2020高考数学三视图汇编(供参考)

合集下载

2020高考数学核心突破《专题5 立体几何 第1讲 空间几何体的三视图、表面积与体积》

2020高考数学核心突破《专题5 立体几何 第1讲 空间几何体的三视图、表面积与体积》

专题五 第1讲1.(教材回归)一个几何体的三视图如图所示,则该几何体的表面积为( D )A .3πB .4πC .2π+4D .3π+4解析 由题中三视图知该几何体是底面半径为1,高为2的半个圆柱,故其表面积S =2×12×π×12+π×1×2+2×2=3π+4.故选D.2.(2017·山东烟台模拟)一个几何体的三视图如图所示,其中俯视图是一个正三角形及其内切圆,则该几何体的体积为( A )A .163-16π3B.163-16π3C .83-8π3D.83-8π3解析 由三视图可知,几何体为一个棱长为4的正三棱柱去掉了一个内切圆柱.V三棱柱=⎝⎛⎭⎫12×4×4×sin 60°×4=16 3.在俯视图中,设内切圆半径为r ,则内切圆圆心与各顶点连接分三角形为3个全等的小三角形,由三角形面积可得12×4×4×sin 60°=3×⎝⎛⎭⎫12×4×r ,解得r =233.故V 圆柱=πr 2h =π×⎝⎛⎭⎫2332×4=16π3.∴几何体的体积V =V 三棱柱-V 圆柱=163-16π3.故选A.3.一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( D )A.18 B.17 C.16 D.15解析 如图,由已知条件可知,截去部分是以△ABC 为底面且三条侧棱两两垂直的正三棱锥D -ABC .设正方体的棱长为a ,则截去部分的体积为16a 3,剩余部分的体积为a 3-16a 3=56a 3.它们的体积之比为15.故选D.4.(考点聚焦)一个四面体的三视图如图所示,则该四面体的表面积是( B )A .1+ 3B .2+3C .1+2 2D .2 2解析 四面体的直观图如图所示.侧面SAC ⊥底面ABC ,且△SAC 与△ABC 均为腰长是2的等腰直角三角形,SA =SC =AB =BC =2,AC =2.设AC 的中点为O ,连结SO ,BO ,则SO ⊥AC ,∴SO ⊥平面ABC ,∴SO ⊥BO .又OS =OB =1,∴SB =2,故△SAB 与△SBC 均是边长为2的正三角形,故该四面体的表面积为2×12×2×2+2×34×(2)2=2+ 3.5.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( D )A.32π3 B .4π C .2πD.4π3解析 正四棱柱的外接球的球心为上下底面的中心连线的中点,所以球的半径r =⎝⎛⎭⎫222+⎝⎛⎭⎫222=1,球的体积V =4π3r 3=4π3.故选D.6.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是32π3,那么这个三棱柱的体积是( D )A .963B .163C .24 3D .48 3解析 如图,设球的半径为R ,由43πR 3=32π3,得R =2. 所以正三棱柱的高h =4. 设其底面边长为a , 则13·32a =2,所以a =43, 所以V =34×(43)2×4=48 3.故选D. 7.(书中淘金)如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在C 1D 1与C 1B 1上,且C 1E =4,C 1F =3,连接EF ,FB ,BD ,DE ,DF ,则几何体EFC 1DBC 的体积为( A )A .66B .68C .70D .72解析 如图,连接DC 1,那么几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,那么几何体EFC 1DBC 的体积为V =13×12×3×4×6+13×12×(3+6)×6×6=12+54=66.故所求几何体EFC 1DBC 的体积为66.8.(2017·湖北八校联考)如图,网格纸上小正方形的边长为1,粗线画的是某多面体的三视图,则该多面体的外接球的表面积为__41π__.解析 由三视图可知该几何体是如图所示的三棱锥A -BCD ,将该三棱锥放在棱长为4的正方体中,E 是棱的中点,所以三棱锥A -BCD 和三棱柱EFD -ABC 的外接球相同.设外接球的球心为O ,半径为R ,△ABC 的外接圆的圆心是M ,则OM =2.在△ABC 中,AB =AC =25,由余弦定理得cos ∠CAB =AC 2+AB 2-BC 22AC ·AB =20+20-162×25×25=35,所以sin ∠CAB =45,由正弦定理得2CM =BC sin ∠CAB =5,则CM =52.所以R =OC =OM 2+CM 2=412,则外接球的表面积为S =4πR 2=41π.9.一个几何体的三视图如图所示(单位:m),则该几何体的体积为 83π m 3.解析 由三视图知该几何体由两个相同的圆锥和一个圆柱组成.其中,圆锥的底面半径和圆柱的底面半径均为1,圆锥的高均为1,圆柱的高为2.因此该几何体的体积为V =2×13π×12×1+π×12×2=83π (m 3).10.(数学文化)我国古代数学家祖暅是著名数学家祖冲之之子,祖暅原理叙述道:“夫叠基成立积,缘幂势既同,则积不容异:”意思是:夹在两个平行平面之间的两个几何体被平行于这两个平行平面的任意平面所截,如果截得的两个截面面积总相等,那么这两个几何体的体积相等,其最著名之处是解决了“牟合方盖”中的体积问题,其核心过程为:如图中正方体ABCD -A 1B 1C 1D 1,求图中四分之一的圆柱体BB 1C 1-AA 1D 1和四分之一圆柱体AA 1B 1-DD 1C 1公共部分的体积V ,若图中正方体的棱长为2,则V =163.(在高度h 处的截面:用平行于正方体上下底面的平面去截,记截得两圆柱体公共部分所得面积为S 1,截得正方体所得面积为S 2,截得四棱锥C 1-ABCD 所得面积S 3,S 1=R 2-h 2,S 2=R 2,S 3=h 2,S 2-S 1=S 3)解析 由题意可知,用平行于底面的平面截得的面积满足S 2-S 1=S 3,其中S 1表示两个圆柱的公共部分的截面面积,S 2表示截得正方体的截面面积,S 3表示截得锥体的截面面积.由祖暅原理可知:正方体体积减去两个圆柱的公共部分体积等于锥体体积,即23-V =13×22×2,即V =23-13×22×2=163.。

(经典)高考数学三视图还原方法归纳

(经典)高考数学三视图还原方法归纳

高考数学三视图还原方法归纳方法一 :还原三步曲核心内容:三视图的长度特征——“长对齐,宽相等,高平齐” ,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。

还原三步骤:(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。

方法展示( 1)将如图所示的三视图还原成几何体。

还原步骤:①依据俯视图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点 A、 B、 C、 D 处不可能有垂直拉升的线条,而在 E 处必有垂直拉升的线条 ES,由正视图和侧视图中高度,确定点 S 的位置;如图③将点 S 与点 ABCD分别连接,隐去所有的辅助线条,便可得到还原的几何体S-ABCD如图所示:经典题型:例题 1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm3。

解答:(24)例题 2:一个多面体的三视图如图所示,则该多面体的表面积为()答案: 21+ 3 计算过程:步骤如下:第一步:在正方体底面初绘制ABCDEFMN如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点E、F、M 、N 处不可能有垂直拉升的线条,而在点 A、B、C、D 处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点 G,G' , B' , D ' , E ' , F '地位置如图;第三步:由三视图中线条的虚实,将点G 与点 E、F 分别连接,将G'与点E'、F'分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。

例题 3:如图所示,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()答案:(6)还原图形方法一:若由主视图引发,具体步骤如下:( 1)依据主视图,在长方体后侧面初绘ABCM如图:(2)依据俯视图和左视图中显示的垂直关系,判断出在节点 A、B、 C 出不可能有垂直向前拉升的线条,而在 M 出必有垂直向前拉升的线条 MD,由俯视图和侧视图中长度,确定点 D 的位置如图:( 3)将点 D 与 A、B、 C 分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图所示:解:置于棱长为 4 个单位的正方体中研究,该几何体为四面体 D—ABC,且 AB=BC=4, AC=42 ,DB=DC=2 5 ,可得 DA=6.故最长的棱长为 6.方法 2若由左视图引发,具体步骤如下:( 1)依据左视图,在长方体右侧面初绘BCD如图:( 2)依据正视图和俯视图中显示的垂直关系,判断出在节点 C、D 处不可能有垂直向前拉升的线条,而( 3)将点 A 与点 B、 C、 D 分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图:方法 3:由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个正方体做载体还原:(1)根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,用红线表示。

湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

专题五立体几何第1讲空间几何体的三视图、表面积及体积真题试做1.(2020·湖南高考,文4)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( ).图12.(2020·天津高考,文10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为__________ m3.3.(2020·湖北高考,文15)已知某几何体的三视图如图所示,则该几何体的体积为______.4.(2020·湖北高考,文19)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1­ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD­A2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理.已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?考向分析通过对近几年高考试题的分析可看出,空间几何体的命题形式比较稳定,多为选择题或填空题,有时也出现在解答题的某一问中,题目常为中、低档题.考查的重点是直观图、三视图、面积与体积等知识,此类问题多为考查三视图的还原问题,且常与空间几何体的表面积、体积等问题交会,是每年的必考内容.预计在2020年高考中:对空间几何体的三视图的考查有难度加大的趋势,通过此类题考查考生的空间想象能力;对表面积和体积的考查,常见形式为蕴涵在两几何体的“切”或“接”形态中,或以三视图为载体进行交会考查,此块内容还要注意强化几何体的核心——截面以及补形、切割等数学思想方法的训练.热点例析热点一空间几何体的三视图与直观图【例1】(1)将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的侧(左)视图为( ).(2)若某几何体的三视图如下图所示,则这个几何体的直观图可以是( ).规律方法 (1)三视图的正(主)视图、侧(左)视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,反映了一个几何体各个侧面的特点.正(主)视图反映物体的主要形状特征,是三视图中最重要的视图;俯视图要和正(主)视图对正,画在正(主)视图的正下方;侧(左)视图要画在正(主)视图的正右方,高度要与正(主)视图平齐;(2)要注意到在画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线; (3)A .32B .16+16 2C .48 D.16+32 2(2)一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是( ).A.12+22 B .1+22 C .1+ 2 D .2+ 2 热点二 空间几何体的表面积与体积【例2】(2020·福建高考,文20)如图,在四棱锥P ­ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)若PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P ­ABCD 的体积.规律方法 (1)求几何体的体积问题,可以多角度、多方位地考虑.对于规则的几何体的体积,如求三棱锥的体积,采用等体积转化是常用的方法,转化的原则是其高与底面积易求;对于不规则几何体的体积常用割补法求解,即将不规则几何体转化为规则几何体,以易于求解.(2)求解几何体的表面积时要注意S 表=S 侧+S 底.(3)对于给出几何体的三视图,求其体积或表面积的题目关键在于要还原出空间几何体,并能根据三视图的有关数据和形状推断出空间几何体的线面关系及相关数据,至于体积或表面积的求解套用对应公式即可.变式训练2 已知某几何体的三视图如下图所示,其中正(主)视图中半圆的半径为1,则该几何体的体积为( ).A .24-32πB .24-13πC .24-πD .24-12π热点三 多面体与球【例3】已知正四棱锥的底面边长为a ,侧棱长为2a . (1)求它的外接球的体积; (2)求它的内切球的表面积.规律方法 (1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.(2)若球面四点P ,A ,B ,C 构成的线段PA ,PB ,PC 两两垂直,且PA =a ,PB =b ,PC =c ,则4R 2=a 2+b 2+c 2,把有关元素“补形”成为一个球内接正方体(或其他图形),从而显示出球的数量特征,这种方法是一种常用的好方法.变式训练3 如图所示,在四棱锥P ­ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a .若在这个四棱锥内放一球,则此球的最大半径是__________.思想渗透立体几何中的转化与化归思想求空间几何体的体积时,常常需要对图形进行适当的构造和处理,使复杂图形简单化,非标准图形标准化,此时转化与化归思想就起到了至关重要的作用.利用转化与化归思想求空间几何体的体积主要包括割补法和等体积法,具体运用如下:(1)补法是指把不规则的(不熟悉或复杂的)几何体延伸或补成规则(熟悉的或简单的)的几何体,把不完整的图形补成完整的图形;(2)割法是指把复杂的(不规则的)几何体切割成简单的(规则的)几何体;(3)等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件转化为易求的面积(体积)问题.【典型例题】如图,在直三棱柱ABC ­A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点.(1)求证:DE ∥平面ABC ; (2)求三棱锥E ­BCD 的体积.(1)证明:取BC 中点G ,连接AG ,EG .因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1BB 1.而D 是AA 1的中点,所以EG AD ,所以四边形EGAD 是平行四边形,所以ED ∥AG . 又DE 平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)解:因为AD ∥BB 1,所以AD ∥平面BCE , 所以V E ­BCD =V D ­BCE =V A ­BCE =V E ­ABC .由(1)知,DE ∥平面ABC ,所以V E ­ABC =V D ­ABC =13AD ·12BC ·AG =16×3×6×4=12.1.(2020·山东济南三月模拟,4)如图,正三棱柱ABC ­A 1B 1C 1的各棱长均为2,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为( ).A .2 2B .4 C. 3 D .2 32.(2020·安徽安庆二模,7)一空间几何体的三视图如图所示(正(主)、侧(左)视图是两全等图形,俯视图是圆及圆的内接正方形),则该几何体的表面积是( ).A .7π cm 2B .(5π+43)cm 2C .(5π+23)cm 2D .(6π+27-2)cm 23.(2020·北京丰台区三月月考,4)若某空间几何体的三视图如图所示,则该几何体的体积是( ).A .20-2πB .20-23πC .40-23πD .40-43π4.(2020·湖南株洲下学期质检,14)一个三棱锥的正(主)视图、侧(左)视图、俯视图如下,则这个三棱锥的体积为__________,其外接球的表面积为__________.5.已知正四面体的外接球半径为1,则此正四面体的体积为__________.6.正六棱锥P ­ABCDEF 中,G 为PB 的中点,则三棱锥D ­GAC 与三棱锥P ­GAC 体积之比为__________.7.如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED ,EC 向上折起,使A ,B 重合,求形成三棱锥的外接球的体积.参考答案命题调研·明晰考向真题试做1.C 解析:若为C 选项,则主视图为:故不可能是C 选项.2.30 解析:由几何体的三视图可知:该几何体的上部为平放的直四棱柱,底部为长、宽、高分别为4 m,3 m,2 m 的长方体.∴几何体的体积V =V 直四棱柱+V 长方体=(1+2)×12×4+4×3×2=6+24=30(m 3).3.12π 解析:该几何体是由3个圆柱构成的几何体,故体积V =2×π×22×1+π×12×4=12π.4.解:(1)因为四棱柱ABCD ­A 2B 2C 2D 2的侧面是全等的矩形,所以AA 2⊥AB ,AA 2⊥AD .又因为AB ∩AD =A ,所以AA 2⊥平面ABCD . 连接BD ,因为BD ⊂平面ABCD ,所以AA 2⊥BD . 因为底面ABCD 是正方形,所以AC ⊥BD .又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥BD .于是由AA 2⊥BD ,AC ⊥BD ,B 1D 1∥BD ,可得AA 2⊥B 1D 1,AC ⊥B 1D 1. 又因为AA 2∩AC =A ,所以B 1D 1⊥平面ACC 2A 2.(2)因为四棱柱ABCD ­A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形,所以S 1=S 四棱柱上底面+S四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1 300(cm 2).又因为四棱台A 1B 1C 1D 1­ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形(其高为h ),所以S 2=S 四棱台下底面+S 四棱台侧面=(A 1B 1)2+4×12(AB +A 1B 1)h=202+4×12×(10+20)132-⎣⎢⎡⎦⎥⎤12×(20-10)2=1 120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1 300+1 120=2 420(cm 2), 故所需加工处理费为0.2S =0.2×2 420=484(元). 精要例析·聚焦热点热点例析【例1】 (1)D (2)B 解析:(1)被截去的四棱锥的三条可见侧棱中有两条为正方体的面对角线,它们在右侧面上的投影与右侧面(正方形)的两条边重合,另一条为正方体的对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图及对角线方向,只有选项D 符合.(2)由正(主)视图可排除A ,C ;由侧(左)视图可判断该几何体的直观图是B.【变式训练1】 (1)B (2)D 解析:(1)由三视图知原几何体是一个底面边长为4,高是2的正四棱锥.如图:∵AO =2,OB =2,∴AB =2 2.又∵S 侧=4×12×4×22=162,S 底=4×4=16,∴S 表=S 侧+S 底=16+16 2.(2)如图,设直观图为O ′A ′B ′C ′,建立如图所示的坐标系,按照斜二测画法的规则,在原来的平面图形中,OC ⊥OA ,且OC =2,BC =1,OA =1+2×22=1+2,故其面积为12×(1+1+2)×2=2+ 2.【例2】 (1)证明:因为PA ⊥平面ABCD ,CE ⊂平面ABCD ,所以PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD . 又PA ∩AD =A ,所以CE ⊥平面PAD . (2)解:由(1)可知CE ⊥AD .在Rt△ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 又因为AB =CE =1,AB ∥CE , 所以四边形ABCE 为矩形.所以S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE =1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,所以V 四棱锥P ­ABCD =13S 四边形ABCD ·PA =13×52×1=56.【变式训练2】 A 解析:由三视图可知该几何体为一个长、宽、高分别为4,3,2的长方体,剖去一个半圆柱而得到的几何体,其体积为2×3×4-12π×1×3,即24-32π.【例3】 解:如图所示,△SAC 的外接圆是外接球的一个大圆,∴只要求出这个外接圆的半径即可,而内切球的球心到棱锥的各个面的距离相等,∴可由正四棱锥的体积求出其半径.(1)设外接球的半径为R ,球心为O ,则OA =OC =OS ,∴O 为△SAC 的外心,即△SAC 的外接圆半径就是球的半径. ∵AB =BC =a ,∴AC =2a .∵SA =SC =AC =2a ,∴△SAC 为正三角形.由正弦定理得2R =AC sin∠ASC =2a sin 60°=263a ,因此R =63a ,V 外接球=43πR 3=8627πa 3. (2)如图,设内切球的半径为r ,作SE ⊥底面于E ,作SF ⊥BC 于F ,连接EF , 则有SF =SB 2-BF 2=(2a )2-⎝ ⎛⎭⎪⎫a 22=72a ,S △SBC =12BC ·SF =12a ×72a =74a 2, S 棱锥全=4S △SBC +S 底=(7+1)a 2.又SE =SF 2-EF 2=⎝ ⎛⎭⎪⎫72a 2-⎝ ⎛⎭⎪⎫a 22=62a ,∴V 棱锥=13S 底·SE =13a 2×62a =66a 3,∴r =3V 棱锥S 棱锥全=3×66a 3(7+1)a 2=42-612a ,S 内切球=4πr 2=4-73πa 2. 【变式训练3】 12(2-2)a 解析:当且仅当球与四棱锥的各个面都相切时,球的半径最大.设放入的球的半径为r ,球心为O ,连接OP ,OA ,OB ,OC ,OD ,则把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面分别为原四棱锥的侧面和底面,则V P ­ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意知PD ⊥底面ABCD ,∴V P ­ABCD =13S 正方形ABCD ·PD =13a 3.由体积相等,得13r (2+2)a 2=13a 3,解得r =12(2-2)a .创新模拟·预测演练1.D2.D 解析:据三视图可判断该几何体是由一个圆柱和一个正四棱锥组合而成的,直观图如图所示:易求得表面积为(6π+27-2)cm 2.3.B 解析:由三视图可知该几何体的直观图为一个正四棱柱,从上表面扣除半个内切球.易求出正四棱柱的底面边长为2,内切球的半径为1,故体积为2×2×5-23π=20-2π3.4.4 29π 5.827 3 解析:首先将正四面体补形为一个正方体,设正四面体棱长为a ,则其对应正方体的棱长为22a ,且由球与正方体的组合关系易知3⎝ ⎛⎭⎪⎫22a 2=(1×2)2,解得a 2=83, ∴正四面体的体积为V =⎝ ⎛⎭⎪⎫22a 3-4×13×12×⎝ ⎛⎭⎪⎫22a 3=13⎝ ⎛⎭⎪⎫22a 3=827 3.6.2∶1 解析:由正六棱锥的性质知,点P 在底面内的射影是底面的中心,也是线段AD的中点.又G 为PB 的中点,设P 点在底面内的射影为O ,则G 点在底面内的射影为OB 的中点M ,且GM ∥PO .又M 为AC 的中点,则GM ⊂平面GAC ,所以点P 到平面GAC 的距离等于点O 到平面GAC 的距离.又因为OM ⊥平面GAC ,DC ⊥平面GAC ,且DC =2OM ,则V D ­GAC V P ­GAC =13S △GAC ×DC13S △GAC ×OM =2.7.解:由已知条件知,平面图形中AE =EB =BC =CD =DA =DE =EC =1,∴折叠后得到一个棱长为1的正三棱锥(如图). 方法一:作AF ⊥平面DEC ,垂足为F , F 即为△DEC 的中心,取EC 中点G ,连接DG ,AG , 过球心O 作OH ⊥平面AEC , 则垂足H 为△AEC 的中心,∴外接球半径可利用△OHA ∽△AFG 求得. ∵AG =32,AF =1-⎝⎛⎭⎪⎫332=63,AH =33, ∴OA =AG ·AHAF =32×3363=64,∴外接球体积为43π×OA 3=43·π·6643=68π.方法二:如图,把棱长为1的正三棱锥放在正方体中,显然,棱长为1的正三棱锥的外接球就是正方体的外接球.∵正方体棱长为22, ∴外接球直径2R =3·22, ∴R =64,∴体积为43π·⎝ ⎛⎭⎪⎫643=68π.。

2020届高考数学一轮复习第七篇立体几何与空间向量第1节空间几何体的结构、三视图和直观图课件理新人教A版

2020届高考数学一轮复习第七篇立体几何与空间向量第1节空间几何体的结构、三视图和直观图课件理新人教A版
返回导航
【教材导读】 1.平行投影和中心投影的区别和联系? 提示:中心投影与人们感官的视觉效果是一致的,它常用来进行绘 画;平行投影中,与投影面平行的平面图形留下的影子,与这个平面图 形的形状和大小完全相同.
返回导航
2.两面平行,其余各面都是平行四边形的几何体就 是棱柱吗?
提示:不是,其余各面中相邻两面的公共边不一定都平行,如图几何 体就不是棱柱.
返回导航
D 解析:A 错误,如图(1),由两个结构相同的三棱锥叠放在一起构 成的几何体,各面都是三角形,但它不是三棱锥.
返回导航
B 错误,如图(2)(3),若△ABC 不是直角三角形或是直角三角形,但 旋转轴不是直角边所在直线,所得的几何体都不是圆锥.
C 错误,若六棱锥的所有棱长都相等,则底面多边形是正六边形. 由几何图形知,若以正六边形为底面,则侧棱长必然要大于底面边长. D 正确.
返回导航
2.一个正方体的展开图如图所示,A,B,C,D 为原正方体的顶点, 则在原来的正方体中( )
(A)AB∥CD (C)AB⊥CD 答案:D
返回导航
(B)AB 与 CD 相交 (D)AB 与 CD 所成的角为 60°
3.下图中的几何体是由下面哪个平面图形旋转得到的( )
答案:A
返回导航
4.(2018 全国Ⅰ卷)某圆柱的高为 2,底面周长为 16,其三视图如 右图.
返回导航
第 1 节 空间几何体的结构、三视图和直观图
最新考纲 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描 述现实生活中简单物体的结构. 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的 三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们 的直观图. 3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形 的不同表示形式. 4.会画某些建筑物的三视图和直观图(在不影响图形特征的基础上,尺寸 线条等不作严格要求)

高考数学中的三视图与投影相关知识点

高考数学中的三视图与投影相关知识点

高考数学中的三视图与投影相关知识点在几何学的领域中,三视图与投影是十分重要的一部分,它们不仅仅是应用于让我们更好地看清三维物体,也是高考数学常见的考点之一。

因此,在这篇文章中,我们将深入探讨高考数学中的三视图与投影相关知识点,帮助大家更好地理解和应用相关内容。

一、三视图概述在现实生活中,很多物体都是三维的,它们有长度、宽度和高度等特征,但我们任何时候都无法同时看到物体的所有信息,因为我们的眼睛只能看到一个角度。

为了更好地看清三维物体,我们可以将其分解为三个不同的投影角度,即正面视图、左视图和顶视图,这就是三视图的概念。

在数学中,我们可以通过三个二维的视图来表示三维物体的形状,三个视图分别呈现物体的正面、左侧和顶部,这些视图给我们提供了关于物体轮廓形状的详细信息。

三维物体的三视图可以通过投影的方式得到,这也是三视图和投影密不可分的原因。

二、投影概述投影是基于投影面和投影线进行的,是将三维物体在二维平面上展示的一种方式。

在投影中,投影面和投影线的位置非常重要,它们决定了最终投影的效果和质量。

在平行投影中,投影线是垂直于投影面的直线,这种投影方式可以得到准确的形状和大小,但是它的透视感比较弱,在某些情况下无法展示物体的深度,因此在我们画高考数学的题目时需要注意使用透视投影来展示物体的深度。

