平面直角坐标系中有关计算的问题
平面直角坐标系中的距离计算
平面直角坐标系中的距离计算在平面直角坐标系中,距离计算是一项重要的几何运算。
它被广泛应用于数学、物理、工程和计算机科学等领域。
本文将介绍如何在平面直角坐标系中计算两点之间的距离,以及如何使用这个计算结果解决实际问题。
一、点的坐标表示在平面直角坐标系中,每个点都可以用一对有序数对表示,即(x, y),其中x表示点在x轴上的坐标,y表示点在y轴上的坐标。
例如,点A的坐标为(2, 3),表示它在x轴上的坐标是2,在y轴上的坐标是3。
二、两点之间的距离计算公式在平面直角坐标系中,可以使用勾股定理来计算两点之间的距离。
假设点A的坐标为(x1, y1),点B的坐标为(x2, y2),它们之间的距离d可以通过以下公式计算:d = √((x2 - x1)² + (y2 - y1)²)三、根据距离计算解决实际问题1. 简单应用假设有两个点A(2, 3)和B(5, 7),我们可以使用上述距离计算公式来计算它们之间的距离。
根据公式,我们可以得出:d = √((5 - 2)² + (7 - 3)²)= √(3² + 4²)= √(9 + 16)= √25= 5因此,点A和点B之间的距离为5个单位。
2. 应用举例:直线的长度在工程和建筑领域,我们常常需要计算直线的长度。
假设我们有一条直线AB,其中A点的坐标为(1, 1),B点的坐标为(4, 5)。
为了计算直线AB的长度,我们可以使用距离计算公式:d = √((4 - 1)² + (5 - 1)²)= √(3² + 4²)= √(9 + 16)= √25= 5因此,直线AB的长度为5个单位。
3. 应用举例:点到直线的垂直距离在数学和物理领域,我们经常需要计算一个点到一条直线的垂直距离,比如到直线AB的垂直距离。
为了计算这个距离,我们首先需要求出直线AB的斜率。
假设A点的坐标为(1, 1),B点的坐标为(4, 5),则直线的斜率k可以通过以下公式计算:k = (y2 - y1) / (x2 - x1)= (5 - 1) / (4 - 1)= 4 / 3斜率为4/3。
平面直角坐标系中的抛物线问题
平面直角坐标系中的抛物线问题在数学的广阔天地中,平面直角坐标系里的抛物线问题就像一颗璀璨的明珠,吸引着无数数学爱好者和学习者去探索、去琢磨。
抛物线,这个看似简单的曲线,却蕴含着丰富而有趣的数学奥秘。
它在我们的日常生活和众多科学领域中都有着广泛的应用。
首先,咱们来聊聊抛物线的定义。
在平面直角坐标系中,抛物线可以被定义为到一个定点(焦点)的距离等于到一条定直线(准线)的距离的所有点的集合。
想象一下,就好像有一个点,它到某个特定点和某条特定直线的距离总是相等的,这些点连接起来就形成了抛物线。
那么抛物线的标准方程又是什么呢?常见的有y²=2px(p >0),这表示抛物线的开口向右;y²=-2px(p > 0),开口向左;x²=2py(p > 0),开口向上;x²=-2py(p > 0),开口向下。
这里的p 可是个关键参数,它决定了抛物线的形状和大小。
咱们通过几个具体的例子来更深入地理解一下。
比如说,给定一个抛物线方程 y²= 8x。
从这个方程里,咱们能看出 p = 2,焦点的坐标就是(2, 0),准线方程就是 x =-2。
再比如 x²= 6y,这里 p = 3/2,焦点是(0, 3/2),准线是 y =-3/2。
抛物线的性质也非常有意思。
它的对称轴总是与坐标轴平行或者重合。
而且,抛物线上的点到焦点的距离和到准线的距离总是相等的。
这一性质在解决很多与抛物线相关的问题时都特别有用。
在实际应用中,抛物线也大显身手。
比如,抛物线在物理学中的抛体运动中就有重要的应用。
当我们把一个物体以一定的初速度和角度抛出时,它的运动轨迹就可以近似地看作是一条抛物线。
通过对抛物线的研究,我们可以计算出物体的飞行高度、水平距离等重要参数。
在工程领域,抛物线形状的桥梁和建筑结构也不少见。
因为抛物线的力学特性使得这种结构能够承受更大的压力和重量。
还有在光学中,抛物线形状的反射镜能够将平行光线汇聚到一个点上,这种抛物面镜在望远镜、太阳能收集器等设备中都发挥着关键作用。
七下数学《平面直角坐标系》——【面积问题】
七下数学《平面直角坐标系》——【面积问题】学校:___________姓名:___________班级:___________考号:___________1.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ; (2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.2.如图10,在平面直角坐标系中,点A B ,的坐标分别为(),0A a ,(),0Bb ,且a b 、满足2(1)0a ++=.现同时将点A B ,分别向上平移2个单位,再向右平移1个单位,分别得到点A B ,的对应点C D ,,连接AC BD ,得ACBD .(1)直接写出点C D ,的坐标和四边形ABDC 的面积;(2)若在坐标轴上存在点M ,使MAC S S =△四边形ABDC ,求出点M 的坐标;(3)若点P 在直线BD 上运动,连接PC PO ,.请画出图形,写出CPO DCP BOP ∠∠∠、、的数量关系并证明.3.如图,在长方形ABCD 中,AB =8cm ,BC =6cm ,点E 是CD 边上的一点,且DE =2cm ,动点P 从A 点出发,以2c m/s 的速度沿A →B →C →E 运动,最终到达点E .设点P 运动的时间为t 秒.(1)请以A 点为原点,AB 所在直线为x 轴,1cm 为单位长度,建立一个平面直角坐标系,并用t 表示出点P 在不同线段上的坐标.(2)在(1)相同条件得到的结论下,是否存在P 点使△APE 的面积等于20cm 2时,若存在,请求出P 点坐标;若不存在,请说明理由.4.在平面直角坐标系中,A (a ,0),B (b ,0),C (−1,2),且|32a b +=0, (1)求a 、b 的值;(2)在y 轴上是否存在一点M ,使△COM 的面积为△ABC 面积的13,若存在,求出点M 的坐标;若不存在,请说明理由.5.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3(1)数轴上点A 表示的数为______.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为O A B C '''',移动后的长方形O A B C ''''与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S△设点A 的移动距离AA x '=.当4S =时,x =______.△当S 恰好等于原长方形OABC 面积的一半时,求数轴上点A '表示的数为多少.6.如图,在平面直角坐标系中,已知A (0,a ),B (b ,0),其中a ,b 满足|a ﹣2|+(b ﹣3)2=0. (1)a = ,b = ;(2)如果在第二象限内有一点M (m ,1),请用含m 的式子表示四边形ABOM 的面积; (3)在(2)条件下,当m =﹣32时,在坐标轴的负半轴上求点N (的坐标),使得△ABN 的面积与四边形ABOM 的面积相等.(直接写出答案)7.如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是()0,0O ,()0,12A ,()10,8B -,()14,0C -,求四边形OABC 的面积.8.如图,平面直角坐标系中,点A在第一象限,AB△x轴于B,AC△y轴于C,A(4m,3m),且四边形ABOC的面积为48.(1)如图△,求A点的坐标;(2)如图△,点D从O出发以每秒1个单位的速度沿y轴正半轴运动,同时点E从A出发,以每秒2个单位的速度沿射线BA运动,DE交线段AC于F,设运动的时间为t,当S△AEF<S△CDF时,求t的取值范围.9.如图1,在平面直角坐标系中,点A坐标为(2,0),点B在x轴负半轴上,C在y轴正半轴上,△ACB=90°,△ABC=30°.(1)求点B坐标;(2)如图2,点P从B出发,沿线段BC运动,点P运动速度为每秒2个单位长度,设运动时间为t秒,用含t的式子表示三角形△OBP的面积S.10.在平面直角坐标系内,点()0,5A ,点()29,32M x x --在第三象限,(1)求x 的取值范围;(2)点M 到y 轴的距离是到x 轴的2倍,请求出M 点坐标;(3)在(2)的基础上,若y 轴上存在一点P 使得AMP 的面积为10,请求出P 点坐标.11.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0). (1)求三角形AOB 的面积;(2)点P 是x 轴上的一个动点,当三角形AOP 的面积与三角形AOB 的面积相等时,求点P 的坐标.12.如图,在平面直角坐标系中,已知(,0)A a ,(,0)B b ,其中a ,b 满足|1|0a +=.(1)填空:a =______,b =______.(2)如果在第三象限内有一点(2,)M m -,请用含m 的式子表示ABM 的面积.的坐标.13.如图所示,在平面直角坐标系中点()30A -,,()5,0B ,()3,4C ,()2,3D -.(1)求四边形ABCD 的面积(2)点P 为y 轴上一点,且ABP △的面积等于四边形ABCD 的面积的一半,求点P 的坐标.14.如图1,在平面直角坐标系中,A (a ,0),C (b ,4),且满足(a+5)2,过C 作CB△x 轴于B .(1)a = ,b = ,三角形ABC 的面积= ;(2)若过B 作BD //AC 交y 轴于D ,且AE ,DE 分别平分△CAB ,△ODB ,如图2,求△AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在,请说明理由.15.