有机物燃烧计算

合集下载

烃的燃烧通式

烃的燃烧通式

烃的燃烧通式烃是一类含有碳氢化合物的有机化合物,它们在燃烧过程中可以产生大量的热能。

烃的燃烧过程可用通式表示,该通式描述了在适当的反应条件下,烃与氧气反应产生二氧化碳和水的转化过程。

燃烧通式可以用于描述烃的燃烧反应以及计算与燃烧相关的能量变化。

烃的燃烧通式的一般形式为:CₙHₙ + (n + m/4)O₂ → nCO₂ + (m/2)H₂O其中,CₙHₙ代表烃的化学式,n和m分别代表烃中碳和氢的摩尔数。

通式中的系数n和m表示在适当的物质量条件下与氧气反应时生成的相应物质的摩尔数。

生成物的化学式为nCO₂和(m/2)H₂O,其中n表示生成的CO₂的摩尔数,(m/2)表示生成的H₂O的摩尔数。

在燃烧通式中,燃料(烃)被氧气氧化,生成二氧化碳和水。

例如,对于甲烷(CH₄)的燃烧反应,其燃烧通式可以写为:CH₄ + 2O₂ → CO₂ + 2H₂O在这个例子中,甲烷的一个分子与两个氧气分子发生反应,产生一个二氧化碳分子和两个水分子。

这个通式代表了甲烷的燃烧反应过程,同时给出了燃烧反应中生成物的相对摩尔比例。

烃的燃烧通式可用于描述不同种类的烃燃烧反应。

例如,乙烷的燃烧通式为:C₂H₆ + 7/2O₂ → 2CO₂ + 3H₂O丙烷的燃烧通式为:C₃H₈ + 9/2O₂ → 3CO₂ + 4H₂O通过这些燃烧通式,我们可以了解到燃烧过程中烃与氧气的摩尔比例,以及生成的二氧化碳和水的摩尔比例。

燃烧反应中生成二氧化碳和水的摩尔比例是根据化学方程式中的系数确定的,并符合化学方程式的摩尔比例关系。

除了描述燃烧反应的化学方程,燃烧通式还可以用于计算与燃烧相关的能量变化。

燃烧反应是放热反应,因此燃烧通式中的反应物与生成物之间的能量差是负值。

根据燃烧通式,我们可以计算出燃烧反应的能量变化,这是理解燃烧反应的重要方面。

燃烧通式还可以用于研究燃烧反应的条件和化学动力学。

通过燃烧通式,我们可以确定燃烧反应所需的理论氧化剂量,以及生成物的相对摩尔比例。

烃类完全燃烧的计算规律

烃类完全燃烧的计算规律

烃类完全燃烧的计算规律高中有机化学的学习中,经常涉及烃类完全燃烧的计算的题目。

如何解决这一类题目,既是难点,也是重点内容之一。

为了使同学们熟练解题,系统掌握基础知识,现将有关规律总结如下,供大家参考。

一、烃类完全燃烧的通式CxHy + (x+y/4)O2→xCO2 + (y/2)H2O二、烃类完全燃烧前后体积(分子总数)的变化规律1、同温同压下,1体积烃类完全燃烧,当生成的水为气态时(温度高于100℃)△V = V前– V后= 1 + x + y/4 – x – y/2 =1 – y/4当△V ? 0时, V前? V后,则燃烧前后气体的体积减小,此时y ? 4当△V?0时, V前?V后,则燃烧前后气体的体积减小,此时y ?4当△V =0时, V前= V后,则燃烧前后气体的体积减小,此时y = 4可见,当温度高于100℃时,燃烧前后的体积的变化与碳原子数无关,与氢原子数有关。

例如:150℃时,CH4、C2H4完全燃烧前后的体积不变(即分子数不变),而C2H2燃烧前后的体积变小,C2H6等氢原子数大于4的烃燃烧前后的体积变大。

对于混合气体,求氢原子的平均原子数,亦可适用。

练习1:120℃时,下列气体物质(或混合物)各 a mol,在氧气中完全燃烧,燃烧前后体积不变的有(),燃烧前的体积大于燃烧后的体积的有(),燃烧前的体积小于燃烧后的体积的有()。

A、C2H2B、C2H4与C2H2C、C2H2与C3H6(1:1)D、C3H8与CH4(1:1)E、C2H4与C3H4答案:(C、E); (A、B); (D)2、同温同压下,1体积烃类完全燃烧,当生成的水为液态时(温度低于100℃)。

△V = V前– V后= 1 + x + y/4 – x =1 + y/4则必然△V ? 0, V前? V后,则燃烧前后气体的体积一定减小,这取决于氢原子数,氢原子数越多,体积减少的越多。

例如:在50℃时,1mol的C2H6燃烧前后气体体积减少要比1mol的C2H4体积减少的多。

2020中考化学有机物燃烧 计算方法汇总

2020中考化学有机物燃烧   计算方法汇总

有机物燃烧规律计算方法汇总知识导图知识点一烃完全燃烧规律1.等物质的量的烃燃烧耗氧量2.等质量的烃燃烧耗氧量。

3、烃燃烧时生成的CO2和H2O的量的比较4.烃x H y燃烧V的变化规律知识点二烃的衍生物燃烧规律1 单独的,等物质的量的烃的衍生物完全燃烧耗氧量比较的规律:知识点三有机物混合时的耗氧量和产物水和二氧化碳的量1 总的物质的量不变时2 总的质量不变时知识点一烃完全燃烧规律1C x H y+(x+)O2xCO2+H2O21、等物质的量的烃完全燃烧耗氧量比较的规律:对于等物质的量的任意烃(CxHy) ,完全燃烧,耗氧量的大小取决于(x+y/4) 的值的大小,该值越大,耗氧量越多。

【课堂练习】1. 取下列四种气态烃各1mol,分别在足量的氧气中燃烧,消耗氧气最多的是(D )A CH4B C2H6C C3H8D C4H10解析:直接计算x+就行。

32、等质量的烃燃烧耗氧量的计算法一通过计算解析:当各种烃的质量都是1g的时候,耗氧量就是n,通过数学方法将得到的耗氧量式子进行变形,可以知道,等质量的烃燃烧时耗氧量和y/x的大小有关。

y/X值越大,耗氧量越多。

具体如下:法二通过近似412gC---1molC---1molCO2----1molO212gH---12molH---6molH2O----3molO2因此等质量的不同烃完全燃烧,烃中H的质量分数越大,耗氧量越多。

可先把分子式化为CHy/x,然后比较y/X值的大小,y/X值越大,H的质量分数越大,耗氧量越多。

【课堂练习】1. 等质量的下列烃完全燃烧时,消耗氧气最多的是(A )A CH4B C2H6C C3H8D C6H2. 等质量的下列有机物耗氧量由大到小的顺序是_①>③>④=②>⑤。