透视投影是一种根据物体在空间中的位置、大小、形状等特征进行的投影方式。

在透视投影中,物体的前方向是远离投影面的方向,反之则是物体的后方向,这种方式可以更好地表现物体的深度和透视效果。

三、三视图和投影的联系三视图和投影密不可分,因为三视图是通过投影方式得到的,我们可以通过三视图来确定物体在三维空间中的位置和方向,从而得到正确的投影。

在绘制三视图时,我们需要利用的是三个视图的交点来确定物体的位置,然后再根据物体的大小和形状来确定它的轮廓。

同样,在投影中,我们也需要确定三维物体在空间中的位置和方向,然后再根据其大小和形状进行投影。

2020届高考数学(理)课标版二轮课件:重难考点专题三第1讲 空间几何体的三视图、表面积与体积

2020届高考数学(理)课标版二轮课件:重难考点专题三第1讲 空间几何体的三视图、表面积与体积

为 7 ,SA与圆锥底面所成角为45°.若△SAB的面积为5 15,则该圆锥的侧面积
8

.
答案 40 2 π
解析 因为母线SA与圆锥底面所成的角为45°,所以圆锥的轴截面为等腰直
角三角形.设底面圆的半径为r,则母线长l= 2 r.在△SAB中,cos∠ASB= 7 ,所以
8
sin∠ASB= 15 .因为△SAB的面积为5 15,即 1 SA·SBsin∠ASB=1 · 2 r·2 r×
A.20π C.28π
B.24π D.32π
答案 C 由三视图知圆锥的高为2 3,底面半径为2,则圆锥的母线长为4,所
以圆锥的侧面积为 1 ×4π×4=8π.圆柱的底面积为4π,圆柱的侧面积为4×4π=
2
16π,从而该几何体的表面积为8π+16π+4π=28π,故选C.
2.(2018课标全国Ⅱ,16,5分)已知圆锥的顶点为S,母线SA,SB所成角的余弦值
BC=3,AA1=5.设△ABC内切圆半径为r,则S△ABC=
1 2
×3×4=
1 2
×(3+4+5)r,解得r=1,
所以内切球最大半径为1,直径为2,由AA1=5得,最多可加工出2个球.
2.(2019洛阳联考)已知球O与棱长为4的正四面体的各棱相切,则球O的体积 为( A )
A.8 2 π
3
B.8 3 π
在△ACD中,AD⊥CD,S△ACD= 5 ;
2
在△BCD中,BD⊥CD,S△BCD=1 ,
2
所以表面积为 3 + 2 + 5 .故选A.
2
2
命题角度二 空间几何体的体积
1.(2018课标全国Ⅱ文,16,5分)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与

专题4.1 复杂的三视图问题-2020届高考数学压轴题讲义(选填题)(解析版)

专题4.1 复杂的三视图问题-2020届高考数学压轴题讲义(选填题)(解析版)

一.方法综述三视图几乎是每年的必考内容,一般以选择题、填空题的形式出现,一是考查相关的识图,由直观图判断三视图或由三视图想象直观图,二是以三视图为载体,考查面积、体积的计算等,均属低中档题.三视图中的数据与原几何体中的数据不一定一一对应,识图要注意甄别. 揭示空间几何体的结构特征,包括几何体的形状,平行垂直等结构特征,这些正是数据运算的依据.还原几何体的基本要素是“长对齐,高平直,宽相等”.要切实弄清常见几何体(圆柱、圆锥、圆台、棱柱、棱锥、棱台、球)的三视图的特征,熟练掌握三视图的投影方向及正视图原理,才能迅速破解三视图问题,由三视图画出其直观图.对于简单几何体的组合体的三视图,首先要确定正视、侧视、俯视的方向,其次要注意组合体由哪些几何体组成,弄清它们的组成方式,特别应注意它们的交线的位置.解题时一定耐心加细心,观察准确线与线的位置关系,区分好实线和虚线的不同.根据几何体的三视图确定直观图的方法:(1)三视图为三个三角形,对应三棱锥;(2)三视图为两个三角形,一个四边形,对应四棱锥;(3)三视图为两个三角形,一个带圆心的圆,对应圆锥;(4)三视图为一个三角形,两个四边形,对应三棱锥;(5)三视图为两个四边形,一个圆,对应圆柱.对于几何体的三视图是多边形的,可构造长方体(正方体),在长方体(正方体)中去截得几何体. 二.解题策略类型一构造正方体(长方体)求解【例1】【2018年文北京卷】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C【解析】由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.【指点迷津】正视图、侧视图是三角形,考虑底面顶点数是四,是四棱锥. 【举一反三】1、某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D.1【答案】 B【解析】在长、宽、高分别为2、1、1的长方体中截得三棱锥P-ABC ,其中点A 为中点,所以611112131V ABC -P =⨯⨯⨯⨯=.故选B.2、如图是某几何体的三视图,则该几何体的体积为( )34.A 38.B 328.C 324.D 【答案】B3、【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )2(B )3(C )2(D )2 【答案】B【解析】原几何体是四棱锥P-ABCD ,如图,最长的棱长为补成的正方体的体对角线,由三视图可知正方体的棱长为2,所以该四棱锥的最长棱的长度为32222222=++=l .故选B.学科&网类型二旋转体与多面体组合体的三视图【例2】【安徽省合肥一中、马鞍山二中等六校教育研究会2019届高三第二次联考】一个几何体的三视图如图所示,其中俯视图是半径为r的圆,若该几何体的体积是则它的表面积是( )A.B.C.D.【答案】C【解析】由已知三视图可知:该几何体的直观图是一个底面半径为,高为的圆柱内挖去一个半径为的半球,因为该几何体的体积为,所以,即,解得,所以该几何体的表面积为,故选C.【指点迷津】1.三视图有两个长方形含两个虚半圆,一个圆,故知该几何体是圆柱内挖去一个半径为的半球.2. 三视图有两个半圆含虚三角,想到半球有挖空部分,俯视图是一个圆含实线正方形,几何体是由半径为2的半球挖去一个正四棱锥.【举一反三】1、一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A. 13+23πB.13+23πC.13+26πD.1+26π 【答案】 C【解析】由三视图知该四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×43π×⎝⎛⎭⎫223=13+26π.故选C.2、一几何体的三视图如图所示,正视图和侧视图都是半径为的半圆,俯视图为圆内接一个正方形,则该几何体的体积为( )A .B .C .D .【答案】D 【解析】分析:该几何体是由半径为2的半球挖去一个正四棱锥,四棱锥的高为2,底面为正方形,其对角线为4,分别求出2部分的体积并相减即可得到答案.解:由题意知,该几何体是由半球挖去一个正四棱锥,四棱锥的高为2,底面为正方形,其对角线为4,则该正方形边长为,故四棱锥的体积为,半球的体积为,故该几何体的体积为.故答案为D.类型三与三视图相关的外接与内切问题【例3】已知一个几何体的正视图和侧视图是两个全等的等腰三角形,腰长为3,底边长为2,俯视图是一个半径为1的圆如图,则这个几何体的内切球的体积为A.B.C.D.【答案】A【解析】由三视图知该几何体是圆锥,且底面圆的半径为1,母线长为3,其正视图为等腰三角形,圆锥的内切球半径等于正视图三角形内切圆半径,且内切圆的半径满足,解得,几何体的内切球体积为,故选A.【指点迷津】(1)三视图的定义正确读取图中线的位置关系和数量关系.(2)内切球球心与三棱锥各顶点连线,把原三棱锥分割成四个小三棱锥,利用等体积法求内切球半径.(3)分析外切球球心位置,利用已知的数量,求外切圆半径.【举一反三】1、如图,网格纸上小正方形的边长为1,粗实线画出的是一个三棱锥的三视图,则该三棱锥的外接球的表面积是()A.B.C.D.【答案】C【解析】由三视图可得,三棱锥为如图所示的三棱锥,其中侧面底面,在和中,,.取的中点,连,则为外接圆的圆心,且底面,所以球心在上.设球半径为,则在中,,由勾股定理得,解得,所以三棱锥的外接球的表面积为.故选C.2、一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()A.23π B. 83πC.43 D.163π【答案】D【解析】根据三视图还原几何体为一个如图所示的三棱锥D-ABC,其中平面ADC⊥平面ABC,△ADC为等边三角形.取AC的中点为E,连接DE、BE,则有DE⊥AC,所以DE⊥平面ABC,所以DE⊥EB.由图中数据知AE=EC=EB=1,DE= ,AD= =2=DC=DB,AB=BC= ,AC=2.设此三棱锥的外接球的球心为O,则它落在高线DE上,连接OA,则有AO2=AE2+OE2=1+OE2,AO=DO=DE-OE= -OE,所以AO= ,故球O的半径为 ,故所求几何体的外接球的表面积S=4π( )= π,故选D.3、一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A.12πB.43πC.3πD.123π类型四与三视图相关的最值问题【例476的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为(A)2(B)3(C)4 (D)5【答案】C【指点迷津】构造长方体,体对角线为已知长度的棱,长方体三个面为投影面.根据题意,用长方体的棱长表示a+b ,用不等式2222a b a b ++≤求其最值.【举一反三】1、某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy 的最大值为( )A.32 732.B C.64 764.D 【答案】C【解析】根据三视图可以画出该几何体的直观图如图, 其中,平面,B D CD ⊥.作,BD //EC ,且、交于点,连接,则.设,根据图中的几何关系,有,,两式联立消去得,再由均值不等式,得.故选C.2、若某几何体的三视图如图所示,这个几何体中最长的棱长为,几何体的体积为.16【答案】33,33、某三棱锥的三视图如图所示.(1)该三棱锥的体积为__________.(2)该三棱椎的四个面中,最大面的面积是__________.【答案】 8 234【解析】三棱锥的底面积13462S =⨯⨯=,1164833V Sh ==⨯⨯=, 其四个面的面积分别为113462S =⨯⨯=,22211533422S =⨯⨯+=,2231434102S =⨯⨯+=,()2241425222342S =⨯⨯-=,∴面积最大为234.学科&网三.强化训练 一、选择题1.【山东省泰安市高三2019年3月检测】九章算术中,将底面是直角三角形的直三棱柱称之为“堑堵”已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的表面积为422? 2? 442? 2A B C D ++....6+4【答案】D【解析】解:根据题意和三视图知几何体是一个放倒的直三棱柱'''ABC A B C -, 底面是一个直角三角形,两条直角边分别是2、斜边是2, 且侧棱与底面垂直,侧棱长是2,几何体的表面积1221222226422S =⨯⨯⨯+⨯+⨯⨯=+, 故选:D .2.【辽宁省大连市2019届高三3月测试】我国古代数学名著《九章算术》中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何”,羡除是一个五面体,其中三个面是梯形,另两个面是三角形,已知一个羡除的三视图如图粗线所示,其中小正方形网格的边长为1,则该羡除的表面中,三个梯形的面积之和为( )A .40B .43C .46D .47【答案】C 【解析】由三视图可知,该几何体的直现图如图五面体,其中平面平面,,底面梯形是等腰梯形,高为3 ,梯形的高为4 ,等腰梯形的高为, 三个梯形的面积之和为,故选C.3.【广东省梅州市2019届高三总复习质检】九章算术给出求羡除体积的“术”是:“并三广,以深乘之,又以袤乘之,六而一”,其中的“广”指羡除的三条平行侧棱的长,“深”指一条侧棱到另两条侧棱所在平面的距离,“袤”指这两条侧棱所在平行线之间的距离,用现代语言描述:在羡除中,,,,,两条平行线与间的距离为h,直线到平面的距离为,则该羡除的体积为已知某羡除的三视图如图所示,则该羡除的体积为A.B.C.D.【答案】B【解析】由三视图还原原几何体知,羡除中,,底面ABCD是矩形,,,平面平面ABCD,AB,CD间的距离,如图,取AD中点G,连接EG,则平面ABCD,由侧视图知,直线EF到平面ABCD的距离为,该羡除的体积为.故选:B.4.【安徽省合肥市2018届高三三模】我国古代《九章算术》将上、下两面为平行矩形的六面体称为刍童.右图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为A.B.40 C.D.【答案】D【解析】由三视图可知,该刍童的直观图是如图所示的六面体,图中正方体棱长为,分别是所在正方体棱的四等分点,其表面由两个全等的矩形,与四个全等的等腰梯形组成,矩形面积为,梯形的上下底分别为,梯形的高为,梯形面积为,所以该刍童的表面积为,故选D.5.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积为()A.B.C.D.【答案】C【解析】通过三视图还原,可知三棱锥为如下图所示的,可通过切割长方体得到所以长方体的外接球即为三棱锥的外接球又,,所以外接球半径:球的表面积为:本题正确选项:6.如图,一个圆柱从上部挖去半球得到几何体的正视图,侧视图都是图1,俯视图是图2,若得到的几何体表面积为,则()A.3 B.4C.5 D.6【答案】B【解析】所得几何体的表面积等于底面圆面积加上侧面积和半球表面积,即.故选.7.已知某几何体的三视图如图所示,则该几何体的体积为( )A.B.C.D.【答案】D【解析】观察三视图发现:该几何体的形状为圆柱从上方削去一部分,削去部分的体积为圆柱体积一半的一半即,下方削去半个球,故几何体的体积为:,故选D.8.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.10 B.20 C.30 D.60【答案】A【解析】根据三视图将三棱锥P-ABC还原到长方体中,如图所示,故选A.9.一个几何体的三视图如图所示,则这个几何体的体积为A.B.C.D.【答案】A【解析】由题意可知几何体是一个底面半径和高都是6的圆柱,挖去一个半圆锥的几何体如图:几何体的体积为:.故选:A.10.如图是一个几何体的三视图,根据图中的数据,计算该几何体的表面积为A.15π B.18π C.22π D.33π【答案】D【解析】由三视图可知,该几何体是一个组合体,组合体上部为一个半径为3的半球,下部是一个圆锥,圆锥的底面半径为3.母线长为5,半球的表面积为,圆锥的侧面积为,所以该几何体的表面积为,故选D.11.榫卯(sǔnmǎo)是两个木构件上所采用的一种凹凸结合的连接方式.凸出部分叫榫,凹进去的部分叫卯,榫和卯咬合,起到连接作用.代表建筑有北京的紫禁城、天坛祈年殿,山西悬空寺等,如图是一种榫卯构件中榫的三视图,则该榫的表面积和体积为()A.B.C.D.【答案】A【解析】由三视图知该榫头是由上下两部分构成:上方为长方体(底面为边长是1的正方形,高为2),下方为圆柱(底面圆半径为2,高为2).其表面积为圆柱的表面积加上长方体的侧面积, 所以.其体积圆柱与长方体体积之和, 所以.故选A .12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )(A )62(B )6 (C )62 (D )4【答案】 B4CA BD13.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )【答案】A【解析】该几何体是由两个小三棱锥和一个圆锥组成,所以体积为()1182224412333ππ⨯⨯⨯+⨯⨯=+,故选A.14. 如图所示,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,其侧视图中的曲线为圆周,则该几何体的体积为()A.B.C.D.【答案】B【解析】结合题意,绘制图像,如图所示平面DEF的面积为,故该几何体的体积,故选B.二、填空题15.一个几何体的三视图如图,则该几何体的体积为.【答案】π2216、一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为俯视图侧视图正视图311【答案】。