如图1,在平面直角坐标系中,A (a ,0)是x 轴正半轴上一点,C 是第四象限一点,CB △y 轴,交y 轴负半轴于B (0,b ),且(a ﹣3)2+|b +4|=0,S 四边形AOBC =16.(1)求C 点坐标;(2)如图2,设D 为线段OB 上一动点,当AD △AC 时,△ODA 的角平分线与△CAE 的角平分线的反向延长线交于点P ,求△APD 的度数.(3)如图3,当D 点在线段OB 上运动时,作DM △AD 交BC 于M 点,△BMD 、△DAO 的平分线交于N 点,则D 点在运动过程中,△N 的大小是否变化?若不变,求出其值,若变化,说明理由.16.如图,在平面直角坐标系中,已知A (a ,0),B (b ,0),C (﹣1,2),且221(24)0a b a b ++++-=. (1)求a ,b 的值;(2)y 轴上是否存在一点M ,使△COM 的面积是△ABC 的面积的一半,求点M 的坐标.17.如图,在平面直角坐标系xOy 中,点(,0)A a ,(,)B b b ,(0,)C b ,且满足2(8)0a +=,P 点从A 点出发沿x 轴正方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点A 的坐标 ,点B 的坐标 ,AO 和BC 位置关系是 ; (2)在P 、Q 的运动过程中,连接PB ,QB ,使S △PAB =4S △QBC ,求出点P 的坐标;(3)在P 、Q 的运动过程中,当△CBQ =30°时,请探究△OPQ 和△PQB 的数量关系,并说明理由.18.如图,在平面直角坐标系中,已知A(0,a),B(b ,0),C(b ,c)三点,其中a ,b ,c 满足关系式|a -2|+(b -3)2=0,(c -4)2≤0.(1)求a ,b ,c 的值;(2)如果在第二象限内有一点P(m ,12),请用含m 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与三角形ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.19.已知点()30A -,,点()0,3C ,且点B 的坐标为()1,4-,计算ABC 的面积.20.如图,在平面直角坐标系中,A 、B 、C 三点的坐标分别为(0,1)(2,0)(2,1.5), (1)求三角形ABC 的面积.(2)如果在第二象限内有一点P (a ),试用含a 的式子表示四边形ABOP 的面积.(3)在(2)的条件下,是否存在点P ,使得四边形ABOP 的面积与三角形ABC 的面积相等?若存在,请求出点P 的坐标?若不存在,请说明理由.。
平面直角坐标系的综合问题解决
平面直角坐标系的综合问题解决平面直角坐标系是解决许多几何问题的基本工具之一。
它由两条互相垂直的坐标轴组成,通常以x轴和y轴表示。
本文将介绍平面直角坐标系及其在解决综合问题中的应用。
一、平面直角坐标系的基本原理平面直角坐标系由两条相互垂直的坐标轴组成。
x轴(横轴)与y轴(纵轴)的交点是原点O,任意一点P的坐标用(x, y)表示,其中x表示点P在x轴上的投影,y表示点P在y轴上的投影。
根据坐标系的性质,我们可以计算两点之间的距离、计算角度等。
二、直线方程的表示方法利用平面直角坐标系,我们可以将直线的方程表示为一般式、点斜式和截距式等形式。
1. 一般式:Ax + By + C = 0。
其中A、B、C为常数。
2. 点斜式:y - y1 = k(x - x1)。
其中(x1,y1)为直线上一点的坐标,k为直线的斜率。
3. 截距式:x/a + y/b = 1。
其中a和b分别表示x轴和y轴上的截距。
根据给定的问题所需,我们可以选择合适的直线方程形式。
三、解决坐标系下的综合问题1. 距离问题:给定平面上的两点A(x1,y1)和B(x2,y2),我们可以利用勾股定理计算点A和点B之间的距离。
距离公式:AB = √((x2 - x1)^2 + (y2 - y1)^2)2. 直线问题:给定平面上的两点A(x1,y1)和B(x2,y2),我们可以通过求斜率来确定连线AB是否为直线,以及判断直线的倾斜方向。
斜率公式:k = (y2 - y1) / (x2 - x1)若k > 0,直线向右上倾斜;若k < 0,直线向右下倾斜;若k = 0,直线水平;若k不存在,直线垂直于x轴。
3. 图形问题:利用平面直角坐标系,我们可以绘制各种图形,并通过计算面积和周长等属性来解决相关问题。
- 矩形面积公式:S = ab,其中a和b分别表示矩形的长度和宽度。
- 圆形面积公式:S = πr^2,其中r表示圆的半径。
- 三角形面积公式:S = 1/2 * 底边长 * 高,其中底边长为短边,高为两点之间的垂直距离。
平面直角坐标系重难点题型(四大题型)(原卷版)
专题05 平面直角坐标系重难点题型(四大题型)【题型1 两点间距离】【题型2 求平面直角坐标系中动点问题的面积】【题型3 平面直角坐标系中规律题探究】【题型4 等腰三角形个数讨论问题】【题型1 两点间距离】1.在平面直角坐标系中,有A(﹣2,a+1),B(a﹣1,4),C(b﹣2,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=1时,求点C的坐标.2.已知平面直角坐标系内的三点:A(a﹣1,﹣2),B(﹣3,a+2),C(b﹣6,2b).(1)当直线AB∥x轴时,求A,B两点间的距离;(2)当直线AC⊥x轴,点C在第二、四象限的角平分线上时,求点A和点C 的坐标.3.先阅读一段文字,再回答下列问题:已知在平面内两点坐标P1(x1,y1),P2(x2,y2),其两点间距离公式为P1P2=,同时,当两点所在的直线在坐标轴上或平行于x轴或垂直于x轴时,两点距离公式可简化成|x1﹣x2|或|y2﹣y1|.(1)已知A(3,5),B(﹣2,﹣1),试求A,B两点的距离;(2)已知A,B在平行于y轴的直线上,点A的纵坐标为6,点B的纵坐标为﹣4,试求A,B两点的距离;(3)已知一个三角形各顶点坐标为A(0,6),B(﹣3,2),C(3,2),找出三角形中相等的边?说明理由.4.先阅读一段文字,再回答下列问题:已知在平面内两点坐标P1(x1,y1),P2(x2,y2),其两点间距离公式为:p1p2=,例如:点(3,2)和(4,0)的距离为.同时,当两点所在的直线在坐标轴上或平行于x轴或平行于y轴距离公式可简化成:p1p2=|x1﹣x2|或p1p2=|y1﹣y2|.(1)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为2,则A,B两点的距离为;(2)线段AB平行于x轴,且AB=3,若点B的坐标为(2,4),则点A的坐标是;(3)已知A(3,5),B(﹣4,4),A,B两点的距离为;(4)已知△ABC三个顶点坐标为A(3,4),B(0,5),C(﹣1,2),请判断此三角形的形状,并说明理由.5.先阅读下列一段文字,再解答问题:已知在平面内有两点P1(x1,y1),P2(x2,y2),其两点间的距离公式为;同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知点A(2,4),B(﹣2,1),则AB=;(2)已知点C,D在平行于y的直线上,点C的纵坐标为3,点D的纵坐标为﹣2,则CD=;(3)已知点M和(1)中的点A有MA∥x轴,且MA=3,则点M的坐标为;(4)已知点P(3,1)和(1)中的点A,B,则线段P A,PB,AB中相等的两条线段是.6.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P1(x1,y1),P2(x2,y2),其两点间的距离P1P2=,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(1,3),B(﹣3,﹣5),试求A,B两点间的距离;(2)已知线段MN∥y轴,MN=4,若点M的坐标为(2,﹣1),试求点N 的坐标.7.先阅读下列一段文字,再回答后面的问题.已知在平面内两点P1(x1,y1),P2(x2,y2),这两点间的距离P1P2=,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4),B(﹣3,﹣8),试求A,B两点间的距离;(2)已知A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A,B两点间的距离.8.阅读材料:两点间的距离公式:如果平面直角坐标系内有两点A(x1,y1)、B(x2,y2),那么A、B两点的距离AB=,则AB2=(x1﹣x2)2+(y1﹣y2)2.例如:若点A(4,1),B(3,2),则AB=,若点A(a,1),B(3,2),且AB=,则.根据实数章节所学的开方运算即可求出满足条件的a的值.根据上面材料完成下列各题:(1)若点A(﹣2,3),B(1,2),则A、B两点间的距离是.(2)若点A(﹣2,3),点B在x轴上,且A、B两点间的距离是5,求B 点坐标.9.在平面直角坐标系中,有A(﹣2,a+1),B(a﹣1,4),C(b﹣2,b)三点.(1)当点C在y轴上时,求点C的坐标;(2)当AB∥x轴时,求A,B两点间的距离;(3)当CD⊥x轴于点D,且CD=1时,求点C的坐标.10.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.【题型2 求平面直角坐标系中动点问题的面积】11.