①C2H6②C2H4 ③C3H8④聚乙烯⑤C4H653、烃燃烧时生成的CO2和H2O的量的比较6C x H y+(x+)O2xCO2+7H2O(1)等物质的量的烃燃烧生成CO2和H2O的量的比较x越大,生成CO2越多,y越大,生成H2O越多。

有机物燃烧公式

有机物燃烧公式

有机物燃烧公式
1有机物燃烧
有机物燃烧是一种化学反应,是一种热量的产生,它的发生依靠的是“氧化”的反应,即燃烧的反应物比反应产物更加有活性,特别是和氧反应时产生大量的热量,让反应成为可能。

一般来说,有机物燃烧公式是:有机物(CnHm)+O2——>CO2+H2O;即有机物加氧,产生二氧化碳和水。

2化学反应
有机物燃烧一般集中在脱氢作用的化学反应,它的过程又有分为还原慢和氧化快两个步骤,碳原子反应后形成一个氧原子,而氢原子则与氧、产生水。

整个反应过程,氧用的越多,二氧化碳的形成就越多,水的形成也越多。

反应的最终产物就是二氧化碳和水,其中二氧化碳的量比水的量要多得多,所以有机物燃烧反应也叫做“氧化作用”或者“碳化氢”。

3热量的产生
有机物燃烧公式对于产生热量来说,最重要的是氧化过程。

当有机物与氧反应时,产生的不同的化学物质具有不同的熔融温度,这也就说明了有机物燃烧所释放的热量是不同的,当氧比有机物多时,狭义的说就是氧气比较多时,燃烧所释放的热量比较多,就像大多数燃料燃烧时要比空气多时。

4氧化还原作用
有机物燃烧不只是热量的产生,还能对氧化还原发挥作用。

燃烧前,有机物多以它们平衡态氧化物的状态(即可以燃烧的),反应过程中,有机物就表现出氧化性,在氧化反应中二氧化碳和水都会释放出来,有机物同时又可以带火的颜色的特性,平衡态氧化后的有机物及其释放的产物比原先要稳定的多。

有机物燃烧是一种热量的产生,也是一种氧化还原作用,从有机物燃烧公式可以看出,有机物专业加氧会产生二氧化碳和水,而燃烧所释放的热量也可以和它的熔融温度来衡量,有机物燃烧的反应就是物理化学的重要现象,并被广泛应用于生活和工业中。

有机物燃烧计算归纳

有机物燃烧计算归纳

有机物燃烧计算归纳有机物完全燃烧的通式:烃:CxHy+(x+y/4)O2→xCO2+(y/2)H2O烃的衍生物:CxHyOz+(x+y/4-z/2)O2→xCO2+(y/2)H2O一、烃及其含氧衍生物完全燃烧时耗氧量规律1.有机物的质量一定时:[1] 烃类物质(CxHy)完全燃烧的耗氧量与x/y成正比;【推导】设烃的质量为m ,含氢的质量分数为ω,有关系式C~O2~CO2 及4H~O2~2H2O可知该厅的耗氧量为:n(O2) = m(1-ω)/12 + mω/4= m/12 +mω/6当m 为定值时,ω值越大,耗氧量就越大。

a 对于等质量的烷烃,碳原子数越多,氢的质量分数越小,耗氧量越小,由此可知CH4的耗氧量最多。

b 对于等质量的单烯烃,因炭、氧的个数比为定值,氢的质量分数也为定值,即耗氧量相等。

c 对于等质量的炔烃,碳原子数越多,氢的质量分数越大,耗氧量越多,由此可知C2H2 的耗氧量最少。

d 等质量烷烃、单烯烃、炔烃,因为氢的质量分数关系导致耗氧量的关系如下:“烷烃﹥烯烃﹥炔烃”。

[2] 燃烧时耗氧量相同,则两者的关系为:⑴同分异构体或⑵最简式相同。

2.有机物的物质的量一定时:a 燃烧的通式法:即烃按(x+y/4)耗氧量越多直接比较;烃的衍生物按(x+y/4-z/2)进行比较即可。

b 变形法:若属于烃的含氧衍生物,先将分子中的氧原子结合氢或碳改写成H2O或CO2的形式,即将含氧衍生物改写为CxHy•(H2O)n 或CxHy•(CO2)m或CxHy•(H2O)n•(CO2)m形式,再按①比较CxHy的耗氧量。

二、烃及其含氧衍生物完全燃烧时生成CO2及H2O量规律1.将CxHy转换为CHy/x,相同质量的烃完全燃烧时y/x值越大,生成水的量越多,而产生的CO2量越少。

y/x相同,耗氧量,生成H2O 及CO2的量相同。

2.有机物的物质的量一定时,有机物完全燃烧时生成的CO2或H2O的物质的量一定,则有机物中碳原子或氢原子的个数一定;若混合物总物质的量一定,不论按何种比例混合,完全燃烧后生成的CO2或H2O的量保持不变,则混合物中各组分中碳或氢原子的个数相同。

2020中考化学专题复习之有机物燃烧的计算(21张PPT)

2020中考化学专题复习之有机物燃烧的计算(21张PPT)

16.在点燃的条件下,6.4 g的甲烷与一定量的氧气恰好完全反应,生成8.8 g的二氧化碳、14.4 g的水和5.6 g的一氧化碳,则参加反应的氧气的质量为 ________,此反应的化学方程式为______________________。
5. 2015年诺贝尔奖获得者屠呦呦发现的青蒿素是一种抗疟疾药,若14.1 g 青蒿素燃烧生成33.0 g CO2和9.9 g H2O,则青蒿素中氧的质量与其燃烧 消耗氧气的质量之比为___________________。
6.为及时发现燃气泄漏,常在燃气中加入少量有特殊气味的乙硫醇(C2H5SH ), 乙硫醇也可以充分燃烧,化学方程式为:2C2H5SH+9O2 4CO2+2X+6H2O。 下列关于X的说法正确的是 ( ) A.X由碳、硫、氧三种元素组成 B.X属于有机化合物 C.X中硫、氧元素的原子个数比为1∶2 D.X中氧元素的质量分数为60%
3.综合计算
计算质量比、相对分子质量比和化学计量数之比:
化学方程式中各物质的化学计量数(或参加反应的 微粒个数)之比等于各物质的质量除以自身相对分 子质量之比。
12. 某物质4.6 g与氧气反应,生成8.8g CO2和5.4g H2O。正确说法是( ) A. 参加反应的O2的质量为11.2g B. 该物质中碳、氢元素质量比为1:3 C. 生成CO2和H2O 的分子个数比为2:3 D. 该物质一定含有碳、氢元素,可能含有氧元素
9.已知一定质量的纯净物A跟32 g氧气恰好完全反应,生成22 g二氧化碳 和18g水,下列说法错误的是 ( ) A.参加反应的A的质量是8 g B.物质A中一定含有碳、氢元素,可能含有氧元素 C.该反应中氧气和二氧化碳的化学计量数之比为2∶1 D.物质A的化学式是CH4