高考数学复习考点知识与题型专题讲解52---空间几何体的直观图与三视图

高考数学复习考点知识与题型专题讲解52---空间几何体的直观图与三视图
1 / 27
1.斜二测画法 斜二测画法的主要步骤如下: (1)建立直角坐标系. 在已知水平放置的平面图形中取互相垂直的 Ox, Oy ,建立直 角坐标系. (2)画出斜坐标系. 在画直观图的纸上(平面上)画出对应图形. 在已知图形平行于 x 轴的线段, 在直观图中画成平行于 O ' x ',O ' y ', 使 ∠x 'O ' y ' = 45o (或135o ), 它们确 定的平面表示水平平面. (3)画出对应图形. 在已知图形平行于 x 轴的线段, 在直观图中画成平行于 x ' 轴 的线段, 且长度保持不变; 在已知图形平行于 y 轴的线段, 在直观图中画成平行于 y ' 轴, 且长度变为原来的一般. 可简化为 “横不变, 纵减半”. (4)擦去辅助线. 图画好后, 要擦去 x ' 轴、 y ' 轴及为画图添加的辅助线(虚线). 被挡住的棱画虚线. 注: 直观图和平面图形的面积比为 2 : 4 . 2.平行投影与中心投影 平行投影的投影线是互相平行的, 中心投影的投影线相交于一点. 二、空间几何体的三视图 1.三视图的概念 将几何体由前至后、由左至右、由上至下分别作正投影得到的三个投影图依次叫做 该几何体的正(主)视图、左(侧)视图、俯视图, 统称三视图. 它们依次反应了几何体 的高度与长度、高度与宽度、长度与宽度. 2.作、看三视图的三原则 (1)位置原则:
2 / 27
度量原则长对正、高平齐、宽相等即正俯同长、正侧同高、俯侧同宽 虚实原则轮廓线、现则实、隐则虚 俯视图 几何体上下方向投影所得到的投影图反映几何体的长度和宽度 口诀 正侧同高正府同长府侧同宽或长对正、高平齐、宽相等 三、常见几何体的直观图与三视图 常见几何体的直观图与三视图如表 8-3 所示.

2020届高考数学理一轮复习空间几何体及其三视图、直观图文科

2020届高考数学理一轮复习空间几何体及其三视图、直观图文科
栏目索引
文数
课标版
第一节 空间几何体及其三视图、直观图
教材研读
栏目索引
1.空间几何体的结构特征
多 (1)棱柱:侧棱都① 平行且相等 ,上、下底面平行且是② 全等 的多边形. 面 (2)棱锥:底面是多边形,侧面是有一个公共顶点的三角形. 体 (3)棱台:可以由平行于棱锥底面的平面截棱锥得到,其上、下底面是③ 相似 多边形
旋 (1)圆柱:可以由④ 矩形 绕其任一边所在直线旋转得到. 转 (2)圆锥:可以由直角三角形绕其⑤ 直角边 所在直线旋转得到. 体 (3)圆台:可以由直角梯形绕其⑥ 垂直于底边的腰 所在直线或等腰梯形绕其上、下
底边中点的连线所在直线旋转得到,也可由平行于圆锥底面的平面截圆锥得到. (4)球:可以由半圆或圆绕其⑦ 直径 所在直线旋转得到
栏目索引
2.三视图与直观图
三视图 画三视图的规则:长对正,高平齐,宽相等 空间几何体的直观图常用⑧ 斜二测 画法来画,规则如下: (1)原图形中x轴、y轴、z轴两两垂直(原点为O),直观图中相应x'轴,y'轴满足∠x'O'y'=
直观图 ⑨ 45°(或135°) (O'为原点),z'轴与x'轴和y'轴所在平面垂直. (2)原图形中平行于坐标轴的线段在直观图中仍 平行于相应坐标轴 ,平行于x轴 和z轴的线段长度在直观图中保持原长度 不变 ,平行于y轴的线段长度在直观 图中长度为 原来的一半
栏目索引
2-1 (2014课标Ⅰ,8,5分)如图,网格纸的各小格都是正方形,粗实线画出 的是一个几何体的三视图,则这个几何体是 ( )
A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 答案 B 由题中三视图可知该几何体的直观图如图所示,则这个几何 体是三棱柱,故选B.

高考数学母题解密专题04 三视图附答案及解析(北京专版)

高考数学母题解密专题04 三视图附答案及解析(北京专版)