如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是;(2)若点D与点C关于原点对称,则点D的坐标为;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.12.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足.(1)填空:a=,b=;(2)若在第三象限内有一点M(﹣2,m),用含m的式子表示△ABM的面积;(3)在(2)条件下,线段BM与y轴相交于C(0,﹣),当时,点P是y轴上的动点,当满足△PBM的面积是△ABM的面积的2倍时,求点P的坐标.13.如图,在平面直角坐标系内,已知点A的坐标为(3,2),点B的坐标为(3,﹣4),点P为直线AB上任意一点(不与A、B重合),点Q是点P 关于x轴的对称点.(1)在方格纸中标出A、B,并求出△ABO的面积;(2)设点P的纵坐标为a,求点Q的坐标;(3)设△OP A和△OPQ的面积相等,且点P在点Q的上方,求出此时P点坐标.14.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足a2+2a+1+|3a+b|=0.(1)填空:a=,b=;(2)若存在一点M(﹣2,m)(m<0),点M到x轴距离,到y轴距离,求△ABM的面积(用含m的式子表示);(3)在(2)条件下,当m=﹣1.5时,在y轴上有一点P,使得△MOP的面积与△ABM的面积相等,请求出点P的坐标.15.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(3,c)三点,其中a、b、c满足关系式:|a﹣2|+(b﹣3)2+=0.(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在负整数m,使四边形ABOP的面积不小于△AOP面积的两倍?若存在,求出所有满足条件的点P的坐标,若不存在,请说明理由.16.如图,已知在平面直角坐标系中,点A在y轴上,点B、C在x轴上,S△ABO =8,OA=OB,BC=10,点P的坐标是(﹣6,a),(1)求△ABC三个顶点A、B、C的坐标;(2)连接P A、PB,并用含字母a的式子表示△P AB的面积(a≠2);(3)在(2)问的条件下,是否存在点P,使△P AB的面积等于△ABC的面积?如果存在,请求出点P的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且|a+2|+=0.(1)求a,b的值;(2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积恒成立?若存在,请直接写出符合条件的点M的坐标.18.如图,直线AB与x轴,y轴分别相交于点A(6,0),B(0,8),M是OB上一点,若将△ABM沿AM折叠,则点B恰好落在x轴上的点B'处.求:(1)点B'的坐标;(2)△ABM的面积.19.如图在直角坐标系中,已知A(0,a),B(b,0)C(3,c)三点,若a,b,c满足关系式:|a﹣2|+(b﹣3)2+=0.(1)求a,b,c的值.(2)求四边形AOBC的面积.(3)是否存在点P(x,﹣x),使△AOP的面积为四边形AOBC的面积的两倍?若存在,求出点P的坐标,若不存在,请说明理由.20.已知:在平面直角坐标系中,A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在x轴上,且△ABP与△ABC的面积相等,求点P的坐标.21.如图,在平面直角坐标系中,A(2,2),B(﹣1,0),C(3,0)(1)求△ABC面积;(2)在y轴上存在一点D,使得△AOD的面积是△ABC面积的2倍,求出点D的坐标;(3)在平面内有点P(3,m),是否存在m值,使△AOP的面积等于△ABC 面积的2倍?若存在,直接写出m的值;若不存在,请说明理由.22.在平面直角坐标系中,△ABC的顶点坐标分别为A(2,0),B(0,4),C(﹣3,2).(1)如图1,求△ABC的面积.(2)若点P的坐标为(m,0),①请直接写出线段AP的长为(用含m的式子表示);②当S△P AB =2S△ABC时,求m的值.(3)如图2,若AC交y轴于点D,直接写出点D的坐标为.23.如图,在平面直角坐标系中,点A(﹣3b,0)为x轴负半轴上一点,点B (0,4b)为y轴正半轴上一点,其中b满足方程:3(b+1)=6.(1)求点A、B的坐标;(2)点C为y轴负半轴上一点,且△ABC的面积为12,求点C的坐标;(3)在(2)的条件下,在x轴上是否存在点P,使得△PBC的面积等于△ABC的面积的一半?若存在,求出相应的点P的坐标;若不存在,请说明理由.【题型3 平面直角坐标系中规律题探究】24.如图,动点P按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,2),…,按这样的运动规律,则第2021次运动到点()A.(2021,1)B.(2021,2)C.(2020,1)D.(2021,0)25.有一组数,按照下列规律排列:1,2,3,6,5,4,7,8,9,10,15,14,13,12,11,16,17,18,19,20,21,……数字5在第三行左数第二个,我们用(3,2)点示5的位置,那点这组成数里的数字100的位置可以表示为()A.(14,9)B.(14,10)C.(14,11)D.(14,12)26.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,﹣2)27.如图,在平面直角坐标系上有个点P(1,0),点P第一次向上跳动1个单位至P1(1,1),紧接着第二次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是()A.(﹣24,49)B.(﹣25,50)C.(26,50)D.(26,51)28.如图,一个机器人从O点出发,向正东方向走3m到达A1点,再向正北方向走6m到达A2点,再向正西方向走9m到达A3点,再向正南方向走12m到达A4点,再向正东方向走15m到达A5点.按如此规律走下去,当机器人走到A6点时,离O点的距离是()A.10m B.12m C.15m D.20m29.如图,将正整数按有图所示规律排列下去,若用有序数对(n,m)表示n 排从左到右第m个数.如(4,3)表示9,则(10,3)表示.30.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为.31.如图所示点A0(0,0),A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0),…根据这个规律,探究可得点A2017坐标是.32.如图所示,一个机器人从O点出发,向正东方向走3m到达A1点,再向正北方向走6m到达A2点,再向正西方向走9m到达A3点,再向正南方向走12m 到达A4点,再向正东方向走15m到达A5点,按如此规律走下去,相对于点O,机器人走到A6时是位置.33.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是.【题型4 等腰三角形个数讨论问题】34.如图,在平面直角坐标系中,点A的坐标是(6,6),点B在坐标轴上,且△OAB是等腰直角三角形,则点B的坐标不可能是()A.(0,6)B.(6,0)C.(12,0)D.(0,﹣6)35.如图,在平面直角坐标系中,A,B两点的坐标分别为(﹣4,0),(0,3),连接AB,点P在第二象限,以点P,A,B为顶点的等腰直角三角形有个,任意写出其中一个点P坐标为.36.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是,B4的坐标是.(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是,B n的坐标是.(3)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,则△OA n B n的面积S为37.如图,方格纸中小正方形的边长均为1个单位长度,A、B均为格点.(1)在图中建立直角坐标系,使点A、B的坐标分别为(3,3)和(﹣1,0);(2)在(1)中x轴上是否存在点C,使△ABC为等腰三角形(其中AB为腰)?若存在,请直接写出所有满足条件的点C的坐标.38.如图,在平面直角坐标系中,已知点A(﹣2,0),B(2,0).(1)画出等腰三角形ABC(画一个即可);(2)写出(1)中画出的三角形ABC的顶点C的坐标.。
(完整版):平面直角坐标系经典例题解析
