阵,12,αα为A 的属于特征值1的线性无关的特征向量,3α为A 的属于-1的特征向量,则1100010001P AP -⎛⎫ ⎪=- ⎪ ⎪⎝⎭的可逆矩阵P 为A.1323(,,)αααα+-B.1223(,,)αααα+-C.1332(,,)αααα+-D.1232(,,)αααα+-答案:D解析:1122,A A αααα==33A αα=-1100010001P AP -⎛⎫ ⎪=- ⎪⎪⎝⎭ P ∴的1,3两列为1的线性无关的特征向量122,ααα+P 的第2列为A 的属于-1的特征向量3.α-1232(,,)P αααα∴=+-∴选D7.设,,A B C 为三个随机事件,且1()()()4P A P B P C ===,()0P AB =,()P AC =1()12P BC =,则,,A B C 中恰有一个事件发生的概率为A.34 B.23C.12D.512答案:D 解析:()()()[()]P ABC P ABUC P A P A BUC ==-()()()()()()111004126P A P AB AC P A P AB P AC P ABC =-+=+-+=--+=()()()[()]()()()()111004126P BAC P B AUC P B P B AUC P B P BA P BC P ABC ==-=--+=--+=()()()[()]()()()()111104121212P CBA P CBUA P C P CU BUA P C P CB P CA P ABC ==-=--+=--+=()()()()1115661212P ABC ABC ABC P ABC P ABC P ABC ++=++=++=8.设随机变量(,)X Y 服从二维正态分布10,0;1,4;2N ⎛⎫- ⎪⎝⎭,随机变量中服从标准正态分布且与X 独立的是A.()5X Y +B.()5X Y -C.()3X Y +D.()3X Y -答案:C解析:[]12(),)333D X Y DX DY X Y ⎤+=++⎥⎣⎦[]123352133()03()~(0,1).3DX DY E X Y X Y N =++=-=⎤+=⎥⎣⎦+二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定的位置上9.设arctan[sin()],z xy x y =++则(0,)d |z π=________.解析:d d d zz z x y x x∂∂=+∂∂2(0,π)1[cos()],π11[sin()]z z y x y x xy x y x ∂∂=++=-∂+++∂2(0,π)1[cos()],11[sin()]z zx x y y xy x y y ∂∂=++=-∂+++∂∴(0,π)(π1)d d zx y x ∂=--∂10.曲线2e 0xyx y ++=在点(0,-1)处的切线方程为________.解析:21(22)0xy y e y xy ''+++=①将0,1x y ==-代入①得1.y k '==11(0)1.y x y x ∴+=-=-即11.Q 表示产量,成本()10013C Q Q =+,单价p ,需求量800() 2.3Q P P =-+则工厂取得利润最大时的产量为______.解析:()L QP C Q =-8003100132800161002Q QQ QQ Q ⎛⎫=--- ⎪+⎝⎭=--+22160016(2)()0(2)8Q L Q Q Q -+'==+∴=12.设平面区域21(,),0121x D x y y x x ⎧⎫=≤≤≤≤⎨⎬+⎩⎭,则D 绕y 轴旋转所成旋转体体积为______.解析:11222102x dy x dyππ+⎰⎰1122102121312014141ln 32411ln 23821ln 23y dy dyy y y πππππππ⎛⎫=+- ⎪⎝⎭⎡⎤=+-⎢⎥⎣⎦⎛⎫=⋅+- ⎪⎝⎭⎛⎫=- ⎪⎝⎭⎰⎰13.行列式01101111011a a a a --=--________.解析:2224201101101101111011011000011110111111000021214.0a a a a a a a aaa a a a a aa aaaa a a aa a a----=----+-+-==----=--=-14.随机变量X 的概率分布1{},1,2,32kP X k k Y ===…,表示X 被3除的余数,则()E Y =______.解析:{0}{3,1,2.}P Y P X k k ====L 3101{1}{31,0,1,2.}2k k P Y P X k k ∞+====+==∑L 321{2}{32,0,1,2.}2k k P Y P X k k ∞+====+==∑L 313211()1222k k k k E Y ∞∞++===⋅+⋅∑∑111111221188=+--87=三、解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答写出文字说明、证明过程或演算步骤.15.已知,a b 为常数,11e nn ⎛⎫+- ⎪⎝⎭与a b n ,当n →∞时为等价无穷小,求,a b .15.