完全燃烧放出热量的计算公式

完全燃烧放出热量的计算公式

完全燃烧放出热量的计算公式
据统计,人类燃烧的化石燃料产生的热量,约占全球热量消耗量的80%。

这是因为化石燃料燃烧能放出最大数量的热量,是目前世
界上最受欢迎的能源。

因此,了解完全燃烧放出热量的计算公式非常重要。

完全燃烧是指有机物在受到充足的氧气的环境中燃烧,完全燃烧可以将化石燃料最大限度地放出能量。

完全燃烧可以准确地计算出放出的热量,这对于精确测量和估算能源成本至关重要。

因此,研究完全燃烧放出热量的计算公式具有重要意义。

完全燃烧放出热量的计算公式可以用如下方式表达:Q=m×Cp×T,其中Q表示放出热量(单位J),m表示化石燃料质量(单位g),Cp
表示化石燃料的比热容(单位J/g℃),T表示改变温度(单位℃)。

其中,Q是完全燃烧放出热量的主要变量,它是化石燃料质量、燃烧时温度变化和燃料的比热容之和。

其次,m是完全燃烧放出热量的变量之一,它是考虑燃料的物质量,以g为单位。

此外,Cp是完
全燃烧放出热量的变量之一,它是考虑燃料的比热容,一般以J/g℃为单位表示。

最后,T是完全燃烧放出热量的变量之一,它是考虑燃烧时温度变化,以℃为单位表示。

以上就是完全燃烧放出热量的计算公式。

虽然这个公式看起来比较复杂,但是理解它的原理却非常简单,它要求考虑燃料的物质量、比热容和燃烧时温度的变化。

综上所述,完全燃烧放出热量的计算公式是一个十分重要的公式,
它可以用来准确测量和估算能源消耗量。

它能够准确地计算出燃烧过程放出的热量,这有助于我们更好地利用化石燃料,有效地控制环境污染。

燃烧反应的反应热计算

燃烧反应的反应热计算

燃烧反应的反应热计算一、引言在化学反应中,燃烧反应是常见且重要的一种类型。

燃烧反应通常伴随着能量释放,这反映在反应热的计算上。

本文将介绍燃烧反应的反应热计算方法和其应用。

二、理论基础在燃烧反应中,反应物常为有机物或无机物燃料,而氧气是氧化剂。

燃烧反应的特点之一是生成了二氧化碳和水。

燃烧反应的反应热可以通过燃料的燃烧热和生成物的反应热来计算。

三、计算方法1. 燃料的燃烧热燃料的燃烧热是指在标准状态下,完全燃烧1摩尔燃料时释放的能量。

通常用单位质量(例如焦耳/克)或单位摩尔(例如焦耳/摩尔)来表示。

燃料的燃烧热可以通过实验测定得到,也可以通过计算得到。

例如,甲烷(CH4)的燃烧热为-890.3 kJ/mol。

2. 生成物的反应热生成物的反应热是指生成1摩尔物质所释放或吸收的能量。

例如,生成1摩尔二氧化碳(CO2)所释放的反应热为-393.5 kJ/mol,生成1摩尔水(H2O)所释放的反应热为-285.8 kJ/mol。

3. 反应热的计算根据燃料的燃烧热和生成物的反应热,可以通过以下公式计算燃烧反应的反应热:ΔH = ΣH(products) - ΣH(reactants)其中,ΔH表示反应热,ΣH表示各物质的反应热。

在计算过程中,需要注意反应物和生成物的摩尔系数,以保证计算结果的准确性。

四、应用举例以甲烷的燃烧反应为例,根据上述计算方法可以得到其反应热的计算过程如下:CH4 + 2O2 → CO2 + 2H2O反应热= [ΣH(products)] - [ΣH(reactants)]= [(1 mol CO2 × -393.5 kJ/mol) + (2 mol H2O × -285.8 kJ/mol)] - (1 mol CH4 × -890.3 kJ/mol)= -802.3 kJ/mol因此,甲烷的燃烧反应热为-802.3 kJ/mol。

该结果表明在甲烷完全燃烧的过程中,释放了802.3 kJ的能量。

标准燃烧热理查德法卡拉奇法

标准燃烧热理查德法卡拉奇法

标准燃烧热计算一、理查德(Richard)法理查德(Richard)认为,有机化合物的标准燃烧热与该化合物完全燃烧时所需的氧原子数成直线关系,即q c=Σa+xΣb (6-17)式中a、b--常数,与化合物结构有关,其值见表6-6;x--化合物完全燃烧(产物为CO2、H2O、N2、HX、SO2等)时所需的氧原子数。

表6-6 基数值相态 a b液态气态23.8623.02218.05219.72用理查德法计算化合物的标准燃烧热时还必须遵循以下规则。

1. 在计算任何化合物的标准燃烧热时,首先要按化合物的相态计入表6-6中所列的a、b值(正烷烃的a、b值),作为基数。

液态与固态化合物均按液态计,气态化合物按表中气态的a、b值计。

2. 分子中如有支链存在,或在环状结构分子中有二个或二个以上烷烃取代基存在时,则必须加上烷烃支链数值,但只加一次,因此苯和甲苯无支链值,但二甲苯、异丙苯及六甲基环己烷均须计入支链值,只计一次。

3. 分子中存在二个以上相同的官能团,则a值应乘以该官能团的个数,而b值仍以一个计算,但烷烃取代基与支链烃取代基例外。

4. 分子中存在多个不相同的官能团时,应将各个官能团的a、b值分别计入式(6-17)。

有时对于同一个官能团可以有二种不同的选择,例如甲酰胺(HCONH2)既可以看作是醛+胺,也可以看作是酰胺。

遇到这种情况应该选择较复杂的官能团数值,或选择在表中排列较后的官能团的a、b数值。

对于甲酰胺只能取酰胺的数值而不能取醛与胺的数值再相加。

脲型和二缩脲型的基团则例外,二者都应看作含有二个酰胺,而二缩脲还要加一个胺基的数值。

此类情况常适用于含氮化合物。

5. 所选择的官能团a、b数值应与化合物的相态一致。

在一般情况下可以用液态数值代替固态数值,因为对非极性或极性很小的有机化合物,其熔融热通常不大,不会引起大的误差。

6. 有机碱与无机酸生成的盐类及水化合物的燃烧热除了要计算相应的碱与酸的燃烧热外,还须加上校正值。

有机物燃烧的规律及有关计算

有机物燃烧的规律及有关计算

勤奋!博学!笃志!感恩!专题:有机物燃烧的规律及有关计算一、烃完全燃烧前后气体体积的变化完全燃烧的通式:C x H y +(x+4y )O 2xCO 2+2y H 2O (1) 燃烧后温度高于100℃时,水为气态:14y V V V ∆=-=-后前 ① y =4时,V ∆=0,体积不变;② y>4时,V ∆>0,体积增大;③ y<4时,V ∆<0,体积减小。