【平面直角坐标系重点考点例析】考点一:平面直角坐标系中点的特征例1 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围.解:由第一象限点的坐标的特点可得:20 mm>⎧⎨->⎩,解得:m>2.故答案为:m>2.点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正.例1 如果m是任意实数,则点P(m-4,m+1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:∵(m+1)-(m-4)=m+1-m+4=5,∴点P的纵坐标一定大于横坐标,∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标,∴点P一定不在第四象限.故选D.点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(—,+);第三象限(-,—);第四象限(+,-).例2 如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是()A.(2,0) B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)分析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2012÷3=670…2,故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;此时相遇点的坐标为:(﹣1,﹣1),故选:D.点评:此题主要考查了行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.例2 如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4) B.(5,0)C.(6,4) D.(8,3)思路分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.对应训练2.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A .(1,﹣1)B . (﹣1,1)C . (﹣1,﹣2)D . (1,﹣2)分析: 根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答: 解:∵A(1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3, ∴绕四边形ABCD 一周的细线长度为2+3+2+3=10, 2012÷10=201…2,∴细线另一端在绕四边形第202圈的第2个单位长度的位置, 即点B 的位置,点的坐标为(﹣1,1). 故选B .点评: 本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2012个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.例2 如图,在平面直角坐标系xOy 中,点P (-3,5)关于y 轴的对称点的坐标为( ) A .(—3,—5) B .(3,5) C .(3.—5) D .(5,—3) 答:B考点二:函数的概念及函数自变量的取值范围 例3 在函数1x y x+=中,自变量x 的取值范围是 . 思路分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x+1≥0,根据分式有意义的条件,x≠0.就可以求出自变量x 的取值范围. 解:根据题意得:x+1≥0且x≠0 解得:x≥-1且x≠0. 例3 函数y=31x x +-中自变量x 的取值范围是( ) 思路分析:根据被开方数大于等于0,分母不等于0列式计算即可得解. 解:根据题意得,x+3≥0且x —1≠0, 解得x≥—3且x≠1. 故选D .点评:本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负. 对应训练 3.函数2y x =+中自变量x 的取值范围是( )A .x >—2B .x≥2 C.x≠—2 D .x≥-2 3.A考点三:函数图象的运用例4 一天晚饭后,小明陪妈妈从家里出去散步,如图描述了他们散步过程中离家的距离S (米)与散步时间t (分)之间的函数关系,下面的描述符合他们散步情景的是( )A .从家出发,到了一家书店,看了一会儿书就回家了B .从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C .从家出发,一直散步(没有停留),然后回家了D .从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回思路分析:根据图象可知,有一段时间内时间在增加,而路程没有增加,意味着有停留,与x 轴平行后的函数图象表现为随时间的增多路程又在增加,由此即可作出判断.解:A 、从家出发,到了一家书店,看了一会儿书就回家了,图象为梯形,错误;B 、从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了,描述不准确,错误;C 、从家出发,一直散步(没有停留),然后回家了,图形为上升和下降的两条折线,错误;D 、从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回从家出发,符合图象的特点,正确. 故选D .点评:考查了函数的图象,读懂图象是解决本题的关键.首先应理解函数图象的横轴和纵轴表示的量,再根据函数图象用排除法判断.例5 如图,ABCD 的边长为8,面积为32,四个全等的小平行四边形对称中心分别在ABCD 的顶点上,它们的各边与ABCD 的各边分别平行,且与ABCD 相似.若小平行四边形的一边长为x ,且0<x≤8,阴影部分的面积的和为y ,则y 与x 之间的函数关系的大致图象是( )A .B .C .D .思路分析:根据平行四边形的中心对称性可知四块阴影部分的面正好等于一个小平行四边形的面积,再根据相似多边形面积的比等于相似比的平方列式求出y 与x 之间的函数关系式,然后根据二次函数图象解答. 解:∵四个全等的小平行四边形对称中心分别在ABCD 的顶点上,∴阴影部分的面积等于一个小平行四边形的面积, ∵小平行四边形与ABCD 相似,∴2()328y x =, 整理得212y x =,又0<x≤8,纵观各选项,只有D 选项图象符合y 与x 之间的函数关系的大致图象. 故选D .点评:本题考查了动点问题的函数图象,根据平行四边形的对称性与相似多边形的面积的比等于相似比的平方求出y与x的函数关系是解题的关键.例8已知一个矩形纸片OACB,将该纸片放置在平面直角坐标洗中,点A(11,0),点B(0,6),点P为BC 边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t 的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).考点:翻折变换(折叠问题);坐标与图形性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.分析:(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;(Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′Q的长,然后利用相似三角形的对应边成比例与m= 16t2-116t+6,即可求得t的值.点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.对应训练4.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A.甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0。
人教版七年级数学下册《平面直角坐标系中面积的计算问题》教学设计
人教版七年级第二册第七章《平面直角坐标系中面积的计算问题》教学设计一、教学内容:平面直角坐标系中面积的计算问题。
二、设计理念:课堂中应该充分发挥学生的主体因素,让学生自主获取知识。
七年级学生的思维比较活跃,具有了一定的自主探究、分析问题和解决问题的能力,应培养学生的逻辑分析能力和准确语言表达能力,让学生通过操作、探究、讨论、总结得到平面直角坐标系中面积的计算方法。
教学中,教师是教学情景的设计着,是学生学习的引导者和促进者,应培养学生自主学习和探究学习的能力,培养学生良好的学习习惯和品质,培养学生的积极性、主动性、独立性和创造性。
三、教学目标:1.进一步认识平面直角坐标系,了解点、图形与坐标的对应关系,能求出给定坐标的点构成的图形的面积;2.通过对数学图形规律探究的过程中培养学生的数学思维;四、学情分析:本节课是一节复习课,在此之前,学生已经学习了平面直角坐标系的有关概念,了解了点的坐标意义以及学习了坐标的平移与应用,并且会计算三角形、正方形、长方形等简单图形的面积,本节课通过教师的引导,学生独立思考,将前面所学习的这些知识综合起来,逐步展开知识点,由简到难,让学生学会利用平面直角坐标系求解图形面积,进一步让学生体会数形结合、转化数学思想。
五、重、难点:学习重点:建立平面直角坐标系求解图形面积以及根据图形面积求点的坐标;学习难点:运用割补法求解平面直角坐标系中图形面积;六、教学课时:1课时七、教学准备:多媒体,PPT ,学案,三角板;八、教学过程:1.知识回顾:(1)平面直角坐标系中坐标点与线段之间的关系:①A (1x ,y ),B(2x ,y ) 纵坐标相等的两个点所形成的线段长度为: ②A (x ,1y ),B( x ,2y ) 横坐标相等的两个点所形成的线段长度为: 例1:1.若A(3,2),B(-1,2),则线段AB=2.若A(-2,-3),B(-2,-1),则线段AB=【设计意图:回顾平面直角坐标系中面积的计算问题中相关知识,结合坐标图形让学生更加直观明白平面直角坐标系中点坐标与线段长度之间联系】(2)平面直角坐标系中坐标点到坐标轴距离:①点A (x,y )到X 轴距离表示为:②点A (x,y )到Y 轴距离表示为:例2:若A(-3,2),则到X 轴的距离为: 到Y 轴的距离为:【设计意图:通过复习点到坐标轴的距离,进而为后面点到直线距离的理解铺垫,同时也让学生明白平面直角坐标中三角形的高是什么,高为多少】(3)思考:平面直角坐标系内的点与图形面积之间有何联系?【设计意图:进一步认识平面直角坐标系中坐标点、线段、图形面积之间对应关系,为在具体问题中应该如何规范解题提供依据】2.课堂探究:例3:在平面直角坐标系中,原点O(0,0),已知点A(0,3),B(4,0),求三角形OAB的面积;【设计意图:通过例题,引导学生利用数形结合思想解决此类问题,让学生感受求解三角形面积需要找到三角形的“底”和“高”对应线段,应用“底×高÷2”直接计算面积,同时规范学生作答,板书时紧扣思考3中平面直角坐标系内的点与图形面积联系】变式1:在平面直角坐标系中,已知点A(0,3),B(4,0),C(-2,0),求三角形CAB的面积;【设计意图:通过变式,让学生经历求平面直角直角坐标系中有关三角形面积问题,对此类问题的解决方案有一个系统的方法】练习1:在平面直角坐标系中,已知点A(3,4),B(4,0),C(-2,4),求三角形CAB的面积;【设计意图:由图形的差异,让学生明白三角形的底不一定在“下面”,引导学生去找钝角三角形的高,使学生更加熟练的掌握由点到线段再到三角形面积的求解过程】例4:已知A(-3,3),B(2,-2),C(6,1),求△ABC面积?思考1:此时△ABC的面积可以采用“底×高÷2”吗?为什么?思考2:那如何计算△ABC的面积?【设计意图:让学生明白平面直角坐标系内的三角形不是所有面积都可以用“底×高÷2”,让学生明白为什么此类三角形不能用直接法,进而让学生学会判断哪类图形不可以直接法求三角形面积,同时引出间接法“割补法”,将三角形问题转化为四边形问题进行解决。
