〖含高考模拟卷16套〗北京市东城区汇文中学2020-2021学年高考数学模拟试卷含解析
2024北京东城高三一模数学试题及答案
2024北京东城高三一模数 学2024.4本试卷共6页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.如图所示,U 是全集,,A B 是U 的子集,则阴影部分所表示的集合是( )A .AB B .A BC .()UA B D .()UA B2.已知,,0a b ab ∈≠R ,且a b <,则( ) A .11a b> B .2ab b < C .33a b < D .lg lg a b < 3.已知双曲线221x my −=的离心率为2,则m =( ) A .3B .13 C .3− D .13− 4.设函数()11ln f x x=+,则( ) A .()12f x f x ⎛⎫+= ⎪⎝⎭ B .()12f x f x ⎛⎫−=⎪⎝⎭C .()12f x f x ⎛⎫=⎪⎝⎭ D .()12f x f x ⎛⎫= ⎪⎝⎭5.已知函数()sin cos (0,0)f x t x x t ωωω=+>>的最小正周期为π,最大值为,则函数()f x 的图象( )A .关于直线4x π=−对称B .关于点,04π⎛⎫−⎪⎝⎭对称C .关于直线8x π=对称D .关于点,08π⎛⎫⎪⎝⎭对称 6.已知443243210()x m a x a x a x a x a +=++++,若0123481a a a a a ++++=,则m 的取值可以为( ) A .2B .1C .1−D .2−7.《天工开物》是我国明代科学家宋应星所著的一部综合性科学技术著作,书中记载了一种制造瓦片的方法.某校高一年级计划实践这种方法,为同学们准备了制瓦用的粘土和圆柱形的木质圆桶,圆桶底面外圆的直径为20cm ,高为20cm .首先,在圆桶的外侧面均匀包上一层厚度为2cm 的粘土,然后,沿圆桶母线方向将粘土层分割成四等份(如图),等粘土干后,即可得到大小相同的四片瓦.每位同学制作四片瓦,全年级共500人,需要准备的粘土量(不计损耗)与下列哪个数字最接近.(参考数据: 3.14π≈)( )A .30.8mB .31.4mC .31.8mD .32.2m8.设等差数列{}n a 的公差为d ,则“10a d <<”是“n a n ⎧⎫⎨⎬⎩⎭为递增数列”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.如图1,正三角形ABD 与以BD 为直径的半圆拼在一起,C 是BD 的中点,O 为ABD △的中心.现将ABD △沿BD 翻折为1A BD △,记1A BD △的中心为1O ,如图2.设直线1CO 与平面BCD 所成的角为θ,则sin θ的最大值为( )A .13 B .12 C D 10.已知()f x 是定义在R 上的函数,其图像是一条连续不断的曲线,设函数()()()()a f x f a g x a x a−=∈−R ,下列说法正确的是( )A .若()f x 在R 上单调递增,则存在实数a ,使得()a g x 在(),a +∞上单调递增B .对于任意实数a ,若()a g x 在(),a +∞上单调递增,则()f x 在R 上单调递增C .对于任意实数a ,若存在实数10M >,使得()1f x M <,则存在实数20M >,使得()2a g x M <D .若函数()a g x 满足:当(),x a ∈+∞时,()0a g x ≥,当(),x a ∈−∞时,()0a g x ≤,则()f a 为()f x 的最小值第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。
北京市汇文中学2025届高三适应性调研考试数学试题含解析2
北京市汇文中学2025届高三适应性调研考试数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数()11z ai a R =+∈,212z i =+(i 为虚数单位),若12z z 为纯虚数,则a =( ) A .2-B .2C .12-D .12 2.已知()22log 217y x x =-+的值域为[),m +∞,当正数a ,b 满足2132m a b a b+=++时,则74a b +的最小值为( ) A .94B .5C .5224+ D .93.根据散点图,对两个具有非线性关系的相关变量x ,y 进行回归分析,设u = lny ,v =(x -4)2,利用最小二乘法,得到线性回归方程为ˆu=-0.5v +2,则变量y 的最大值的估计值是( ) A .eB .e 2C .ln 2D .2ln 24.函数||1()e sin 28x f x x =的部分图象大致是( ) A . B .C .D .5.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别为1F 、2F ,过1F 的直线l 交双曲线的右支于点P ,以双曲线的实轴为直径的圆与直线l 相切,切点为H ,若113F P F H =,则双曲线C 的离心率为( ) A .132B .5C .25D .136.()712x x-的展开式中2x 的系数为( )A .84-B .84C .280-D .2807.《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为( )A .1213B .1314C .2129D .14158.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( )A .B .C .D .9.已知随机变量X 服从正态分布()1,4N ,()20.3P X >=,()0P X <=( ) A .0.2B .0.3C .0.7D .0.810.某中学有高中生1500人,初中生1000人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为n 的样本.若样本中高中生恰有30人,则n 的值为( ) A .20B .50C .40D .6011.某几何体的三视图如图所示,则该几何体的体积为( )A .83π1633+B .4π1633+C .16343π3+D .43π1633+12.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,D 是AB 的中点,若1CD =,且1sin 2a b A ⎛⎫-⎪⎝⎭()()sin sin c b C B =+-,则ABC 面积的最大值是( ) A .155B .15C .1510D .2155二、填空题:本题共4小题,每小题5分,共20分。
北京市东城区2021届新第三次高考模拟考试数学试卷含解析
北京市东城区2021届新第三次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在三棱锥P ABC -中,5AB BC ==,6AC =,P 在底面ABC 内的射影D 位于直线AC 上,且2AD CD =,4PD =.设三棱锥P ABC -的每个顶点都在球Q 的球面上,则球Q 的半径为( )A .6898B .6896C .5268D .5266【答案】A 【解析】 【分析】设AC 的中点为O 先求出ABC ∆外接圆的半径,设QM a =,利用QM ⊥平面ABC ,得QM PD ∥ ,在MBQ ∆ 及DMQ ∆中利用勾股定理构造方程求得球的半径即可 【详解】设AC 的中点为O,因为AB BC =,所以ABC ∆外接圆的圆心M 在BO 上.设此圆的半径为r. 因为4BO =,所以222(4)3r r -+=,解得258r =. 因为321OD OC CD =-=-=,所以221131(4)8DM r =+-=. 设QM a =,易知QM ⊥平面ABC ,则QM PD ∥. 因为QP QB =,所以2222()PD a DM a r -+=+,即22113625(4)6464a a -+=+,解得1a =.所以球Q 的半径22689R QB a r ==+=. 故选:A【点睛】本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题 2.执行如图所示的程序框图后,输出的值为5,则P 的取值范围是( ).A .37,48⎛⎤⎥⎝⎦B .59,610⎛⎤⎥⎝⎦C .715,816⎛⎤⎥⎝⎦D .1531,1632⎛⎤⎥⎝⎦ 【答案】C 【解析】 【分析】框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n. 【详解】第一次循环:1,22S n ==;第二次循环:2113,3224S n =+==;第三次循环:231117,42228S n =++==;第四次循环:234111115,5222216S n =+++==; 此时满足输出结果,故715816P <≤. 故选:C. 【点睛】本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题. 3.已知函数()ln f x x =,()()23g x m x n =++,若()0,x ∀∈+∞总有()()f x g x ≤恒成立.记()23m n +的最小值为(),F m n ,则(),F m n 的最大值为( )A .1B .1eC .21e D .31e 【答案】C 【解析】【分析】根据()0,x ∀∈+∞总有()()f x g x ≤恒成立可构造函数()()ln 23h x x m x n =-+-,求导后分情况讨论()h x 的最大值可得最大值最大值()1ln 23123h m n m ⎛⎫=-+-- ⎪+⎝⎭,即()ln 2310m n -+--≤.根据题意化简可得()()()2323ln 231m n m m +≥+-+-⎡⎤⎣⎦,求得()()(),23ln 231F m n m m =+-+-⎡⎤⎣⎦,再换元求导分析最大值即可.【详解】由题, ()0,x ∀∈+∞总有()ln 23x m x n ≤++即()ln 230x m x n -+-≤恒成立. 设()()ln 23h x x m x n =-+-,则()h x 的最大值小于等于0. 又()()1'23h x m x=-+, 若230m +≤则()'0h x >,()h x 在()0,∞+上单调递增, ()h x 无最大值. 若230m +>,则当123x m >+时,()'0h x <,()h x 在1,23m ⎛⎫+∞⎪+⎝⎭上单调递减, 当1023x m <<+时,()'0h x >,()h x 在10,23m ⎛⎫ ⎪+⎝⎭上单调递增.故在123x m =+处()h x 取得最大值()11ln 1ln 2312323h n m n m m ⎛⎫=--=-+-- ⎪++⎝⎭. 故()ln 2310m n -+--≤,化简得()()()2323ln 231m n m m +≥+-+-⎡⎤⎣⎦.故()()(),23ln 231F m n m m =+-+-⎡⎤⎣⎦,令()23,0t m t =+>,可令()()ln 1k t t t =-+, 故()'ln 2k t t =--,当21t e >时, ()'0k t <,()k t 在21,e ⎛⎫+∞ ⎪⎝⎭递减; 当210t e <<时, ()'0k t >,()k t 在210,e⎛⎫⎪⎝⎭递增. 故在21t e =处()h t 取得极大值,为22221111ln 1=k e e e e⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭. 故(),F m n 的最大值为21e. 故选:C 【点睛】本题主要考查了根据导数求解函数的最值问题,需要根据题意分析导数中参数的范围,再分析函数的最值,进而求导构造函数求解()23m n +的最大值.属于难题.4.已知随机变量i ξ满足()()221kkk i i i P k C p p ξ-==-,1,2i =,0,1,2k =.若21211p p <<<,则( ) A .()()12E E ξξ<,()()12D D ξξ< B .()()12E E ξξ<,()()12D D ξξ> C .()()12E E ξξ>,()()12D D ξξ< D .()()12E E ξξ>,()()12D D ξξ>【答案】B 【解析】 【分析】根据二项分布的性质可得:()()(),1i i i i i E p D p p ξξ==-,再根据21211p p <<<和二次函数的性质求解. 【详解】因为随机变量i ξ满足()()221kkk i i i P k C p p ξ-==-,1,2i =,0,1,2k =.所以i ξ服从二项分布, 由二项分布的性质可得:()()(),1i i i i i E p D p p ξξ==-,因为21211p p <<<, 所以()()12E E ξξ<,由二次函数的性质可得:()()1f x x x =-,在1,12⎡⎤⎢⎥⎣⎦上单调递减, 所以()()12D D ξξ>. 故选:B 【点睛】本题主要考查二项分布的性质及二次函数的性质的应用,还考查了理解辨析的能力,属于中档题. 5.已知向量(,1),(3,2)a m b m ==-,则3m =是//a b 的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件【答案】A 【解析】 【分析】向量1a m =(,),32b m =-(,),//a b ,则32m m =-(),即2230m m --=,3m =或者-1,判断出【详解】解:向量1a m =(,),32b m =-(,), //a b ,则32mm =-(),即2230m m --=, 3m =或者-1,所以3m =是3m =或者1m =-的充分不必要条件, 故选:A . 【点睛】本小题主要考查充分、必要条件的判断,考查向量平行的坐标表示,属于基础题. 6.已知集合A={x|–1<x<2},B={x|x>1},则A ∪B= A .(–1,1) B .(1,2)C .(–1,+∞)D .(1,+∞)【答案】C 【解析】 【分析】根据并集的求法直接求出结果. 【详解】∵{|12},{|1}A x x B x =-<<=> , ∴(1,)AB =-+∞ ,故选C. 【点睛】考查并集的求法,属于基础题.7.如图,在ABC ∆中,点Q 为线段AC 上靠近点A 的三等分点,点P 为线段BQ 上靠近点B 的三等分点,则PA PC +=( )A .1233BA BC + B .5799BA BC + C .11099BA BC + D .2799BA BC + 【答案】B 【解析】23PA PC BA BP BC BP BA BC BQ +=-+-=+-,将13BQ BA AQ BA AC =+=+,AC BC BA=-代入化简即可. 【详解】23PA PC BA BP BC BP BA BC BQ +=-+-=+-2()3BA BC BA AQ =+-+1233BA BC =+-⨯13AC 1257()3999BA BC BC BA BA BC =+--=+. 故选:B. 【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题.8.已知复数168i z =-,2i z =-,则12z z =( ) A .86i - B .86i +C .86i -+D .86i --【答案】B 【解析】分析:利用21i =-的恒等式,将分子、分母同时乘以i ,化简整理得1286z i z =+ 详解:2122686886z i i i i z i i --===+-- ,故选B 点睛:复数问题是高考数学中的常考问题,属于得分题,主要考查的方面有:复数的分类、复数的几何意义、复数的模、共轭复数以及复数的乘除运算,在运算时注意21i =-符号的正、负问题. 9.,,a b αβαβ//////,则a 与b 位置关系是 ( ) A .平行 B .异面C .相交D .平行或异面或相交【答案】D 【解析】结合图(1),(2),(3)所示的情况,可得a 与b 的关系分别是平行、异面或相交.选D .10.一个算法的程序框图如图所示,若该程序输出的结果是34,则判断框中应填入的条件是( )A .5?i >B .5?i <C .4?i >D .4?i <【答案】D 【解析】 【分析】首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及i 的关系,最终得出选项. 【详解】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:110112122S i =+==+=⨯,; 第二次循环:1122132233S i =+==+=⨯,; 第三次循环:2133143344S i =+==+=⨯,, 此时退出循环,根据判断框内为跳出循环的语句,4i ∴<?,故选D . 【点睛】题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.11.已知平面向量,,a b c ,满足||2,||1,b a b c a b λμ=+==+且21λμ+=,若对每一个确定的向量a ,记||c 的最小值为m ,则当a 变化时,m 的最大值为( ) A .14B .13C .12D .1【答案】B 【解析】 【分析】根据题意,建立平面直角坐标系.令,OP a OB b ==OC c =.E 为OB 中点.由1a b +=即可求得P 点的轨迹方程.将c a b λμ=+变形,结合21λμ+=及平面向量基本定理可知,,P C E 三点共线.由圆切线的性质可知||c 的最小值m 即为O 到直线PE 的距离最小值,且当PE 与圆M 相切时,m 有最大值.利用圆的切线性质及点到直线距离公式即可求得直线方程,进而求得原点到直线的距离,即为m 的最大值. 【详解】根据题意,||2,b =设()(),,2,0OP a x y OB b ====,(),1,0OC c E =则2b OE =由1a b +=代入可得()2221x y ++=即P 点的轨迹方程为2221x y又因为c a b λμ=+,变形可得22b c a λμ⎛⎫=+ ⎪⎝⎭,即2OC OP OE λμ=+,且21λμ+=所以由平面向量基本定理可知,,P C E 三点共线,如下图所示:所以||c 的最小值m 即为O 到直线PE 的距离最小值 根据圆的切线性质可知,当PE 与圆M 相切时,m 有最大值 设切线PE 的方程为()1y k x =-,化简可得kx y k 0--=由切线性质及点M1=,化简可得281k =即4k =±所以切线方程为044x y --=或044x y +-= 所以当a 变化时, O 到直线PE 的最大值为13m ==即m 的最大值为13故选:B 【点睛】本题考查了平面向量的坐标应用,平面向量基本定理的应用, 圆的轨迹方程问题,圆的切线性质及点到直线距离公式的应用,综合性强,属于难题.12.已知命题P :x R ∀∈,sin 1x ≤,则p ⌝为( ) A .0x R ∃∈,0sin 1x ≥ B .x R ∀∈,sin 1x ≥ C .0x R ∃∈,0sin 1x > D .x R ∀∈,sin 1x >【答案】C 【解析】 【分析】根据全称量词命题的否定是存在量词命题,即得答案. 【详解】全称量词命题的否定是存在量词命题,且命题P :x R ∀∈,sin 1x ≤,00:,sin 1p x R x ∴⌝∃∈>.故选:C . 【点睛】本题考查含有一个量词的命题的否定,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
北京市汇文中学2025届高三适应性调研考试数学试题含解析