【解】1ln 11ln 112111e 11lim lim [e e]1lim e[e 1]11lim e ln 11111lim e 1211lim e 2nn an n n an a n n a n a n a n n n b b n n b n n b n n n b n n n b ⎛⎫+ ⎪⎝⎭→∞→∞⎛⎫+- ⎪⎝⎭→∞→∞→∞-→∞⎛⎫+- ⎪⎝⎭==-=⋅⋅-⎡⎤⎛⎫=⋅⋅+- ⎪⎢⎥⎝⎭⎣⎦⎡⎤⎛⎫=⋅-- ⎪⎢⎥⎝⎭⎣⎦⎛⎫=- ⎪⎝⎭10a ∴-=1e 112a b ⎛⎫∴=⋅-= ⎪⎝⎭e 2b =-16.求二元函数33(,)8f x y x y xy =+-的极值解析:.求一阶导可得22324fx y x fy x y∂=-∂∂=-∂令100601012f x x x f y y y∂⎧⎧==⎪⎪=⎧∂⎪⎪⎨⎨⎨∂=⎩⎪⎪==⎪∂⎪⎩⎩可得求二阶导可得2222226148f f fx y x x y y∂∂∂==-=∂∂∂当0,00. 1.0x y A B C -====-=时.20AC B -<故不是极值.当11612x y ==时1. 1. 4.A B C ==-=2110.10,612AC B A ⎛⎫->=> ⎪⎝⎭故且极小值极小值33111111,8661261212216f ⎛⎫⎛⎫⎛⎫=+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭17.若250,(0)1,(0)1y y y f f ''''++===-,则(1)求()f x (2)()d n n a f x x π+∞=⎰,求1nni a =∑解析:(1)250y y y '''++=的特征方程为2250r r ++=∴1212r i⋅=-±∴12()e (cos 2sin 2)xy x c x c x -=+1212()e (cos 2sin 2)e (2sin 22cos 2)x x y x c x c x c x c x --'=-++-+∵(0)1,(0)1y y '==-∴121,0c c ==∴()ecos 2xy x x-=(2)()d e cos 2d x n n n a f x x x xππ+∞+∞-==⎰⎰cos 2d e cos 2e e d cos 2e2e sin 2d e 2sin 2d e e 2sin 2e 2e cos 2d 5e 1e 5x x x n n n n x n n xn n xx n n n n n n x x x x x x x x x a a ππππππππππππ+∞+∞+∞---+∞--+∞--+∞+∞-----=-=-⋅+=--=-+=-+-+∴=-∴=-⎰⎰⎰⎰⎰211[e e e ]51e [1e ]51e 11e 5e 1nn i i n n a ππππππππ---=----=-+++-=-⋅--=-⋅-∑…18.(,)(,)d d Df x y x f x y x y =+⎰⎰其中221(,)0x y D x y y ⎧⎫+≤⎪⎪=⎨⎬≥⎪⎪⎩⎭求(,)d Dxf x y σ⎰⎰解析:积分区域D如图:(,)(,)d d Df x y x f x y x y =⎰⎰两边积分得(,)d d d (,)d d d d D DD D f x y x y x y f x y x y x x y =+⋅⎰⎰⎰⎰⎰⎰⎰⎰100d 2d D x y x y=⎰⎰⎰2012(1)d 2x x =-⎰31220(1)d x x =-⎰42031πsin cos d 422x t t t π==⋅⋅⎰3π16=d d 0Dx x y =⎰⎰所以3π(,)d d 16D f x y x y =⎰⎰3π(,)16f x y x =从而23π(,)d d d d d 16D D Dxf x y x y x y x x y =+⎰⎰⎰⎰⎰⎰23πd d 16Dx x y =⎰⎰12003πd d 16x y =⎰13π16x x =⎰22203πsin sin cos d 16x t t t t π=⎰22203πsin (1sin )d 16t t t π=-⎰3π1π31π1622422⎛⎫=⋅-⋅⋅ ⎪⎝⎭3π256=19.()f x 在[0,2]上具有连续导数,max{|()|},[0,2]M f x x =∈(1)证[0,2]|()|M f ξξ'∃∈≤(2)若[0,2]|()|0x f x M M '∀∈≤=则解析:证明:(1)由max{|()|}[0,2]M f x x =∈,知存在[0,2]c ∈,使|()|f c M =,若[0,1]c ∈由拉格朗日中值定理得至少存在一点(0,)c ξ∈,使()(0)()()f c f f c f c c ξ-'==从而|()||()|f c M f M c cξ'==≥若(1,2]c ∈,同理存在(,2)c ξ∈使(2)()()()22f f c f c f c c ξ--'==--从而|()||()|22f c M f M c c ξ'==≥--综上,存在(0,2)ξ∈,使|()|f M ξ'≥.(2)若0M >,则0,2.c ≠由(0)(2)0f f ==及罗尔定理知,存在(0,2)η∈,使()0,f η'=当(0,]c η∈时,00()(0)()d |()||()(0)||()|d ,cc f c f f x x M f c f c f f x x Mc '-='==-≤<⎰⎰又2(2)()()d c f f c f x x'-=⎰2|()||(2)()||()|(2)c M f c f f c f x dx M c '==-≤≤-⎰于是2(2)2M Mc M c M <+-=矛盾.