平面直角坐标系答题及答案
平面直角坐标系答题及答案一、选择题(共5题,每题4分,共20分)1.直线y = 3x + 2与y轴的交点的坐标为: A. (0, 3) B. (3, 0) C. (0, 2) D. (-2, 0)答案:C. (0, 2)2.已知点A(2, 3)和B(7, 8),则直线AB的斜率为: A. 2 B. 3 C. 5/2 D.1/2答案:C. 5/23.在平面直角坐标系中,点P(4, -3)关于x轴的对称点为: A. (4, 3) B. (-4, 3) C. (-4, -3) D. (-4, -6)答案:C. (-4, -3)4.已知线段AB的中点坐标为(2, 5),且点A(-1, 3),则点B的坐标为:A. (5, 2)B. (3, 7)C. (-2, 5)D. (2, 7)答案:B. (3, 7)5.线段PQ的中点坐标为(1, -2),且点P(3, 1),则点Q的坐标为: A. (2, -5) B. (1, -4) C. (-1, -5) D. (2, -1)答案:C. (-1, -5)二、填空题(共3题,每题4分,共12分)1.直线y = -4x + 3与x轴的交点的坐标为(,)。
答案:(3/4, 0)2.在平面直角坐标系中,点A(5, -2)关于y轴的对称点为(,)。
答案:(-5, -2)3.已知点P(4, -3)和点Q(7, 1),则线段PQ的中点坐标为(,)。
答案:(5.5, -1)三、解答题(共2题,每题20分,共40分)1.根据平面直角坐标系,解答以下问题:(a)坐标轴上的点有哪些?答案:坐标轴上的点有无数个,如(0, 0)、(1, 0)、(0, 2)等。
(b)如何计算两点之间的距离?答案:计算两点之间的距离可以使用勾股定理,即距离等于两点间横坐标差的平方与纵坐标差的平方的和再开根号。
(c)如何判断两条直线的关系?答案:两条直线的关系可以通过斜率来判断。
如果斜率相等,且截距也相等,则两条直线重合;如果斜率相等,但截距不相等,则两条直线平行;如果斜率不相等,则两条直线相交。
平面直角坐标系练习题
平面直角坐标系练习题在平面直角坐标系中,我们常常需要解决与坐标有关的问题。
下面是一些平面直角坐标系的练习题,帮助你巩固对坐标系的理解和应用。
通过这些题目的训练,相信你能更加熟练地运用平面直角坐标系解决问题。
1.题目:已知平面直角坐标系中,点A的坐标为(3, 4),点B的坐标为(-2, 5),请计算线段AB的长度。
解析:根据两点间距离公式,我们可以求得点A与点B之间的距离为:d = √((x2 - x1)^2 + (y2 - y1)^2)代入坐标得:d = √((-2 - 3)^2 + (5 - 4)^2)= √((-5)^2 + 1^2)= √(25 + 1)= √26所以线段AB的长度为√26。
2.题目:已知平面直角坐标系中,点C的坐标为(6, 8),点D在x轴上,且与C关于x轴对称,求点D的坐标。
解析:由于点D与C关于x轴对称,所以两点的y坐标相等,即D的y坐标为8。
由于点D在x轴上,所以其y坐标为0。
所以D的坐标为(6, 0)。
3.题目:已知平面直角坐标系中,直线L1的方程为y = 2x - 1,直线L2经过点(3, 4)且与L1垂直,求直线L2的方程。
解析:由于L2与L1垂直,所以两条直线的斜率之积为-1。
L1的斜率为2,所以L2的斜率为-1/2。
通过点斜式,我们可以求得直线L2的方程为:y - y1 = k(x - x1)代入点(3, 4)和斜率-1/2得:y - 4 = -1/2(x - 3)2(y - 4) = -(x - 3)2y - 8 = -x + 3x + 2y = 11所以直线L2的方程为x + 2y = 11。
通过以上练习题的训练,相信你对平面直角坐标系有更深入的理解,并能熟练地运用它解决问题。
希望你能通过不断的练习和实践,进一步提升自己的数学能力。
七(下)培优训练(三)平面直角坐标系综合问题(压轴题)
培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例1】如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5). (1)求△AB C的面积;(2)如果在第二象限内有一点P(a ,0.5),试用a 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积与△AB C的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.yxPOCBA【例2】在平面直角坐标系中,已知A (-3,0),B (-2,-2),将线段AB 平移至线段CD .图1y xDO CB A图2y xDOCB AyxOBAyxOBA(1)如图1,直接写出图中相等的线段,平行的线段;(2)如图2,若线段AB 移动到CD ,C 、D 两点恰好都在坐标轴上,求C 、D 的坐标;(3)若点C 在y 轴的正半轴上,点D在第一象限内,且S△ACD =5,求C、D 的坐标;(4)在y 轴上是否存在一点P ,使线段AB 平移至线段PQ 时,由A 、B 、P、Q 构成的四边形是平行四边形面积为10,若存在,求出P 、Q的坐标,若不存在,说明理由;【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0).(1)求△ABC 的面积;(2)若把△AB C向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C '''; (3)若点A、C的位置不变,当点P 在y 轴上什么位置时,使2ACPABCS S=;(4)若点B 、C的位置不变,当点Q在x 轴上什么位置时,使2BCQABCS S=.【例4】如图1,在平面直角坐标系中,A (a ,0),C (b,2),且满足2(2)20a b ++-=,过C 作CB ⊥x 轴于B.(1)求三角形ABC 的面积;(2)若过B作BD ∥AC 交y 轴于D,且AE ,D E分别平分∠CA B,∠ODB ,如图2,求∠AE D的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形A CP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形AB CD 各顶点的坐标分别是A(0,0),B(7,0),C (9,5),D (2,7)(1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50, 若能,求出P 点坐标,若不能,说明理由.【例6】如图,A点坐标为(-2, 0), B 点坐标为(0, -3). (1)作图,将△ABO沿x轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C点, 过O点作O G⊥C E, 垂足为G ;(2) 在(1)的条件下, 求证: ∠C OG =∠E DF ; (3)求运动过程中线段A B扫过的图形的面积.【例7】在平面直角坐标系中,点B (0,4),C(-5,4),点A 是x轴负半轴上一点,S四边形A OBC =24.图1yxHOFEDAC B(1)线段B C的长为 ,点A的坐标为 ;(2)如图1,EA 平分∠CAO ,DA 平分∠CA H,CF ⊥A E点F,试给出∠ECF 与∠DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线C B与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON平分AOP ∠,BN 交ON 于N,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量关系式,并说明理由. 