北京市汇文中学2025届高三适应性调研考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数z 满足()12(i i z +=为虚数单位),则z 的虚部为( ) A .i B .i -C .1-D .12.已知13ω>,函数()sin 23f x x πω⎛⎫=- ⎪⎝⎭在区间(,2)ππ内没有最值,给出下列四个结论:①()f x 在(,2)ππ上单调递增; ②511,1224ω⎡⎤∈⎢⎥⎣⎦ ③()f x 在[0,]π上没有零点; ④()f x 在[0,]π上只有一个零点. 其中所有正确结论的编号是( ) A .②④B .①③C .②③D .①②④3.已知函数())33x x f x x -=+-,不等式()2(50f f x ++对x ∈R 恒成立,则a 的取值范围为( ) A .[2,)-+∞B .(,2]-∞-C .5,2⎡⎫-+∞⎪⎢⎣⎭D .5,2⎛⎤-∞- ⎥⎝⎦4.已知抛物线C :24y x =,过焦点F 的直线l 与抛物线C 交于A ,B 两点(A 在x 轴上方),且满足3AF BF =,则直线l 的斜率为( )A .1BC .2D .35.如图,在底面边长为1,高为2的正四棱柱1111ABCD A B C D -中,点P 是平面1111D C B A 内一点,则三棱锥P BCD -的正视图与侧视图的面积之和为( )A .2B .3C .4D .56.如图所示,为了测量A 、B 两座岛屿间的距离,小船从初始位置C 出发,已知A 在C 的北偏西45︒的方向上,B 在C 的北偏东15︒的方向上,现在船往东开2百海里到达E 处,此时测得B 在E 的北偏西30的方向上,再开回C 处,由C 向西开26百海里到达D 处,测得A 在D 的北偏东22.5︒的方向上,则A 、B 两座岛屿间的距离为( )A .3B .32C .4D .427.设双曲线221x y a b+=的一条渐近线为2y x =-,且一个焦点与抛物线24x y =的焦点相同,则此双曲线的方程为( ) A .225514x y -= B .225514y x -= C .225514y x -= D .225514x y -= 8.若AB 为过椭圆22116925x y +=中心的弦,1F 为椭圆的焦点,则△1F AB 面积的最大值为( )A .20B .30C .50D .609.下列命题为真命题的个数是( )(其中π,e 为无理数) 32e >;②2ln 3π<;③3ln 3e<. A .0B .1C .2D .310.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有( ) A .12种B .24种C .36种D .48种11.2-31ii =+( ) A .15-22i B .15--22iC .15+22i D .15-+22i 12.若a >b >0,0<c <1,则 A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b二、填空题:本题共4小题,每小题5分,共20分。
2020年北京市东城区高考数学模拟试卷(一)(4月份)(有答案解析)
2020年北京市东城区高考数学模拟试卷(一)(4月份)一、选择题(本大题共10小题,共40.0分)1.已知集合,集合,则A. B.C. D.2.已知复数其中i是虚数单位,则A. B. C. 1 D. 23.抛物线的准线与y轴的交点的坐标为A. B. C. D.4.设函数,则A. 有最大值B. 有最小值C. 是增函数D. 是减函数5.已知曲线C的方程为,则“”是“曲线C为焦点在x轴上的椭圆”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6.一排6个座位坐了2个三口之家.若每家人坐在一起,则不同的坐法种数为A. 12B. 36C. 72D. 7207.已知圆C与直线及的相切,圆心在直线上,则圆C的方程为A. B.C. D.8.已知正项等比数列中,,与的等差中项为9,则A. 729B. 332C. 181D. 969.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,则当荷叶刚好覆盖水面面积一半时,荷叶已生长了A. 10天B. 15天C. 19天D. 2天10.某学校高三教师周一、周二、周三坐地铁上班的人数分别是8,10,14,若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是A. 8B. 7C. 6D. 5二、填空题(本大题共5小题,共25.0分)11.设向量,不平行,向量与平行,则实数________.12.已知角的顶点在坐标原点,始边与x轴的正半轴重合,将角的终边按逆时针方向旋转后经过点,则______.13.某四棱锥的三视图如图所示,那么该四棱锥的体积为______.14.若顶点在原点的抛物线经过四个点,,,中的2个点,则该抛物线的标准方程可以是______.15.某部影片的盈利额即影片的票房收入与固定成本之差记为y,观影人数记为x,其函数图象如图所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图、图中的实线分别为调整后y与x的函数图象.给出下列四种说法:图对应的方案是:提高票价,并提高成本;图对应的方案是:保持票价不变,并降低成本;图对应的方案是:提高票价,并保持成本不变;图对应的方案是:提高票价,并降低成本.其中,正确的说法是______填写所有正确说法的编号三、解答题(本大题共6小题,共85.0分)16.如图1,在中,D,E分别为AB,AC的中点,O为DE的中点,,将沿DE折起到的位置,使得平面平面BCED,如图.Ⅰ求证:;Ⅱ求直线和平面所成角的正弦值;17.在,,,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知的内角A,B,C的对边分别为a,b,c,_______,,,求的面积.18.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月天的快递件数记录结果中随机抽取10天的数据,制表如图:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件元;乙公司规定每天35件以内含35件的部分每件4元,超出35件的部分每件7元.Ⅰ根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;Ⅱ为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为单位:元,求X的分布列和数学期望;Ⅲ根据表中数据估算两公司的每位员工在该月所得的劳务费.19.已知函数.若曲线存在斜率为的切线,求实数a的取值范围;求的单调区间;设函数,求证:当时,在上存在极小值.20.已知椭圆C:的右焦点为F.Ⅰ求点F的坐标和椭圆C的离心率;Ⅱ直线l:过点F,且与椭圆C交于P,Q两点,如果点P关于x轴的对称点为,判断直线是否经过x轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.21.各项均为非负整数的数列同时满足下列条件:;;是的因数.Ⅰ当时,写出数列的前五项;Ⅱ若数列的前三项互不相等,且时,为常数,求m的值;Ⅲ求证:对任意正整数m,存在正整数M,使得时,为常数.-------- 答案与解析 --------1.答案:C解析:解:集合,集合,.故选:C.先求出集合A,集合B,由此能求出.本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.答案:A解析:解:复数,,故选:A.利用复数模长的性质即可求解.本题主要考查复数模长的计算,比较基础.3.答案:B解析:解:抛物线的准线方程为,抛物线的准线与y轴的交点的坐标为,故选:B.利用抛物线的准线方程为,即可求出抛物线的准线与y轴的交点的坐标.本题考查抛物线的方程与性质,比较基础.4.答案:A解析:解:,,当且仅当,即时取等号,有最大值,在上没有单调性.故选:A.根据即可根据基本不等式得出,从而可得出,并且时取等号,从而得出有最大值,没有单调性,从而得出正确的选项.本题考查了基本不等式在求最值时的应用,熟悉的单调性,考查了计算能力,属于基础题.5.答案:B解析:解:若,则对应的曲线为双曲线,不是椭圆,即充分性不成立,若曲线C为焦点在x轴上的椭圆,则满足,即,,满足,即必要性成立,即“”是“曲线C为焦点在x轴上的椭圆”的必要不充分条件,故选:B.根据椭圆方程的特点,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合椭圆方程的特点求出a,b的关系是解决本题的关键.比较基础.6.答案:C解析:解:根据题意,先将2个三口之家的成员进行全排列,有种情况,再对2个三口之家整体进行全排列,有种情况,则有种不同的坐法;故选:C.根据题意,由捆绑法分析:先将2个三口之家的成员进行全排列,再对2个三口之家整体进行全排列,由分步计数原理计算可得答案.本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.7.答案:A解析:解:圆心在上,设圆心为,圆C与直线及的相切,圆心到两直线及的距离相等,即:,圆心坐标为,,圆C的标准方程为.故选:A.根据圆心在直线上,设出圆心坐标为,利用圆C与直线及的相切,求得圆心坐标,再求圆的半径,可得圆的方程.考查了圆的方程的求法,一般情况下:求圆C的方程,就是求圆心、求半径.同时考查直线与圆的位置关系的应用,是中档题.8.答案:D解析:解:正项等比数列的公比设为q,,由,可得,即,即,与的等差中项为9,可得,即,相除可得,解得舍去,则.故选:D.正项等比数列的公比设为q,,运用等差数列的中项性质和等比数列的通项公式及性质,解方程可得公比q,再由等比数列的通项公式计算可得所求值.本题考查等差数列的中项性质和等比数列的通项公式的运用,考查方程思想和运算能力,属于基础题.9.答案:C解析:解:设荷叶覆盖水面的初始面积为a,则x天后荷叶覆盖水面的面积,根据题意,令,解得,故选:C.由题意设荷叶覆盖水面的初始面积,再列出解析式,并注明x的范围,列出方程求解即可.本题考查了指数函数在实际生活中的应用,关键是将信息提取出来,列出函数的解析式.10.答案:C解析:解:设周三,周二,周一开车上班的职工组成的集合分别为A,B,C,集合A,B,C中元素个数分别为,,,则,,,,因为,且,,,所以,即.故选:C.设周三,周二,周一开车上班的职工组成的集合分别为A,B,C,集合A,B,C中元素个数分别为,,,根据,且,,可得.本题考查了Venn图表达集合的关系以及运算,属中档题.11.答案:解析:【分析】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.利用向量平行的条件直接求解即可.【解答】解:向量,不平行,向量与平行,,,解得实数.故答案为.12.答案:1解析:解:角的顶点在坐标原点,始边与x轴的正半轴重合,将角的终边按逆时针方向旋转后经过点,,故为第二象限角.可令,此时,,,故答案为:1.由题意利用任意角的三角函数的定义,先求得的值,可得的值.本题主要考查任意角的三角函数的定义,属于基础题.13.答案:解析:【分析】本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键,属于基础题.画出几何体的直观图,利用三视图的数据,求解几何体的体积.【解答】解:几何体的直观图如图:是底面是长为2,宽为1的长方形,高为2的四棱锥,故四棱锥的体积为:.故答案为.14.答案:或解析:解:由题意可得,抛物线方程为或.若抛物线方程为,代入,得,则抛物线方程为,此时在抛物线上,符合题意;若抛物线方程为,代入,得,则抛物线方程为,此时在抛物线上,符合题意.抛物线的标准方程可以是或.故答案为:或.由题意可设抛物线方程为或,然后分类求解得答案.本题考查抛物线的标准方程,考查分类讨论的数学思想方法,是基础题.15.答案:解析:解:由图可知,点A纵坐标的相反数表示的是成本,直线的斜率表示的是票价,故图降低了成本,但票价保持不变,即对;图成本保持不变,但提高了票价,即对;故选:.解题的关键是理解图象表示的实际意义,进而得解.本题考查读图识图能力,考查分析能力,属于基础题.16.答案:解:Ⅰ证明:在中,D,E分别为AB,AC的中点,O为DE的中点,,.,将沿DE折起到的位置,使得平面平面BCED,平面BCDE,平面BCDE,.Ⅱ解:以O为原点,在平面BCED中过点O作DE的垂线为x轴,以OE为y轴,为z轴,建立空间直角坐标系,0,,2,,,,2,,,1,,设平面的法向量为y,,则,取,得2,,设直线和平面所成角为,则直线和平面所成角的正弦值为:.解析:Ⅰ推导出,从而平面BCDE,由此能证明.Ⅱ以O为原点,在平面BCED中过点O作DE的垂线为x轴,以OE为y轴,为z轴,建立空间直角坐标系,由此能求出直线和平面所成角的正弦值.本题考查线线垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.17.答案:解:若选择,由余弦定理,分因为,所以;分由正弦定理,得,分因为,,所以,分所以分所以分若选择,则,分因为,所以,分因为,所以;分由正弦定理,得,分因为,,所以,分所以,分所以分若选择,则,所以,分因为,所以,所以,所以;分由正弦定理,得,分因为,,所以,分所以,分解析:取,由余弦定理可得进而解得B,C的大小也可得出,再由正弦定理可得a,最后利用三角形的面积公式计算即可得出;取,由正弦定理可得:,,解得B,可得,由正弦定理可得:a,利用三角形面积计算公式即可得出;取,可得,由此可求出B的大小,C的大小也可得出,再由正弦定理可得a,最后利用三角形的面积公式计算即可得出;本题考查了正弦定理、和差公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.18.答案:解:Ⅰ甲公司员工A投递快递件数的平均数为:,众数为分Ⅱ设a为乙公司员工B投递件数,则当时,元,当时,元,的可能取值为136,147,154,189,203,分,,,,,X136147154189203P分分Ⅲ根据图中数据,由Ⅱ可估算:甲公司被抽取员工该月收入元,乙公司被抽取员工该月收入元.分解析:Ⅰ由茎叶图能求出甲公司员工A投递快递件数的平均数和众数.Ⅱ由题意能求出X的可能取值为136,147,154,189,203,分别求出相对应的概率,由此能求出X的分布列和数学期望.Ⅲ利用Ⅱ的结果能估算算两公司的每位员工在该月所得的劳务费.本题考查频率分布表的应用,考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型之一.19.答案:解:由得:,,由已知曲线存在斜率为的切线,存在大于0的实数根,即存在大于0的实数根,在时递增,的范围是;由,,得:时,,在递增;时,若时,,若,则,故在递增,在递减;由及题设得:,由,得:,由得:在递增,,取,显然,,存在满足,即存在满足,令,解得:,令,解得:,故在递减,在递增,时,在存在极小值.解析:本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、是一道综合题.求出函数的导数,问题转化为存在大于0的实数根,根据在时递增,求出a的范围即可;求出函数的导数,通过讨论a的范围,判断导函数的符号,求出函数的单调区间即可;求出函数的导数,根据,得到存在满足,从而得到函数的单调区间,求出函数的极小值,证出结论即可.20.答案:解:Ⅰ椭圆C:,,解得,焦点,离心率.Ⅱ直线l:过点F,,:.由,得依题意.设,,则,.点P关于x轴的对称点为,则直线的方程可以设为,令,.直线过x轴上定点.解析:由椭圆的标准方程即可得出;直线l:过点F,可得l:代入椭圆的标准方程可得:依题意.设,,可得根与系数的关系.点P关于x轴的对称点为,则可得直线的方程可以为,令,,把根与系数的关系代入化简即可得出.本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为及其根与系数的关系、直线过定点问题,考查了推理能力与计算能力,属于难题.21.答案:Ⅰ解:时,数列的前五项分别为:5,1,0,2,2.Ⅱ解:,,,又数列的前3项互不相等,当时,若,则,且对,都为整数,;若,则,且对,都为整数,;当时,若,则,且对,都为整数,,不符合题意;若,则,且对,都为整数,;综上,m的值为2,3,4.Ⅲ证明:对于,令,则.又对每一个n,都为正整数,,其中“”至多出现个.故存在正整数,当时,必有成立.当时,则.从而.由题设知,又及均为整数,,故常数.从而常数.故存在正整数M,使得时,为常数.解析:Ⅰ当时,写出数列的前五项;Ⅱ对、分类取值,再结合各项均为非负整数列式求m的值;Ⅲ令,则进一步推得存在正整数,当时,必有成立.再由成立证明为常数.本题考查数列递推式,考查数列的前n项和,考查逻辑思维能力与推理运算能力,体现了分类讨论的数学思想方法,属于难题.。
2020-2021北京市东城区高三一模数学试卷
北京市东城区2021届高三一模数学试卷2021.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A={x|-1<x<2},B={x|x<1},那么A∪B=(A)(-1,2)(B)(-1,1)(C)(-∞,2)(D)(-∞,1)(2)在复平面内,复数(1+2i)i对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)某中学高一、高二和高三各年级人数见下表.采用分层抽样的方法调查学生的健康状况,在抽取的样本中,高二年级有20人,那么该样本中高三年级的人数为(A)18(B)22(C)40(D)60(4)某四棱锥的三视图如图所示,该四棱锥的体积为(A)92(B)9(C)272(D)27年级人数高一550高二500高三450合计1500(5)已知圆x 2+y 2=1截直线y =k (x +1)(k >0)所得弦的长度为1,那么k 的值为(A )12(B )33(C )1(D(6)已知函数2102,()6,2,x x f x x x ⎧-<<=⎨-≥⎩,那么不等式f (x )(A )(0,1](B )(0,2](C )[1,4](D )[1,6](7)“x y <”是“ln ln x y <”成立的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(8)宽与长的比为心,10.6182-≈的矩形叫做黄金矩形.它广泛的出现在艺术、建筑、人体和自然界中,令人赏心悦目.在黄金矩形ABCD 中,BC1,AB >BC ,那么AB AC ⋅的值为(A1-(B1+(C )4(D)2(9)已知椭圆221221x y C a b+=:(a >b >0)的右焦点F 与抛物线222(0)C y px p =>:的焦点重合,P 为椭圆C 1与抛物线C 2的公共点,且PF ⊥x 轴,那么椭圆C 的离心率为(A1(B)3(C)2(D1-(10)如图,将线段AB ,CD 用一条连续不间断的曲线y =f (x )连接在一起,需满足要求:曲线y =f (x )经过点B ,C ,并且在点B ,C 处的切线分别为直线AB ,CD,那么下列说法正确的是(A )存在曲线y =ax 3+bx 2-2x +5(a ,b ∈R )满足要求(B )存在曲线y =sin cos 2ax bx++c (a ,b ,c ∈R )满足要求(C )若曲线y =f 1(x )和y =f 2(x )满足要求,则对任意满足要求的曲线y =g (x ),存在实数λ,μ,使得g (x )=λf 1(x )+μf 2(x )(D )若曲线y =f 1(x )和y =f 2(x )满足要求,则对任意实数λ,μ,当λ+μ=1时,曲线y =λf 1(x )+μf 2(x )满足要求第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。
北京东城区高三一模数学文科试题及
适用标准文档北京市东城区2021-2021 学年度第二学期高三综合练习〔一〕数学〔文科〕本试卷共 5 页,共 150 分。
考试时长120 分钟。
考生务势必答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一卷〔选择题共40分〕一、选择题〔共8 小题,每题 5 分,共 40 分。
在每题列出的四个选项中,选出切合题目要求的一项〕〔 1〕假定会合A { x R x23x} , B{ x 1 x 2} ,那么 A B〔 A 〕{ x 1 x 0}〔 B〕{ x 1 x 3}〔 C〕{ x 0 x 2}〔 D 〕{ x 0 x 3}〔 2〕直线ax 3 y 10与直线 3x y+2=0 相互垂直,那么 a〔 A 〕3〔B〕1〔C〕1〔D〕3〔 3〕a log 4 6 , b log 4 0.2 , c log 2 3 ,那么三个数的大小关系是〔 A 〕c a b〔 B 〕a c b〔 C〕a b c〔 D 〕b c ax0,〔 4〕假定x , y知足x 2 y30,那么 u2x y 的最大值为2x y30,〔A〕3〔B〕52〔C〕2〔D〕32〔 5〕数列{ a n}的前n项和S n 1 5 913 17 21( 1)n 1 (4 n 3) ,那么S11〔A〕21〔B〕19〔C〕19〔D〕21〔 6 〕在△ABC中,角A,B,C所对的边分别为a,b,c,那么“a b 〞是“ a cosB bcos A 〞的〔 A 〕充足而不用要条件〔 B 〕必需而不充足条件文案大全〔 7〕右侧程序框图的算法思路根源于我国古代数学名著?九章算术? 中的“更相减损术〞.执行该程序框图,假定输入 a , b , i 的值分别为 6 , 8, 0 ,那么输出a和 i 的值分别为〔A〕0,3〔B〕0,4〔C〕2,3〔D〕2, 4〔 8〕函数f ( x)的定义域为1,1 ,图象如图1所示;函数 g( x) 的定义域为1,2 ,图象如图 2所示.假定会合A x f (g (x )) 0,B x g ( f ( x)) 0,那么A B 中元素的个数为y y11-1O1x-1O1 2x -1图 1图 2〔A〕1〔B〕2〔C〕3〔D〕4第二卷〔非选择题共110分〕二、填空题共 6 小题,每题 5 分,共 30 分。