故0.M =20.设二次型22121122(,)44f x x x x x x =++经正交变换1122x y Q x y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭化为二次型22121122(,)4g y y ay y y by =++,其中a b ≥.(1)求,a b 的值.(2)求正交矩阵Q .解析:(1)设1-22==-242a A B b ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦由题意可知T 1.Q AQ Q AQ B -==∴A 合同相似于B∴144a ba b ab +=+⎧≥⎨=⎩∴ 4.1a b ==(2)212||524E A λλλλλ--==--∴A 的特征值为0,5当0λ=时,解(0)0E A x -=.得基础解为121α⎡⎤=⎢⎥⎣⎦当5λ=时,解(5)0E A x -=得基础解为212α⎡⎤=⎢⎥-⎣⎦又B 的特征值也为0,5当0λ=时,解(0)0E B x -=得1212βα⎡⎤==⎢⎥-⎣⎦当5λ=时,解(5)0E B x -=得2121βα⎡⎤==⎢⎥⎣⎦对12,αα单位化111222||||αγααγα====令112221[,],[,]Q Q γγγγ==则T T 11220005Q AQ Q BQ ⎡⎤==⎢⎥⎣⎦故T T 2112Q Q AQ Q B=可令T 1243553455Q Q Q =⎤⎥⎥=⎥⎥⎦⎡⎤-⎢⎥=⎢⎥⎢⎥--⎢⎥⎣⎦21.设A 为2阶矩阵,(,)P A αα=,其中α是非零向量且不是A 的特征向量.(1)证明P 为可逆矩阵(2)若260A A ααα+-=,求1P AP -,并判断A 是否相似于对角矩阵.解析:(1)0.A ααλα≠≠且故.A αα与线性无关则(,)2r A αα=则P 可逆.21(,)(,)06()1106.11AP A A A A x A P AP ααααα-==⎛⎫= ⎪-⎝⎭⎛⎫= ⎪-⎝⎭故(2)由260A A ααα+-=设2(6)0(3)(2)0A A E A E A E αα+-=+-=由20(6)0A A E x α≠+-=得有非零解故|(3)(2)|0A E A E +-=得|3|0|2|0A E A E +=-=或若|(3)|0(2)02A E A E A ααα+≠-==则有故与题意矛盾|3|0|2|0A E A E +=-=故同理可得于是A 的特征值为123 2.λλ=-=A 有2个不同特征值故A α相似对角化22.二维随机变量(,)X Y在{(,)0D x y y =<<上服从均匀分布11000X Y Z X Y ->⎧=⎨-≤⎩ ,21000X Y Z X Y +>⎧=⎨+≤⎩ (1)求12(,)Z Z 联合分布(2)12Z Z ρ解析:(1)(,)x y服从均匀分布则2,0(,)0,y f x y π⎧<<⎪=⎨⎪⎩其他则121{0,0}{,}4P Z Z P X Y X Y ===≤≤-=121{0,1}{,}2P Z Z P X Y Y X ===≤>-=12{1,0}{,}0P Z Z P X Y X Y ===>≤-=121{1,1}{;}4P Z Z P X Y X Y ===>>-=(2)12,Z Z的相关系数ρ=1113116444.3316=-⋅==23.设某种元件的使用寿命T 的分布函数为1e,0,()0,.mt t F t θ⎛⎫- ⎪⎝⎭⎧⎪-≥=⎨⎪⎩其他其中m θ,为参数且大于零.(1)求概率{}P T t >与{|}P T S t T S >+>,其中0,0S t >>.(2)任取n 个这种元件做寿命试验,测得它们的寿命分别为12,,n t t t …,若m 已知,求θ的最大似然估计值ˆθ.解析:(1){}1()m t P T t F t e θ⎛⎫- ⎪⎝⎭>=-={}{}mt P T s t T s P T t e θ⎛⎫- ⎪⎝⎭>+>=>=(2)1.,0()()0t m m m m t e t f t F t else θθ⎛⎫- ⎪--⎝⎭⎧⎪≥'==⎨⎪⎩ 似然函数()1()n i i L f t θθ==∏,()11100n m m i i t m n mn n i m t t e t else θθ-=---⎧∑⎪≥=⎨⎪⎩ 当120,0,,0n t t t ≥≥≥ 时()111()nm mi i t m n mn n L m t t e θθθ-=---∑= 取对数11ln ()ln ln (1)ln n nm mi i i i L n m mn m t t θθθ-===-++-∑∑求导数(1)1ln ()n m m i i d L mn m t d θθθθ-+==-+∑令ln ()0d L d θθ=解得θ所以θ的最大似然估计值θ。
2020考研数学一真题