【例8】在平面直角坐标系中,OA=4,O C=8,四边形ABC O是平行四边形.A(-2,0)B(0,-3)y x 0(1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQ B与△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形Q BPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A ,B的坐标分别为(-1,0),(3,0),现同时将点A,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A,B 的对应点C,D 连结AC ,B D. (1)求点C ,D 的坐标及四边形ABD C的面积S 四边形ABDC ;(2)在y轴上是否存在一点P ,连结P A ,PB ,使S △PAB =S △明理由;(3)若点Q自O 点以0.5个单位/s 的速度在线段AB上移动,运动到B点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?【例10】在直角坐标系中,△AB C的顶点A (—2,0),B (2,4),C (5,0). (1)求△ABC 的面积(2)点D 为y负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得ADE BCE S S ∆∆=?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为 (用含n 的式子表示)二、坐标与几何:【例1】如图,已知A (0,a),B (0,b),C (m ,b)且(a -4)2+|b+3|=0,S △ABC =14. (1)求C点坐标(2)作DE ⊥DC,交y 轴于E点,EF 为∠AED 的平分线,且∠DF E=900.求证:FD 平分∠ADO;(3)E 在y 轴负半轴上运动时,连E C,点P为A C延长线上一点,EM 平分∠AEC,且PM ⊥EM,PN ⊥x 轴于N点,PQ 平分∠APN,交x轴于Q点,则E 在运动过程中,错误!的大小是否发生变化,若不变,求出其值.【例2】如图,在平面直角坐标系中,已知点A(-5,0),B(5.0),D(2,7), (1)求C点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q从C 点出发也以每秒1位的速度沿y轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。
平面直角坐标系最值问题
平面直角坐标系中的最值问题解决方法
平面直角坐标系中的最值问题是一个非常重要的问题,通常涉及到求函数在给定区域内的最大值和最小值。
下面是一些解决最值问题的方法:
1. 观察函数图像:通过观察函数的图像,可以直观地看到函数在哪些区域内的值较大或较小。
这种方法适用于一些简单函数的图像。
2. 利用导数:对于一些可导函数,可以利用导数来判断函数的单调性,从而确定函数的最大值和最小值。
3. 利用极坐标:将平面直角坐标系转化为极坐标系,可以将问题转化为求极径的最大值和最小值。
这种方法适用于一些具有圆形边界的问题。
4. 利用几何意义:对于一些具有几何意义的函数,可以利用几何意义来求解最值。
例如,对于圆上的点到原点的距离,可以利用圆的半径和圆心位置来求解最值。
解决平面直角坐标系中的最值问题需要综合考虑多种方法,根据具体问题选择合适的方法进行求解。
初二数学平面直角坐标系面积问题
初二数学平面直角坐标系面积问题一、概述在初中数学学习中,平面直角坐标系是一个重要的概念。
在这个坐标系中,我们可以通过两个数值来确定平面上的一个点的位置,进而计算出所需图形的面积。
本文将从初二数学的角度出发,探讨平面直角坐标系下的面积问题,并为大家解析面积问题的解题思路和方法。
希望能够对同学们的学习有所帮助。
二、平面直角坐标系下的基本概念1. 坐标系平面直角坐标系由两条相互垂直的直线,它们被称为坐标轴,通常用x 和y来表示。
这两条坐标轴把平面分成了四个部分,它们分别是第一象限、第二象限、第三象限和第四象限。
2. 点的坐标在平面直角坐标系中,我们可以用一个有序数对(x, y)来表示一个点P 的坐标,其中x为点P在x轴上的坐标,y为点P在y轴上的坐标。
3. 面积的计算在平面直角坐标系中,我们可以通过连接坐标轴上的点和直线,来确定一个图形的面积。
面积的计算方法有很多种,例如利用基本几何图形的面积公式进行计算,或者利用积分的方法进行计算。
三、常见的面积计算题型1. 长方形的面积计算我们来看一个简单的例子。
如果给出了一个长方形的两个顶点的坐标,我们要计算这个长方形的面积该怎么做呢?解题思路:(1)首先计算长方形的边长,可以利用坐标点之间的距离公式进行计算。
(2)根据长方形的面积公式S=长×宽,计算出长方形的面积。
2. 三角形的面积计算另外一个常见的题型是给出三角形的三个顶点的坐标,要求计算三角形的面积。
解题思路:(1)利用三角形的面积公式S=(1/2)×底边长度×高,计算出三角形的面积。
(2)可以利用向量运算的方法进行计算,例如计算三角形的两条边的向量,然后利用向量叉乘的方法得到三角形的面积。
3. 多边形的面积计算对于给出多边形的各个顶点的坐标,要求计算多边形的面积这样的题型,我们可以采用分割成若干个三角形,再分别计算每个三角形的面积,最后将各个三角形的面积相加来得到多边形的面积。
七年级下册数学培优训练 平面直角坐标系综合问题(压轴题)
培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例1】如图,在平面直角坐标中,A(0,1),B(2,0),C(2,1.5).(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,0.5),试用a的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在这样的点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.【例2】在平面直角坐标系中,已知A(-3,0),B(-2,-2),将线段AB平移至线段CD.图2(1)如图1,直接写出图中相等的线段,平行的线段;(2)如图2,若线段AB移动到CD,C、D两点恰好都在坐标轴上,求C、D的坐标;(3)若点C在y轴的正半轴上,点D在第一象限内,且S△ACD=5,求C、D的坐标;(4)在y轴上是否存在一点P,使线段AB平移至线段PQ时,由A、B、P、Q构成的四边形是平行四边形面积为10,若存在,求出P、Q的坐标,若不存在,说明理由;【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0).(1)求△ABC 的面积;(2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C '''; (3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使2ACPABCS S=;(4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQABCS S=.【例4】如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足2(2)0a ++=,过C 作CB ⊥x 轴于B .(1)求三角形ABC 的面积;(2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别是A (0,0),B (7,0),C (9,5),D (2,7)(1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50, 若能,求出P 点坐标,若不能,说明理由.【例6】如图,A 点坐标为(-2, 0), B 点坐标为(0, -3). (1)作图,将△ABO 沿x 轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C 点, 过O 点作OG ⊥CE , 垂足为G ;(2) 在(1)的条件下, 求证: ∠COG =∠EDF ; (3)求运动过程中线段AB 扫过的图形的面积.【例7】在平面直角坐标系中,点B (0,4),C (-5,4),点A 是x 轴负半轴上一点,S 四边形AOBC=24.(1)线段BC 的长为 ,点A 的坐标为 ;(2)如图1,EA 平分∠CAO ,DA 平分∠CAH ,CF ⊥AE 点F ,试给出∠ECF 与∠DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线CB 与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON 平分AOP ∠,BN 交ON于N ,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量关系式,并说明理由.A(-2,0)B(0,-3)y x【例8】在平面直角坐标系中,OA =4,OC =8,四边形ABCO 是平行四边形.(1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C 以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 与△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形QBPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D 连结AC ,BD . (1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;(2)在y 轴上是否存在一点P ,连结P A ,PB ,使S △P AB =S △试说明理由;(3)若点Q 自O 点以0.5个单位/s 的速度在线段AB 上移动,运动到B 点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?