北京汇文中学2020-2021学年高二数学理模拟试题含解析
北京汇文中学2020-2021学年高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.14参考答案:B【考点】程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.2. 设点是椭圆上一点,分别是椭圆的左、右焦点,I为的内心,若,则该椭圆的离心率是( )A. B. C. D.参考答案:A3. 互不相等的三个正数a、b、c成等差数列,又x是a、b的等比中项,y是b、c的等比中项,那么x2、b2、y2三个数()A.成等差数列,非等比数列B.成等比数列,非等差数列C.既是等差数列,又是等比数列D.既不成等差数列,又不成等比数列参考答案:A【考点】8M:等差数列与等比数列的综合.【分析】解法1:对于含字母的选择题,可考虑取特殊值法处理.比如a=1,b=2,c=3即可得结论.解法2:因为就研究三项,所以可用等差中项和等比中项的定义来推导即可.【解答】解法1:取特殊值法令a=1,b=2,c=3?x2=2,b2=4,y2=6.解法2:b2﹣x2=b2﹣ab=b(a﹣b),y2﹣b2=bc﹣b2=b(c﹣b)a﹣b=c﹣b?b2﹣x2=y2﹣b2,故x2、b2、y2三个数成等差数列.若x2、b2、y2三个数成等比数列,则与题意矛盾.故选 A.【点评】本题主要考查等差中项:x,A,y成等差数列?2A=x+y,等比中项:x、G、y成等比数列?G2=xy,或G=±.4. 已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得a m a n=16a12,则的最小值为()A.B.C.D.不存在参考答案:A【考点】基本不等式;等比数列的通项公式.【分析】应先从等比数2列入手,利用通项公式求出公比q,然后代入到a m a n=16a12中,可得到关于m,n的关系式,再利用基本不等式的知识解决问题.【解答】解:设正项等比数列{a n}的公比为q,易知q≠1,由a7=a6+2a5,得到a6q=a6+2,解得q=﹣1或q=2,因为{a n}是正项等比数列,所以q>0,因此,q=﹣1舍弃.所以,q=2因为a m a n=16a12,所以,所以m+n=6,(m>0,n>0),所以≥,当且仅当m+n=6,即m=2,n=4时等号成立.故选A5. “1<x<2”是“x<2”成立的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件参考答案:A试题分析:因为“若,则”是真命题,“若,则”是假命题,所以“”是“”成立的充分不必要条件.选A.考点:充分必要条件的判断.【易错点睛】本题主要考查了充分条件,必要条件,充要条件的判断,属于基础题.对于命题“若,则”是真命题,我们说,并且说是的充分条件,是的必要条件,命题“若,则”是假命题,我们说,由充分条件,必要条件的定义,可以判断出“”是“”成立的充分不必要条件.掌握充分条件,必要条件的定义是解题关键.6. 顶点在原点,焦点在轴上的抛物线上一点(-2,)到焦点的距离是5,则的值是()(A)4 (B) 4 (C)2 (D) 2参考答案:D 7. 在5道题中有3道理科题和2道文科题.不放回地依次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为()A. B. C.D.参考答案:B略8. 如图,点P,Q,R,S分别在正方体的四条棱上,别且是所在棱的中点,则直线PQ与RS是异面直线的图是DABC参考答案:C9. 下列关于回归分析的说法中错误的是( ) A .回归直线一定过样本中心B .残差图中残差点比较均匀地落在水平的带状区域,说明选用的模型比较合适C .两个模型中残差平方和越小的模型拟合的效果越好D .甲、乙两个模型的分别为0.98和0.80,则模型乙的拟合效果更好参考答案:D对于A ,回归直线一定过样本中心,正确;对于B ,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适。
【附20套高考模拟试题】2020届汇文中学高考数学模拟试卷含答案
2020届汇文中学高考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知A 、B 是椭圆E :22221(0)x y a b a b+=>>上的两点,且A 、B 关于坐标原点对称,F 是椭圆的一个焦点,若ABF ∆面积的最大值恰为2,则椭圆E 的长轴长的最小值为( ) A .1B .2C .3D .42.设{|04}M x x =≤≤,{|40}N y y =-≤≤,函数()f x 的定义域为M ,值域为N ,则()f x 的图象可以是A .B .C .D .3.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,则(2019)f =( )A .1B .-1C .-3D .34.如图,阴影表示的平面区域W 是由曲线0x y -=,222x y +=所围成的. 若点(,)P x y 在W 内(含边界),则43z x y =+的最大值和最小值分别为( )A .527-B .5252-C .7,2-D .7,7-5.如图,网格纸的各小格都是边长为1的正方形,粗实线画出的是一个几何体的三视图,则这个几何体的表面积是( )A .(22)π+ B .(222)π+C .(42)π+D .(422)π+6.记函数()223f x x ax =+-在区间(],3-∞-上单调递减时实数a 的取值集合为A ;不等式()122x a x x +≥>-恒成立时实数a 的取值集合为B ,则“x B ∈”是“x A ∈”的 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知,a b ∈R ,()2a i i b i -=-,则a bi +的共轭复数为 A .2i --B .2i -+C .2i -D .2i +8.如图,在正方体1111ABCD A B C D -中,2AB =,平面α经过11B D ,直线1||AC α,则平面α截该正方体所得截面的面积为( )A .23B .322 C .34D .69.已知x ∈[-π,π],则“x ∈”是“sin (sinx )<cos (cosx )成立”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 10.已知函数()22,?52,x x a f x x x x a+>⎧=⎨++≤⎩,若函数()()2g x f x x =-恰有三个不同的零点,则实数a 的取值范围是 A .[)1,1-B .[)1,2-C .[)2,2-D .[]0,211.已知复数()11z a i =-++(i 为虚数单位,a 为实数)在复平面内对应的点位于第二象限,则复数z 的虚部可以是( )A.12i-B.12iC .12-D .1212.已知函数有唯一零点,则a=A.B.C.D.1二、填空题:本题共4小题,每小题5分,共20分。
2020-2021学年北京市东城区高考数学一模试卷(理科)及答案解析
北京市高考数学一模试卷(理科)一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知复数i•(1+ai)为纯虚数,那么实数a的值为()A.﹣1 B.0 C.1 D.22.集合A={x|x≤a},B={x|x2﹣5x<0},若A∩B=B,则a的取值范围是()A.a≥5 B.a≥4 C.a<5 D.a<43.某单位共有职工150名,其中高级职称45人,中级职称90人,初级职称15人.现采用分层抽样方法从中抽取容量为30的样本,则各职称人数分别为()A.9,18,3 B.10,15,5 C.10,17,3 D.9,16,54.执行如图所示的程序框图,输出的S值为()A.B.1 C.2 D.45.在极坐标系中,直线ρsinθ﹣ρcosθ=1被曲线ρ=1截得的线段长为()A.B.1 C.D.6.一个几何体的三视图如图所示,那么该几何体的最长棱长为()A.2 B. C.3 D.7.已知三点P(5,2)、F1(﹣6,0)、F2(6,0)那么以F1、F2为焦点且过点P的椭圆的短轴长为()A.3 B.6 C.9 D.128.已知1,2为平面上的单位向量,1与2的起点均为坐标原点O,1与2夹角为.平面区域D由所有满足=λ1+μ2的点P组成,其中,那么平面区域D的面积为()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分.9.在的展开式中,x3的系数值为______.(用数字作答)10.已知等比数列{a n}中,a2=2,a3•a4=32,那么a8的值为______.11.如图,圆O的半径为1,A,B,C是圆周上的三点,过点A作圆O的切线与OC的延长线交于点P,若CP=AC,则∠COA=______;AP=______.12.若,且,则sin2α的值为______.13.某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润以及运输限制如表:货物体积(升/件)重量(公斤/件)利润(元/件)甲20 10 8乙10 20 10运输限制110 100在最合理的安排下,获得的最大利润的值为______.14.已知函数f(x)=|lnx|,关于x的不等式f(x)﹣f(x0)≥c(x﹣x0)的解集为(0,+∞),其中x0∈(0,+∞),c为常数.当x0=1时,c的取值范围是______;当时,c的值是______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.在△ABC中,,AC=2,且.(Ⅰ)求AB的长度;(Ⅱ)若f(x)=sin(2x+C),求y=f(x)与直线相邻交点间的最小距离.16.已知三棱柱ABC﹣A1B1C1中,A1A⊥底面ABC,∠BAC=90°,A1A=1,,AC=2,E、F分别为棱C1C、BC的中点.(Ⅰ)求证AC⊥A1B;(Ⅱ)求直线EF与A1B所成的角;(Ⅲ)若G为线段A1A的中点,A1在平面EFG内的射影为H,求∠HA1A.17.现有两个班级,每班各出4名选手进行羽毛球的男单、女单、男女混合双打(混双)比赛(注:每名选手打只打一场比赛).根据以往的比赛经验,各项目平均完成比赛所需时间如表所示,现只有一块比赛场地,各场比赛的出场顺序等可能.比赛项目男单女单混双平均比赛时间25分钟20分钟35分钟(Ⅰ)求按女单、混双、男单的顺序进行比赛的概率;(Ⅱ)求第三场比赛平均需要等待多久才能开始进行;(Ⅲ)若要使所有参加比赛的人等待的总时间最少,应该怎样安排比赛顺序(写出结论即可).18.设函数f(x)=ae x﹣x﹣1,a∈R.(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)当x∈(0,+∞)时,f(x)>0恒成立,求a的取值范围;(Ⅲ)求证:当x∈(0,+∞)时,ln>.19.已知抛物线C:y2=2px(p>0),焦点F,O为坐标原点,直线AB(不垂直x轴)过点F且与抛物线C交于A,B两点,直线OA与OB的斜率之积为﹣p.(Ⅰ)求抛物线C的方程;(Ⅱ)若M为线段AB的中点,射线OM交抛物线C于点D,求证:.20.数列{a n}中,给定正整数m(m>1),.定义:数列{a n}满足a i+1≤a i(i=1,2,…,m﹣1),称数列{a n}的前m项单调不增.(Ⅰ)若数列{a n}通项公式为:,求V(5).(Ⅱ)若数列{a n}满足:,求证V(m)=a﹣b的充分必要条件是数列{a n}的前m项单调不增.(Ⅲ)给定正整数m(m>1),若数列{a n}满足:a n≥0,(n=1,2,…,m),且数列{a n}的前m项和m2,求V(m)的最大值与最小值.(写出答案即可)参考答案与试题解析一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知复数i•(1+ai)为纯虚数,那么实数a的值为()A.﹣1 B.0 C.1 D.2【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简,然后由实部为0求得a的值.【解答】解:∵i•(1+ai)=﹣a+i为纯虚数,∴﹣a=0,即a=0.故选:B.2.集合A={x|x≤a},B={x|x2﹣5x<0},若A∩B=B,则a的取值范围是()A.a≥5 B.a≥4 C.a<5 D.a<4【考点】集合的包含关系判断及应用.【分析】由x2﹣5x<0,可得B=(0,5),再利用集合的运算性质即可得出.【解答】解:由x2﹣5x<0,解得0<x<5,∴B=(0,5),∵A∩B=B,∴a≥5.则a的取值范围是a≥5.故选:A.3.某单位共有职工150名,其中高级职称45人,中级职称90人,初级职称15人.现采用分层抽样方法从中抽取容量为30的样本,则各职称人数分别为()A.9,18,3 B.10,15,5 C.10,17,3 D.9,16,5【考点】分层抽样方法.【分析】根据分层抽样的定义建立比例关系,即可求出各职称分别抽取的人数.【解答】解:用分层抽样方法抽取容量为30的样本,则样本中的高级职称人数为30×=9,中级职称人数为30×=18,初级职称人数为30×=3.故选:A.4.执行如图所示的程序框图,输出的S值为()A.B.1 C.2 D.4【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当k=0时,满足进行循环的条件,故S=,k=1,当k=1时,满足进行循环的条件,故S=,k=2,当k=2时,满足进行循环的条件,故S=1,k=3,当k=3时,满足进行循环的条件,故S=2,k=4,当k=4时,不满足进行循环的条件,故输出的S值为2,故选:C5.在极坐标系中,直线ρsinθ﹣ρcosθ=1被曲线ρ=1截得的线段长为()A.B.1 C.D.【考点】简单曲线的极坐标方程.【分析】分别得出直角坐标方程,求出圆心(0,0)到直线的距离d.即可得出直线ρsinθ﹣ρcosθ=1被曲线ρ=1截得的线段长=2.【解答】解:直线ρsinθ﹣ρcosθ=1化为直角坐标方程:x﹣y+1=0.曲线ρ=1即x2+y2=1.∴圆心(0,0)到直线的距离d=.∴直线ρsinθ﹣ρcosθ=1被曲线ρ=1截得的线段长L=2=2=.故选:D.6.一个几何体的三视图如图所示,那么该几何体的最长棱长为()A.2 B. C.3 D.【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为四棱锥P﹣ABCD,其中底面ABCD为直角梯形,侧棱PB⊥底面ABCD.即可得出.【解答】解:由三视图可知:该几何体为四棱锥P﹣ABCD,其中底面ABCD为直角梯形,侧棱PB⊥底面ABCD.∴最长的棱为PD,PD==3.故选:C.7.已知三点P(5,2)、F1(﹣6,0)、F2(6,0)那么以F1、F2为焦点且过点P的椭圆的短轴长为()A.3 B.6 C.9 D.12【考点】椭圆的简单性质.【分析】设椭圆的标准方程为:+=1(a>b>0),可得:c=6,2a=|PF1|+|PF2|,可得b=.【解答】解:设椭圆的标准方程为:+=1(a>b>0),可得:c=6,2a=|PF1|+|PF2|=+=6,解得a=3.∴b===3.∴椭圆的短轴长为6.故选:B.8.已知1,2为平面上的单位向量,1与2的起点均为坐标原点O,1与2夹角为.平面区域D由所有满足=λ1+μ2的点P组成,其中,那么平面区域D的面积为()A.B.C.D.【考点】平面向量的基本定理及其意义.【分析】以O为原点,以方向为x轴正方向,建立坐标系xOy,写出、的坐标,根据=λ+μ写出的坐标表示,利用向量相等列出方程组,求出点P的坐标满足的约束条件,画出对应的平面区域,计算平面区域的面积即可.【解答】解:以O为原点,以方向为x轴正方向,建立坐标系xOy,则=(1,0),=(cos,sin)=(,),又=λ+μ=(λ+μ,μ),其中λ≥0,μ≥0,λ+μ≤1;设=(x,y),则(x,y)=(λ+μ,μ),∴,解得;由于λ≥0,μ≥0,λ+μ≤1,∴,它表示的平面区域如图所示:由图知A(,),B(1,0);所以阴影部分区域D的面积为S=×1×=.故选:D.二、填空题:本大题共6小题,每小题5分,共30分.9.在的展开式中,x3的系数值为20 .(用数字作答)【考点】二项式系数的性质.【分析】利用二项式定理展开式的通项公式即可得出.【解答】解:T r+1=(2x)5﹣r=25﹣3r x5﹣2r.令5﹣2r=3,解得r=1.∴T4=x3=20x3.故答案为:20.10.已知等比数列{a n}中,a2=2,a3•a4=32,那么a8的值为128 .【考点】等比数列的通项公式.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵a2=2,a3•a4=32,∴a1q=2,=32,解得a1=1,q=2.那么a8=27=128.故答案为:128.11.如图,圆O的半径为1,A,B,C是圆周上的三点,过点A作圆O的切线与OC的延长线交于点P,若CP=AC,则∠COA= ;AP= .【考点】与圆有关的比例线段.【分析】证明△OAC是等边三角形,得到∠COA=,利用OA=1,可求AP.【解答】解:由题意,OA⊥AP.∵CP=AC,∴∠P=∠CAP,∵∠P+∠AOP=∠CAP+∠OAC,∴∠AOP=∠OAC,∴AC=OC,∵OA=OC,∴△OAC是等边三角形,∴∠COA=,∵OA=1∴AP=故答案为:,12.若,且,则sin2α的值为.【考点】二倍角的正弦.【分析】利用已知及两角差的正弦函数公式可得cosα﹣sinα=,两边平方,利用二倍角公式即可解得sin2α的值.【解答】解:∵=(cosα﹣sinα),∴cosα﹣sinα=>0,∴两边平方可得:1﹣sin2α=,∴sin2α=.故答案为:.13.某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润以及运输限制如表:货物体积(升/件)重量(公斤/件)利润(元/件)甲20 10 8乙10 20 10运输限制110 100在最合理的安排下,获得的最大利润的值为62 .【考点】简单线性规划.【分析】运送甲x件,乙y件,利润为z,建立约束条件和目标函数,利用线性规划的知识进行求解即可.【解答】解:设运送甲x件,乙y件,利润为z,则由题意得,即,且z=8x+10y,作出不等式组对应的平面区域如图:由z=8x+10y得y=﹣x+,平移直线y=﹣x+,由图象知当直线y=﹣x+经过点B时,直线的截距最大,此时z最大,由,得,即B(4,3),此时z=8×4+10×3=32+30=62,故答案为:6214.已知函数f(x)=|lnx|,关于x的不等式f(x)﹣f(x0)≥c(x﹣x0)的解集为(0,+∞),其中x0∈(0,+∞),c为常数.当x0=1时,c的取值范围是[﹣1,1] ;当时,c的值是﹣2 .【考点】分段函数的应用;对数函数的图象与性质.【分析】当0<x<1时,f(x)=﹣lnx,f′(x)=﹣∈(﹣∞,﹣1),当x>1时,f(x)=lnx,f′(x)=∈(0,1),进而将x0=1和代入,结果斜率公式分类讨论可得答案.【解答】解:∵函数f(x)=|lnx|,当0<x<1时,f(x)=﹣lnx,f′(x)=﹣∈(﹣∞,﹣1),当x>1时,f(x)=lnx,f′(x)=∈(0,1),=1时,f(x)﹣f(x0)≥c(x﹣x0)可化为:f(x)﹣f(1)≥c(x﹣1)①当x当0<x<1时,f(x)﹣f(1)≥c(x﹣1)可化为:≤c,则c≥﹣1,当x>1时,f(x)﹣f(1)≥c(x﹣1)可化为:≥c,则c≤1,故c∈[﹣1,1];=时,f(x)﹣f(x0)≥c(x﹣x0)可化为:f(x)﹣f()≥c(x﹣)②当x当0<x<时,f(x)﹣f()≥c(x﹣)可化为:≤c,则c≥f′()=﹣2,当<x<1时,f(x)﹣f()≥c(x﹣)可化为:≥c,则c≤f′()=﹣2,当x>1时,f(x)﹣f()≥c(x﹣)可化为:≥c,则c≤1,故c=﹣2,故答案为:[﹣1,1],﹣2三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.在△ABC中,,AC=2,且.(Ⅰ)求AB的长度;(Ⅱ)若f(x)=sin(2x+C),求y=f(x)与直线相邻交点间的最小距离.【考点】两角和与差的余弦函数;正弦函数的图象.【分析】(Ⅰ)利用诱导公式求得cosC,可得C的值,咋利用余弦定理求得AB的长度.(Ⅱ)由f(x)=sin(2x+C),求得x1、x2的值,可得|x1﹣x2|的最小值.【解答】解:(Ⅰ)∵,∴C=45°.∵,AC=2,∴=4,∴AB=2.(Ⅱ)由,解得或,k∈Z,解得,或,k1,k2∈Z.因为,当k1=k2时取等号,所以当时,相邻两交点间最小的距离为.16.