专题04 三视图【母题原题1】【2020年高考全国Ⅲ卷,理数】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .63B. 623+C. 123D. 1223+【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭【名师点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.【命题意图】能够识别三视图所表示的空间几何体,理解三视图和直观图的联系,并能进行转化,进而求出该几何体的表面积或体积.【命题规律】这类试题在考查题型上主要以选择题或填空题的形式出现,多为低档题,常见的命题角度:根据几何体的三视图,求该几何体的表面积或体积,熟练掌握三视图还原为直观图的方法(应牢记:长对正,宽相等,高平齐)及空间几何体的表面积与体积公式是关键.【答题模板】三视图问题的常见类型及解题策略:(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(4)求几何体体积问题需先由三视图确定几何体的结构特征,判断是否为组合体,由哪些简单几何体构成,并准确判断这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.【方法总结】1.线条的规则(1)能看见的轮廓线用实线表示;(2)不能看见的轮廓线用虚线表示.2.常见几何体的三视图3.空间几何体的直观图(1)斜二测画法及其规则对于平面多边形,我们常用斜二测画法画它们的直观图.斜二测画法是一种特殊的画直观图的方法,其画法规则是:①在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.③已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.(2)用斜二测画法画空间几何体的直观图的步骤①在已知图形所在的空间中取水平平面,作互相垂直的轴Ox ,Oy ,再作Oz 轴使∠xOz =90°,且∠yOz =90°. ②画直观图时,把它们画成对应的轴O ′x ′,O ′y ′,O ′z ′,使∠x ′O ′y ′=45°(或135°),∠x ′O ′z ′=90°,x ′O ′y ′所确定的平面表示水平平面.③已知图形中,平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成平行于x ′轴、y ′轴或z ′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中平行于x 轴或z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度变为原来的一半.⑤画图完成以后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图. (3)直观图的面积与原图面积之间的关系 ①原图形与直观图的面积比为22SS =',即原图面积是直观图面积的22倍, ②直观图面积是原图面积的2=22倍. 4.旋转体的表面积圆柱(底面半径为r ,母线长为l )圆锥(底面半径为r ,母线长为l )圆台(上、下底面半径分别为r ′,r ,母线长为l )侧面展开图底面面积2π底S r =2π底S r =22,ππ上底下底S r S r ='=侧面面积2π侧S rl =π侧S rl =()π侧S l r r ='+表面积()2π表S r r l =+ ()π表S r r l =+()22π表S r r r l rl ='++'+5.多面体的表面积多面体的表面积就是各个面的面积之和,也就是展开图的面积. 棱锥、棱台、棱柱的侧面积公式间的联系:6.球的表面积和体积公式设球的半径为R ,它的体积与表面积都由半径R 唯一确定,是以R 为自变量的函数,其表面积公式为24πR ,即球的表面积等于它的大圆面积的4倍;其体积公式为34π3R .7.球的切、接问题(常见结论)(1)若正方体的棱长为a ,则正方体的内切球半径是12a ;正方体的外接球半径是32a ;与正方体所有棱相切的球的半径是22a . (2)若长方体的长、宽、高分别为a ,b ,h 22212a b h ++ (3)若正四面体的棱长为a 66;与正四面体所有棱相切的球的半径是24a . (4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径. (5)球与圆台的底面与侧面均相切,则球的直径等于圆台的高. 8.柱体、锥体、台体的体积公式几何体体积柱体柱体V Sh=(S为底面面积,h为高),2π圆柱V r h=(r为底面半径,h为高) 锥体13锥体V Sh=(S为底面面积,h为高),213π圆锥V r h=(r为底面半径,h为高) 台体(13)台体V S S S S h='+'+(S′、S分别为上、下底面面积,h为高),()223π1圆台V h r r r r='+'+(r′、r分别为上、下底面半径,h为高)9.柱体、锥体、台体体积公式间的关系10.必记结论(1)一个组合体的体积等于它的各部分体积之和或差;(2)等底面面积且等高的两个同类几何体的体积相等.1.(2020·北京高三二模)已知一个几何体的三视图如图所示,正(主)视图是由一个半圆弧和一个正方形的三边拼接而成的,俯视图和侧(左)视图分别为一个正方形和一个长方形,那么这个几何体的体积是( )A .12π+B .14π+C .18π+D .1+π2.(2020·北京高三一模)如图,一个简单空间几何体的三视图其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的侧面积是A .443+B .12C .43D .83.(2019·北京清华附中高考模拟(文))如图,正方体1111ABCD A B C D -中,E 为棱1BB 的中点,用过点A 、E 、1C 的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是( )A .B .C .D .4.(2020·北京人大附中昌平学校高三二模)某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( ).A .22S ∉,且23S ∉B .22S ∉,且23S ∈C .22S ∈,且23S ∉D .22S ∈,且23S ∈5.(2020·北京高三零模)某四棱锥的三视图如图所示,则该四棱锥的体积为( )A .23B .43C .2D .46.(2020·北京高三一模)某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为()A.1 B.2 C.3 D.07.(2020·宁夏回族自治区银川一中高一期末)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(2020·北京高三期末(文))某三棱锥的三视图如图所示,则该几何体的体积为( )A.43B.83C.4D.89.(2018·北京高二期中(文))某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是A.B.C.D.10.(2018·北京高三期中(文))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B.2C.2-1D.2+1 211.(2020·四川省眉山市彭山区第二中学高三其他(文))将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.12.(2020·西安电子科技大学附属中学太白校区高一期末)某几何体的三视图如图所示,则它的体积是()A .283π-B .83π-C .82π-D .23π 13.(2020·北京高三一模)如图所示,某三棱锥的正(主)视图、俯视图、侧(左)视图均为直角三角形,则该三棱锥的体积为( )A .4B .6C .8D .1214.(2020·榆林市第二中学高三零模(文))将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为( )A.B.C.D.15.(2020·北京高三月考)如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.23B.43C.3D.3216.(2020·上海高三专题练习)若某空间几何体的三视图如图所示,则该几何体的体积是()A.13B.23C.1 D.217.(2020·北京高三二模)某三棱锥的三视图如图所示,则该三棱锥的体积是()A.6 B.8 C.12 D.24 18.(2020·浙江省高三其他)一个空间几何体的三视图如图所示,则其体积等于()A.66B.13C.12D.3219.(2020·四川省石室中学高三月考(理))某几何体的三视图如图所示(单位:cm) ,则该几何体的表面积(单位:cm2)是( )A.16 B.32 C.44 D.6420.(2020·浙江省高三其他)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是()A.13π+B.123π+C.23π+D.123π+21.(2019·浙江省高三其他)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是( )A .28cmB .212cmC .()2452cm +D .()2454cm +22.(2018·北京高三专题练习(理))某四棱锥的三视图如图所示,则该四棱锥的最长的棱长度为( ).A .23B .32C .22D .223.(2020·北京高三月考)某三棱锥的三视图如图所示,则该三棱锥中最长的棱长为( )A 2B .2C .22D .324.(2010·北京高考真题(理))一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )A.B.C.D.25.(2020·重庆市云阳江口中学校高三月考(文))某四棱锥的三视图如图所示,则该四棱锥的体积为()A.2 B.3 C.4 D.626.(2020·北京十五中高三一模)在正方形网格中,某四面体的三视图如图所示,如果小正方形网格的边长为1,那么该四面体最长棱的棱长为()A.25B.42C.6D.43 27.(2020·北京四中高三开学考试)某四棱锥的三视图如图所示,则该四棱锥的体积为()A.23B.43C.83D.328.(2020·湖南省湖南师大附中高三月考(文))某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1 B.2C .3D .429.(2020·北京八中高三月考)某几何体的三视图如图所示,则该几何体的体积是( )A .13B .23C .1D .230.(2020·北京高三月考(文))某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .37cm 2B .37cm 3C .37cm 6D .37cm31.(2020·北京高三其他)某四面体的三视图如图所示,正视图,俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为()A.22B.23C.4D.2632.(2020·北京高三二模)某三棱锥的三视图如图所示,如果网格纸上小正方形的边长为1,那么该三棱锥的体积为()A.23B.43C.2 D.433.(2020·福建省福州第一中学高三其他(理))已知某几何体的三视图如图所示,则该几何体的体积为()A.83πB.103πC.6πD.3π34.(2020·定远县育才学校高三其他(文))某四棱锥的三视图如图所示,则该四棱锥的体积等于()A.23B.13C.12D.3435.(2020·北京高三一模)某三棱锥的三视图如图所示,则该三棱锥的四个面中,面积等于3的有()A.1个B.2个C.3个D.4个36.(2020·四川省泸县第一中学高三二模(理))某四棱锥的三视图如图所示,该四棱锥的表面积是()A.2025+B.1445+C.26D.1225+37.(2020·上海高三专题练习)一个棱锥的三视图如图,则该棱锥的全面积(单位:c2m)为( )A.48+122B.48+242C.36+122D.36+24238.(2020·上海高三专题练习)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是()A.8 B.62C.10 D.8239.(2020·南昌市八一中学高二期中(理))某几何体的三视图如图所示,则这个几何体的体积等于()A.4B.6C.8D.1240.(2020·北京高三二模)如图所示,一个三棱锥的主视图和左视图均为等边三角形,俯视图为等腰直角三角形,则该棱锥的体积为()A 23B.43C43D.3解析附后专题04 三视图【母题原题1】【2020年高考全国Ⅲ卷,理数】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .63B. 623+C. 123D. 1223+【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭【名师点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.【命题意图】能够识别三视图所表示的空间几何体,理解三视图和直观图的联系,并能进行转化,进而求出该几何体的表面积或体积.【命题规律】这类试题在考查题型上主要以选择题或填空题的形式出现,多为低档题,常见的命题角度:根据几何体的三视图,求该几何体的表面积或体积,熟练掌握三视图还原为直观图的方法(应牢记:长对正,宽相等,高平齐)及空间几何体的表面积与体积公式是关键.【答题模板】三视图问题的常见类型及解题策略:(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(4)求几何体体积问题需先由三视图确定几何体的结构特征,判断是否为组合体,由哪些简单几何体构成,并准确判断这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.【方法总结】1.线条的规则(1)能看见的轮廓线用实线表示;(2)不能看见的轮廓线用虚线表示.2.常见几何体的三视图3.空间几何体的直观图(1)斜二测画法及其规则对于平面多边形,我们常用斜二测画法画它们的直观图.斜二测画法是一种特殊的画直观图的方法,其画法规则是:①在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.③已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.(2)用斜二测画法画空间几何体的直观图的步骤①在已知图形所在的空间中取水平平面,作互相垂直的轴Ox ,Oy ,再作Oz 轴使∠xOz =90°,且∠yOz =90°. ②画直观图时,把它们画成对应的轴O ′x ′,O ′y ′,O ′z ′,使∠x ′O ′y ′=45°(或135°),∠x ′O ′z ′=90°,x ′O ′y ′所确定的平面表示水平平面.③已知图形中,平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成平行于x ′轴、y ′轴或z ′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中平行于x 轴或z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度变为原来的一半.⑤画图完成以后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图. (3)直观图的面积与原图面积之间的关系 ①原图形与直观图的面积比为22SS =',即原图面积是直观图面积的22倍, ②直观图面积是原图面积的2=22倍. 4.旋转体的表面积圆柱(底面半径为r ,母线长为l )圆锥(底面半径为r ,母线长为l )圆台(上、下底面半径分别为r ′,r ,母线长为l )侧面展开图底面面积2π底S r =2π底S r =22,ππ上底下底S r S r ='=侧面面积2π侧S rl =π侧S rl =()π侧S l r r ='+表面积()2π表S r r l =+ ()π表S r r l =+()22π表S r r r l rl ='++'+5.多面体的表面积多面体的表面积就是各个面的面积之和,也就是展开图的面积. 棱锥、棱台、棱柱的侧面积公式间的联系:6.球的表面积和体积公式设球的半径为R ,它的体积与表面积都由半径R 唯一确定,是以R 为自变量的函数,其表面积公式为24πR ,即球的表面积等于它的大圆面积的4倍;其体积公式为34π3R .7.球的切、接问题(常见结论)(1)若正方体的棱长为a ,则正方体的内切球半径是12a ;正方体的外接球半径是32a ;与正方体所有棱相切的球的半径是22a . (2)若长方体的长、宽、高分别为a ,b ,h 22212a b h ++ (3)若正四面体的棱长为a 66;与正四面体所有棱相切的球的半径是24a . (4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径. (5)球与圆台的底面与侧面均相切,则球的直径等于圆台的高. 8.柱体、锥体、台体的体积公式几何体体积柱体柱体V Sh=(S为底面面积,h为高),2π圆柱V r h=(r为底面半径,h为高) 锥体13锥体V Sh=(S为底面面积,h为高),213π圆锥V r h=(r为底面半径,h为高) 台体(13)台体V S S S S h='+'+(S′、S分别为上、下底面面积,h为高),()223π1圆台V h r r r r='+'+(r′、r分别为上、下底面半径,h为高)9.柱体、锥体、台体体积公式间的关系10.必记结论(1)一个组合体的体积等于它的各部分体积之和或差;(2)等底面面积且等高的两个同类几何体的体积相等.1.(2020·北京高三二模)已知一个几何体的三视图如图所示,正(主)视图是由一个半圆弧和一个正方形的三边拼接而成的,俯视图和侧(左)视图分别为一个正方形和一个长方形,那么这个几何体的体积是( )A .12π+B .14π+C .18π+D .1+π【答案】C【解析】根据几何体的三视图转换为直观图为:该几何体为一个棱长为1的正方体和一个底面半径为12,高为1的半个圆柱. 如图所示:所以:V 211111()11228ππ=⨯⨯+⨯⨯⨯=+. 2.(2020·北京高三一模)如图,一个简单空间几何体的三视图其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的侧面积是A .443+B .12C .43D .8【答案】D 【解析】由三视图知:原几何体是一个正四棱锥,正四棱锥的底面边长为2,高为3,所以侧面的斜高为()23+1=2,所以该几何体的侧面积为1=224=82s ⨯⨯⨯. 3.(2019·北京清华附中高考模拟(文))如图,正方体1111ABCD A B C D -中,E 为棱1BB 的中点,用过点A 、E 、1C 的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是( )A .B .C .D .【答案】A【解析】正方体1111ABCD A B C D -中,过点1,,A E C 的平面截去该正方体的上半部分后,剩余部分的直观图如图:则该几何体的正视图为图中粗线部分.4.(2020·北京人大附中昌平学校高三二模)某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( ).A .22S ,且3SB .22S ,且23SC .22S ,且23SD .22S ,且23S【答案】D 【解析】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:2AB BC CD AD DE =====, 22AE CE ==,22(22)223BE =+=.故选:D..5.(2020·北京高三零模)某四棱锥的三视图如图所示,则该四棱锥的体积为( )A .23B .43C .2D .4【答案】B【解析】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为211421333ABCD V S PA =⋅=⨯⨯=正方形. 6.(2020·北京高三一模)某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为( )A .1B .2C .3D .0【答案】C 【解析】由三视图还原原几何体如图,其中ABC ∆,BCD ∆,ADC ∆为直角三角形.∴该三棱锥的表面中直角三角形的个数为3.7.(2020·宁夏回族自治区银川一中高一期末)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .18【答案】B【解析】 13V Sh =,1163332=⨯⨯⨯⨯,9=.8.(2020·北京高三期末(文))某三棱锥的三视图如图所示,则该几何体的体积为( )A .43 B .83 C .4 D .8【答案】A【解析由三视图可知,该几何体是一个三棱锥,其底面为等腰直角三角形,且腰长为2,三棱柱的高为2,所以该三棱柱的体积为114 V222323 =⨯⨯⨯⨯=.9.(2018·北京高二期中(文))某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是A.B.C.D.【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.10.(2018·北京高三期中(文))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B2C2-1D.2+1 2【答案】C【解析】水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为2,因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围是[1,2],因此,,A B D 皆有可能,而2112-<,11.(2020·四川省眉山市彭山区第二中学高三其他(文))将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为 ( )A .B .C .D .【答案】B【解析】由题意可知几何体前面在右侧的射影为线段,上面的射影也是线段,后面与底面的射影都是线段,轮廓是正方形,1AD 在右侧的射影是正方形的对角线,1B C 在右侧的射影也是对角线是虚线.如图B . 12.(2020·西安电子科技大学附属中学太白校区高一期末)某几何体的三视图如图所示,则它的体积是( )A .283π- B .83π-C .82π-D .23π 【答案】A【解析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算. 由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是3218222833V ππ=-⨯⨯⨯=-.13.(2020·北京高三一模)如图所示,某三棱锥的正(主)视图、俯视图、侧(左)视图均为直角三角形,则该三棱锥的体积为( )A .4B .6C .8D .12【答案】A 【解析】由三视图知,几何体是一个三棱锥1D BCD ,根据三棱锥的三视图的数据,设出三棱锥两两垂直的三条侧棱分别是4DC =,3BC =,12DD =,因此,三棱锥的体积是114324 32⨯⨯⨯⨯=.14.(2020·榆林市第二中学高三零模(文))将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为()A.B.C.D.【答案】D【解析】将长方体截去一个四棱锥,得到的几何体,左向右看得到矩形,矩形对角线从左下角连接右上角,且对角线为虚线,故该几何体的侧视图为D15.(2020·北京高三月考)如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A .23B .43C .3D .32【答案】D【解析】根据三视图可知,该几何体的直观图为三棱锥P ABC -,如图可知3,1,==⊥AB BC AB BC ,点P 到平面ABC 的距离为3h =11331222△=⋅⋅=⋅⋅=ABC S AB BC 所以113333322△-=⋅⋅=⋅⋅=P ABC ABC V S h 16.(2020·上海高三专题练习)若某空间几何体的三视图如图所示,则该几何体的体积是()A .13B .23C .1D .2【答案】C【解析】由三视图可知:原几何体为三棱柱.所以体积为:.17.(2020·北京高三二模)某三棱锥的三视图如图所示,则该三棱锥的体积是( )A .6B .8C .12D .24【答案】B【解析】由三视图画出该三棱锥的直观图,如下图,三棱锥A BCD -中,AB ⊥底面BCD ,4AB =,BC CD ⊥,且4BC =,3CD =,所以该三棱锥的体积1114348332BCDV S AB =⋅=⨯⨯⨯⨯=. 故选:B.18.(2020·浙江省高三其他)一个空间几何体的三视图如图所示,则其体积等于()A.66B.13C.12D.32【答案】C【解析】由三视图可知,该几何体为三棱锥,如图,且高为3,∴该三棱锥的体积111133322V=⨯⨯=,故选:C.19.(2020·四川省石室中学高三月考(理))某几何体的三视图如图所示(单位:cm) ,则该几何体的表面积(单位:cm2)是( )A.16 B.32 C.44 D.64【答案】B【解析】由三视图还原原几何体如图,该几何体为三棱锥,底面是直角三角形,PA⊥底面ABC.⊥.则BC PC∴该几何体的表面积1(34543445)32S=⨯+⨯+⨯+⨯=.220.(2020·浙江省高三其他)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是()A.13π+B.123π+C.23π+D.123π+【答案】B【解析】由三视图还原几何体的直观图,如下图:可得该几何体为一个四分之一的圆柱和一个三棱锥的组合体,所以该几何体的体积21211111243223 Vππ⨯⨯=+⨯⨯⨯⨯=+.故选:B.21.(2019·浙江省高三其他)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是( )A .28cmB .212cmC .()2452cm +D .()2454cm +【答案】D【解析】根据三视图可知,该几何体为正四棱锥.底面积为224⨯=.侧面的高为22215+=,所以侧面积为1425452⨯⨯⨯=.所以该几何体的表面积是()2454cm +. 22.(2018·北京高三专题练习(理))某四棱锥的三视图如图所示,则该四棱锥的最长的棱长度为( ).A .3B .32C .22D .2【答案】A【解析】由三视图可知其直观图,。