【例10】在直角坐标系中,△ABC 的顶点A (—2,0),B (2,4),C (5(1)求△ABC 的面积(2)点D 为y 负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得ADE BCE S S ∆∆=?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x 轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为 (用含n 的式子表示)【例1】如图,已知A(0,a),B (0,b ),C (m ,b )且(a -4)+|b +3|=0,S △ABC =14. (1)求C 点坐标(2)作DE ⊥DC ,交y 轴于E 点,EF 为∠AED 的平分线,且∠DFE =900.求证:FD 平分∠ADO ;(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM ,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,∠MPQ∠ECA 的大小是否发生变化,若不变,求出其值.【例2】如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7), (1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。
专题训练(三) 与平面直角坐标系有关的六类几何问题
专题训练(三)与平面直角坐标系有关的六类几何问题►类型一距离和最短问题1.如图ZT-3-1,在平面直角坐标系中,P是第一象限角平分线上的一个动点,A(1,0),B(2,0)是x轴上的两个点,求P A+PB的最小值.图ZT-3-1►类型二判断三角形的形状问题2.在平面直角坐标系中:(1)已知点P(2a-6,a+4)在y轴上,求点P的坐标;(2)已知A(-3,m-1),B(n+1,4)两点,若AB∥x轴,点B在第一象限,求m的值,并确定n的取值范围;(3)在(1)(2)的条件下,如果线段AB的长度是6,试判断以P,A,B为顶点的三角形的形状,并说明理由.►类型三等腰三角形问题3.如图ZT-3-2,在平面直角坐标系中,点A的坐标为(6,0),点B的坐标为(0,3).Q 为y轴上的一点,若△ABQ为等腰三角形,求点Q的坐标.图ZT-3-2► 类型四 面积问题4.2018·闵行区期末 如图ZT -3-3,在坐标平面内,已知点A 的坐标为(3,3),点B 的坐标为(-4,3),P 为直线AB 上的任意一点(不与点A ,B 重合),点Q 是点P 关于y 轴的对称点.(1)△ABO 的面积为________;(2)设点P 的横坐标为a ,那么点Q 的坐标为________;(3)如果△OP A 的面积是△OPQ 的面积的2倍,那么点P 的坐标为______________.图ZT -3-35.如图ZT -3-4,在平面直角坐标系中有A (a ,0),B (b ,0),C (1,3)三点,且a ,b 满足|3b +a -2|+b -a -6=0.(1)求点A ,B 的坐标.(2)在x 轴负半轴上有一点D ,使S △DOC =13S △ABC ,求点D 的坐标.(3)在坐标轴上是否还存在这样的点D ,使S △DOC =13S △ABC 仍然成立?若存在,直接写出点D 的坐标;若不存在,请说明理由.图ZT-3-4►类型五折叠问题6.如图ZT-3-5,在平面直角坐标系中,长方形OABC的顶点A,C分别在x轴、y 轴的正半轴上,点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.(1)求点E的坐标.(2)M是OB上的任意一点,N是OA上任意一点,是否存在点M,N,使得AM+MN的值最小?若存在,求出其最小值;若不存在,请说明理由.图ZT-3-5►类型六规律探究问题7.2017·南宁如图ZT-3-6,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,点P第一次旋转至①中点P1的位置,第二次旋转至②中点P2的位置,…,则正方形铁片连续旋转2017次后,点P2017的坐标为________.\图ZT-3-68.如图ZT-3-7,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到长方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到长方形的边时,记为点P1,第2次碰到长方形的边时,记为点P2,…,第n次碰到长方形的边时,记为点P n,则点P3的坐标是________;点P2019的坐标是________.图ZT-3-79.如图ZT-3-8,小明第1次向东走1米到点(1,0)的位置,第2次向北走2米到点(1,2)的位置,第3次向西走3米到点(-2,2)的位置,第4次向南走4米到点(-2,-2)的位置,第5次向东走5米到点(3,-2)的位置,…,如此下去,求小明第1001次走后到达位置的坐标.图ZT-3-8教师详解详析1.解:如图,作点A关于直线OM的对称点A′,连接A′B,交直线OM于点P,此时P A+PB的值最小,由题意可得出OA′=1,BO=2,P A′=P A,∴P A+PB=A′B=12+22= 5.2.解:(1)根据题意,知2a-6=0,解得a=3,∴点P的坐标为(0,7).(2)∵AB∥x轴,∴m-1=4且n+1≠-3,解得m=5,n≠-4.∵点B在第一象限,∴n+1>0,解得n>-1.故m=5,n>-1.(3)△P AB是等腰直角三角形.理由:由(2)知点A的坐标为(-3,4).∵AB=6,且点B在第一象限,∴点B的坐标为(3,4).由点P的坐标为(0,7)可得P A2=(-3-0)2+(4-7)2=18,PB2=(3-0)2+(4-7)2=18.∵AB2=36,∴P A2+PB2=AB2,且P A=PB,∴△P AB是等腰直角三角形.3.解:如图.在Rt △ABO 中,AB =OB 2+OA 2=45.当BA =BQ 时,点Q 的坐标为(0,3+45)或(0,3-45); 当AB =AQ 时,点Q 的坐标为(0,-3); 当BQ =AQ 时,设AQ =BQ =a , 在Rt △AOQ 中,∵OA 2+OQ 2=AQ 2, ∴(a -3)2+62=a 2, 解得a =152,∴OQ =BQ -OB =92,∴点Q 的坐标为(0,-92).综上所述,满足条件的点Q 的坐标为(0,3+45)或(0,3-45)或(0,-3)或(0,-92).4.解:(1)△ABO 的面积为12×7×3=212.故答案为212.(2)因为点P 为直线AB 上的任意一点(不与点A ,B 重合),点Q 是点P 关于y 轴的对称点,点P 的横坐标为a ,所以点Q 的坐标是(-a ,3).故答案为(-a ,3).(3)①当点P 在原点左侧时,P (-1,3);②当点P 在原点右侧时,设点P 的坐标为(m ,3),则3-m =2m ×2,解得m =35.故P (-1,3)或(35,3).故答案为(-1,3)或(35,3).5.解:(1)∵|3b +a -2|+b -a -6=0,∴⎩⎨⎧3b +a -2=0,b -a -6=0,解这个方程组,得⎩⎨⎧a =-4,b =2,∴点A 的坐标为(-4,0),点B 的坐标为(2,0). (2)设点D 的坐标为(d ,0),且d <0. ∵S △DOC =13S △ABC ,∴S △DOC =12×|d |×3=13×12×(4+2)×3,解得|d |=2,∴d =-2,∴点D 的坐标为(-2,0).(3)在坐标轴上还存在这样的点D ,使S △DOC =13S △ABC 仍然成立.由(2)可知d 还可以为2,则D (2,0). 当点D 在y 轴上时,设D (0,y ), ∵S △DOC =13S △ABC ,∴12×|y |×1=13×12×(4+2)×3,解得y=±6,∴点D的坐标为(0,6)或(0,-6),综上所述,点D的坐标为(2,0),(0,6),(0,-6).6.解:(1)∵将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E,∴∠DOB=∠AOB.∵BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠DOB,∴OE=BE.∵长方形OABC的顶点A,C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),设OE=x,则BE=x,CE=8-x,在Rt△OCE中,OC=4,根据勾股定理,得OC2+CE2=OE2,即16+(8-x)2=x2,解得x=5,∴BE=5,∴CE=3,∴点E的坐标为(3,4).(2)存在.如图,过点D作OA的垂线交BC于点G,交OB于点M,交OA于点N,连接AM,此时的点M,N是使AM+MN的值最小时点的位置,求出DN的长就是AM+MN 的最小值.由(1)得OE=5,则DE=3.又∵BE=5,BD=4,∴根据等面积有12DE ·BD =12BE ·DG , ∴DG =DE ·BD BE =125. ∵GN =OC =4,∴DN =DG +GN =125+4=325, 即AM +MN 的最小值是325. 7.[答案] (6053,2)[解析] 第一次旋转后得到P 1(5,2),第二次旋转后得到P 2(8,1),第三次旋转后得到P 3(10,1),第四次旋转后得到P 4(13,2),第五次旋转后得到P 5(17,2),…,发现点P 的位置4次一个循环.∵2017÷4=504……1,∴点P 2017的纵坐标与点P 1的纵坐标相同,为2,横坐标为1+12×504+4=6053,∴点P 2017的坐标为(6053,2).8.[答案] (8,3) (8,3)[解析] 如图,经过5次反弹后动点回到出发点(0,3),当点P 第3次碰到长方形的边时,点P 3的坐标为(8,3).∵2019÷6=336……3,∴当点P 第2019次碰到长方形的边时为第337个循环组的第3次反弹,此时点P 的坐标为(8,3).9.解:按照行走规律,可知第4次走后到达位置的坐标为(-2,-2),第8次走后到达的位置的坐标为(-4,-4),经过观察可得当走动次数是4的倍数时,所处的位置在第三象限的角平分线上,∵1000÷4=250,∴第1000次走后到达位置的坐标为(-500,-500),∴第1001次走后到达位置的坐标为(-500+1001,-500),即(501,-500).。