已知三棱柱ABC﹣A1B1C1中,A1A⊥底面ABC,∠BAC=90°,A1A=1,,AC=2,E、F分别为棱C1C、BC的中点.(Ⅰ)求证AC⊥A1B;(Ⅱ)求直线EF与A1B所成的角;(Ⅲ)若G为线段A1A的中点,A1在平面EFG内的射影为H,求∠HA1A.【考点】直线与平面所成的角;棱柱的结构特征.【分析】(I)由AC⊥AB,AC⊥AA1即可得出AC⊥平面ABB1A1,于是AC⊥A1B;(II)以A为原点建立坐标系,求出和的坐标,计算cos<>即可得出直线EF 与A1B所成的角;(III)求出和平面EFG的法向量,则sin∠HA1A=|cos<,>|.【解答】证明:(Ⅰ)∵AA1⊥底面ABC,AC⊂平面ABC,∴AC⊥AA1.∵∠BAC=90°,∴AC⊥AB.又A1A⊂平面AA1B1B,AB⊂平面AA1B1B,A1A∩AB=A,∴AC⊥平面A1ABB1.∵A1B⊂平面A1ABB1,∴AC⊥A1B.(Ⅱ)以A为原点建立空间直角坐标系A﹣﹣﹣xyz,如图所示:则A1(0,0,1),,,.∴,.∴.直线EF与A1B所成的角为45°.(Ⅲ),,.=(0,0,1).设平面GEF的法向量为=(x,y,z),则,∴令,则.∴cos<>==.∵A1在平面EFG内的射影为H,∴∠HA1A位AA1与平面EFG所成的角,∴sin∠HA1A=|cos<>|=.∴∠HA1A=.17.现有两个班级,每班各出4名选手进行羽毛球的男单、女单、男女混合双打(混双)比赛(注:每名选手打只打一场比赛).根据以往的比赛经验,各项目平均完成比赛所需时间如表所示,现只有一块比赛场地,各场比赛的出场顺序等可能.比赛项目男单女单混双平均比赛时间25分钟20分钟35分钟(Ⅰ)求按女单、混双、男单的顺序进行比赛的概率;(Ⅱ)求第三场比赛平均需要等待多久才能开始进行;(Ⅲ)若要使所有参加比赛的人等待的总时间最少,应该怎样安排比赛顺序(写出结论即可).【考点】计数原理的应用.【分析】(Ⅰ)求出三场比赛的种数,其中按按女单、混双、男单的顺序进行比赛只有1种,根据概率公式计算即可,(Ⅱ)令A表示女单比赛、B表示男单比赛、C表示混双比赛,分别求出按不同顺序比赛时,第三场比赛等待的时间,再根据平均数的定义即可求出,(Ⅲ)按照比赛时间从长到短的顺序参加比赛,可使等待的总时间最少.【解答】解:(I)三场比赛共有种方式,其中按按女单、混双、男单的顺序进行比赛只有1种,所以按女单、混双、男单的顺序进行比赛的概率为.(Ⅱ)令A表示女单比赛、B表示男单比赛、C表示混双比赛.按ABC顺序进行比赛,第三场比赛等待的时间是:t1=20+25=45(分钟).按ACB顺序进行比赛,第三场比赛等待的时间是:t2=20+35=55(分钟).按BAC顺序进行比赛,第三场比赛等待的时间是:t3=20+25=45(分钟).按BCA顺序进行比赛,第三场比赛等待的时间是:t4=35+25=60(分钟).按CAB顺序进行比赛,第三场比赛等待的时间是:t5=35+20=55(分钟).按CBA顺序进行比赛,第三场比赛等待的时间是:t6=35+25=60(分钟).且上述六个事件是等可能事件,每个事件发生概率为,所以平均等待时间为,(Ⅲ)按照比赛时间从长到短的顺序参加比赛,可使等待的总时间最少18.设函数f(x)=ae x﹣x﹣1,a∈R.(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)当x∈(0,+∞)时,f(x)>0恒成立,求a的取值范围;(Ⅲ)求证:当x∈(0,+∞)时,ln>.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)a=1时得出f(x),进而得到f′(x)=e x﹣1,这样便可判断导数符号,根据符号即可得出f(x)的单调区间;(Ⅱ)可以由f(x)>0恒成立得到恒成立,这样设,求导,根据导数符号便可判断g(x)在(0,+∞)上单调递减,这便可得到g(x)<1,从而便可得出a的取值范围;(Ⅲ)容易得到等价于e x﹣xe x﹣1>0,可设h(x)=e x﹣xe x﹣1,求导数,并根据上面的f(x)>0可判断出导数h′(x)>0,从而得到h(x)>h(0)=0,这样即可得出要证明的结论.【解答】解:(Ⅰ)当a=1时,则f(x)=e x﹣x﹣1,f'(x)=e x﹣1;令f'(x)=0,得x=0;∴当x<0时,f'(x)<0,f(x)在(﹣∞,0)上单调递减;当x≥0时,f'(x)≥0,h(x)在(0,+∞)上单调递增;即a=1时,f(x)的单调减区间为(﹣∞,0),单调赠区间为[0,+∞);(Ⅱ)∵e x>0;∴f(x)>0恒成立,等价于恒成立;设,x∈(0,+∞),;当x∈(0,+∞)时,g′(x)<0;∴g(x)在(0,+∞)上单调递减;∴x∈(0,+∞)时,g(x)<g(0)=1;∴a≥1;∴a的取值范围为[1,+∞);(Ⅲ)证明:当x∈(0,+∞)时,等价于e x﹣xe x﹣1>0;设h(x)=e x﹣xe x﹣1,x∈(0,+∞),;由(Ⅱ)知,x∈(0,+∞)时,e x﹣x﹣1>0恒成立;∴;∴h′(x)>0;∴h(x)在(0,+∞)上单调递增;∴x∈(0,+∞)时,h(x)>h(0)=0;因此当x∈(0,+∞)时,.19.已知抛物线C:y2=2px(p>0),焦点F,O为坐标原点,直线AB(不垂直x轴)过点F且与抛物线C交于A,B两点,直线OA与OB的斜率之积为﹣p.(Ⅰ)求抛物线C的方程;(Ⅱ)若M为线段AB的中点,射线OM交抛物线C于点D,求证:.【考点】抛物线的简单性质.【分析】(I)设A(x1,y1),B(x2,y2),直线AB(不垂直x轴)的方程可设为.与抛物线方程联立可得:,由直线OA与OB的斜率之积为﹣p,即.可得:x1x2=4.利用根与系数的关系即可得出.(II)利用中点坐标公式、斜率计算公式可得:直线OD的方程为,代入抛物线C:y2=8x的方程,解出即可得出.【解答】(I)解:∵直线AB过点F且与抛物线C交于A,B两点,,设A(x1,y1),B(x2,y2),直线AB(不垂直x轴)的方程可设为.∴,.∵直线OA与OB的斜率之积为﹣p,∴.∴,得x1x2=4.由,化为,其中△=(k2p+2p)2﹣k2p2k2>0∴x1+x2=,x1x2=.∴p=4,抛物线C:y2=8x.(Ⅱ)证明:设M(x0,y0),P(x3,y3),∵M为线段AB的中点,∴,.∴直线OD的斜率为.直线OD的方程为代入抛物线C:y2=8x的方程,得.∴.∵k2>0,∴.20.数列{a n}中,给定正整数m(m>1),.定义:数列{a n}满足a i+1≤a i(i=1,2,…,m﹣1),称数列{a n}的前m项单调不增.(Ⅰ)若数列{a n}通项公式为:,求V(5).(Ⅱ)若数列{a n}满足:,求证V(m)=a﹣b的充分必要条件是数列{a n}的前m项单调不增.(Ⅲ)给定正整数m(m>1),若数列{a n}满足:a n≥0,(n=1,2,…,m),且数列{a n}的前m项和m2,求V(m)的最大值与最小值.(写出答案即可)【考点】数列的应用.【分析】(Ⅰ)由数列{a n}通项公式分别气的前5项,代入即可求得V(5),(Ⅱ)充分性:由,数列{a n}的前m项单调不增,即a m≤…≤a2≤a1,去掉绝对值求得V(m)=a﹣b,再证明必要性,采用反证法,假设数列{a n}的前m项不是单调不增,则存在i(1≤i≤m﹣1)使得a i+1>a i,求得=|a﹣b+a i+1﹣a i|+(a i+1﹣a i)>a﹣b,与已知矛盾,即可证明V(m)=a﹣b的充分必要条件是数列{a n}的前m项单调不增.(Ⅲ)由当丨a i+1﹣a i丨=0时,即数列{a n}为常数列,V(m)=0,当m=2时的最大值:此时a1+a2=4,|a1﹣a2|≤|4﹣0|=4,当m>2时的最大值:此时a1+a2+a3+…+a4=m2.【解答】解(Ⅰ),a1=﹣1,a2=1,a3=﹣1,a4=1,a5=﹣1,V(5)=丨a2﹣a1丨+丨a3﹣a2丨+丨a4﹣a3丨+丨a5﹣a4丨=2+2+2+2=8,V(5)=8.…(Ⅱ)充分性:若数列{a n}的前m项单调不增,即a m≤…≤a2≤a1,此时有:=(a1﹣a2)+(a2﹣a3)+(a3﹣a4)+…+(a m﹣1﹣a m)=a1﹣a m=a ﹣b.必要性:反证法,若数列{a n}的前m项不是单调不增,则存在i(1≤i≤m﹣1)使得a i+1>a i,那么:=丨a i+1﹣a i丨+丨a i+1﹣a i丨+丨a i+1﹣a i丨≥丨a i﹣a1丨+(a i+1﹣a i)+丨a m﹣a i+1丨,=丨a m﹣a i+a i﹣a i+1丨+(a i+1﹣a i),=丨a﹣b+a i+′﹣a i丨+(a i+1﹣a i),由于a i+1>a i,a>b,∴|a﹣b+a i+1﹣a i|+(a i+1﹣a i)>a﹣b.与已知矛盾.…(III)最小值为0.此时{a n}为常数列.…最大值为,当m=2时的最大值:此时a1+a2=4,(a1,a2≥0),…11分|a1﹣a2|≤|4﹣0|=4.当m>2时的最大值:此时a1+a2+a3+…+a4=m2.由|x﹣y|≤|x|+|y|易证,{a n}的值的只有是大小交替出现时,才能让V(m)取最大值.不妨设:a i+1≤a i,i为奇数,a i+1≥a i,i为偶数.当m为奇数时有:,=a1﹣a2+a3﹣a2+a3﹣a4+a5﹣a4+…+a m﹣a m﹣1,=a1﹣a m+2a i﹣4a2i≤2a i=2m2,当m为偶数时同理可证.…。
2020-2021学年北京市东城区汇文中学高三(下)开学数学试卷(附答案详解)
2020-2021学年北京市东城区汇文中学高三(下)开学数学试卷一、单选题(本大题共22小题,共100.0分)1.若集合A={x|x2−2x≤0},集合B满足A∪B=A,则B可以为()A. {x|x≤2}B. {x|−1≤x≤2}C. {1,2}D. {−1,0,1,2}2.设复数z=|√3+i|−i2021,则在复平面内z对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.“直播电商”已经成为当前经济发展的新增长点,某电商平台的直播间主要经营食品和服装两大类商品,2020年前三个季度,该直播间每个季度的收入都比上一季度翻了一番,整理前三季度的收入情况如图所示,则下列说法错误的是()A. 该直播间第三季度的总收入是第一季度的4倍B. 该直播间第三季度的服装收入比第一季度和第二季度的服装总收入还要多C. 该直播间第二季度的食品收入是第三季度食品收入的13D. 该直播间第一季度的食品收入是第三季度食品收入的164.函数f(x)=x的图象大致为()ln|x|A.B.C.D.5. 已知函数f(x)=sinx −x ,设a =f(π0.1),b =f(0.1π),c =f(log 0.1π),则a ,b ,c 的大小关系是( )A. a >b >cB. b >c >aC. c >b >aD. b >a >c6. 在钝角三角形ABC 中,AB ⃗⃗⃗⃗⃗ =(1,√3),|AC⃗⃗⃗⃗⃗ |=1,S △ABC =√32,点D 为BC 的中点,则|AD⃗⃗⃗⃗⃗⃗ |=( ) A. √72B. √52C. √32D. 127. 已知函数f(x)=me x−2+n 的图象恒过点(2,1),若对于任意的正数m ,n ,不等式1m+4n ≥A 恒成立,则实数A 的最大值为( ) A. 9 B. 3+2√2 C. 7D. 4√28. 设抛物线y 2=2px(p >0)的焦点为F ,倾斜角为θ(0<θ<π2)的直线l 经过抛物线的焦点F ,且与抛物线相交于M ,N 两点,若FM ⃗⃗⃗⃗⃗⃗ ⋅FN ⃗⃗⃗⃗⃗⃗ =−2FN 2⃗⃗⃗⃗⃗⃗⃗⃗ ,则sin2θ=( )A. 2√23B. 13C. √24D. 4√299. 若各项均为正数的数列{a n }满足a n+1=4a n ,a 1a 5=256,则使得不等式4n <133(1+√a 1+√a 2+⋯+√a n )成立的最大正整数n 的值为( )A. 5B. 6C. 7D. 810. 在平面内,A ,C 是两个定点,B 是动点,若AD ⃗⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ ,|BD ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ |=|CD ⃗⃗⃗⃗⃗ |,则△ABC 的内角A 的最大值为( )A. π6B. π4C. π3D. π211. 已知函数f(x)={−2x 2+4x,0≤x ≤2,12f(x +2),x <0,若函数g(x)=f(x)−kx +k 在区间[−2,1]上有3个不同的零点,则实数k 的取值范围是( )A. (−4−2√3,0)B. (−1,0)C. (−4+2√3,0)D. (−12,0)12.在△ABC中,AC=2√3,顶点B在以AC为直径的圆上,点P在平面ABC上的射影为AC的中点,PA=2,则其外接球的表面积为()A. 12πB. 163π C. 94π D. 16π13.已知集合A={x∈R|−1≤x≤3},B={x∈N|2x<4},则集合A∩B中元素的个数为()A. 1B. 2C. 3D. 414.若z(1−i)=2i,则z−的虚部为()A. 1B. −1C. iD. −i15.在(√x2−1√x)6的二项展开式中,x2的系数为()A. 1516B. −1516C. 316D. −31616.已知平面向量a⃗=(√3,−1),|b⃗ |=4,且(a⃗−2b⃗ )⊥a⃗,则|a⃗−b⃗ |=()A. 2B. 3C. 4D. 517.如图,AB是⊙O的直径,PA垂直于⊙O所在平面,C是圆周上不同于A,B两点的任意一点,且AB=2,PA=BC=√3,则二面角A−BC−P的大小为()A. 30°B. 45°C. 60°D. 90°18.已知f(x)=√32sinωx+sin2ωx2−12(ω>0),则下列说法错误的是()A. 若f(x)在(0,π)内单调,则0<ω≤23B. 若f(x)在(0,π)内无零点,则0<ω≤16C. 若y=|f(x)|的最小正周期为π,则ω=2D. 若ω=2时,直线x=−2π3是函数f(x)图象的一条对称轴19.数列{a n}的前n项和记为S n,则“数列{S n}为等差数列”是“数列{a n}为常数列”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件20.设抛物线C:x2=2py(p>0)的焦点为F,点P在C上,|PF|=174,若以线段PF 为直径的圆过点(1,0),则C的方程为()A. x2=y或x2=8yB. x2=2y或x2=8yC. x2=y或x2=16yD. x2=2y或x2=16y21.在△ABC中,a=2√3,√7bcosA=3asinB,则△ABC面积的最大值是()A. 3√7B. 6√7C. 9√7D. 18√722.已知函数f(x)=sin[cosx]+cos[sinx],其中[x]表示不超过实数x的最大整数,关于f(x)有下述四个结论:①f(x)的一个周期是2π;②f(x)是偶函数;③f(x)的最大值大于√2;④f(x)在(0,π)单调递减.其中所有正确结论编号是()A. ①②B. ①③C. ①④D. ②④二、单空题(本大题共9小题,共45.0分)23.若某几何体的三视图如图所示、则该几何体的体积为______ .24.从古至今,文学与数学都有着密切的联系.一首诗从末尾一字读至开头一字另成一首新诗,称之为“通体回文诗”,数学中也有类似的情况:对一个整数n(n>10)从左向右和从右向左读其结果都是质数,可以称它为“通体质数”.若在闭区间[10,30]中,任取一个整数,则此整数是“通体质数”的概率为______ .25.对于双曲线x2a2−y2b2=1(a>0,b>0)来说,我们定义圆x2+y2=a2为它的“伴随圆”.过双曲线x2a2−4y29=1(a>0)的左焦点F1作它的伴随圆的一条切线,设切点为T,且这条切线与双曲线的右支相交于点P,若M为PF1的中点,M在T右侧,且|MO|−|MT|为定值12,则该双曲线的离心率为______ .26.已知函数f(x)=sin2x+sin(2x+π3)+a同时满足下述性质:①若对于任意的x1,x2,x3∈[0,π4],f(x1)+f(x2)≥f(x3)恒成立;②f(π6)≤√3−a2,则a的值为______ .27.某单位有青年职工160人,中年职工人数是老年职工人数的2倍,老、中、青职工共有430人,为了解职工身体状况,现采用分层抽样方法进行抽查,在抽取的样本中有青年职工64人,则该样本中的老年职工人数为______ .28.在各项均为正数的等比数列{a n}中,已知a2⋅a4=16,a6=32,记b n=a n+a n+1,则数列{b n}的前六项和S6为______ .29.已知F是双曲线C:x2−y28=1的右焦点,P是双曲线C上的点,A(0,6√2).①若点P在双曲线右支上,则|AP|+|PF|的最小值为______ ;②若点P在双曲线左支上,则|AP|+|PF|的最小值为______ .30.已知函数f(x)={3x−1+kx−1,x≤0|lnx|+kx−2,x>0,若f(x)恰有4个零点,则实数k的取值范围为______ .31.某校开展“我身边的榜样”评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求见选票,如图所示.这3名候选人的得票数(不考虑是否有效)分别为总票数的84%,75%,46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为______ .三、解答题(本大题共13小题,共167.0分)32.已知数列{a n}是递增的等差数列,a1=12,且满足a4是a2与a8的等比中项.(1)求数列{a n}的通项公式;(2)求数列{1a n a n+1}的前n项和.33.如图,DA⊥平面ABC,DA=AC=1,O是AB的中点,△ACO为等边三角形.(1)证明:平面ACD⊥平面BCE;(2)若AD//BE,P为CE的中点,Q为线段OP上的动点,判断三棱锥QACD的体积是否为定值?若是,求出该定值,若不是,说明理由.34.电子烟是一种模仿卷烟的电子产品.有害公共健康.为研究吸食电子烟是否会引发肺部疾病,某医疗机构随机抽取了100人进行调查,吸电子烟与不吸电子烟的比例为1:3,整理数据得到如表:感染肺部疾病未感染肺部疾病总计吸电子烟15不吸电子烟50总计(1)完成2×2列联表,在犯错误的概率不超过5%的前提下,能否认为吸食电子烟与感染肺部疾病有关?(2)为进一步调查分析电子烟中诱发肺部疾病的成分因素,在感染肺部疾病的被调查人中,按照吸电子烟和不吸电子烟这两大类别,采用分层抽样的方法抽取8人,从这8个人中任取2人进行血液、痰液等相关医学检查v求这两个人来自同一类别的概率.,其中n=a+b+c+d.参考公式及数据:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)35.已知函数f(x)=sinx−ae x−1(a∈R).(1)定义f(x)的导函数为f(1)(x),f(1)(x)的导函数为f(2)(x),……以此类推,若)的单调区间;f(2020)(1)=sin1,求函数f(2x+π3(2)若a≥1,x≥0,证明:f(x)<0.36.已知圆M:(x−√6)2+y2=32,点Q是圆M上的一个动点,点N(−√6,0),若线段QN的垂直平分线交线段QM于点T.(1)求动点T的轨迹曲线C的方程;(2)设O是坐标原点,点P(2,1),点R(异于原点)是曲线C内部且位于y轴上的一个动点,点S与点R关于原点对称,直线PR,PS分别与曲线C交于A,B(异于点P)两点,判断直线AB是否过定点?若过,求出定点坐标;若不过,说明理由.37.在直角坐标系xOy中,曲线C的参数方程为{x=mt 2y=mt,(m≠0,t为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+π4)=√22.(1)求直线l的直角坐标方程;(2)若直线l经过曲线C的焦点T,且与曲绒C交于M,N两点,求|TM|⋅|TN|.38.已知函数f(x)=|x−1|.(1)求不等式f(x)−f(2x+4)≤1的解集;(2)当x<−1时,f(ax)+f(−x)+x>0恒成立,求实数a的取值范围.39.已知△ABC中,bcosA−c>0.(Ⅰ)△ABC中是否必有一个内角为钝角,说明理由.(Ⅱ)若△ABC同时满足下列四个条件中的三个:①sinA =√22;②sinC =√32;③a =2;④c =√2.请证明使得△ABC 存在的这三个条件仅有一组,写出这组条件并求出b 的值.40. 如图,在四面体ABCD 中,E ,F ,M 分别是线段AD ,BD ,AC 的中点,∠ABD =∠BCD =90°,EC =√2,AB =BD =2. (Ⅰ)证明:EM//平面BCD ; (Ⅱ)证明:EF ⊥平面BCD ;(Ⅲ)若直线EC 与平面ABC 所成的角等于30°,求二面角A −CE −B 的余弦值.41. 