(2) 燃烧后温度低于100℃时,水为液态:14y V V V ∆=-=+后前 ※ 无论水为气态还是液态,燃烧前后气体体积的变化都只与烃分子中的氢原子个数有关,而与烃分子中的碳原子数无关。

【典例分析】a mL 三种气态烃的混合物与足量的氧气混合点燃爆炸后,恢复到原来的状态(常温常压),体积共缩小2a mL 。

则三种烃可能是( A )A 、CH 4、C 2H 4、 C 3H 4B 、C 2H 6、C 3H 6、C 4H 6C 、CH 4、C 2H 6 、C 3H 8D 、C 2H 4、C 2H 2、CH 4【对应练习】.1.01×105 Pa 、150℃时,将1 L C 2H 4、2 L C 2H 6与20 L O 2混合并点燃,完全反应后O 2有剩余。

当反应后的混合气体恢复至原条件时,气体体积为( D )A .15 LB .20 LC .23 LD .24 L二、烃类完全燃烧时所耗氧气量的规律完全燃烧的通式:C x H y +(x+4y )O 2xCO 2+2y H 2O (1) 相同条件下等物质的量的烃完全燃烧时,(x+4y )值越大,则耗氧量越多; (2) 质量相同的有机物,其含氢百分率(或y x 值)越大,则耗氧量越多; (3) 1mol 有机物每增加一个CH 2,耗氧量多1.5mol ;(4) 1mol 含相同碳原子数的烷烃、烯烃、炔烃耗氧量依次减小0.5mol ;(5) 质量相同的C x H y ,x y 值越大,则生成的CO 2越多;若两种烃的x y值相等,质量相同,则完全燃烧耗氧量、生成的CO 2和H 2O 均相等。

高中化学有机物燃烧计算方法规律总结_

高中化学有机物燃烧计算方法规律总结_

高中化学有机物燃烧计算方法规律总结_具体有:a.含碳原子数相同的烯烃、环烷烃、饱和一元醇等完全燃烧时耗O2量相同;b.含相同碳原子数的炔烃、二烯烃、饱和一元醛、饱和二元醇等完全燃烧时耗O2量相同Ic.含相同碳原子数的饱和一元羧酸、酯、饱和三元醇完全燃烧时耗O2量相同.(2)质量相同时,最简式相同,耗02量相同.最简式相同的有:CH C2H2与C,H 等;CH2 烯烃与环烷烃;CH20 甲醛、乙酸、甲酸甲酯、葡萄糖等;CHO 饱和一元醛、饱和一元羧酸、饱和一元酯等.(3)烃、烃的含氧衍生物组成的混合物,当总量(总质量或总物质的量)不变,而其中各组分的比例变化时,完全燃烧后,要使生成的C02量或H20量或耗02量不变,各组分必须满足的条件是:①混合物总质量一定时,若完全燃烧后生成的C02(或H20)为一恒量,则要求各组分含C的质量分数(或H的质量分数)相等,而无论其最简式是否相同.如CzH:与C6H,;CH:与C~OH802;等等.若完全燃烧时耗O:量为一恒量,则要求各组分最简式相同.如C2H402和CH20等.②混合物总物质的量一定时,若完全燃烧后生成的CO:(或H20)为一恒量,则要求各组分分子中含C原子(或H原子)的数目相等.如CzH+与C2H40等.若完全燃烧时耗O。

量为一恒量,则要求各组分耗O:量相等.如C2H:与C2H~O等.5.求算烃的衍生物分-S-式的基本75法(1)依据相对分子质量求算.规律;C~HyO。

=(M zXl6)/12,所得的商为J,余数为y.注意 1个CH:原子团的相对分子质量=1个O原子的相对原子质量=16.(2)依各类烃衍生物分子式的通式求算.(3)依据相对分子质量和最简式求算。

(4)由燃烧产物求算.6.有机物的推断(1)有机物推断题的主要类型.有机物的推断一般有以下几种题型:①由结构推断有机物;②由性质推断有机物;③由实验推断有机物;④由计算推断有机物等.(2)有机物推断题的解题思路和方法:①顺推法:抓住有机物的结构、性质和实验现象这条主线,顺着题意正向思维,由已知逐步推向未知,最后作出正确的推断.②逆推法:抓住有机物的结构、性质和实验现象这条主线,逆向思维,从未知逐步推向已知,抓住突破口,把题中各种物质联系起来进行反推,从而得到正确的推断.⑧剥离法:先根据已知条件把明显的未知因素首先剥离出来,然后根据已知将已剥离出来的未知因素当做已知,逐个求解那些潜在的未知因素.④分层推理法:先根据题意进行分层推理,得出每一层的结构,然后再将每一层结构进行综合推理,最后得出正确的推断结论.上述几种方法往往交替结合使用,使之快速简便.7.有机物的合成(1)有机合成途径和路线选择的基本要求.有机合成往往要经过多步反应才能完成,因此确定有机合成的途径和路线时就要进行合理选择,其选择的基本要求是:原料价廉,原理正确,路线简捷,便于操作,条件适宜,易于分离,产率高,成本低.(2)有机合成题的解题思路和途径.解答有机合成题时,首先要正确判断合成的有机物属于何种有机物,它带有什么官能团,它和哪些知识和信息有关,它所在的位置的特点等.其次,根据现有原料、信息和有关反应规律,尽可能合理地把目标有机物解剖成若干片断,或寻找官能团的引入、转换、保护方法,或设法将各片断(小分子化合物)拼接衍变,尽快找出合成目标有机物的关键和突破点.最后将正向思维和逆向思维、纵向思维和横向思维相结合,选择出最佳合成方案.(3)有机合成题的解题方法.解答有机合成题的方法较多,其基本方法有:①顺合成法.此法是采用正向思维方法,从已知原料人手,找出合成所需要的直接或间接的中间产物,逐步推向待合成的有机物.其思维程序是:原料一中间产物一产品.②逆合成法.此法是采用逆向思维方法,从产品的组成、结构、性质人手,找出合成所需要的直接或间接的中间产物,逐步推向已知原料.其思维程序是:产品一中间产物一原料.(3)综合比较法.此法是采用综合思维的方法,将正向或逆向推导出的几种合成途径进行比较,从而得出最佳的合成路线.8.烃及其重要衍生物之间的相互转化关。