2019—2020年新课标高考数学理科试题分类精编12三视图

2019—2020年新课标高考数学理科试题分类精编12三视图

2019—2020年新课标高考数学理科试题分类精编12三视图第12部分-三视图一.选择题1.( 2018年陕西理7).假设某空间几何体的三视图如下图,那么该几何体的体积是()31A ()32B ()1C ()2D〔第7小题图〕【答案】C【解析】由所给三视图知,对应的几何体为一倒放的直三棱柱'''C B A ABC -〔如以下图所示〕,其高为2,底面ABC 满足:1,2,==⊥AC AB AC AB .故该几何体的体积为121221'=⨯⎪⎭⎫⎝⎛⨯⨯=⋅=∆AA S V ABC .应选C . 2.( 2018年广东理6)如图1,△ ABC 为三角形,AA '//BB ' //CC ' , CC ' ⊥平面AC主视图左视图俯视图ABC 且3AA'=32BB'=CC' =AB,那么多面体△ABC -A B C'''的正视图〔也称主视图〕是【答案】D.3.( 2018年安徽理8)一个几何体的三视图如图,该几何体的表面积为A、280B、292C、360D、372【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。

2(10810282)2(6882)360S=⨯+⨯+⨯+⨯+⨯=.【方法技巧】把三视图转化为直观图是解决咨询题的关键.又三视图专门容易明白是两个长方体的组合体,画出直观图,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和。

4.〔2018年北京理3〕一个长方体去掉一个小长方体,所得几何体的正〔主〕视图与侧〔左〕视图分不如右图所示,那么该几何体的俯视图为解析:专门容易看出这是一个面向我们的左上角缺了一小块长方体的图形,不难选出答案C。

5.〔2018年海南理11〕一个棱锥的三视图如图,那么该棱锥的全面积〔单位:c2m〕为〔A〕48+122〔B〕48+242〔C〕36+122〔D〕36+242【解析】棱锥的直观图如右,那么有PO=4,OD=3,由勾股定理,得PD=5,AB =62,全面积为:21×6×6+2×21×6×5+21×62×4=48+122,应选6.(2018年山东理4) 一空间几何体的三视图如下图,那么该几何体的体积为( ).A.2π+B. 4π+C. 2π+【解析】:该空间几何体为一圆柱和一四棱锥组成的, 圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面边长为2,高为3,因此体积为213⨯=因此该几何体的体积为2π+答案:C【命题立意】:此题考查了立体几何中的空间想象能力, 由三视图能够想象得到空间的立体图,并能准确地 运算出.几何体的体积.7.(2018年海南理12)在该几何体的侧视图与俯视图中,这条棱的投影分不是长为a 和b 的线段,那么a +b 的最大值为〔 〕 A .B .C .4D .C 解:结合长方体的对角线在三个面的投影来明白得运算。

2020年高考数学 专题四 立体几何题型分析 理

2020年高考数学 专题四 立体几何题型分析 理

2020专题四:立体几何题型分析考点一三视图、直观图与表面积、体积1.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系S直观图=24S原图形,S原图形=22S直观图.2.三视图(1)几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrlS圆台侧=π(r+r′)l2名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S =4πR 2 V =43πR 3例1.等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.例2.(2020·重庆高考)某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240例3.(1)如图所示,已知三棱柱ABC ­A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1 ­ABC 1的体积为( )A.312 B.34 C.612D.64(2)(2020·新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π考点二 球与空间几何体的“切”“接”问题 方法主要是“补体”和“找球心” 方法一:直接法例1、一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3 ,则此球的表面积为 .练习:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ) A. 16π B. 20π C. 24π D. 32π 方法二:构造法(构造正方体或长方体)例2(2020年福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 练习 (2020年全国卷)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) A. 3π B. 4π C. 33π D. 6π 三、确定球心位置法例3、在矩形ABCD 中,AB=4,BC=3,AC 沿将矩形ABCD 折成一个直二面角B-AC-D ,则四面体ABCD 的外接球的体积为( )四、构造直角三角形例4、正四面体的棱长为a ,则其内切球和外接球的半径是多少,体积是多少?练习: 角度一 直三棱柱的外接球1.(2020·辽宁高考)已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310角度二 正方体的外接球2.(2020·合肥模拟)一个正方体削去一个角所得到的几何体的三视图如图所示 (图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________. 角度三 正四面体的内切球3.(2020·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________. 角度四 四棱锥的外接球4.四棱锥P ­ABCD 的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( ) A .9π B .3π C .22π D .12π考点三 利用空间向量求角和距离 1.两条异面直线所成角的求法π12125.A π9125.B π6125.C π3125.D设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a ,b 所成的角).2.直线和平面所成的角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|n·e||n||e|.3.求二面角的大小(1)如图①,AB ,CD 是二面角α ­l ­β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB u u u r ,CD u u ur 〉.(2)如图②③,n 1,n 2分别是二面角α ­l ­β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉(或π-〈n 1,n 2〉).4.点到平面的距离的求法设n r 是平面α的法向量,在α内取一点B, 则 A 到α的距离|||||cos |||AB n d AB n θ==u u u r r u u u r g r 易错点:1.求异面直线所成角时,易求出余弦值为负值而盲目得出答案而忽视了夹角为⎝⎛⎦⎥⎤0,π2.2.求直线与平面所成角时,注意求出夹角的余弦值的绝对值应为线面角的正弦值.3.利用平面的法向量求二面角的大小时,二面角是锐角或钝角由图形决定.由图形知二面角是锐角时cosθ=|n 1·n 2||n 1||n 2|;由图形知二面角是钝角时,cos θ=-|n 1·n 2||n 1||n 2|.当图形不能确定时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等(一个平面的法向量指向二面角的内部,另一个平面的法向量指向二面角的外部),还是互补(两个法向量同时指向二面角的内部或外部),这是利用向量求二面角的难点、易错点.一、线线角问题1.(2020·沈阳调研)在直三棱柱A 1B 1C 1 ­ABC 中,∠BCA =90°,点D 1,F 1分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A.3010 B.12 C.3015D.15102.如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,M 和N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值为________.二、线面角的问题3、(2020·湖南高考)如图,在直棱柱ABCD ­A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.[针对训练](2020·福建高考改编)如图,在四棱柱ABCD ­A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.三、二面角问题4、(2020·新课标卷Ⅱ)如图,直三棱柱ABC ­A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1//平面A 1CD ; (2)求二面角D ­A 1C ­E 的正弦值.[针对训练](2020·杭州模拟)如图,已知平面QBC 与直线PA 均垂直于Rt△ABC 所在平面, 且PA =AB =AC .(1)求证:PA ∥平面QBC ;(2)若PQ ⊥平面QBC ,求二面角Q ­PB ­A 的余弦值.四、 利用空间向量解决探索性问题.(2020·江西模拟)如图,四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE =3AF ,BE 与平面ABCD 所成的角为60°.(1)求证:AC ⊥平面BDE ; (2)求二面角F ­BE ­D 的余弦值;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.[针对训练]已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,点P 在线段BD 1上.当∠APC 最大时,三棱锥P ­ABC 的体积为________.五、近三年新课标高考试题立体几何(三视图1小+1小1大:(1)三视图(2)线面关系(3)与球有关的组合体(4)证明、求体积与表面积(注意规范性),作辅助线的思路(5)探索性问题的思考方法)(11)(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为(18)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD . (Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值。

2019-2020年高三数学-考试清单-考点十三-三视图、几何计算

2019-2020年高三数学-考试清单-考点十三-三视图、几何计算

2019-2020年高三数学考试清单 考点十三 三视图、几何计算考纲要求1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.考纲要求了解柱体、锥体、台体、球体的表面积和体积的计算公式(不要求记忆公式) 高考真题示例1.(xx ·安徽高考理科·T6)一个空间几何体的三视图如图所示,则该几何体的表面积为( )(A )48 (B )32+ (C )48+ (D )80【思路点拨】将三视图还原成直观图,可以知道这是一个底面为等腰梯形的直棱柱,之后利用面积公式,求出六个面的面积.【精讲精析】选C.这是一个底面为等腰梯形的直棱柱,两底面等腰梯形的面积和为四个侧面的面积为,)(178********+=++⨯所以该几何体的表面积为48+.2.(xx ·新课标全国高考理科·T6)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )(A ) (B ) (C ) (D )【思路点拨】由正视图和俯视图可联想到几何体的直观图,然后再推出侧视图. 【精讲精析】选D. 由正视图和俯视图可以推测几何体为半圆锥和三棱锥的组合体(如图所示),且顶点在底面的射影恰是底面半圆的圆心, 可知侧视图为等腰三角形,且轮廓线为实线,故选DBCA3.(xx ·北京高考文科·T5)某四棱锥的三视图如图所示,该四棱锥的表面积是( ) (A )32 (B ) (C )48 (D )【思路点拨】作出直观图,先求出斜高,再计算表面积. 【精讲精析】选B.斜高为,表面积为214(422)4161622⨯⨯⨯+=+.4.(xx ·湖南高考理科·T3)设如图所示是某几何体的三视图,则该几何体的体积为( ) (A ) (B ) (C ) (D )【思路点拨】本题考查学生的空间想象能力和计算几何体的体积的 能力.【精讲精析】选B.由三视图可以得到几何体的上面是一个半径为的球,下面是一个底面边长为3高为2的正四棱柱.故体积为3439332+()18.322π⨯⨯⨯=+π5.(xx ·陕西高考理科·T5)某几何体的三视图如图所示,则它的体积 是( ) (A ) (B ) (C ) (D )【思路点拨】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积正(主)视图 侧(左)视图 俯视图2443 32正视图侧视图俯视图公式进行计算.【精讲精析】选A .由几何体的三视图可知该几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是3212212833V ππ=-⨯⨯⨯=-.6.(xx ·浙江高考理科·T3)若某几何体的三视图如图所示,则这个几何体的直观图可以是( )【思路点拨】逐个检验筛查.【精讲精析】选D.由正视图来看符合条件的只有C,D.从俯视图来看只有D 选项中的几何体符合.7.(xx ·天津高考理科·T10)一个几何体的三视图如图所示(单位:),则该几何体的体积为__________ 【思路点拨】由三视图正确判断出组合体的图形是关键. 【精讲精析】组合体的底座是一个长、宽、高分别为3、2、1的长方体,上面是一个底面半径为1,高为3的圆锥,所以所求的体积是:211332163=+=⨯⨯+⨯⨯=+V V V ππ圆锥长方体【答案】8.(xx·新课标全国高考理科·T15)已知矩形的顶点都在半径为 4的球的球面上,且,则棱锥的体积为 __ .【思路点拨】画出图形,找出球心位置,然后数形结合求出棱锥O-ABCD 的 体积.【精讲精析】 如图所示,垂直于矩形ABCD 所在的平面,垂足为, 连接,,则在中,由OB =4, ,可得=2,1162328 3.33O ABCD V S OO -'∴=⋅=⨯⨯= 【答案】9.(xx·新课标全国高考文科·T16)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的 ,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________【思路点拨】画出图形,利用数形结合,然后利用球及圆的性质求解. 【精讲精析】如图设球的半径为,圆锥的底面 圆半径为,则依题意得 ,即130,2O CO OO R ''∴∠=︒∴=,11,22AO R R BO R R ''∴=-=+, 112.332RAO BO R '∴==' 【答案】10. (xx·福建卷理科·T12)三棱锥P-ABC 中,PA ⊥底面ABC ,PA=3,底面ABC 是边长为2的正三角形,则三棱锥P-ABC 的体积等于______. 【思路点拨】利用公式求体积. 【精讲精析】由题意得:211323 3.334P ABC ABC V S PA -∆=⋅⋅=⨯⨯= 【答案】 】11.(xx ·浙江高考文科·T8)若某几何体的三视图 (单位:cm )如图所示,则此几何体的体积是( ) (A )cm 3(B )cm 3(C )cm 3 (D )cm3【命题立意】本题主要考查了对三视图所表达的空间几何体的 识别以及几何体体积的计算,属容易题.【思路点拨】解答本题要先由三视图,想象出直观图,再求体积.【规范解答】选B.此几何体上方为正四棱柱、下方为四棱台.所以其体积为22231320422(4848)33V cm=⨯+⨯++⨯=(cm 3).12.(xx ·海南宁夏高考·理科T10)设三棱柱的侧棱垂直于底面,所有棱的长为,顶点都在一个球面上,则该球的表面积为( ) (A ) (B ) (C ) (D )【命题立意】本小题主要考查了几何体的外接球问题.【思路点拨】找出球与棱柱的相应关系,找出球的半径与三棱柱棱长之间的关系. 【规范解答】选B.设球心为,设正三棱柱上底面为,中心为,因为三棱柱所有棱的长为,则可知 ,,又由球的相关性质可知,球的半径6R a ==,所以球的表面积为,故选B.13.(xx ·天津高考文科·T12)一个几何体的三视图如图所示, 则这个几何体的体积为 .【命题立意】本题主要考查三视图的基础知识,和柱体体积的计算,属于容易题. 【思路点拨】由三视图还原几何体的形状.【规范解答】由俯视图可知该几何体的底面为直角梯形,则由正视图和侧视图可知该几何体的高为1,结合三个视图可知该几何体是底面为直角梯形的直四棱柱,所以该几何体的体积为.【答案】314. (xx ·山东高考文科·T4)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,该四棱锥侧面积和体积分别是( )A. B. C. D. 8,8【解题指南】本题考查空间几何体的三视图及表面积和体积公式.【解析】选B.由图知,此棱锥高为2,底面正方形的边长为2,,侧面积需要计算侧面三角形的高,5452214=⎪⎭⎫⎝⎛⨯⨯⨯=侧S . 15. (xx ·广东高考理科·T5)某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .C .D .6【解题指南】本题考查空间想象能力与台体体积公式,应首先还原出台体形状再计算. 【解析】选B. 四棱台的上下底面均为正方形,两底面边长和高分别为,111414142333V S S S S h =+=+⨯=下下棱台上上()().16. (xx ·辽宁高考文科·T10)与(xx ·辽宁高考理科·T10)相同已知三棱柱的6个顶点都在球的球面上,若13,4,,12,AB AC AB AC AA ==⊥=,则球的半径为( )31713..210..31022A B C D【解题指南】对于某些简单组合体的相接问题,通过作出截面,使得有关的元素间的数量关系相对集中在某个平面图形中。