某企业发明了一种新产品,其质量指标值为m(m ∈[70,100]),其质量指标等级如表: 质量指标值m [70,75)[75,80)[80,85)[85,90)[90,100]质量指标等级良好 优秀 良好 合格 废品为了解该产品的经济效益并及时调整生产线,该企业先进行试产生.现从试生产的产品中随机抽取了1000件,将其质量指标值m的数据作为样本,绘制如下频率分布直方图:(Ⅰ)若将频率作为概率,从该产品中随机抽取2件产品,求抽出的产品中至少有1件不是废品的概率;(Ⅱ)若从质量指标值m≥85的样本中利用分层抽样的方法抽取7件产品中任取3件产品,求m∈[90,95)的件数X的分布列及数学期望;(Ⅲ)若每件产品的质量指标值m与利润y(单位:元)的关系如表(1<t<4):质量指标值m[70,75)[75,80)[80,85)[85,90)[90,100]利润y(元)4t9t4t2t−5 3 e t试分析生产该产品能否盈利?若不能,请说明理由;若能,试确定t为何值时,每件产品的平均利润达到最大(参考数值:ln2≈0.7,ln5≈1.6).42.已知函数f(x)=12x2−alnx−12(a∈R,a≠0).(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若对任意的x∈[1,+∞),都有f(x)≥0成立,求a的取值范围.43. 已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的离心率为√32,且经过点(1,√32).(Ⅰ)求椭圆C 的方程;(Ⅱ)已知O 为坐标原点,A ,B 为椭圆C 上两点,若OA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,且|AB||OA|=32,求△OAB 的面积.44. 已知项数为m(m ∈N ∗,m ≥2)的数列{a n }为递增数列,且满足a n ∈N ∗,若b n =(a 1+a 2+⋯+a m )−a nm−1∈Z ,则{b n }为{a n }的“关联数列”.(Ⅰ)数列1,4,7,10是否存在“关联数列”?若存在,求其“关联数列”;若不存在,请说明理由.(Ⅱ)若{b n }为{a n }的“关联数列”,{b n }是否一定具有单调性?请说明理由. (Ⅲ)已知数列{a n }存在“关联数列”{b n },且a 1=1,a m =2021,求m 的最大值.答案和解析1.【答案】C【解析】解:∵集合A={x|x2−2x≤0}={x|0≤x≤2},集合B满足A∪B=A,∴B⊆A,∴B可以为{1,2}.故选:C.求出集合A,由集合B满足A∪B=A,得B⊆A,由此能求出集合B.本题考查集合的运算,考查并集、子集定义等基础知识,考查运算求解能力等核心素养,是基础题.2.【答案】D【解析】解:∵i4=1,i2021=(i4)505⋅i=i,|√3+i|=√(√3)2+12=2,复数z=|√3+i|−i2021=2−i,则在复平面内z对应的点(2,−1)位于第四象限,故选:D.由i4=1,可得i2021=(i4)505⋅i=i,再利用几何意义即可得出.本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.3.【答案】D【解析】【分析】本题考查统计图的应用,属基础题.依题意,根据统计图的数据,逐个选项判断即可.【解答】解:设第一季度的总收入为a,则由题意可知,第二季度的总收人为2a,第三季度的总收入为4a,故A正确;由图可知,该直播间第三季度的服装收人为4a×0.7=2.8a,第一季度和第二季度的服装总收入为a×0.9+2a×0.8=2.5a<2.8a,故B正确;该直播间第二季度的食品收入为2a×0.2=0.4a,第三季度的食品收入为4a×0.3=1.2a;0.4a1.2a =13,故C正确;而第一季度的食品收人是0.1a,不满足是第三能度食品收入的16.故D错误.故选D.4.【答案】B【解析】解:函数的定义域为{x|x≠0且x≠±1},f(−x)=−xln|−x|=−xln|x|=−f(x),则f(x)是奇函数,图象关于原点对称,排除A,当x→+∞,f(x)→+∞,排除D,当x=e时,f(e)=elne=e<5,排除C,故选:B.先求出函数的定义域,判断函数是奇函数,利用极限思想以及f(e)的值利用排除法进行判断即可.本题主要考查函数图象的识别和判断,利用函数的奇偶性和对称性,以及函数值的符号,利用极限思想以及排除法是解决本题的关键,是基础题.5.【答案】C【解析】【分析】本题考查利用指数函数、对数函数性质比较大小,考查利用导数研究函数的单调性,属于中档题.由题意得f′(x)≤0,可得f(x)在定义域上单调递减,比较π0.1,0.1π,log0.1π大小即可得a,b,c的大小关系.【解答】解:由题意得f′(x)=cosx−1≤0,所以f(x)在定义域上单调递减.因为π0.1>π0=1,0<0.1π<0.10=1,log0.1π<0,所以π0.1>0.1π>log0.1π,即c >b >a . 故选C .6.【答案】C【解析】解:如图,|AB ⃗⃗⃗⃗⃗ |=2,|AC ⃗⃗⃗⃗⃗ |=1,S △ABC =√32, ∴12|AB⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ |⋅sin∠BAC =sin∠BAC =√32,∴cos∠BAC =±12,若cos∠BAC =12,则:|BC ⃗⃗⃗⃗⃗ |2=|AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ |2=AC ⃗⃗⃗⃗⃗ 2+AB ⃗⃗⃗⃗⃗ 2−2AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =1+4−2×2×1×12=3,∴∠B =90°,△ABC 是直角三角形,与已知△ABC 是钝角三角形矛盾, ∴cos∠BAC =−12,∴|AD ⃗⃗⃗⃗⃗⃗ |=12|AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ |=12√(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )2=12⋅√4+1−2×2×1×12=√32. 故选:C .可画出图形,可求出|AB ⃗⃗⃗⃗⃗ |=2,根据S △ABC =√32即可求出sin∠BAC =√32,从而得出cos∠BAC =±12,然后根据△ABC 为钝角三角形可得出cos∠BAC =−12,然后根据|AD ⃗⃗⃗⃗⃗⃗ |=12√(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )2,进行数量积的运算即可求出|AD⃗⃗⃗⃗⃗⃗ |的值. 本题考查了向量减法和数乘的几何意义,向量加法的平行四边形法则,向量长度的求法,向量数量积的运算及计算公式,考查了计算能力,属于中档题.7.【答案】A【解析】解:可令x −2=0,即x =2,可得f(2)=m +n =1, 由m >0,n >0,可得1m +4n =(m +n)(1m +4n )=1+4+nm +4m n≥5+2√n m ⋅4m n=9,当且仅当n =2m =23时取得等号,则A ≤9,可得A 的最大值为9. 故选:A .可令x −2=0,求得m +n =1,再由乘1法和基本不等式求得1m +4n 的最小值,由不等式恒成立思想得到A 的最大值.本题考查不等式恒成立问题解法,以及基本不等式的运用,考查转化思想和运算能力、推理能力,属于中档题.8.【答案】D【解析】解:因为抛物线y 2=2px(p >0), 所以焦点F(p2,0),设过焦点F ,倾斜角为θ的直线方程为y =k(x −p2),k =tanθ,(0<θ<π2), 设M 点坐标为(x 1,y 1),N 点坐标为(x 2,y 2), 与抛物线联立得k 2x 2−(2p +pk 2)x +p 2k 24=0,所以x 1+x 2=2p+pk 2k 2,x 1x 2=p 24,因为FM ⃗⃗⃗⃗⃗⃗ ⋅FN ⃗⃗⃗⃗⃗⃗ =−2|FN ⃗⃗⃗⃗⃗⃗ |2, 所以|FM ⃗⃗⃗⃗⃗⃗ ||FN ⃗⃗⃗⃗⃗⃗ |cos180°=−2|FN ⃗⃗⃗⃗⃗⃗ |2 所以|FM⃗⃗⃗⃗⃗⃗ |=2|FN ⃗⃗⃗⃗⃗⃗ | 所以x 1+p2=2(x 2+p2),即x 1=2x 2+p2, 两边加x 2可得,x 1+x 2=3x 2+p2, 又因为x 1+x 2=2p+pk 2k 2,所以2p+pk 2k 2=3x 2+p 2,解得x 2=pk 2+4p 6k 2,又因为x 1x 2=p 24,所以(2x 2+p2)x 2=p 24,所以2x 22+p2⋅x 2=p 24,所以2(pk 2+4p 6k 2)2+p2⋅(pk 2+4p 6k 2)=p 24,所以k 4−7k 2−8=0, 解得k 2=8或k 2=−1(舍),又因为k >0, 所以k =tanθ=2√2,所以sin2θ=2sinθcosθsin 2θ+cos 2θ=2tanθtan 2θ+1=4√29.故选:D .根据题意设M 点坐标为(x 1,y 1),N 点坐标为(x 2,y 2),直线方程为y =k(x −p2),k =tanθ,(0<θ<π2),与抛物线联立,结合韦达定理可得x 1+x 2=2p+pk 2k 2,x 1x 2=p 24,由于FM ⃗⃗⃗⃗⃗⃗ ⋅FN⃗⃗⃗⃗⃗⃗ =−2|FN ⃗⃗⃗⃗⃗⃗ |2,推出|FM ⃗⃗⃗⃗⃗⃗ ||FN ⃗⃗⃗⃗⃗⃗ |cos180°=−2|FN ⃗⃗⃗⃗⃗⃗ |2,即x 1=2x 2+p2,即可解得k ,tanθ,再计算sin2θ即可得出答案.本题考查抛物线的方程,直线与抛物线相交问题,解题中需要一定的计算能力,属于中档题.9.【答案】C【解析】解:各项均为正数的数列{a n }满足a n+1=4a n ,可得a n+1a n=4,则数列{a n }是公比为4的等比数列,又a 1a 5=256,∴a 12q 4=256,即a 1=1,∴a n =4n−1=(2n−1)2,可得√a n =2n−1,由不等式4n <133(1+√a 1+√a 2+⋯+√a n )成立, 得4n <133(1+20+21+22+⋯+2n−1)=133(1+1−2n 1−2)=133×2n ,∴2n <133<28,即n <8,可得最大正整数n 的值为7. 故选:C .由已知可得数列{a n }是公比为4的等比数列,再由已知求得公比,得到数列通项公式,然后利用等比数列的前n 项和公式求1+√a 1+√a 2+⋯+√a n ,代入已知不等式求得n 的范围,可得最大正整数n 的值.本题考查等比数列的通项公式及前n 项和,考查指数不等式的解法,是中档题.10.【答案】A【解析】解:根据题意,设CD 的中点为E ,|AD ⃗⃗⃗⃗⃗⃗ |=r , 则|AC ⃗⃗⃗⃗⃗ |=3r ,|DC ⃗⃗⃗⃗⃗ |=2r ,CD 的中点为E ,则BD ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =2BE ⃗⃗⃗⃗⃗ ,即有|BD ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ |=2|BE ⃗⃗⃗⃗⃗ |, 又由|BD⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ |=|CD ⃗⃗⃗⃗⃗ |,则|BE ⃗⃗⃗⃗⃗ |=r , 则点B 在以E 为圆心,CD 为直径即半径为r 的圆上, 连接AB ,当AB 与圆E 相切时,∠A 最大,当AB 与圆相切时,BE =r ,AE =2r ,∠EBA =π2, 则A =π6,故内角A 的最大值为π6, 故选:A .根据题意,设CD 的中点为E ,|AD ⃗⃗⃗⃗⃗⃗ |=r ,由向量加法的性质可得BD ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =2BE ⃗⃗⃗⃗⃗ ,即有|BD⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ |=2|BE ⃗⃗⃗⃗⃗ |,进而可得|BE ⃗⃗⃗⃗⃗ |=r ,则点B 在以E 为圆心,CD 为直径即半径为r 的圆上,分析可得当AB 与圆相切时,∠A 最大,由直线与圆的位置关系分析可得答案.本题考查平面向量数量积的性质以及向量加法的性质,关键是分析B 的轨迹,属于中档题.11.【答案】C【解析】解:函数f(x)={−2x 2+4x,0≤x ≤2,12f(x +2),x <0,, 作出f(x)在[−2,1]的函数图象, 当x ∈[−2,0)时,f(x)=−x 2−2x . 那么g(x)在区间[−2,1]上有3个不同的零点,转化为f(x)图象与y =kx −k 的交点问题即可求解.∵y =kx −k =k(x −1),直线恒过(1,0), ∴−x 2−2x =kx −k 只有2个交点, 此时△=(2+k)2+4k =0, 解得k =2√3−4,要使f(x)图象与y =kx −k 有3个交点, 可知−4+2√3<k <0. 故选:C .作出f(x)在[−2,1]的函数图象,根据g(x)在区间[−2,1]上有3个不同的零点,转化为f(x)图象与y=kx−k的交点问题即可求解.本题考查了方程的根与函数的图象的应用,属于中档题.12.【答案】D【解析】解:如图,∵顶点B在以AC为直径的圆上,∴∠ABC=90°,∵AD=DC,∴D为△ABC的外心,又PD⊥平面ABC,且AD=DC,∴PA=PC=2,∵PD⊂平面PAC,可得平面PAC⊥平面ABC,则△PAC的外心即为三棱锥P−ABC外接球的球心.在△PAC中,由余弦定理可得,cos∠APC=22+22−(2√3)22×2×2=−12,∴∠APC=120°,sin∠APC=√32,设△PAC外接圆的半径为R,则2R=ACsin∠APC=2√3√32=4,得R=2.∴其外接球的表面积为S=4π×22=16π.故选:D.由已知可得△ABC为直角三角形,得到AC的中点D为△ABC外接圆圆心,再由PD⊥底面ABC,可得△PAC的外心即为三棱锥P−ABC外接球的球心,求解三角形得到三棱锥外接球的半径,代入球的表面积公式得答案.本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,考查运算求解能力,是中档题.13.【答案】B【解析】解:∵A={x∈R|−1≤x≤3},B={x∈N|2x<4}={x∈N|x<2}={0,1},∴A∩B={x∈R|−1≤x≤3}∩{0,1}={0,1},∴集合A∩B中元素的个数为2.故选:B.求解指数不等式化简B,再由交集运算求得A∩B,得到集合A∩B中元素的个数.本题考查指数不等式的解法,交集及其运算,是基础题.14.【答案】B【解析】解:由z(1−i)=2i,得z=2i1−i =2i(1+i)(1−i)(1+i)=2i+2i212+12=−2+2i2=−1+i,∴z−=−1−i,则z−的虚部为−1.故选:B.把已知等式变形,利用复数代数形式的乘除运算化简,再由复数的基本概念得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.15.【答案】D【解析】解:(√x2√x)6的二项展开式的通项公式为T r+1=C6r⋅(−1)r⋅2r−6⋅x3−r,令3−r=2,求得r=1,故x2的系数为−C61⋅2−5=−316.故选:D.求出二项展开式的通项公式,令x的指数为2,求出r的值,即可得解.本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.16.【答案】C【解析】解:由平面向量a⃗=(√3,−1),可得|a⃗|=√3+1=2,由(a⃗−2b⃗ )⊥a⃗,可得a⃗⋅(a⃗−2b⃗ )=0,即a⃗2=2a⃗⋅b⃗ =4,则a⃗⋅b⃗ =2,|a⃗−b⃗ |=√(a⃗−b⃗ )2=√a⃗2−2a⃗⋅b⃗ +b⃗ 2=√4−2×2+16=4,故选:C.由向量的模的定义和向量垂直的性质,求得a⃗⋅b⃗ ,再由向量的平方即为模的平方,化简计算可得所求值.本题考查向量数量积的性质和运用,考查方程思想和运算能力,属于中档题.17.【答案】C【解析】解:∵AB 是⊙O 的直径,PA 垂直于⊙O 所在平面,C 是圆周上不同于A ,B 两点的任意一点, 且AB =2,PA =BC =√3,∴AC ⊥BC ,AC =√AB 2−BC 2=√4−3=1, 以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系, P(0,0,√3),B(√3,1,0),C(0,1,0), PB ⃗⃗⃗⃗⃗ =(√3,1,−√3),PC ⃗⃗⃗⃗⃗ =(0,1,−√3), 设平面PBC 的法向量n⃗ =(x,y ,z), 则{n ⃗ ⋅PB ⃗⃗⃗⃗⃗ =√3x +y −√3z =0n ⃗ ⋅PC ⃗⃗⃗⃗⃗ =y −√3z =0,取z =1,得n ⃗ =(0,√3,1),平面ABC 的法向量m⃗⃗⃗ =(0,0,1), 设二面角A −BC −P 的平面角为θ, 则cosθ=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m⃗⃗⃗ |⋅|n ⃗⃗ |=12,∴θ=60°, ∴二面角A −BC −P 的大小为60°, 故选:C .以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出二面角A −BC −P 的大小.本题考查二面角的大小的求法,涉及到空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想,是中档题.18.【答案】C【解析】解:根据题意,f(x)=√32sinωx +sin 2ωx 2−12=√32sinωx −12cosωx =sin(ωx −π6),由此依次分析选项:对于A,若f(x)在(0,π)内单调,则有ωπ−π6≤π2,解可得ω≤23,A正确,对于B,当x∈(0,π)时,则ωx−π6∈(−π6,ωπ−π6)若f(x)在(0,π)上无零点,则ωπ−π6≤0,解可得0<ω≤16,B正确,对于C,若y=|f(x)|的最小正周期为π,则πω=π,解可得ω=1,C错误,对于D,若ω=2,则f(x)=sin(2x−π6),当x=−2π3时,2x−π6=−3π2,则直线x=−2π3是函数f(x)图象的一条对称轴,D正确,故选:C.根据题意,将函数的解析式变形可得f(x)=sin(ωx−π6),据此依次分析选项,综合可得答案.本题考查三角函数的性质,涉及三角函数的恒等变形,属于中档题.19.【答案】B【解析】解:若数列{a n}为常数列,则设a n=a,所以S n=na,于是S1=a1=a,S n+1−S n=a,所以{S n}为等差数列,所以“数列{S n}为等差数列”是“数列{a n}为常数列”的必要条件;若数列{S n}为等差数列,设公差为d,则S n=S1+(n−1)d,于是a1=S1,a n+1=S n+1−S n=(S1+nd)−(S1+(n−1)d)=d,当a1=S1≠d时,数列{a n}不是常数列,所以,“数列{S n}为等差数列”不是“数列{a n}为常数列”的充分条件;综上所述,“数列{S n}为等差数列”是“数列{a n}为常数列”的必要不充分条件.故选:B.求出数列的通项公式,利用等差数列的定义及充分条件和必要条件概念进行判断即可.本题主要考查充分条件和必要条件的基本概念,考查了等差数列的基本性质,属于基础题.20.【答案】C【解析】解:由题意可知F(0,p 2),准线方程为y =−p2, 设点P(m.n),|PF|=n +p2=174,又线段PF 为直径的圆过点(1,0),∴圆的半径为178,圆心坐标为(m 2,178),√(m 2−1)2+(178−0)2=178,∴m =2,即P(2,174−p 2)代入抛物线方程得,4=2p ×(174−p2),解得p =8或12, 故选:C .设出点P 坐标,根据抛物线定义和性质,可将点P 坐标代入即可解出. 本题考查抛物线的性质,圆的方程,属于基础题.21.【答案】A【解析】解:由正弦定理及√7bcosA =3asinB ,得√7sinBcosA =3sinAsinB , 因为sinB >0,所以√7cosA =3sinA ,A 为锐角, 结合sin 2A +cos 2A =1, 所以sinA =√74,cosA =34,由余弦定理得,cosA =34=b 2+c 2−122bc,整理得,24=2b 2+2c 2−3bc ≥4bc −3bc =bc ,当且仅当b =c 时取等号,即bc ≤24, 则△ABC 面积S =12bcsinA ≤12×24×√74=3√7,故选:A .由已知结合正弦定理及同角基本关系可求sin A ,cos A ,然后结合余弦定理及基本不等式可求bc 的范围,进而可求.本题主要考查了正弦定理,余弦定理,三角形的面积公式,基本不等式在三角形求解中的应用,属于中档题.22.