燃烧反应与热能的转化机制及热值计算

燃烧反应与热能的转化机制及热值计算

燃烧反应与热能的转化机制及热值计算燃烧反应是一种常见的化学反应,它不仅在我们日常生活中广泛应用,还在工业生产和能源开发中发挥着重要作用。

燃烧反应涉及燃料与氧气之间的化学反应,通过释放化学能转化为热能。

本文将深入探讨燃烧反应与热能的转化机制,并介绍热值的计算方法。

一、燃烧反应的机制燃烧反应涉及到三个基本要素:燃料、氧气和点火源。

燃料可以是固体、液体或气体,而氧气则是燃烧反应的氧化剂。

点火源则是触发燃料与氧气反应的引发器。

燃烧反应的机制可以总结为三个主要步骤:点燃、燃烧和燃尽。

首先,通过点火源给予燃料足够的能量使其点燃。

其次,燃料与氧气发生氧化还原反应,生成二氧化碳、水以及其他可能的产物和副产物。

最后,当燃料完全消耗或燃烧条件不再适宜时,燃烧反应结束。

燃烧反应是一个放热反应,即在燃烧过程中释放出大量的热能。

这是因为燃料与氧气之间的化学反应产生了新的化学键,并释放出能量。

燃料中的碳和氢与氧气反应形成CO2和H2O,释放出能量。

二、热能的转化在燃烧反应中,化学能转化为热能。

这是因为化学键的形成和破裂在反应过程中吸收或释放出能量。

化学键是连接原子的强力,当新的化学键形成时,需要吸收能量;而当原有的化学键破裂时,会产生能量的释放。

燃烧反应中最常见的是碳氢化合物与氧气之间的反应。

例如,乙烷(C2H6)与氧气反应产生二氧化碳和水:C2H6 + O2 -> CO2 + H2O + 能量在这个反应过程中,乙烷中的碳氢键断裂,形成新的碳氧键和氧氢键。

这个过程释放出能量,使燃烧反应继续进行。

三、热值的计算热值是指单位质量燃料完全燃烧时所释放出的热能。

热值的计算可以用于评估燃料的能量含量和燃烧效率。

一般来说,热值可以通过实验测定或计算得出。

实验测定热值通常使用燃烧热计来进行。

燃烧热计是一种设备,用于测量在恒定压力下燃料燃烧所释放出的热量。

通过测量升温的程度,可以确定燃料的热值。

计算热值的方法可以基于燃料的化学组成。

化学热力学与燃烧热的实际应用计算题

化学热力学与燃烧热的实际应用计算题

化学热力学与燃烧热的实际应用计算题在化学热力学中,燃烧热(也被称为燃烧热焓)是指在恒定温度和常压条件下,物质在完全燃烧时释放的能量。

燃烧热是一种重要的物理性质,对于研究能量转化和化学反应的热效应非常有用。

本文将通过计算题的形式来展示化学热力学与燃烧热的实际应用。

计算题一:甲烷的完全燃烧甲烷(CH4)是最简单的烷烃,也是天然气的主要成分之一。

假设我们需要计算甲烷的完全燃烧时释放的燃烧热。

已知甲烷在恒定温度和常压条件下燃烧产生的反应式为:CH4 + 2O2 → CO2 + 2H2O根据该反应式,我们可以计算出甲烷燃烧时生成的二氧化碳(CO2)和水(H2O)的摩尔数比。

在这里,我们需要使用已知的燃烧热标准值来计算。

已知:甲烷燃烧生成1摩尔的二氧化碳的燃烧热:-890.36 kJ/mol甲烷燃烧生成2摩尔的水的燃烧热:-571.58 kJ/mol根据计算,甲烷燃烧生成1摩尔的二氧化碳的燃烧热:-890.36kJ/mol甲烷燃烧生成2摩尔的水的燃烧热:-571.58 kJ/mol燃烧热。

首先,计算出1摩尔二氧化碳生成的燃烧热:1 mol CO2:-890.36 kJ/mol2 mol H2O:?将上述结果代入运算可以得到:2 mol H2O = (2 mol H2O / 1 mol CO2) * (-890.36 kJ/mol) = -1780.72kJ/mol因此,甲烷完全燃烧生成的水的燃烧热为-1780.72 kJ/mol。

计算题二:乙醇的完全燃烧乙醇(C2H5OH)是常见的有机化合物,也是酒精的主要成分。

我们将计算乙醇的完全燃烧时释放的燃烧热。

已知乙醇在恒定温度和常压条件下燃烧产生的反应式为:C2H5OH + 3O2 → 2CO2 + 3H2O根据该反应式,我们可以计算出乙醇燃烧时生成的二氧化碳(CO2)和水(H2O)的摩尔数比。

同样,我们将使用已知的燃烧热标准值来计算。

已知:乙醇燃烧生成2摩尔的二氧化碳的燃烧热:-1366.8 kJ/mol乙醇燃烧生成3摩尔的水的燃烧热:-1846.2 kJ/mol碳的燃烧热。

有机物的计算

有机物的计算

有机计算一、有机物分子式与结构式求法M =22.4ρ(标况) M =DM1 (同温、同压))M =m(总)/n(总) → 摩尔质量 → 相对分子质量 M =M1a1+M2a2+…根据化学方程式和元素守恒 → 分子式 →结构式碳氢氧元素的质量碳氢氧元素的质量比 → 原子个数比 → 实验式 碳氢氧元素的质量分数 燃烧产物的物质的量例1:有机物A 含碳54.5%、氢9.10%、氧36.4%(质量分数),在标准状况下,蒸气密度是1.96g •L-1,它易溶于水,其水溶液与新制的氢氧化铜混合,加热到沸腾,有红色沉淀生成。

有机物B 含碳60%、氢13.33%、氧26.67%(质量分数),蒸气密度是氢气的30倍,它能发生酯化反应。

则下列各组中,A 、B 的结构简式正确的是A .CH3CHO CH3CH2CH2OHB .CH3CH2CHO CH3COOHC .CH3CHO CH3COOHD .CH3CHO CH3CH(OH)CH3 答案:A 、D 分析:MA=1.96 g •L-1 × 22.4L •mol-1=44 g •mol-11molA 中 含C=(44g × 54.5%)/12 g •mol-1=2mol 含H=(44g × 9.10%)/1g •mol-1=4mol 含O=(44g × 36.4%)/16 g •mol-1=1mol ∴分子式为C2H4O MB=2 g •mol -1 × 30=60 g •mol-11molB 中 含C=(60g × 60%)/12 g •mol-1=3mol 含H=(60g × 13.33%)/1g •mol-1=8mol 含O=(60g × 26.67%)/16g •mol-1=1mol ∴分子式为C3H8O二、有机物燃烧的有关计算熟练掌握有机物燃烧通式的书写: 1、烃的燃烧: (1)烃燃烧的通式(2)各类烃燃烧的通式:(根据各类烃通式,具体写出)2、烃的含氧衍生物的燃烧:3、卤代烃的燃烧:一般生成二氧化碳、水和卤化氢。