高考数学专题投影与三视图

高考数学专题投影与三视图
(5)若在圆柱的上、下底面的圆周上各取一点,则这两点的连 线是圆柱的母线.
(6)正方体、球、圆锥各自的三视图中,三视图均相同. ×
×
2.如图,长方体 ABCD-A′B′C′D′中被截去一部分, 其中 EH∥A′D′,剩下的几何体是( )
A.棱台
B.四棱柱
C.五棱柱 答案 C
D.简单组合体
解析 由空间几何体的结构特征知,该剩下部分为五棱柱
答案 B 解析 三棱锥的正视图应为高为 4,底边长为 3 的直角三角 形.
Байду номын сангаас人以渔
题型一 空间几何体的结构特征
(1)判断下列结论是否正确.(打“√”或“×”) ①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③三棱锥的四个面中最多只有三个直角三角形; ④棱台的相对侧棱延长后必交于一点; ⑤圆锥所有轴截面都是全等的等腰三角形; ⑥圆锥的轴截面是所有过顶点的截面中,面积最大的一个. 【答案】 ①√ ②× ③× ④√ ⑤√ ⑥× 【讲评】 深刻领会基本概念,熟练掌握基本题型的解法,是 学好立体几何的关键,本课涉及到的概念较多,应多看、多想、多 做.
的方位向北.故选 B.
【讲评】 立体几何中“截、展、拆、拼” ①“截”:指的是截面,平行于柱、锥底面的截面以及旋转 体的轴截面,它们集中反映了几何体的主要元素的数量关系,能 够列出有关量的关系. ②“展”:指的是侧面和某些面的展开图,在有关沿表面的 最短路径问题中,就是求侧面或某些面展开图上两点间的距离.注 意展开方式往往不止一种.
5.(2018·北京春季高中模拟)一个几何体的三视图如图所示, 那么该几何体是( )
A.三棱锥 B.四棱锥 C.三棱柱 D.四棱柱
解析 由三视图可得,该几何体为如图所示的三棱锥 B1- ACD,故选 A.

全国通用2020_2022三年高考数学真题分项汇编专题05立体几何选择题填空题文(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编专题05立体几何选择题填空题文(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编:05 立体几何(选择题、填空题)(文科专用)1.【2022年全国甲卷】如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8 B.12 C.16 D.20【答案】B【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,×2×2=12.则该直四棱柱的体积V=2+42故选:B.2.【2022年全国甲卷】在长方体ABCD−A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B 所成的角均为30°,则()A.AB=2AD B.AB与平面AB1C1D所成的角为30°C.AC=CB1D.B1D与平面BB1C1C所成的角为45°【答案】D【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出. 【详解】 如图所示:不妨设AB =a,AD =b,AA 1=c ,依题以及长方体的结构特征可知,B 1D 与平面ABCD 所成角为∠B 1DB ,B 1D 与平面AA 1B 1B 所成角为∠DB 1A ,所以sin30∘=cB 1D=b B 1D,即b =c ,B 1D =2c =√a 2+b 2+c 2,解得a =√2c .对于A ,AB =a ,AD =b ,AB =√2AD ,A 错误;对于B ,过B 作BE ⊥AB 1于E ,易知BE ⊥平面AB 1C 1D ,所以AB 与平面AB 1C 1D 所成角为∠BAE ,因为tan ∠BAE =c a=√22,所以∠BAE ≠30∘,B 错误;对于C ,AC =√a 2+b 2=√3c ,CB 1=√b 2+c 2=√2c ,AC ≠CB 1,C 错误; 对于D ,B 1D 与平面BB 1C 1C 所成角为∠DB 1C ,sin ∠DB 1C =CDB 1D=a2c =√22,而0<∠DB 1C<90∘,所以∠DB 1C =45∘.D 正确. 故选:D .3.【2022年全国甲卷】甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S 甲S 乙=2,则V 甲V 乙=( )A .√5B .2√2C .√10D .5√104【答案】C 【解析】 【分析】设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,根据圆锥的侧面积公式可得r 1=2r 2,再结合圆心角之和可将r 1,r 2分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解. 【详解】解:设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,则S 甲S 乙=πr 1l πr 2l =r1r 2=2, 所以r 1=2r 2, 又2πr 1l +2πr 2l=2π,则r 1+r 2l=1,所以r 1=23l,r 2=13l ,所以甲圆锥的高ℎ1=√l 2−49l 2=√53l ,乙圆锥的高ℎ2=√l 2−19l 2=2√23l , 所以V 甲V 乙=13πr 12ℎ113πr 22ℎ2=49l 2×√53l 19l ×2√23l =√10.故选:C.4.【2022年全国乙卷】在正方体ABCD −A 1B 1C 1D 1中,E ,F 分别为AB,BC 的中点,则( ) A .平面B 1EF ⊥平面BDD 1 B .平面B 1EF ⊥平面A 1BD C .平面B 1EF//平面A 1AC D .平面B 1EF//平面A 1C 1D【答案】A 【解析】 【分析】证明EF ⊥平面BDD 1,即可判断A ;如图,以点D 为原点,建立空间直角坐标系,设AB =2,分别求出平面B 1EF ,A 1BD ,A 1C 1D 的法向量,根据法向量的位置关系,即可判断BCD. 【详解】解:在正方体ABCD −A 1B 1C 1D 1中, AC ⊥BD 且DD 1⊥平面ABCD , 又EF ⊂平面ABCD ,所以EF ⊥DD 1, 因为E,F 分别为AB,BC 的中点, 所以EF ∥AC ,所以EF ⊥BD , 又BD ∩DD 1=D , 所以EF ⊥平面BDD 1, 又EF ⊂平面B 1EF ,所以平面B 1EF ⊥平面BDD 1,故A 正确; 对于选项B ,如图所示,设11A BB E M =,EF BD N =,则MN 为平面1B EF 与平面1A BD 的交线,在BMN △内,作BP MN ⊥于点P ,在EMN △内,作GP MN ⊥,交EN 于点G ,连结BG ,则BPG ∠或其补角为平面1B EF 与平面1A BD 所成二面角的平面角,由勾股定理可知:222PB PN BN +=,222PG PN GN +=, 底面正方形ABCD 中,,E F 为中点,则EF BD ⊥, 由勾股定理可得222NB NG BG +=,从而有:()()2222222NB NG PB PN PG PN BG +=+++=, 据此可得222PB PG BG +≠,即90BPG ∠≠, 据此可得平面1B EF ⊥平面1A BD 不成立,选项B 错误; 对于选项C ,取11A B 的中点H ,则1AHB E ,由于AH 与平面1A AC 相交,故平面1B EF 平面1A AC 不成立,选项C 错误;对于选项D ,取AD 的中点M ,很明显四边形11A B FM 为平行四边形,则11A MB F ,由于1A M 与平面11AC D 相交,故平面1B EF 平面11AC D 不成立,选项D 错误;故选:A.5.【2022年全国乙卷】已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.13B.12C.√33D.√22【答案】C【解析】【分析】先证明当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为α,则S ABCD=12⋅AC⋅BD⋅sinα≤12⋅AC⋅BD≤12⋅2r⋅2r=2r2(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2又r2+ℎ2=1则V O−ABCD=13⋅2r2⋅ℎ=√23√r2⋅r2⋅2ℎ2≤√23√(r2+r2+2ℎ23)3=4√327当且仅当r2=2ℎ2即ℎ=√33时等号成立,故选:C6.【2021年甲卷文科】在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A EFG后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A .B .C .D .【答案】D 【解析】 【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断. 【详解】由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D7.【2021年乙卷文科】在正方体1111ABCD A B C D 中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( )A .π2B .π3C .π4D .π6【答案】D 【解析】 【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可. 【详解】如图,连接11,,BC PC PB ,因为1AD ∥1BC , 所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=, 所以1PC ⊥平面1PBB ,所以1PC PB ⊥, 设正方体棱长为2,则111112BC PC D B === 1111sin 2PC PBC BC ∠==,所以16PBC π∠=. 故选:D8.【2021年甲卷文科】已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________. 【答案】39π 【解析】 【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案. 【详解】∵216303V h ππ=⋅=∴52h =∴132 l==∴136392S rlπππ==⨯⨯=侧.故答案为:39π.9.【2021年乙卷文科】以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).【答案】③④(答案不唯一)【解析】【分析】由题意结合所给的图形确定一组三视图的组合即可.【详解】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A B C D -中,12,1AB BC BB ===,,E F 分别为棱11,B C BC 的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF -. 故答案为:③④. 【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.。