【答案】B【解析】解:①:因为f(x +2π)=sin[cos(x +2π)]+cos[sin(x +2π)]=sin[cosx]+sin[cosx]=f(x),所以函数的一个周期为2π,故①正确;②:因为f(π4)=sin[cosπ4]+cos[sinπ4]=sin0+cos0=1,f(−π4)=sin[cos(−π4)]+cos[sin(−π4)]=sin0+cos(−1)=cos1,所以f(π4)≠f(−π4),故函数不是偶函数;故②错误;③因为f(0)=sin[cos0]+cos[sin0]=sin1+1>√22+1>√2,故③正确;④:当x∈(0,π2)时,0<sinx<1,0<cosx<1,所以[sinx]=[cosx]=0,所以f(x)=sin[cosx]+cos[sinx]=sin0+cos0=1,即当x∈(0,π2)时,f(x)=1为定值,故④错误;故选:B.①,利用周期定义判断;②,利用f(π4)和f(−π4)的值判断;③利用f(0)的值判断;④判断函数f(x)在(0,π2)的函数值判断即可.本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.23.【答案】16π9【解析】解:根据几何体的三视图转换为直观图为:该几何体为底面半径为2,高为4的13圆锥体;故V=13×13×π×22×4=16π9.故答案为:16π9.首先把三视图转换为几何体的直观图,进一步求出几何体的体积.本题考查的知识要点:三视图和几何体的直观图之间的转换,几何体的体积公式,主要考查学生的运算能力和数学思维能力,属于基础题.24.【答案】421【解析】解:在闭区间[10,30]中,任取一个整数,基本事件总数n=21,此整数是“通体质数”包含的基本事件有:11,13,17,19,共4个,∴此整数是“通体质数”的概率为P=421.故答案为:421.先求出基本事件总数n=21,再用列法求出此整数是“通体质数”包含的基本事件有4个,由此能求出此整数是“通体质数”的概率.本题考查概率的运算,考查古典概型、列举法等基础知识,考查运算求解能力、应用意识等核心素养,是基础题.25.【答案】√132【解析】解:设双曲线的右焦点为F2,如图,则|MO|=12|PF2|,在Rt△OF1T中,|OF1|=c,|OT|=a,∴|TF1|=b,|OM|−|MT|=12|PF2|−(12|PF1|−b)=b−a=32−a=12,∴a=1,∴c=√a2+b2=√1+94=√132,故答案为:√132.根据双曲线的性质,定义,设出双曲线右焦点为F2,即可解出a的值,可以直接求出离心率.本题考查了双曲线的定义,性质,学生的运算能力,属于中档题.26.【答案】0【解析】解:f(x)=sin2x +(12sin2x +√32cos2x)+a=32sin2x +√32cos2x +a =√3(√32sin2x +12cos2x)+a=√3sin(2x +π6)+a当x ∈[0,π4]时,2x +π6∈[π6,2π3],∴当x ∈[0,π4]时,f(x)∈[a +√32,a +√3],∵对于任意x 1,x 2,x 3∈[0,π4],f(x 1)+f(x 2 )≥f(x 3) 恒成立, ∴2f(x)min ≥f(x)max , ∴2(a +√32)≥a +√3,∴a ≥0 ①,∵f(π6)=√3+a ≤√3−a 2,∴a 2+a ≤0,∴−1≤a ≤0 ②, 由①②可得a =0. 故答案为:a =0.首先利用三角函数的关系式的变换,把函数的关系式变形成正弦型函数,进一步利用函数的最值的应用得出结论.本题考查的知识要点:三角函数的关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和数学思维能力,属于基础题.27.【答案】36【解析】解:设老年职工有x 人,则中年职工有2x 人,所以x +2x +160=430, x =90,所以老年职工有90人,设该样本中的老年职工人数为y 人,则y90=64160, 解得y =36,所以该样本中的老年职工人数为36人.设老年职工有x 人,列方程求出x 的值,再设该样本中的老年职工人数为y 人,列方程求出y 的值即可.本题考查了分层抽样方法的应用问题,也考查了运算求解能力,是基础题.28.【答案】189【解析】解:设等比数列{a n}的公比为q,∵a2⋅a4=16=a32,a n>0,∴a3=4,=q3=8,解得:q=2,又∵a6=32,∴a6a3∴a n=a6q n−6=2n−1,∴b n=2n−1+2n=3×2n−1,=189,∴S6=3(1−26)1−2故答案为:189.先由题设求得a3,进而求得公比q与a n,再求得b n,然后利用等比数列的前n项和公式求得结果.本题主要考查等比数列的性质及基本量的计算,属于基础题.29.【答案】9 11【解析】解:由题意知,F(3,0),①|AP|+|PF|≥|AF|=√(0−3)2+(6√2−0)2=9,当且仅当A,P,F按此顺序三点共线时,等号成立,所以|AP|+|PF|的最小值为9;②设双曲线的左焦点为F′(−3,0),由双曲线的定义知,|PF|−|PF′|=2a=2,所以|AP|+|PF|=|AP|+|PF′|+2≥|AF′|+2=√(0+3)2+(6√2−0)2+2=11,当且仅当A,P,F′按此顺序三点共线时,等号成立,所以|AP|+|PF|的最小值为11.故答案为:9;11.由题意知,F(3,0),①当A,P,F按此顺序三点共线时,|AP|+|PF|取得最小值;②设双曲线的左焦点为F′,由双曲线的定义可知,|PF|=|PF′|+2,当A,P,F′按此顺序三点共线时,|AP|+|PF|取得最小值.本题考查双曲线的定义与几何性质,考查数形结合思想、逻辑推理能力和运算能力,属于基础题.30.【答案】(−e−3,0)【解析】解:原问题等价于函数g(x)={2x−1−1|lnx|−2与函数y=−kx存在4个不同的交点.绘制函数g(x)的图像如图所示,很明显,当k≥0时,不满足题意,当k<0时,两函数在区间(−∞,0)和区间(0,1)上必然各存在一个交点,则函数g(x)与函数y=−kx在区间(1,+∞)上存在两个交点,临界条件为函数y=−kx与函数ℎ(x)=lnx−2相切,考查函数ℎ(x)=lnx−2过坐标原点的切线:由函数的解析式可得:ℎ′(x)=1x,设切点坐标为(x0,lnx0−2),则切线方程为:y−(lnx0−2)=1x(x−x0),切线过坐标原点,则:0−(lnx0−2)=1x(0−x0),解得:x0=e3,此时切线的斜率为:−k=ℎ′(x0)=e−3,据此可得:实数k的取值范围是(−e−3,0).故答案为:(−e−3,0).首先将问题进行等价转化,然后结合函数的图像即可确定实数k的取值范围.本题主要考查由函数零点个数求参数的方法,等价转化的数学思想,数形结合的数学思想等知识,属于中等题.31.【答案】95%【解析】解:不妨设共有选票100张,投1票的x,投2票的y,投3票的z,则根据题意得{x+2y+3z=84+75+46 x+y+z=100x,y,z∈N,整理可得z−x=5,即z=x+5,由题意,若要投票有效率越高,则z需越小,故当x=0时,z最小为5,此时y=95,此时投票的有效率为95÷100=95%,故答案为:95%.假设总票数为100张,投1票的x,投2票的y,投3票的z,则可得{x+2y+3z=84+75+46x+y+z=100x,y,z∈N,整理后得到当x=0时z取最小值5,进而可计算出投票的有效率.本题考查了函数模型的选择,考查简单的逻辑推理,属于中档题.32.【答案】解:(1)由数列{a n}是递增的等差数列,设公差为d,d>0,由a1=12,且a4是a2与a8的等比中项,可得a42=a2a8,即(12+3d)2=(12+d)(12+7d),解得d=12(0舍去),则a n=12+12(n−1)=12n;(2)1a n a n+1=112n⋅12(n+1)=4(1n−1n+1),则数列{1a n a n+1}的前n项和为4(1−12+12−13+⋯+1n−1n+1)=4(1−1n+1)=4nn+1.【解析】(1)设公差为d ,d >0,由等比数列的中项性质和等差数列的通项公式,解方程可得公差,进而得到所求通项公式; (2)求得1an a n+1=4(1n−1n+1),再由数列的裂项相消求和,计算可得所求和.本题考查等差数列的通项公式和等比数列的中项性质,以及数列的裂项相消求和,考查方程思想和运算能力,属于中档题.33.【答案】证明:(1)∵DA ⊥平面ABC ,BC ⊂平面ABC , ∴DA ⊥BC ,∵DA =AC =1,O 是AB 的中点,△ACO 为等边三角形, ∴OC =12AB , ∴BC ⊥AC , ∵DA ∩AC =A , ∴BC ⊥平面ACD , ∵BC ⊂平面BCE , ∴平面ACD ⊥平面BCE .解:(2)取BC 的中点R ,连接OR ,PR , 在△ACB ,△BCE 中,OR ,PR 分别为中位线, ∴OR//AC ,PR//BE , ∵AD//BE , ∴PQ//AD ,∵AC ⊂平面ACD ,PR ⊄平面ACD , ∴PR//平面ACD , 同理OR//平面ACD ,∵PR ∩OR =R ,PR ⊂平面OPR ,OR ⊂平面OPR , ∴平面ACD//平面OPR , ∵BC ⊥AC ,∴平面ACD 与平面OPR 的距离CR =12BC =√32,∵S △ACD =12×1×1=12,。
2020-2021学年北京市东城区汇文中学高三(下)开学数学试卷(附解析)
h
t
2;
2
h意 t
;
2
t 2; 䇅 t 2.
请证明使得 意 存在的这三个条件仅有一组,写出这组条件并求出 b 的值.
17. 如图,在四面体 ABCD 中,E,F,M 分别是线段 AD,BD,
AC 的中点, t 意 t , 意 t 2, t t 2.
Ⅰ 证明: thh平面 BCD;
Ⅱ 证明: h 平面 BCD;
7 7t
7t 8
m
利润 元 4t
9t
8 8t
8t
4t
2t
1ሻ t൏
试分析生产该产品能否盈利?若不能,请说明理由;若能,试确定 t 为何值时,每 件产品的平均利润达到最大 参考数值:了h2 .7,了ht 1. .
第 页,共 21页
1 . 已知函数
t
1 2
2
了h
1 2
.
Ⅰ 当 t 2 时,求曲线 t 在点 1 1 处的切线方程;
Ⅲ 若直线 EC 与平面 ABC 所成的角等于 ,求二面角
意
的余弦值.
第 页,共 21页
18. 某企业发明了一种新产品,其质量指标值为 表:
7 1 ሻ ,其质量指标等级如
质量指标
7 7t
7t 8
值m
8 8t
8t
1ሻ
质量指标 等级
良好
优秀
良好
合格
废品
为了解该产品的经济效益并及时调整生产线,该企业先进行试产生.现从试生产的 产品中随机抽取了 1000 件,将其质量指标值 m 的数据作为样本,绘制如下频率分 布直方图:
Ⅰ 若将频率作为概率,从该产品中随机抽取 2 件产品,求抽出的产品中至少有 1 件不是废品的概率;
北京市东城区2021届新高考数学仿真第三次备考试题含解析
北京市东城区2021届新高考数学仿真第三次备考试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知四棱锥S ABCD -的底面为矩形,SA ⊥底面ABCD ,点E 在线段BC 上,以AD 为直径的圆过点E .若3SA ==,则SED ∆的面积的最小值为( )A .9B .7C .92D .72【答案】C 【解析】 【分析】根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到,BE EC 之间的等量关系,再用,BE EC 表示出SED 的面积,利用均值不等式即可容易求得.【详解】设BE x =,EC y =,则BC AD x y ==+.因为SA ⊥平面ABCD ,ED ⊂平面ABCD ,所以SA ED ⊥. 又AE ED ⊥,SA AE A ⋂=,所以ED ⊥平面SAE ,则ED SE ⊥.易知AE =ED =在Rt AED ∆中,222AE ED AD +=, 即22233()x y x y +++=+,化简得3xy =.在Rt SED ∆中,SE =,ED ==.所以12SED S SE ED ∆=⋅=因为22108336x x +≥=,当且仅当x =,y =92SED S ∆≥=. 故选:C. 【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.2.若复数z 满足()134i z i +=+,则z 对应的点位于复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】利用复数模的计算、复数的除法化简复数z ,再根据复数的几何意义,即可得答案; 【详解】()55(1)5513451222i i z iz i i -+=+=⇒===-+, ∴z 对应的点55(,)22-,∴z 对应的点位于复平面的第四象限.故选:D. 【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题. 3.设函数()()21ln 11f x x x=+-+,则使得()()1f x f >成立的x 的取值范围是( ). A .()1,+∞ B .()(),11,-∞-+∞ C .()1,1- D .()()1,00,1-【答案】B 【解析】 【分析】由奇偶性定义可判断出()f x 为偶函数,由单调性的性质可知()f x 在[)0,+∞上单调递增,由此知()f x 在(],0-∞上单调递减,从而将所求不等式化为1x >,解绝对值不等式求得结果. 【详解】由题意知:()f x 定义域为R ,()()()()()2211ln 1ln 111f x x x f x x x -=+--=+-=++-,()f x ∴为偶函数, 当0x ≥时,()()21ln 11f x x x=+-+, ()ln 1y x =+在[)0,+∞上单调递增,211y x =+在[)0,+∞上单调递减, ()f x ∴在[)0,+∞上单调递增,则()f x 在(],0-∞上单调递减,由()()1f x f >得:1x >,解得:1x <-或1x >,x 的取值范围为()(),11,-∞-+∞.故选:B . 【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变量的大小关系,进而化简不等式.4.正方形ABCD 的边长为2,E 是正方形内部(不包括正方形的边)一点,且2AE AC ⋅=,则()2AE AC +的最小值为( ) A .232B .12C .252D .13【答案】C 【解析】 【分析】分别以直线AB 为x 轴,直线AD 为y 轴建立平面直角坐标系,设(,)E x y ,根据2AE AC ⋅=,可求1x y +=,而222()(2)(2)AEAC xy,化简求解.【详解】解:建立以A 为原点,以直线AB 为x 轴,直线AD 为y 轴的平面直角坐标系.设(,)E x y ,(0,2)x ∈,(0,2)y ∈,则(,)AE x y =,(2,2)AC =,由2AE AC ⋅=,即222x y +=,得1x y +=.所以222()(2)(2)AEAC xy 224()8x y x y22213x x =21252()22x,所以当12x =时,2()AEAC 的最小值为252. 故选:C. 【点睛】本题考查向量的数量积的坐标表示,属于基础题.5.已知定义在R 上的函数||()21x m f x -=-(m 为实数)为偶函数,记()0.5log 3a f =,()2log 5b f =,(2)c f m =+则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B 【解析】 【分析】根据f (x )为偶函数便可求出m =0,从而f (x )=2x ﹣1,根据此函数的奇偶性与单调性即可作出判断. 【详解】解:∵f (x )为偶函数; ∴f (﹣x )=f (x ); ∴2x m --﹣1=2x m -﹣1; ∴|﹣x ﹣m|=|x ﹣m|; (﹣x ﹣m )2=(x ﹣m )2; ∴mx =0; ∴m =0;∴f (x )=2x ﹣1;∴f (x )在[0,+∞)上单调递增,并且a =f (|0.5log 3|)=f (2log 3), b =f (2log 5),c =f (2); ∵0<2log 3<2<2log 5; ∴a<c<b . 故选B . 【点睛】本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小. 6.已知单位向量a ,b 的夹角为34π,若向量2m a =,4n a b λ=-,且m n ⊥,则n =( ) A .2 B .2C .4D .6【答案】C 【解析】 【分析】根据m n ⊥列方程,由此求得λ的值,进而求得n . 【详解】由于m n ⊥,所以0m n ⋅=,即()23248282cos804a ab a a b πλλλ⋅-=-⋅=-⋅==,解得λ==-所以442n a b =+ 所以()2223442163223248322cos483244a ba ab b n π+=+⋅+=-==+=. 故选:C 【点睛】本小题主要考查向量垂直的表示,考查向量数量积的运算,考查向量模的求法,属于基础题.7.如图,在棱长为4的正方体1111ABCD A B C D -中,E ,F ,G 分别为棱 AB ,BC ,1CC 的中点,M 为棱AD 的中点,设P ,Q 为底面ABCD 内的两个动点,满足1//D P 平面EFG ,117DQ =,则PM PQ +的最小值为( )A .321-B .322-C .251-D .252-【答案】C 【解析】 【分析】把截面EFG 画完整,可得P 在AC 上,由117DQ =知Q 在以D 为圆心1为半径的四分之一圆上,利用对称性可得PM PQ +的最小值. 【详解】如图,分别取11111,,C D D A A A 的中点,,H I J ,连接,,,GH HI IJ JE ,易证,,,,,E F G H I J 共面,即平面EFG 为截面EFGHIJ ,连接11,,AD D C AC ,由中位线定理可得//AC EF ,AC ⊄平面EFG ,EF ⊂平面EFG ,则//AC 平面EFG ,同理可得1//AD 平面EFG ,由1AC AD A =可得平面1AD C //平面EFG ,又1//D P 平面EFG ,P 在平面ABCD 上,∴P AC ∈. 正方体中1DD ⊥平面ABCD ,从而有1DD DQ ⊥,∴1DQ ==,∴Q 在以D 为圆心1为半径的四分之一圆(圆在正方形ABCD 内的部分)上, 显然M 关于直线AC 的对称点为E ,11PM PQ PE PQ PE PD DQ ED DQ +=+≥+-≥-==,当且仅当,,,E P Q D 共线时取等号,∴所求最小值为1. 故选:C . 【点睛】本题考查空间距离的最小值问题,解题时作出正方体的完整截面求出P 点轨迹是第一个难点,第二个难点是求出Q 点轨迹,第三个难点是利用对称性及圆的性质求得最小值.8.已知双曲线C :2222x y a b-=1(a>0,b>0)的右焦点为F ,过原点O 作斜率为43的直线交C 的右支于点A ,若|OA|=|OF|,则双曲线的离心率为( ) AB.C .2D+1【答案】B 【解析】 【分析】以O 为圆心,以OF 为半径的圆的方程为222x y c +=,联立22222221x y c x y ab ⎧+=⎪⎨-=⎪⎩,可求出点2,b A c c ⎛⎫ ⎪ ⎪⎝⎭243b =,整理计算可得离心率. 【详解】解:以O 为圆心,以OF 为半径的圆的方程为222x y c +=,联立22222221x y c x y a b ⎧+=⎪⎨-=⎪⎩,取第一象限的解得2x b y c ⎧=⎪⎪⎨⎪=⎪⎩,即2b A c ⎫⎪⎪⎝⎭243b =, 整理得()()22229550c aca --=,则22519c a =<(舍去),225c a=,ce a∴==. 故选:B. 【点睛】本题考查双曲线离心率的求解,考查学生的计算能力,是中档题. 9.命题“(0,1),ln x x e x -∀∈>”的否定是( ) A .(0,1),ln x x e x -∀∈≤ B .000(0,1),ln x x e x -∃∈> C .000(0,1),ln x x e x -∃∈<D .000(0,1),ln x x ex -∃∈≤【答案】D 【解析】 【分析】根据全称命题的否定是特称命题,对命题进行改写即可. 【详解】全称命题的否定是特称命题,所以命题“(0,1)x ∀∈,ln x e x ->”的否定是:0(0,1)x ∃∈,00ln x e x -≤.故选D . 【点睛】本题考查全称命题的否定,难度容易.10.若1nx ⎫⎪⎭的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为( ) A .85 B .84C .57D .56【答案】A 【解析】 【分析】先求n ,再确定展开式中的有理项,最后求系数之和. 【详解】解:31nx x ⎛⎫+ ⎪⎝⎭的展开式中二项式系数和为256 故2256n =,8n =88433188r r r rr r T C xxC x---+==要求展开式中的有理项,则258r =,,则二项式展开式中有理项系数之和为:258888++=85C C C 故选:A 【点睛】考查二项式的二项式系数及展开式中有理项系数的确定,基础题. 11.执行如图所示的程序框图,则输出的S 的值是( )A .8B .32C .64D .128【答案】C 【解析】 【分析】根据给定的程序框图,逐次计算,结合判断条件,即可求解. 【详解】由题意,执行上述程序框图,可得第1次循环,满足判断条件,1,1S k ==; 第2次循环,满足判断条件,2,2Sk;第3次循环,满足判断条件,8,3S k ==; 第4次循环,满足判断条件,64,4S k ==; 不满足判断条件,输出64S =. 故选:C. 【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,结合判断条件求解是解答的关键,着重考查了推理与运算能力,属于基础题.12.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( ) A .2,3⎛⎫-∞- ⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭【答案】B 【解析】 【分析】由导数确定函数的单调性,利用函数单调性解不等式即可. 【详解】函数211()x f x x x x -==-,可得21()1f x x '=+,0()x ∈+∞,时,()0f x '>,()f x 单调递增,∵12100x x e e -->>,, 故不等式121(())xx f ef e >﹣﹣的解集等价于不等式121x x e e >﹣﹣的解集. 121x x ->-.∴23x <. 故选:B . 【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。