2020年全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上.(1)当0x +→,下列无穷小量中最高阶的是(A )2(1)xt e dt -⎰(B)0ln(1xdt⎰(C )sin 20sin xt dt⎰.(D)1cos 0-⎰(2)设函数()f x在区间(1,1)-有定义,且0lim ()0x f x →=,则()(A )当x →=时,()f x 在0x =处可导(B )当x →=时,()f x 在0x =处可导(C )()f x 在0x =处可导时,0x →=(D )()f x 在0x =处可导时,x →=(3)(,)f x y 在()00,可微,(0,0)0f =,()''(0,0),,1x y n f f =-,非0向量n α⊥,则()(A )(,)limx y →存在(B )(,)limx y →存在(C )(,)limx y →存在(D )(,)limx y →存在(4)R 为1nnn a x∞=∑收敛,r 为实数,则()(A )221nnn ax∞=∑发散,则r R≥(B )221nnn ax ∞=∑收敛,则r R≤(C )r R≥,221nnn ax∞=∑发散(D )r R≤,则221nnn ax ∞=∑收敛(5)若矩阵A 由初等列变换为矩阵B ,则()(A )存在矩阵P ,使PA B =;(B )存在矩阵P ,使BP A =;(C )存在矩阵P ,使PB A =;(D )方程组0AX =与=0BX 同解;(6)已知22211113332322::x a y b z c l a b c x a y b z c l a b c ---==---==相交于一点,令i i i i a b c α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1,2,3i =,则()(A )1α可由2α,3α线性表示(B )2α可由1α,3α线性表示(C )3α可由1α,2α线性表示(D )123,,ααα线性无关(7)()()()()()()121,0,41======BC P AC P AB P C P B P A P ,则C B A ,,恰好发生一个的概率为()(A )43(B )32(C )21(D )512(8)设为12100,,...,x x x 来自总体X 的简单随机样本,其中1{0}{1}2P x P x ====,()x Φ表示标准正态分布函数,则由中心极限定理可知,1001{55}i P x =≤∑的近似值为()(A )1(1)-Φ(B )(1)Φ(C )1(0.2)-Φ(D )(0.2)Φ二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.()011lim 1ln1x x e x→⎡⎤-=⎢⎥-+⎣⎦.(10)设(ln x y t ⎧=⎪⎨=⎪⎩,则221t d y dx ==.数()f x 满足()()()0f x af x f x '''++=()0a >,且()0f m=,()0f n'=,则()f x dx +∞=(12)设函数2dt,则()21,1f x y∂=∂∂.(13)行列式01101111011a a a a --=--.(14)已知随机变量X 服从区间,22ππ⎛⎫- ⎪⎝⎭上的均匀分布,sin Y X =,则(),Cov X Y =.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上.(15)(本题满分10分)求函数()33,8f x y x y xy=+-的极值.(16)(本题满分10分)计算2222444L x y x yI dx dy x y x y -+=+++⎰,其中L 为222x y +=,方向为逆时针方向.(17)(本题满分10分)设数列{}na满足11a=,11(1)2n nn a n a+⎛⎫+=+⎪⎝⎭.证明:当1x<时幂级数1nnna x∞=∑收敛并求其和函数.(18)(本题满分10分)设∑为曲面224)z x y =≤+≤下侧,()f x 为连续函数.计算()[]()2()2I xf xy x y dydz yf xy y x dzdx zf xy z dxdy∑=+-+++++⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰(19)(本题满分10分)设函数()f x 在[]0,2上具有连续导数.()()020f f ==,[](){}0,2max x M f x ∈=.证:(1)存在()0,2ξ∈使()f Mξ'≥(2)若对任意()0,2x ∈,()f x M'≤,则0M =.(20)(本题满分11分)设二次型()22121122,44f x x x x x x=-+经正交变化1122x yQx y⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭化为二次型()22121122,46g y y ay x x y=++,其中a b≥.(1)求a,b的值(2)求正交变换矩阵Q(21)(本题满分11分)设A 为2阶矩阵,(),P A αα=,其中α是非零向量且不是A 的特征向量.(1)证明P 为可逆矩阵.(2)若260A A ααα+-=,求1P AP -,并判断A 是否相似于对角矩阵.(22)(本题满分11分)设随机变量123,,X X X 相互独立,其中1X 与2X 均服从标准正态分布,3X 的概率分布为331{0}{1}2P X P X ====,3132(1)Y X X X X =+-。