有机物的相关计算

有机物的相关计算

有机物的相关计算知识要点:有机计算方法:1.比例法利用燃烧产物CO2和H2O的体积比(相同状况下)可确定碳、氢最简整数比;利用有机物蒸气、CO2和水蒸气体积比(相同状况下)可确定一个分子中含碳、氢原子的个数。

若有机物为烃,利用前者只能写出最简式,利用后者可写出分子式。

例1.某烃完全燃烧时,消耗的氧气与生成的CO2体积比为4:3,该烃能使酸性高锰酸钾溶液退色,不能使溴水退色,则该烃的分子式可能为( )A.C3H4B.C7H8C.C9H12D.C8H10例2.在标准状况下测得体积为5.6L的某气态烃与足量氧气完全燃烧后生成16.8LCO2和18g水,则该烃可能是( )A.乙烷B.丙烷C.丁炔D.丁烯2.差量法解题时由反应方程式求出一个差量,由题目已知条件求出另一个差量,然后与方程式中任一项列比例求解,运用此法,解完后应将答案代入检验。

例3.常温常压下,20mL某气态烃与同温同压下的过量氧气70mL混合,点燃爆炸后,恢复到原来状况,其体积为50mL,求此烃可能有的分子式。

3.十字交叉法若已知两种物质混合,且有一个平均值,求两物质的比例或一种物质的质量分数或体积分数,均可用十字交叉法求解。

这种解法的关键是确定求出的是什么比。

例4.乙烷和乙烯的混合气体3L完全燃烧需相同状况下的O210L,求乙烷和乙烯的体积比。

4.平均值法常见的给出平均值的量有原子量、式量、密度、溶质的质量分数、物质的量浓度、反应热等。

所谓平均值法就是已知混合物某个量的一个平均值,要用到平均值确定物质的组成、名称或种类等。

该方法的原理是:若两个未知量的平均值为a,则必有一个量大于a,另一个量小于a,或者两个量相等均等于a。

例5.某混合气体由两种气态烃组成。

取2.24L混合气体完全燃烧后得到4.48LCO2(气体为标准状况)和3.6g水。

则这两种气体可能是( )A.CH4和C3H6B.CH4和C3H4C.C2H4和C3H4D.C2H2和C2H6练1.常温下,一种烷烃A和一种单烯烃B组成混合气体,A或B分子最多只含有4个碳原子,且B分子的碳原子数比A分子多。

有机物燃烧的有关计算技巧

有机物燃烧的有关计算技巧

有机物燃烧的有关计算技巧一.有机物燃烧通式:1.烃的燃烧通式:2.烃的衍生物燃烧通式:二.相同量的有机物在相同条件下充分燃烧,所需氧气量的比较:1.物质的量相同:耗氧量可根据的值来比较。