北京市汇文中学2023届高三下学期校模数学试题(含答案解析)
北京市汇文中学2023届高三下学期校模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合()(){|210}A x x x =∈+-<Z ,{}2,1B =--,那么A B ⋃=()A .{}2,1,0,1--B .{}2,1,0--C .{}2,1--D .{}1-2.如果0a b >>,那么下列不等式一定成立的是()A .a b<B .11a b>C .1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .ln ln a b>3.如果平面向量(2,0)a =,(1,1)b = ,那么下列结论中正确的是().A .||a b|=|B .a b ⋅= C .()a b b-⊥v v vD .a b4.已知直线m ,n 和平面α,如果n ⊂α,那么“m ⊥n”是“m ⊥α”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.在等比数列{}n a 中,13a =,1239a a a ++=,则456a a a ++等于()A .9B .72C .9或72D .9或-726.下列函数中,定义域为R 的奇函数是A .21y x =+B .tan y x=C .2x y =D .sin y x x=+7.已知双曲线2221(0)y x b b-=>的一个焦点是(2,0),则其渐近线的方程为()A .0x =B 0y ±=C .30x y ±=D .30x y ±=8.在空间直角坐标系O xyz -中,正四面体-P ABC 的顶点A 、B 分别在x 轴,y 轴上移动.若该正四面体的棱长是2,则||OP 的取值范围是().A .1]-B .[1,3]C .1,2]-D .1]9.如果函数()sin (0)f x x x ωωω=>的两个相邻零点间的距离为2,那么()()()()1239f f f f ++++L 的值为().A .1B .1-C D .10.如图,已知正方体1111ABCD A B C D -的棱长为1,E 、F 分别是棱AD 、11B C 上的动点,设AE x =,1B F y =.若棱1DD 与平面BEF 有公共点,则x y +的取值范围是()A .[]1,2B .13,22⎡⎤⎢⎥⎣⎦C .3,22⎡⎤⎢⎥⎣⎦D .[]0,1二、填空题11.复数1i1i+=-____.12.在261()x x-的展开式中,常数项是__________(用数字作答).13.若lg 2lg21a -=,则=a ______;14.在ABC 中,角,,A B C 的对边分别为,,a b c ,若3c =,π3C =,sin 2sin B A =,则=a __________.三、双空题15.设函数()3,log ,,x a f x x x a ≤≤=>⎪⎩其中0a >.①若3a =,则()9f f =⎡⎤⎣⎦______;②若函数()2y f x =-有两个零点,则a 的取值范围是______.四、解答题16.如图,在四边形ABCD 中,//AB CD,AB =,CD =cos A =,1cos 3ADB ∠=.(1)求cos BDC ∠;(2)求BC 的长.17.如图,在四棱锥P ABCD -中,O 是AD 边的中点,PO ⊥底面,1ABCD PO =.在底面ABCD 中,//,,1,2BC AD CD AD BC CD AD ⊥===.(1)求证://AB 平面POC ;(2)求二面角B AP D --的余弦值.18.自由购是通过自助结算方式购物的一种形式.某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:20以下[)20,30[)30,40[)40,50[)50,60[]60,7070以上使用人数312176420未使用人数314363(Ⅰ)现随机抽取1名顾客,试估计该顾客年龄在[)30,50且未使用自由购的概率;(Ⅱ)从被抽取的年龄在[]50,70使用自由购的顾客中,随机抽取3人进一步了解情况,用X 表示这3人中年龄在[)50,60的人数,求随机变量X 的分布列及数学期望;(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.19.已知函数2()()x kf x x k e =-.(Ⅰ)求()f x 的单调区间;(Ⅱ)若对于任意的(0,)x ∈+∞,都有()f x ≤1e,求k 的取值范围.20.已知椭圆:2222:1(0)x y E a b a b+=>>的一个顶点为(0,1)A,焦距为(1)求椭圆E 的方程;(2)过点(2,1)P -作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当||2MN =时,求k 的值.21.设数列()12:,,,2n A a a a n ≥ .如果{}()1,2,,1,2,,i a n i n ∈= ,且当i j ≠时,()1,i j a a i j n ≠≤≤,则称数列A 具有性质P .对于具有性质P 的数列A ,定义数列()121:,,,n T A t t t - ,其中()111,,1,2,,10,k k k k k a a t k n a a ++⎧==-⎨⎩ <>.(1)对():0,1,1T A ,写出所有具有性质P 的数列A ;(2)对数列()121:,,,2n E e e e n -≥ ,其中{}()0,11,2,,1i e i n ∈=- ,证明:存在具有性质P 的数列A ,使得()T A 与E 为同一个数列;(3)对具有性质P 的数列A ,若()115n a a n -=≥且数列()T A 满足()0,,1,2,,11,i i t i n i ⎧==-⎨⎩为奇数为偶数,证明:这样的数列A 有偶数个.参考答案:1.B【分析】求解一元二次不等式从而求解集合A ,再根据并集的定义求解A B ⋃.【详解】由()(){|210}A x x x =∈+-<Z ,得{}1,0A =-,结合{}2,1B =--,可知{}2,1,0A B =-- .故选:B.2.D【分析】根据不等式的性质判断A 、B ,再根据指数函数的性质判断C ,根据对数函数的性质判断D ;【详解】解:因为0a b >>,所以0a b >>,故A 错误;因为0a b >>,所以11a b<,故B 错误;因为0a b >>,且12xy ⎛⎫= ⎪⎝⎭在定义域上单调递减,所以1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 错误;因为0a b >>,且ln y x =在定义域()0,∞+上单调递增,所以ln ln a b >,故D 正确;故选:D 3.C【详解】由平面向量(2,0)a = ,(1,1)b =知:在A 中,||2a = ,||b =r∴||||a b ≠,故A 错误;在B 中,2a b ⋅=,故B 错误;在C 中,(1,1)a b -=-,∴()110a b b -⋅=-=,∴()a b b -⊥,故C 正确;在D 中,∵2011≠,∴a 与b不平行,故D 错误.综上所述.故选C .4.B【详解】若m α⊥,则m n ⊥,即必要性成立,当m n ⊥时,m α⊥不一定成立,必须m 垂直平面α内的两条相交直线,即充分性不成立,故“m n ⊥”是“m α⊥”的必要不充分条件,故选:B .5.D【详解】设等比数列{}n a 的公比为q ,∵13a =,1239a a a ++=,∴23339q q ++=,解得1q =或2q =-,故()34561239a a a a a a q ++=++=或72-,故选:D.6.D【详解】定义域为R,所以舍去B,又21y x =+为偶函数,=2为非奇非偶函数,故选:D.7.B【分析】求出b 的值即得解.【详解】解:由题得21+4,b b =∴=,所以双曲线的渐近线方程为1y x =±=0y ±=.故选:B 8.A【分析】固定正四面体-P ABC 的位置,原点O 在以AB 为直径的球面上运动,由此根据球的性质可以得到答案.【详解】如图所示,若固定正四面体-P ABC 的位置,则原点O 在以AB 为直径的球面上运动,设AB 的中点为M ,则PM 所以原点O 到点P 的最近距离等于PM 减去球M 的半径,最大距离是PM 加上球M 的半径,11OP -≤≤,即||OP 的取值范围是1].故选:A .9.A【分析】利用辅助角公式化简函数()f x ,由已知求出ω,再结合函数式计算作答.【详解】依题意,π()2sin()3f x x ω=+,函数()f x 的周期4T =,而0ω>,则2ππ2T ω==,ππ()2sin(23f x x =+,5π11π(1)(3)2sin2sin 066f f +=+=,4π7π(2)(4)2sin 2sin 033f f +=+=,所以()()()()5π1239(1)2[(1)(2)(3)(4)](1)2sin 16f f f f f f f f f f ++++=++++===L .故选:A 10.A【分析】取特殊值1x y ==和0x =,1y =进行验证,结合排除法可得出结论.【详解】由题意,若1x y ==,则棱1DD 与平面BEF 交于点D ,符合题意,此时2x y +=;若1x =,0y =,则棱1DD 与平面BEF 交于线段1DD ,符合题意,此时1x y +=.排除B 、C 、D 选项.故选:A .【点睛】本题考查线面位置关系,考查特殊值法的运用,属于中档题.11.i【分析】利用复数的代数形式的四则运算法则求解.【详解】()()()21i 1i 2i i 1i 1i 1i 11++===--++.故答案为:i .12.15【分析】求出通项()36161 rr r r T C x -+=-,,令3662r r -==,由此求得展开式中常数项.【详解】在621x x ⎛⎫- ⎪⎝⎭的展开式中,通项()()26123166 11 r r r rr r r r T C x x C x (),---+=-=-令3662r r -==,.故展开式中常数项是()2261 15 C -=,,故答案为15.【点睛】本题考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.13.40【解析】利用对数的运算公式log log na a n M M =,log log log ()a a a M N MN +=,直接求值即可.【详解】lg 2lg 21a -=Q lg 2lg 21lg 4lg10lg 40a ∴=+=+=40a ∴=故答案为:4014【分析】由正弦定理得到2b a =,再由余弦定理求出a 的值.【详解】由正弦定理得:2b a =,再有余弦定理得:22222225591cos 22242a b c a c a C ab a a a +---====⨯⋅,解得:a故答案为:15.[)4,9【解析】①代值计算即可;②分别画出()y f x =与y =2的图象,函数()2y f x =-有两个零点,结合图象可得答案.【详解】解:①当3a =时,()33,log ,3,x f x x x ≤≤=>⎪⎩则()39log 92f ==,∴()()92f f f ⎡⎤⎣⎦=②分别画出()y f x =与y =2的图象,如图所示,函数()2y f x =-有两个零点,结合图象可得4≤a <9,故a 的取值范围是[)4,9.;[)4,9.【点睛】本题主要考查函数零点个数的判断,根据函数与方程之间的关系转化为两个函数的交点个数问题是解决本题的关键.注意要利用数形结合.16.(1(2.【分析】(1)计算出sin A 、sin ADB ∠,利用两角和的余弦公式可求得cos cos BDC ABD ∠=∠的值;(2)在ABD △中,利用正弦定理可求出BD 的长,然后在BCD △中利用余弦定理可求得BC 的长.【详解】(1)因为cos 3A =,1cos 3ADB ∠=,则A 、ADB ∠均为锐角,所以,sin 3A ==,sin 3ADB ∠=,()()cos cos cos sin sin cos cos ABD A ADB A ADB A ADB A ADBπ∠=--∠=-+∠=∠-∠133==//AB CD Q ,则BDC ABD ∠=∠,因此,cos cos 9BDC ABD ∠=∠=;(2)在ABD △中,由正弦定理可得sin sin AB BDADB A=∠,可得sin 3sin 3AB ABD ADB==∠,在BCD △中,由余弦定理可得2222cos 962311BC BD CD BD CD BDC =+-⋅∠=+-⋅⋅,因此,BC =【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.17.(1)证明见解析;(2.【分析】(1)证明//AB OC 后可证线面平行;(2)以,,OB OD OP 为,,x y z 轴建立空间直角坐标系,用空间向量法求二面角.【详解】(1)由题意BC OA =,又//BC OA ,所以BCOA 是平行四边形,所以//AB OC ,又AB ⊄平面POC ,OC ⊂平面POC ,所以//AB 平面POC ;(2),//BC OD BC OD =,所以BCDO 是平行四边形,所以//OB DC ,OB CD =,而CD AD ⊥,所以OB AD ⊥,以,,OB OD OP 为,,x y z 轴建立空间直角坐标系,如图,则(1,0,0)B ,(0,1,0)A -,(0,0,1)P ,(1,1,0)AB = ,(0,1,1)= AP ,设平面ABP 的一个法向量为(,,)n x y z =,则00n AB x y n AP y z ⎧⋅=+=⎨⋅=+=⎩,取1x =,则1,1y z =-=,即(1,1,1)n =- ,易知平面APD 的一个法向量是(1,0,0)m = ,所以cos ,m n m n m n ⋅<>== ,所以二面角B AP D --.【点睛】方法点睛:本题考查证明线面平行,求二面角.求二面角的方法:(1)几何法(定义法):根据定义作出二面角的平面角并证明,然后解三角形得出结论;(2)空间向量法:建立空间直角坐标系,写出各点为坐标,求出二面角两个面的法向量,由两个平面法向量的夹角得二面角(它们相等或互补).18.17100;(Ⅱ)详见解析;(Ⅲ)2200【解析】(Ⅰ)随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的有3+14=17人,由概率公式即可得到所求值;(Ⅱ)X 所有的可能取值为1,2,3,求出相应的概率值,即可得到分布列与期望;(Ⅲ)随机抽取的100名顾客中,使用自由购的有44人,计算可得所求值.【详解】(Ⅰ)在随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的共有3+14=17人,所以,随机抽取1名顾客,估计该顾客年龄在[30,50)且未使用自由购的概率为17100P =.(Ⅱ)X 所有的可能取值为1,2,3,()124236C C 115C P X ===,()214236C C 325C P X ===,()304236C C 135C P X ===.所以X 的分布列为X123P 153515所以X 的数学期望为1311232555EX =⨯+⨯+⨯=.(Ⅲ)在随机抽取的100名顾客中,使用自由购的共有3121764244+++++=人,所以该超市当天至少应准备环保购物袋的个数估计为4450002200100⨯=.【点睛】本题考查统计表,随机变量X 的分布列及数学期望,以及古典概型,是一道综合题.19.(Ⅰ)当0k >时,()f x 的单调递增区间是(,)k -∞-和(,)k +∞:单调递减区间是(,)k k -,当0k <时,()f x 的单调递减区间是(,)k -∞和(,)k -+∞:单调递减区间是(,)k k -.(Ⅱ)102⎡⎫-⎪⎢⎣⎭,.【详解】221()()x k f x x k e k-'=,令()0,f x x k ='=±,当0k >时,(),()f x f x '的情况如下:x (,)k -∞-k -(,)k k -k (,)k +∞()f x '+0-0+()f x 214k e -0所以,()f x 的单调递增区间是(,)k -∞-和(,)k +∞:单调递减区间是(,)k k -,当0k <时,()f x 与()f x '的情况如下:x(,)k -∞k (,)k k -k -(,)k -+∞()f x '-0+0-()f x 0214k e -所以,()f x 的单调递减区间是(,)k -∞和(,)k -+∞:单调递减区间是(,)k k -.(Ⅱ)当0k >时,因为11(1)k k f k e e++=>,所以不会有1(0,),().x f x e ∀∈+∞≤当0k <时,由(Ⅰ)知()f x 在(0,)+∞上的最大值是24()k f k e-=所以1(0,),()x f x e ∀∈+∞≤等价于24()k f k e -=1e ≤,解得10.2k -≤<故当1(0,),()x f x e ∀∈+∞≤时,k 的取值范围是102⎡⎫-⎪⎢⎣⎭,.20.(1)2214x y +=(2)4k =-【分析】(1)依题意可得22212b c c a b =⎧⎪=⎨⎪=-⎩,即可求出a ,从而求出椭圆方程;(2)首先表示出直线方程,设()11,B x y 、()22,C x y ,联立直线与椭圆方程,消元列出韦达定理,由直线AB 、AC 的方程,表示出M x 、N x ,根据N M MN x x =-得到方程,解得即可;【详解】(1)解:依题意可得1b =,2c =222c a b =-,所以2a =,所以椭圆方程为2214x y +=;(2)解:依题意过点()2,1P -的直线为()12y k x -=+,设()11,B x y 、()22,C x y ,不妨令1222x x -≤<≤,由()221214y k x x y ⎧-=+⎪⎨+=⎪⎩,消去y 整理得()()22221416816160k x k k x k k +++++=,所以()()()222216841416160k k k k k ∆=+-++>,解得0k <,所以212216814k k x x k ++=-+,2122161614k k x x k +⋅=+,直线AB 的方程为1111y y x x --=,令0y =,解得111M x x y =-,直线AC 的方程为2211y y x x --=,令0y =,解得221N x x y =-,所以212111N M x x MN x x y y =-=---()()2121121121x x k x k x =--++-++⎡⎤⎡⎤⎣⎦⎣⎦()()212122x x k x k x =+-++()()()()2121212222x x x x k x x +-+=++()()12212222x x k x x -==++,所以()()122122x x k x x -=++,()212124k x x x x =+++⎡⎤⎣⎦22221616168241414k k k k k k k ⎡⎤⎛⎫++=+-+⎢⎥ ⎪++⎝⎭⎣⎦()()222216162168414kk k k k k ⎡⎤+-+++⎣⎦+整理得4k =,解得4k =-21.(1)4,1,2,3、3,1,2,4、2,1,3,4(2)证明见解析(3)证明见解析【分析】(1)根据数列()T A 的定义,得到4n =且12a a >,23a a <,34a a <,确定21a =,按照14a =或44a =分别讨论可得答案;(2)设数列E :121,,,n e e e - 中恰有s 项为1,在按照0s =、1s n =-、01s n <<-三种情况分别讨论可证结论;(3)按照n 的奇偶分类讨论,结合数列()T A 的定义可证结论.【详解】(1)因为():0,1,1T A ,所以13-=n ,则4n =因为10t =,21t =,31t =,所以12a a >,23a a <,34a a <,又{1,2,3,4}(1,2,3,4)i a i ∈=,所以21a =,14a =或44a =,当14a =时,342,3a a ==,当44a =时,133,2a a ==或132,3a a ==,综上所述:所有具有性质P 的数列A 为:4,1,2,3、3,1,2,4、2,1,3,4.(2)由于数列E :121,,,n e e e - ,其中{0,1}i e ∈(1,2,3,1,2)i n n =-≥ ,不妨设数列E :121,,,n e e e - 中恰有s 项为1,若0s =,则:,1,,1A n n - 符合题意,若1s n =-,则:1,2,,A n 符合题意,若01s n <<-,则设这s 项分别为12,,,s k k k e e e 12()s k k k << ,构造数列12:,,,n A a a a L ,令1211,,1,s k k k a a a +++ 分别为1,2,,n s n s n -+-+ ,数列A 的其余各项12,,,n s m m m a a a - 12()n s m m m -<<< 分别为,1,,1n s n s --- ,经检验数列A 符合题意.(3)对于符合题意的数列1,2:,,(5)n A a a a n ≥ ,①当n 为奇数时,存在数列11:,,,n n A a a a -' 符合题意,且数列A 与A '不同,()T A 与()T A '相同,按这样的方式可由数列A '构造出数列A ,所以n 为奇数时,这样的数列A 有偶数个,当3n =时,这样的数列A 也有偶数个,②当n 为偶数时,如果,1n n -是数列A 中不相邻的两项,交换n 与n 1-得到数列A '符合题意,且数列A 与A '不同,()T A 与()T A '相同,按这样的方式可由数列A '构造出数列A ,所以这样的数列A 有偶数个,如果,1n n -是数列A 中相邻的两项,由题设知,必有1n a n -=,1n a n =-,12a n =-,除这三项外,232,,,n a a a - 是一个3n -项的符合题意的数列A ,由①可知,这样的数列A 有偶数个,综上,这样的数列A 有偶数个.【点睛】关键点点睛:正确理解数列()T A 的定义,并利用定义求解是解题关键.。