2020年高考数学(理)三视图母题

2020年高考数学(理)三视图母题

专题08 三视图【母题原题1】【2020年高考全国Ⅲ卷,理数】下图为某几何体的三视图,则该几何体的表面积是( )C根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++故选:C.【母题原题2】【2018年高考全国Ⅲ卷,理数】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A本题主要考查空间几何体的三视图.由题意知,俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A.【命题意图】能够识别三视图所表示的空间几何体,理解三视图和直观图的联系,并能进行转化,进而求出该几何体的表面积或体积.【命题规律】这类试题在考查题型上主要以选择题或填空题的形式出现,多为低档题,常见的命题角度:根据几何体的三视图,求该几何体的表面积或体积,熟练掌握三视图还原为直观图的方法(应牢记:长对正,宽相等,高平齐)及空间几何体的表面积与体积公式是关键.【答题模板】三视图问题的常见类型及解题策略:(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(4)求几何体体积问题需先由三视图确定几何体的结构特征,判断是否为组合体,由哪些简单几何体构成,并准确判断这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.【方法总结】1.线条的规则(1)能看见的轮廓线用实线表示;(2)不能看见的轮廓线用虚线表示.2.常见几何体的三视图3.空间几何体的直观图(1)斜二测画法及其规则对于平面多边形,我们常用斜二测画法画它们的直观图.斜二测画法是一种特殊的画直观图的方法,其画法规则是:①在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.③已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.(2)用斜二测画法画空间几何体的直观图的步骤①在已知图形所在的空间中取水平平面,作互相垂直的轴Ox,Oy,再作Oz轴使∠xOz=90°,且∠yOz=90°.②画直观图时,把它们画成对应的轴O′x′,O′y′,O′z′,使∠x′O′y′=45°(或135°),∠x′O′z′=90°,x′O′y′所确定的平面表示水平平面.③已知图形中,平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成平行于x ′轴、y ′轴或z ′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中平行于x 轴或z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度变为原来的一半. ⑤画图完成以后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图. (3)直观图的面积与原图面积之间的关系①原图形与直观图的面积比为SS =',即原图面积是直观图面积的②直观图面积是原图面积的4倍. 4.旋转体的表面积5.多面体的表面积多面体的表面积就是各个面的面积之和,也就是展开图的面积. 棱锥、棱台、棱柱的侧面积公式间的联系:6.球的表面积和体积公式设球的半径为R ,它的体积与表面积都由半径R 唯一确定,是以R 为自变量的函数,其表面积公式为24πR ,即球的表面积等于它的大圆面积的4倍;其体积公式为34π3R . 7.球的切、接问题(常见结论)(1)若正方体的棱长为a ,则正方体的内切球半径是12a;正方体的外接球半径是;与正方体所有棱相切的球的半径是2a . (2)若长方体的长、宽、高分别为a ,b ,h(3)若正四面体的棱长为a,则正四面体的内切球半径是12a;正四面体的外接球半径是4a ;与正四面体所有棱相切的球的半径是4a . (4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径. (5)球与圆台的底面与侧面均相切,则球的直径等于圆台的高. 8.柱体、锥体、台体的体积公式9.柱体、锥体、台体体积公式间的关系10.必记结论(1)一个组合体的体积等于它的各部分体积之和或差;(2)等底面面积且等高的两个同类几何体的体积相等.1.(2020·广西壮族自治区高三其他(理))三个几何体组合的正视图和侧视图均为如下图所示,则下列图中能作为俯视图的个数为()A.1 B.2 C.3 D.4D正视图和侧视图一样,由正视图和侧视图知三个几何体可以是圆柱或底面为正方形的直棱柱,依次验证即可.解:对于①,由三个圆柱组合而成,其正视图和侧视图相同,符合要求;对于②,最底层是圆柱,中间是底面为正方形的直棱柱,最上面是小的圆柱,其正视图和侧视图相同,符合要求;对于③,最底层是圆柱,中间是底面为正方形的直棱柱,最上面是底面为正方形的小的直棱柱,其正视图和侧视图相同,符合要求;对于④,最底层是圆柱,中间是圆柱,最上面是底面为正方形的直棱柱,其正视图和侧视图相同,符合要求;所以四个图都可能作为俯视图.故选D.2.(2020·广西壮族自治区高三一模(文))如图为某几何体的三视图,则该几何体的外接球的表面积为( ).A .6πB .12πC .D B根据三视图还原直观图,其直观图为底面是正方形的四棱锥,将其拓展为正方体,转化为求正方体的外接球的表面积.由三视图可得,该几何体为底面是正方形, 一条侧棱与底面垂直的四棱锥S ABCD -,以,,,,S A B C D 为顶点将其拓展为正方体ABCD NMES -, 且正方体的边长为2,则正方体的外接球为四棱锥的外接球,外接球的直径为正方体的对角线,即2R R ==,所以该几何体的外接球的表面积为2412ππ=. 故选B.3.(2020·广西壮族自治区高三月考(理))已知某几何体的三视图如图所示,则该几何体的表面积为( )A .2212π+B .2412π+C .2612π+D .2012π+A由三视图可知,该几何体为圆柱进行切割了一个半圆柱所得的组合体,再分别计算各个表面的面积之后即可. 由三视图可知,该几何体为圆柱进行切割了一个半圆柱所得的组合体, 所以所求表面积为2223425222212ππππ⨯⨯+⨯+⨯⨯+⨯⨯=+.故选A4.(2020·四川省石室中学高三月考(理))某几何体的三视图如图所示(单位:cm ) ,则该几何体的表面积(单位:cm 2)是( )A.16 B.32 C.44 D.64B由三视图还原原几何体如图,该几何体为三棱锥,底面是直角三角形,PA⊥底面ABC.然后由直角三角形面积公式求解.解:由三视图还原原几何体如图,该几何体为三棱锥,底面是直角三角形,PA⊥底面ABC.⊥.则BC PC∴该几何体的表面积1(34543445)32S=⨯+⨯+⨯+⨯=.2故选B.。

2020年高考数学40个考点总动员 考点24 三视图(学生版) 新课标

2020年高考数学40个考点总动员 考点24 三视图(学生版) 新课标

2020年新课标数学40个考点总动员考点24 三视图(学生版)【高考再现】热点一形状的判断1.(2020年高考福建卷理科4)一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是()A.球 B.三棱锥 C.正方体 D.圆柱2.(2020年高考湖南卷理科3)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是()【方法总结】三视图的长度特征,三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.即“长对正,宽相等,高平齐”.热点二三视图和几何体的体积相结合3.(2020年高考广东卷理科6)某几何体的三视图如图1所示,它的体积为()A.12π B.45π C.57π D.81π热点三三视图和几何体的表面积相结合5. (2020年高考北京卷理科7)某三棱锥的三视图如图所示,该三梭锥的表面积是()A. 28+65B. 30+65C. 56+ 125D. 60+1256.(2020年高考辽宁卷理科13)一个几何体的三视图如图所示,则该几何体的表面积为______________。

【考点剖析】一.明确要求1.了解和正方体、球有关的简单组合体的结构特征,理解柱、锥、台、球的结构特征.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等简易组合)的三视图,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图或直观图,了解空间图形的不同表示形式.4.能识别三视图所表示的空间几何体;理解三视图和直观图的联系,并能进行转化. 二.命题方向1.三视图是新增加的内容,是高考的热点和重点,几乎年年考.2.柱、锥、台、球及简单组合体的结构特征及性质是本节内容的重点,也是难点.3.以选择、填空题的形式考查,有时也会在解答题中出现. 三.规律总结 一个规律三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法. 两个概念(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心. 【基础练习】2.(经典习题)某几何体的三视图如图所示,则它的体积是( ). A .8-2π3B .8-π3C .8-2πD.2π33. (经典习题)若一个底面是正三角形的直三棱柱的正视图如图所示,则其侧面积等于 ( )A. 3 B .2 C .2 3 D .6【名校模拟】 一.基础扎实2.(北京市西城区2020届高三4月第一次模拟考试试题理)已知正六棱柱的底面边长和侧棱长相等,体积为3123.其三视图中的俯视图如图所示,则其左视图的面积是( )(A )243(B )23(C )28cm (D )24cm3.(2020年云南省第一次统一检测理)下图是一个几何体的三视图,其中正视图是边长为2的等边三角形,侧视图是直角边长分别为1与3的直角三角形,俯视图是半径为1的半圆,则该几何体的体积等于(A )π63 (B )π33 (C )π334 (D )π216.(湖北省武汉市2020届高中毕业生五月供题训练(二)理)某几何体的正视图如左图所示,则该几何体的俯视图不可能的是7.(湖北文科数学冲刺试卷(二))1119. (东城区普通高中示范校高三综合练习(二) (文)) 已知某几何体的三视图如图所示, 则该几何体的体积为 .二.能力拔高10.(北京市东城区2020学年度第二学期高三综合练习(二)理)若一个三棱柱的底面是正三角形,其正(主)视图如图所示,则它的体积为 ( )(A )3 (B )2(C )23(D )411.(2020年长春市高中毕业班第二次调研测试文)如图所示是一个几何体的三视图,则该几何体的体积为A.12B. 1C.34D.3213.(河北省唐山市2020学年度高三年级第二次模拟考试理)已知某几何体的三视图如图所示,则其体积为A.1 B.43C.53D.215.(2020河南豫东豫北十所名校毕业班阶段性测试(三)文) 下图是某宝石饰物的三视图,已知该饰物的正视图、侧视图都是面积为,且一个内角为60°的菱形,俯视图为正方形,那么该饰物的表面积为SABD(A) (B) (C) (D)418.(北京市西城区2020届高三下学期二模试卷理)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体的体积是_____;若该几何体的所有顶点在同一球面上,则球的表面积是_____.三.提升自我21.(怀化2020高三第三次模拟考试文)一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A.πB.2πC.3πD.4π22. (2020东城区普通高中示范校高三综合练习(二)理)一个几何体的三视图如图所示,则此几何体的体积是()A.112 B.80 C.72 D.6423.(2020年石家庄市高中毕业班教学质量检测(二) 理)已知某几何体的三视图如图所示,则该几何体的体积为A .364B .32C .380D .38+28 24.(2020年大连沈阳联合考试第二次模拟试题理)如图所示,一个三棱锥的三视图是三个直角三角形 (单位:cm),则该三棱锥的外接球的表面积为 ____________cm 2.【原创预测】2.已知底面是正三角形,顶点在底面的射影是底面三角形的中心的三棱锥V ABC -的主视图、俯视图如图所示,其中4,23VA AC ==,D 为棱CB 的中点,则该三棱锥的左视图的234俯视图左视图主视图面积为( )A.9B.6C.33D.394.一个几何体的三视图如图所示,则这个几何体的表面积与其外接球面积之比为________.5.已知某几何体的三视图如图,则该几何体的表面积为__________ .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考立体几何三视图
1(2017全国卷二理数)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体
的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为
A .π90
B .π63
C .π42
D .π36
【答案】B 【解析】该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半.
2(2017北京文数) 某三棱锥的三视图如图所示,则该三棱锥的体积为
A 60
B 30
C 20
D 10
【答案】D 【解析】该几何体是如图所示的三棱锥P-ABC , 由图中数据可得该几何体的体积为115341032V =⨯⨯⨯⨯= 3(2017北京理数)某四棱锥的三视图如图所示,则该四棱锥
的最长棱的长
度为
A 3
B 2
C 2
D 2
【答案】B 【解析】如下图所示,在四棱锥-P ABCD 中,最长的棱为PA ,
所以2222=2(22)23+=+=PA PC AC ,故选B . 4(2017山东理数)由一个长方体和两个14
圆柱构成的几何体的三视图如图,则该几何体的体积为 。

【答案】2+2π
【解析】由三视图可知,长方体的长、宽、
高分别是2、1、1,圆柱的高为1,底面半径为1,所以
2121121=2+42
V ππ⨯=⨯⨯+⨯⨯
5(2017全国卷一理数)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若
干个是梯形,这些梯形的面积之和为
A .10
B .12
C .14
D .16
【答案】B
232
【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,
如下图,则该几何体各面内只有两个相同的梯形, 则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B. 6(2017浙江文数)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )
A. π+12
B. π+32
C.
3+12π D. 3π+32 【答案】A 【解析】由三视图可知该几何体由一个三棱锥和半个圆锥组合而成,圆锥的
体积为2111π13232V π=⨯⨯⨯⨯=,三棱锥的体积为2111213322
V =⨯⨯⨯⨯=, 所以它的体积为12π122V V V =+=
+ 7.(2016全国卷1文数)如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3
,则它的表面积是( ). A .17π B . 18π C . 20π D . 28π
【答案】B 【解析】由三视图可知该几何体是78
个球(如图所示),设球的半径为R ,则374π28π833V R =⨯=得R=2,所以它的表面积是22734π2+21784S 表ππ=⨯⨯⨯⨯=
8.(2016全国卷2文数)右图是圆柱与圆锥组合而成的几何体的三视图,则该几何
体的表面积为( ).
A.20π
B.24π
C.28π
D.32π
【答案】C 【解析】由题意可知,圆柱的侧面积为12π2416S π
=⨯⨯= 圆锥的侧面积为212π2482S π=⨯⨯⨯=
正(主)视图俯视图
侧(左)视图圆柱的底面积为23π24S π=⨯=
该几何体的表面积为123++28S S S S π==
9.(2016全国卷3文数)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为 ( ).
A.18+
B.54+
C.90
D.81
【答案】B 【解析】 (1)由题意知,几何体为平行六面体,边长分别为3,3,45,几何体的表面积S =3×6×2+3×3×2+3×45×2=54+18 5.
10.(2016北京文数)某四棱柱的三视图如图所示,则该四棱柱的体积为___________. 【答案】32
【解析】由已知中的三视图可知,该几何体是一个以俯视图为底面的四棱柱, 棱柱的底面积为131+2122S ()=
⨯⨯= 棱柱的高为1,故体积为32 11.(2016山东文数)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该
几何体的体积为( ). A .12π33
+ B
.1π33+ C
.1π36+ D
.1π6+ 【答案】C 【解析】由题意可知,该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥底面棱长为1
,可得2R =
,故2R =

半球的体积为322=326()π 棱锥的面积为1,高为1
,故体积为13
故几何体的体积为13 12.(2016天津文数3)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( ).
【答案】B 【解析】由正视图和俯视图可知该几何体的直观图如图所示,故该几何体的侧视图为选项B. 13(2016四川文数)已知某三棱锥的三视图如图所示,则该三棱锥的体积等于 .
【答案】C 【解析】由题意可知,该几何体为三棱锥,底面为俯视图所示的三角形,
底面积123132S =⨯⨯=,高为1h = 棱锥的体积为113
31=333V Sh ==
14.(2016浙江文数)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.
【答案】C 【解析】由题意可知,该几何体为长方体上面放置一个小的正方体, 其表面积为22262244242280
S =⨯+⨯+⨯⨯-⨯=
其体积为3244240V =+⨯⨯=。

相关文档
最新文档