2.质量相同——采用“”法:当时最大,∴烷烃中耗氧最多。

烯烃的耗氧量相同。

当时最小,∴在炔烃中耗氧最少。

当时最小,∴在其中耗氧最少。

总结:当质量相同的烃完全燃烧时,耗氧量取决于y/x的比值大小,比值越大耗氧量就越大。

三.混合物总量一定时的计算:1.总质量相等,任意混合:生成相等,即含碳量相等;生成相等,即含氢量相等。

(1)相对分子量相等:指同分异构体。

(2)相对分子量不相等:2.总物质的量相等,任意混合耗氧量相等:(1)生成相等:指分子中C原子数相等,即;(2)生成相等:指分子中H原子数相等,即。

四. 混合气体的成分确定:1.差量法:1 (液)1 (气)利用的变化,可确定分子式中含H量。

2.守恒法【典型例题】[例1]在常温常压下,下列烃各,分别在足量的氧气中燃烧,消耗氧气最多的是()。

A. B. C. D. E.答案:E[例2]充分燃烧等物质的量的下列有机物,在相同条件下,需要氧气最多的是()。

A.乙酸乙酯B.异丁烷C.乙醇D.葡萄糖分析:A.B.C.D.启示:将含氧衍生物中的氧转化为或,意味着这一部分不耗氧,然后再来比较其余部分耗氧量。

[例3]相同质量的烃完全燃烧,消耗量最多的是()。

A.丙烷B.丁烯C.已炔D.苯答案:A分析:一般情况下,烃均可转化为的形式,越大耗氧量越大。

A. B. C. CH D. CH启示:质量相同的有机物完全燃烧:(1)有机物的最简式相同,耗氧量相同。

(2)当烃用表示时,越大,耗氧量越多。

[例4] A、B是相对分子量不相等的两种有机物,无论A、B以何种比例混合只要混合物的总质量不变,完全燃烧后,所产生的水的质量也不变。

试写出两组符合上述情况的有机化合物的化学式,并回答A、B应满足什么条件。

有机物燃烧的计算规律

有机物燃烧的计算规律

有机物燃烧的计算规律哎呀,说起有机物燃烧的计算规律,这事儿可真不是一两句能说清的。

不过,我尽量用大白话跟你聊聊,咱们就像俩老朋友聊天一样,轻松点。

记得去年夏天,我在家搞了个烧烤派对。

那会儿,我正忙着把炭火点起来,你知道的,就是那种传统的木炭。

我一边点火,一边就在想,这木炭燃烧起来,不就是有机物燃烧的一个活生生的例子嘛!首先,你得知道,木炭这玩意儿,其实就是木头经过高温处理后剩下的碳。

我那天用的木炭,是朋友送的,说是特好烧。

我一开始还不信,结果一点火,嘿,还真别说,那火苗蹭蹭地就上来了。

说到这儿,我得提一嘴,有机物燃烧,首先得有足够的氧气,对吧?我那天点火的时候,一开始没掌握好,风一吹,火苗就灭了。

后来,我学聪明了,找了个避风的地方,慢慢地吹,让氧气和木炭充分接触,这才点着了。

接下来,就是温度的问题了。

你得知道,有机物燃烧,温度得达到燃点才行。

我那天点火,一开始火太小,木炭烧得慢,我就在旁边等啊等,心里那个急啊。

后来,我干脆用报纸引火,火一大,木炭的温度就上来了,燃烧得那叫一个欢。

说到这儿,你可能要问了,这有机物燃烧的计算规律是啥?其实,这事儿说简单也简单,说复杂也复杂。

简单点说,就是有机物燃烧,你得有足够的氧气,合适的温度,还得有可燃物,这三样缺一不可。

就像我那天烧烤,火一大,木炭燃烧得快,释放的热量就多,我那烧烤架上的肉串,很快就烤得外焦里嫩,香气四溢。

你看,这有机物燃烧的规律,不就在咱们日常生活中嘛!最后,我得说,有机物燃烧,还有个尾气的问题。

我那天烧烤,虽然开心,但结束后,那烟味还是挺呛人的。

所以,有机物燃烧,咱们还得考虑环保,不能只顾着一时的痛快。

总之,有机物燃烧的计算规律,其实就在咱们的日常生活中,只要你留心观察,就能发现其中的奥秘。

就像我那天的烧烤,虽然只是一个小小的活动,但里面蕴含的科学道理,还是挺有意思的。

咱们聊了这么多,你是不是也觉得,这有机物燃烧,其实没那么枯燥,还挺贴近生活的?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有机物燃烧规律及有机化学计算有机物燃烧的规律是中学有机化学基础中的常见题型,也是高考化学中的热点内容,许多学生对这些知识点往往容易产生混淆,现将其归纳总结如下:有机物完全燃烧的通式:烃:;烃的含氧衍生物:。

题型1 比较耗氧量大小一.有机物的物质的量一定时:方法1:若属于烃类物质,根据分子式CxHy计算的大小;若属于烃的含氧衍生物根据分子式CxHyOz计算的大小。

方法2 改写分子式改写分子式的原则是:若是烃则1molC与 H耗氧量相等;若是烃的衍生物,则观察分子式,看是否可把分子式中的O、C、H写成或形式,再比较剩余的C、H耗氧量即可。

[例1]1mol下列有机物充分燃烧耗氧量最小的是()(A)C3H4(B)C2H5OH (C)CH3OH (D)CH3CH3练习1.相同物质的量的下列有机物,充分燃烧,消耗氧气量相同的是A.C3H4和C2H6 B.C3H6和C3H8OC.C3H6O2和C3H8O D.C3H8O和C4H6O2[例2]等物质的量下列物质充分燃烧耗氧量大小顺序为()(A)C2H2(B)C2H4O (C)C2H6(D)C2H4O2练习2.1molCxHy(烃)完全燃烧需要5molO2,则X与Y之和可能是A.X+Y=5 B.X+Y=7 C.X+Y=11 D.X+Y=9练习3:有机物A、B只可能烃或烃的含氧衍生物,等物质的量的A和B完全燃烧时,消耗氧气的量相等,则A和B的相对分子质量相差不可能为(n为正整数) ( )A.8nB.14nC.18nD.44n(二)有机物完全燃烧时生成的CO2或H2O的物质的量一定,则有机物中碳原子或氢原子的个数一定;若混合物总物质的量一定,不论按何种比例混合,完全燃烧后生成的CO2或H2O的量保持不变,则混合物中各组分中碳或氢原子的个数相同。

例4下列各组有机物,不论以何种比例混合,只要二者的物质的量之和不变,完全燃烧时消耗氧气的物质的量和生成水的物质的量分别相等的是A、甲烷和甲酸甲酯B、乙烷和乙醇C、苯和苯甲酸D、乙炔和苯练习4.有机化合物A、B分子式不同,它们只可能含碳、氢、氧元素中的两种或三种.如果将A、B不论以何种比例混和,只要其物质的量之和不变,完全燃烧时所消耗的氧气和生成的水的物质的量也不变.那么,A、B组成必须满足的条件是 .若A是甲烷,则符合上述条件的化合物B中, 相对分子质量最小的是(写出分子式) ,并写出相对分子质量最小的含有甲基(-CH3)的B的2种同分异构体结构简式:二.有机物的质量一定时:1.比较等质量烃燃烧耗氧量大小思路解析 gc燃烧耗氧气1mol, gH燃烧耗氧气3mol即等质量的C、H燃烧耗氧:∴比较等质量烃燃烧耗氧量大小只要比较烃分子中即可,烃的越大,烃燃烧耗氧量就越大。

因此,该类题型的解题方法为:把烃分子式改写为CHx形式,CHx式中x值越大,烃的H质量百分数越大,烃燃烧耗氧量越大。

2.有机物完全燃烧时生成的CO2或H2O的物质的量一定,则有机物中含碳或氢的质量分数一定;若混合物总质量一定,不论按何种比例混合,完全燃烧后生成的CO2或H2O的物质的量保持不变,则混合物中各组分相同。

3.燃烧时耗氧量相同,则两者的关系为:⑴或⑵相同[例5]下列等质量有机物燃烧耗氧量最大的是()(A)C6H6(B)C2H6(C)C3H8(D)C7H12练习5.下列各组有机物完全燃烧时耗氧量不相同的是A.50g乙醇和50g甲醚 B.100g乙炔和100g苯C.200g甲醛和200g乙酸 D.100g甲烷和100g乙烷例6.下列各组混合物中,不论二者以什么比例混合,只要总质量一定,完全燃烧时生成CO2的质量也一定的是A.甲烷、辛醛 B.乙炔、苯乙烯C.甲醛、甲酸甲酯 D.苯、甲苯练习6分别取等质量的甲烷和A(某饱和一元醇)、B(某饱和一元醛)、C(某稠环芳香烃含氧衍生物),若它们完全燃烧,分别生成了物质的量相同的CO2 .则:A的分子式为_______;B的分子式为_______,C的分子式为_________(C的分子式有多种可能,只写分子量最小的一种)。

小结:等物质的量的不同有机物燃烧题型2 求有机物分子式例8.某有机物的蒸气完全燃烧时,需要三倍于其体积的O2,产生二倍于其体积的CO2,则该有机物可能是(体积在同温同压下测定) ( )A.C2H4 B.C2H5OH C.CH3CHO D.CH3COOH例9.某烃完全燃烧后,生成二氧化碳和水的物质的量之比为n:(n-1),此烃可能是A.烷烃 B.单烯烃 C.炔烃 D.苯的同系物[例5]在1.01×105Pa,120℃时,1体积某烃和4体积氧气混合,完全燃烧后恢复到原来温度和压强体积不变,该烃分子式中碳原子数不可能是()(A)1 (B)2 (C)3 (D)4例11.某有机物6.2g完全燃烧后生成8.8g二氧化碳和0.3mol水,该有机物对氢气的相对密度为31.试求该有机物的分子式.三.一定量的有机物完全燃烧,生成的CO2和消耗的O2的物质的量之比一定时:1.生成的CO2的物质的量小于消耗的O2的物质的量的情况例7.某有机物的蒸气完全燃烧时,需要三倍于其体积的O2,产生二倍于其体积的CO2,则该有机物可能是(体积在同温同压下测定)A.C2H4 B.C2H5OH C.CH3CHO D.CH3COOH解析:产生的CO 2与耗氧量的体积比为2:3,设该有机物为1mol,则含2mol 的C 原子,完全燃烧时只能消耗2mol 的氧气,剩余的1mol 氧气必须由氢原子消耗,所以氢原子为4mol,即该有机物可以是A ,从耗氧量相当的原则可知B 也正确。