北京汇文中学中学部2021年高二数学文模拟试题含解析
北京汇文中学中学部2021年高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. △ABC中,角A,B,C所对的边分别为a,b,c,其面积S=a2﹣(b﹣c)2,则tan=()A.B.C.D.参考答案:C【考点】余弦定理;正弦定理.【专题】解三角形.【分析】由余弦定理及三角形面积公式化简已知等式可得bcsinA=2bc(1﹣cosA),整理可得=,利用二倍角公式,同角三角函数关系式即可求值.【解答】解:∵b2+c2﹣a2=2bccosA,S=bcsinA.又∵△ABC的面积S=a2﹣(b﹣c)2=﹣(b2+c2﹣a2)+2bc,∴bcsinA=2bc(1﹣cosA),即有=,又==tan=.故选:C.【点评】本题主要考查了余弦定理及三角形面积公式,考查了二倍角公式,同角三角函数关系式的应用,属于基本知识的考查.2. 圆C1: x 2 + y 2-4x + 6y = 0 与圆C2: x 2 + y 2-6x = 0 的交点为A、B,则AB的垂直平分线方程为( )A. x + y + 3 = 0B. 2x -5y -5= 0C. 3x -y -9 = 0D. 4x -3y + 7 = 0 参考答案:C略3. 设满足约束条件则的取值范围是()A. B. C. D.参考答案:D4. 等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为()A. B. C. D.参考答案:C略5. 读如图21-3所示的程序框图,若输入p=5,q=6,则输出a,i的值分别为() 图21-3A.a=5,i=1 B.a=5,i=2C.a=15,i=3 D.a=30,i=6参考答案:D6. 已知函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)的图象上存在关于y轴对称的点,则a 的取值范围是( )A.(﹣∞,)B.(﹣∞,)C.(﹣,)D.(﹣,)参考答案:B【考点】函数的图象.【专题】函数的性质及应用.【分析】由题意可得e x0﹣﹣ln(﹣x0+a)=0有负根,采用数形结合的方法可判断出a的取值范围.【解答】解:由题意可得:存在x0∈(﹣∞,0),满足x02+e x0﹣=(﹣x0)2+ln(﹣x0+a),即e x0﹣﹣ln(﹣x0+a)=0有负根,如图所示,当a<0时,y=ln(﹣x+a)=ln的图象可由y=ln(﹣x)的图象向左平移a个单位得到,可发现此时e x﹣﹣ln(﹣x+a)=0有负根一定成立;当a>0时,y=ln(﹣x+a)=ln的图象可由y=ln(﹣x)的图象向右平移a个单位得到,观察图象发现此时e x﹣﹣ln(﹣x+a)=0有负根的临界条件是函数y=ln(﹣x+a)经过点(0,),此时有lna=,解得a=,因此要保证e x﹣﹣ln(﹣x+a)=0有负根,则必须a<.故选:B.【点评】本题考查的知识点是函数的图象和性质,函数的零点,函数单调性的性质,函数的极限,是函数图象和性质较为综合的应用,难度大.7. “”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:A充分性:在为增函数,若,则有,所以充分性成立.必要性:若,取,则都没有意义,所以必要性不成立,综上所述,“”是“”的充分不必要条件,故选A.8. 函数的递增区间是()A. B. C. D.参考答案:C9. 函数的单调增区间为A .B .C .D .参考答案: D10. 若直线 过点且在两坐标轴上的截距相等,则这样的直线有( )条A. 1条B.2 条C.3条D.以上都不对参考答案:B二、 填空题:本大题共7小题,每小题4分,共28分11. 过点作一直线与椭圆相交于A 、B 两点,若点恰好为弦的中点,则所在直线的方程为__________.参考答案:略12. 在数列中,,,则______________参考答案:13. 下列说法: ① “,使>3”的否定是“,使3”;② 函数的最小正周期是;③ “在中,若,则”的逆命题是真命题; ④ “”是“直线和直线垂直”的充要条件;其中正确的说法是(只填序号).参考答案:①②③14. 已知函数f (x )的定义域为[﹣1,5],部分对应值如下表,f (x )的导函数y=f′(x )的图象如图示.x ﹣1 0 4 5 f (x )12 21下列关于f (x )的命题:①函数f (x )的极大值点为0,4;②函数f (x )在[0,2]上是减函数;③如果当x∈[﹣1,t]时,f (x )的最大值是2,那么t 的最大值为4;④当1<a <2时,函数y=f (x )﹣a 有4个零点;⑤函数y=f (x )﹣a 的零点个数可能为0、1、2、3、4个.其中正确命题的序号是 .参考答案:①②⑤【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【专题】综合题;压轴题;导数的综合应用.【分析】由导数图象可知,函数的单调性,从而可得函数的极值,故可得①,②正确;因为在当x=0和x=4,函数取得极大值f (0)=2,f (4)=2,要使当x∈[﹣1,t]函数f (x )的最大值是4,当2≤t≤5,所以t 的最大值为5,所以③不正确;由f (x )=a 知,因为极小值f (2)未知,所以无法判断函数y=f (x )﹣a 有几个零点,所以④不正确,根据函数的单调性和极值,做出函数的图象如图,即可求得结论.【解答】解:由导数图象可知,当﹣1<x <0或2<x <4时,f'(x )>0,函数单调递增,当0<x <2或4<x <5,f'(x )<0,函数单调递减,当x=0和x=4,函数取得极大值f (0)=2,f (4)=2,当x=2时,函数取得极小值f (2),所以①正确;②正确;因为在当x=0和x=4,函数取得极大值f (0)=2,f (4)=2,要使当x∈[﹣1,t]函数f (x )的最大值是4,当2≤t≤5,所以t 的最大值为5,所以③不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)﹣a有几个零点,所以④不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)<1或1≤f(2)<2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以⑤正确,综上正确的命题序号为①②⑤.故答案为:①②⑤.【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键.15. 设,,,则a,b,c的大小关系为__________.参考答案:【分析】利用分析法比较b与c的大小,再同理比较与,与的大小即可.【详解】,成立,故;又,;综上知,.故答案为:.【点睛】本题考查不等关系与不等式,突出分析法在比较大小中的应用,属于中档题.16. 已知函数,则=______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市东城区汇文中学2020-2021学年高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.圆锥底面半径为5,高为2,SA 是一条母线,P 点是底面圆周上一点,则P 点到SA 所在直线的距离的最大值是( ) A .25B .45C .3D .42.函数cos ()22x x x x f x -=+在,22ππ⎡⎤-⎢⎥⎣⎦上的图象大致为( ) A . B .C .D .3.设F 为双曲线C :22221x y a b-=(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ|=|OF|,则C 的离心率为 A 2 B 3C .2D 54.在等差数列{}n a 中,若244,8a a ==,则7a =( )A .8B .12C .14D .105.已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42B .21C .7D .36.在正方体1111ABCD A B C D -中,E ,F 分别为1CC ,1DD 的中点,则异面直线AF ,DE 所成角的余弦值为( ) A .14B.4C.5D .157.在ABC 中,点P 为BC 中点,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若AM AB λ=,(0,0)AN AC μλμ=>>,则λμ+的最小值为( )A .54B .2C .3D .728.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有( ) A .12种B .24种C .36种D .48种9.已知向量()()1,2,2,2a b λ==-,且a b ⊥,则λ等于( ) A .4B .3C .2D .110.盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为( ) A .12B .35C .710D .4511.已知命题:0p x ∀>,ln(1)0x +>;命题:q 若a b >,则22a b >,下列命题为真命题的是( ) A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝12.在ABC ∆中,2AB =,3AC =,60A ∠=︒,O 为ABC ∆的外心,若AO x AB y AC =+,x ,y R ∈,则23x y +=( ) A .2B .53C .43D .32二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数2|1|,0()4,0x x f x x x +≤⎧=⎨>⎩,若函数()y f x a =-有3个不同的零点123123,,()x x x x x x <<,则123ax x x ++的取值范围是___________. 14.若复数Z 满足1(12)(2)2i Z i -=-+,其中i 为虚数单位,则Z 的共轭复数在复平面内对应点的坐标为_____.15.在平面直角坐标系xOy 中,已知圆22:(1)1C x y +-=,圆22:(23)6C x y '++=.直线:3l y kx =+与圆C 相切,且与圆C '相交于A ,B 两点,则弦AB 的长为_________16.已知()||f x x x =,则满足(21)()0f x f x -+≥的x 的取值范围为_______. 三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
17.(12分)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程是2cos 4sin 0ρθθ-=,直线1l 和直线2l 的极坐标方程分别是θα=(ρ∈R )和2πθα=+(ρ∈R ),其中k απ≠(k z ∈).(1)写出曲线C 的直角坐标方程;(2)设直线1l 和直线2l 分别与曲线C 交于除极点O 的另外点A ,B ,求OAB ∆的面积最小值. 18.(12分)已知函数()sin ln 1f x x x =+-. (Ⅰ)求()f x 在点,22f ππ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭处的切线方程; (Ⅱ)求证:()f x 在(0,)π上存在唯一的极大值; (Ⅲ)直接写出函数()f x 在(0,2)π上的零点个数. 19.(12分)已知非零实数,a b 满足a b <. (1)求证:332222a b a b ab -<-; (2)是否存在实数λ,使得2211b a a b a b λ⎛⎫-≥- ⎪⎝⎭恒成立?若存在,求出实数λ的取值范围; 若不存在,请说明理由20.(12分)如图,在四棱锥P —ABCD 中,四边形ABCD 为平行四边形,BD ⊥DC ,△PCD 为正三角形,平面PCD ⊥平面ABCD ,E 为PC 的中点.(1)证明:AP ∥平面EBD ; (2)证明:BE ⊥PC .21.(12分)已知F 是抛物线()2:20C y px p =>的焦点,点P 在x 轴上,O 为坐标原点,且满足14OP OF =,经过点P 且垂直于x 轴的直线与抛物线C 交于A 、B 两点,且8AB =.(1)求抛物线C 的方程;(2)直线l 与抛物线C 交于M 、N 两点,若64OM ON ⋅=-,求点F 到直线l 的最大距离.22.(10分)如图1,四边形ABCD 为直角梯形,//AD BC ,AD AB ⊥,60BCD ∠=︒,23AB =,3BC =,E 为线段CD 上一点,满足BC CE =,F 为BE 的中点,现将梯形沿BE 折叠(如图2),使平面BCE ⊥平面ABED .(1)求证:平面ACE ⊥平面BCE ;(2)能否在线段AB 上找到一点P (端点除外)使得直线AC 与平面PCF 3在,试确定点P 的位置;若不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C 【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解P 的位置,推出结果即可.52,SA 是一条母线,P 点是底面圆周上一点,P 在底面的射影为O ;543SA =+=,OA SO >,过SA 的轴截面如图:90ASQ ∠>︒,过Q 作QT SA ⊥于T ,则QT QS <,在底面圆周,选择P ,使得90PSA ∠=︒,则P 到SA 的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题. 2、C 【解析】 【分析】根据函数的奇偶性及函数在02x π<<时的符号,即可求解.【详解】 由cos ()()22x xx xf x f x --=-=-+可知函数()f x 为奇函数. 所以函数图象关于原点对称,排除选项A ,B ; 当02x π<<时,cos 0x >,cos ()220x xx xf x -∴=+>,排除选项D ,故选:C. 【点睛】本题主要考查了函数的奇偶性的判定及奇偶函数图像的对称性,属于中档题. 3、A 【解析】 【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A∴为圆心||2c OA =.,22c c P⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.2e ∴=,故选A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来. 4、C 【解析】 【分析】将2a ,4a 分别用1a 和d 的形式表示,然后求解出1a 和d 的值即可表示7a . 【详解】设等差数列{}n a 的首项为1a ,公差为d ,则由24a =,48a =,得114,38,a d a d +=⎧⎨+=⎩解得12a =,2d =,所以71614a a d =+=.故选C . 【点睛】本题考查等差数列的基本量的求解,难度较易.已知等差数列的任意两项的值,可通过构建1a 和d 的方程组求通项公式. 5、B 【解析】 【分析】利用等差数列的性质求出4a 的值,然后利用等差数列求和公式以及等差中项的性质可求出7S 的值. 【详解】由等差数列的性质可得6354553a a a a a a +-=+-=,()1747772732122a a a S +⨯∴===⨯=. 故选:B. 【点睛】本题考查等差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题. 6、D 【解析】 【分析】连接BE ,BD ,因为//BE AF ,所以BED ∠为异面直线AF 与DE 所成的角(或补角),不妨设正方体的棱长为2,取BD 的中点为G ,连接EG ,在等腰BED ∆中,求出cos EG BEG BE ∠==在利用二倍角公式,求出cos BED ∠,即可得出答案. 【详解】连接BE ,BD ,因为//BE AF ,所以BED ∠为异面直线AF 与DE 所成的角(或补角),不妨设正方体的棱长为2,则BE DE ==BD =,在等腰BED ∆中,取BD 的中点为G ,连接EG ,则EG ==cosEG BEG BE ∠==所以2cos cos 22cos 1BED BEG BEG ∠=∠=∠-, 即:31cos 2155BED ∠=⨯-=, 所以异面直线AF ,DE 所成角的余弦值为15. 故选:D.【点睛】本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力. 7、B 【解析】 【分析】由M ,P ,N 三点共线,可得11122λμ+=,转化11()22λμλμλμ⎛⎫+=++ ⎪⎝⎭,利用均值不等式,即得解. 【详解】因为点P 为BC 中点,所以1122AP AB AC =+, 又因为AM AB λ=,AN AC μ=, 所以1122AP AM AN λμ=+. 因为M ,P ,N 三点共线, 所以11122λμ+=, 所以111111()122222222λμλμλμλμλμμλμλ⎛⎫⎛⎫+=++=++++⨯⋅=⎪ ⎪⎝⎭⎝⎭, 当且仅当,11122λμμλλμ⎧=⎪⎪⎨⎪+=⎪⎩即1λμ==时等号成立,所以λμ+的最小值为1. 故选:B 【点睛】本题考查了三点共线的向量表示和利用均值不等式求最值,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 8、C 【解析】 【分析】先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项. 【详解】把甲、乙两名交警看作一个整体,5个人变成了4个元素,再把这4个元素分成3部分,每部分至少有1个人,共有24C 种方法,再把这3部分分到3个不同的路口,有33A 种方法,由分步计数原理,共有234336C A ⋅=种方案。