答案为A 、B 。

2.生成的CO 2的物质的量等于消耗的O 2的物质的量的情况符合通式C n ·(H 2O)m四.有机物完全燃烧时生成的CO 2和H 2O 的物质的量之比一定时:有机物完全燃烧时,若生成的CO 2和H 2O 的物质的量之比为a:b,则该有机物中碳、氢原子的个数比为a:2b ,该有机物是否存在氧原子,有几个氧原子,还要结合燃烧时的耗氧量或该物质的摩尔质量等其他条件才能确定。

例8.某有机物在氧气中充分燃烧,生成的水蒸气和二氧化碳的物质的量之比为1:1,由此可以得出的结论是A .该有机物分子中C:H:O 原子个数比为1:2:1B .分子中C:H 原子个数比为1:2C .有机物必定含OD .无法判断有机物是否含O答案:B 、D例9.某烃完全燃烧后,生成二氧化碳和水的物质的量之比为n:(n-1),此烃可能是A .烷烃B .单烯烃C .炔烃D .苯的同系物答案:C例10.某有机物6.2g 完全燃烧后生成8.8g 二氧化碳和0.3mol 水,该有机物对氢气的相对密度为31.试求该有机物的分子式.答案:C 2H 6O(乙醇)五.有机物完全燃烧前后气体体积的变化1.气态烃(C x H y )在100℃及其以上温度完全燃烧时气体体积变化规律与氢原子个数有关①若y=4,燃烧前后体积不变,△V=0②若y>4,燃烧前后体积增大,△V=14-y ③若y<4,燃烧前后体积减少,△V=41y - 2.气态烃(C x H y )完全燃烧后恢复到常温常压时气体体积的变化直接用烃类物质燃烧的通式通过差量法确定即可例11.120℃时,1体积某烃和4体积O 2混和,完全燃烧后恢复到原来的温度,压强体积不变,该烃分子式中所含的碳原子数不可能是(A)1 (B)2 (C)3 (D)4解析:要使反应前后压强体积不变,只要氢原子个数可以等于4并保证能使1体积该烃能在4体积氧气里完全燃烧即可。

答案:Dw.w.w.k.s.5.u.c.o.m例12.两种气态烃以任意比例混合,在105℃时1 L 该混合烃与9 L 氧气混合,充分燃烧后恢复到原状态,所得气体体积仍是10 L.下列各组混合烃中不符合此条件的是(A)CH 4 C 2H 4 (B)CH 4 C 3H 6 (C)C 2H 4 C 3H 4 (D)C 2H 2 C 3H 6答案:B 、D3.液态有机物(大多数烃的衍生物及碳原子数大于4的烃)的燃烧,如果燃烧后水为液态,则燃烧前后气体体积的变化为:氢原子的耗氧量减去有机物本身提供的氧原子数的21 例13:取3.40ɡ只含羟基、不含其他官能团的液态饱和多元醇,置于5.00L 的氧气中,经点燃,醇完全燃烧.反应后气体体积减少0.560L ,将气体经CaO 吸收,体积又减少2.8L(所有体积均在标况下测定)。

则:3.4ɡ醇中C 、H 、O 的物质的量分别为:C____; H______; O_______;该醇中C 、H 、O 的原子个数之比为___________。

解析:设3.40ɡ醇中含H、O原子的物质的量分别为x和y 则:x+16y=3.40ɡ-2.80L/22.4L·mol-1×12ɡ·mol-1…………方程①x/4 –y/2 =0.560L/22.4L·mol-1…………方程②⑴、⑵联解可得:x=0.300mol y=0.100mol 进而求得原子个数比答案:C. 0.125 mol、H. 0.300 mol、O.0.100 mol;该醇中C、H、O的原子个数之比为 5∶12∶4专题训练1.10mL某气态烃,在50mL氧气中充分燃烧,得到液态水和35mL气体(气体体积均在同温同压下测定)此烃可能是A.C2H6 B.C4H8 C.C3H8 D.C3H62.室温下,1体积气态烃和一定量的氧气混合并充分燃烧后, 再冷却至室温,气体体积比反应前缩小了3体积,则气态烃是A.丙烷 B.丙烯 C.丁烷 D.丁烯3.某不纯有机物的主要成分是C9H8O4,杂质成分不含碳,已知此不纯物中含碳量为48%,则此不纯物中含C9H8O4的质量分数为A.80% B.90% C.75% D.40%4.乙炔和乙烯的混合气体完全燃烧时,所需氧气的体积是原混合气体的2.7倍,则该混合11气体与足量的H2发生加成反应时,消耗H2的体积是原混合气体体积的A.1.6倍B.1.8倍C.1.4倍D.1.2倍5.N A表示阿伏加德罗常数的值。

下列叙述正确的是A.标况下,11.2L的戊烷含有分子数为0.5N A个B.常温下,14g乙烯和丙烯的混合物中总原子数为3N A个C.1L浓度为1mol·L-1的CH3COONa溶液中含有N A个CH3COO-D. 1L 1mol/L的醋酸溶液中,所含醋酸分子数为N A6.在同温同压下,将1体积的某烯烃和4体积的某烷烃混合,此混合气体的体积是相同条件等质量氢气体积的1/12,则这两种烃是A.C2H6和C2H4 B.CH4和C2H4 C.C2H6和C3H6 D.CH4和C4H87.完全燃烧标准状况下某气态烷烃和气态烯烃的混合物2.24L,生成二氧化碳6.6g,水4.05g.求该混合气的成分和各成分的体积分数.8.一定量的乙醇在氧气不足的情况下燃烧,得到CO、CO2和水的总质量为27.6 g,若其中水的质量为10.8 g,则CO的质量是(A)1.4 g (B)2.2 g (C)4.4 g (D)在2.2 g和4.4 g之间9.将0.1mol某烃的衍生物与标准状况下4.48L氧气混合密闭于一容器中,点火后发生不完全燃烧,得到CO2、CO和H2O的气态混合物.将混合气体通过浓硫酸时,浓硫酸质量增加了3.6g,通过澄清石灰水时,可得到沉淀10g (干燥后称量).剩余气体与灼热的氧化铁充分反应后再通入澄清的石灰水中,又得到20g 固体物质(干燥后).求:(1)该有机物的分子式.(2)该有机物可与醇发生酯化反应,且可使溴水褪色,写出有机物的结构式.10.某有机物由C、H、O三种元素组成,分子中含有8个原子,1mol该有机物含有46mol质子.完全燃烧该有机物在相同条件下测定CO2和水蒸气体积比为2:1。

相关文档
最新文档