利用平面直角坐标系解决几何问题
利用平面直角坐标系解决几何问题在解决几何问题时,我们经常会遇到各种各样的困难和挑战。
然而,利用平面直角坐标系可以帮助我们更好地理解和解决这些问题。
平面直角坐标系是一种用于描述平面上点的坐标系统,它由水平的x轴和垂直的y轴组成,通过它们的交点确定了原点O。
在这个坐标系中,每个点都可以用一对有序实数(x, y)表示,其中x是点在x轴上的投影,y是点在y轴上的投影。
利用平面直角坐标系解决几何问题的关键是将几何问题转化为代数问题。
通过将点和图形映射到坐标系上,我们可以用代数方法来分析和计算它们的性质和关系。
下面,我将通过几个例子来说明平面直角坐标系在解决几何问题中的应用。
首先,我们来看一个简单的例子。
假设有一个三角形ABC,其中A(1, 2),B(3, 4),C(5, 6)。
我们需要计算三角形的周长和面积。
首先,我们可以计算AB的长度。
根据勾股定理,AB的长度等于√[(x2-x1)²+(y2-y1)²],代入坐标值计算可得AB的长度为√[(3-1)²+(4-2)²]=√8。
同样地,我们可以计算BC和AC的长度。
然后,根据周长的定义,三角形的周长等于AB+BC+AC。
代入计算结果,我们可以得到三角形的周长。
接下来,我们可以使用海伦公式来计算三角形的面积。
海伦公式是一个用于计算三角形面积的公式,它是根据三边的长度来计算的。
根据海伦公式,三角形的面积等于√[s(s-a)(s-b)(s-c)],其中s是三角形周长的一半,a、b、c分别是三角形的三边的长度。
代入计算结果,我们可以得到三角形的面积。
接下来,我们来看一个更复杂的例子。
假设有一个圆C,圆心为O(0, 0),半径为r。
我们需要确定圆上一点P(x, y)的位置关系。
首先,我们可以计算点P到圆心O的距离。
根据距离公式,点P到圆心O的距离等于√(x²+y²)。
如果这个距离等于圆的半径r,那么点P在圆上;如果这个距离小于圆的半径r,那么点P在圆内;如果这个距离大于圆的半径r,那么点P在圆外。
平面直角坐标系运动点问题
平面直角坐标系运动点问题问题描述在平面直角坐标系中,一个运动点描述如下:点从初始位置$(x_0.y_0)$ 出发,沿着直线运动,以速度 $v$ 前进。
假设 x 轴和 y 轴为运动的水平和垂直方向,分别为正方向。
给定初始位置坐标$(x_0.y_0)$ 和速度 $v$,我们需要计算点在时间 $t$ 后的位置。
解决方法我们可以使用直线的斜率来解决这个问题。
斜率是指直线上任意两点之间纵向的变化量除以横向的变化量。
在这个问题中,我们需要计算点的横向和纵向位置的变化量。
根据直角坐标系的性质,纵向位置随时间的变化是线性的,而横向位置保持不变。
根据上述观察,我们可以得出以下公式:Delta y = v \cdot t其中 $\Delta y$ 表示纵向位置的变化量,$v$ 表示速度,$t$ 表示时间。
另外,我们可以利用点的初始位置 $(x_0.y_0)$ 以及横向位置不变的特性,得出以下公式:x = x_0其中 $x$ 表示点在时间 $t$ 后的横向位置。
根据上述两个公式,我们可以给出点在时间$t$ 后的位置$(x。
y)$:x = x_0 \\y = y_0 + v \cdot t示例假设点的初始位置为 $(1.2)$,速度为 $3$。
我们希望计算点在时间 $t=4$ 后的位置。
根据上述公式:x = 1 \\y = 2 + 3 \cdot 4 = 2 + 12 = 14因此,点在时间 $t=4$ 后的位置为 $(1.14)$。
总结通过使用平面直角坐标系和直线的斜率性质,我们可以计算点在时间 $t$ 后的位置。
解决平面直角坐标系中的问题
解决平面直角坐标系中的问题平面直角坐标系是数学中一个重要的概念,它用于描述平面上的点和向量。
在解决平面直角坐标系中的问题时,我们需要运用坐标系的性质和相关的数学知识来进行分析和计算。
本文将介绍如何解决平面直角坐标系中的问题,并提供一些解题的方法和技巧。
1. 坐标系简介在平面直角坐标系中,通常用两条相互垂直的数轴来表示平面上的点。
其中一条水平的数轴称为x轴,另一条垂直的数轴称为y轴。
坐标系的原点O表示x轴和y轴的交点,坐标系的四个象限分别为第一象限、第二象限、第三象限和第四象限。
2. 坐标的表示在平面直角坐标系中,每一个点都可以用一个有序数对(x, y)来表示,其中x表示该点在x轴上的投影,y表示该点在y轴上的投影。
例如,点A在坐标系中的表示为A(xA, yA)。
3. 直线的方程在平面直角坐标系中,直线可以用方程的形式表示。
对于一条不平行于坐标轴的直线,其方程通常可以表示为y = kx + b的形式,其中k表示直线的斜率,b表示直线与y轴的交点。
对于一条平行于x轴的直线,其方程为y = b,对于一条平行于y轴的直线,其方程为x = a,其中a表示直线与x轴的交点。
4. 距离和斜率的计算在解决平面直角坐标系中的问题时,经常需要计算两点之间的距离和直线的斜率。
两点之间的距离可以通过距离公式来计算:d = √((x2 - x1)^2 + (y2 - y1)^2),其中(x1, y1)和(x2, y2)分别表示两点的坐标。
直线的斜率可以通过斜率公式来计算:k = (y2 - y1) / (x2 - x1),其中(x1, y1)和(x2, y2)分别表示直线上两个不同点的坐标。
5. 问题的解答步骤在解决平面直角坐标系中的问题时,一般可以按照以下步骤进行:(1) 理解问题:仔细阅读问题,明确问题所要求的内容。
(2) 建立坐标系:根据问题中的描述,建立一个适当的平面直角坐标系。
(3) 建立方程:根据问题的条件和要求,建立适当的方程来描述问题中的直线、点等。
平面直角坐标系的面积问题
平面直角坐标系的面积问题平面直角坐标系的面积问题,听起来有点复杂,其实就是在讲一些看似无聊却充满趣味的数学故事。
想象一下,你在公园里,阳光明媚,心情愉快,忽然看到一块用线划出的区域。
这块区域就像是个小秘密,等着你去发现它的面积。
哎,这个面积可不简单,要是你只用眼睛瞄一瞄,那就太肤浅了。
你得认真研究,像个侦探一样,看看这个区域的每一个边界,找出它的真相。
咱们先说说坐标系。
它就像一张大地图,把每一个点都划分得清清楚楚。
你可以在上面找任何地方,左边、右边、上面、下面,随便你。
坐标系里有两个轴,一个是横着的x轴,一个是竖着的y轴。
你在这些轴上标记一个点,就像给自己的小小冒险之旅打下一个坐标。
想象一下,你在坐标系的某个角落,左上角是你的小房子,右下角是你最爱的冰淇淋店。
哎呀,光想就流口水了吧!说到面积,大家可能会觉得没什么稀奇的,其实这可是个大事。
一个区域的面积就像是那块蛋糕的大小,切得越大,大家的胃口就越好。
你得用心去算,不能马虎。
如果你碰到的是一个简单的矩形,那就简单了。
只要把长和宽相乘,嘿嘿,轻松搞定!可要是遇上个不规则的形状,那可得好好动动脑筋,像个大侦探一样,找出它的秘密。
想象一下,有个三角形坐落在坐标系里。
你得找到它的三个顶点,然后用公式计算面积。
你知道吗?三角形的面积公式可是相当简单。
底乘以高再除以二,这样就能得出它的面积。
多简单呀!不过,别忘了,找到底和高可不是件容易的事。
底边在哪里,高度又得怎么量?这些问题都需要你慢慢琢磨,像品味一杯好茶,回味无穷。
说到面积,咱们不能不提圆。
圆的面积,那可是一门大学问。
想想看,圆周率π像个神秘的符号,永远不会结束的数字,听起来就让人觉得好神奇。
圆的面积公式是πr²,r是圆的半径。
听起来复杂,但其实只要你找到半径,再带入公式,嘿嘿,结果就出来了。
不过,半径不容易找啊,得从中心到圆边的那一段去量。
就像你心里一直想要的那个小秘密,得找对了方法,才能揭晓。
平面直角坐标系体积动点问题
平面直角坐标系体积动点问题
问题描述:
在平面直角坐标系中,给定一固定点A(x1, y1),一个可变点B(x2, y2),以及一个固定长度L。
点B沿直线运动,且与点A的连接线与x轴的夹角恒定,求点B所生成的平面图形的体积。
解决方案:
根据问题描述,我们可以将问题简化为求解旋转体的体积。
我们可以将固定点A作为旋转轴,并以点A为圆心,固定长度L为半径画一个圆。
随着可变点B在直线上的运动,所生成的平面图形将是旋转轴为圆A的旋转体。
根据旋转体的体积公式,我们可以得到:
V = π * R^2 * H
其中,V表示体积,π为圆周率,R为圆的半径,H为旋转轴上的高度。
在本问题中,半径R即为固定长度L,而高度H可以通过两点之间的距离公式求得。
所以,我们只需要计算圆A的半径L并求得固定点A和可变点B的距离。
点A和点B的坐标分别为:
A(x1, y1)
B(x2, y2)
可变点B和固定点A的距离可通过以下公式计算:
D = sqrt((x2 - x1)^2 + (y2 - y1)^2)
其中,sqrt表示求平方根。
根据上述公式,我们可以得到旋转体的体积公式:
V = π * L^2 * D
根据问题描述所给的条件,我们可以使用以上公式求解平面图形的体积。
根据固定点A的坐标和给定的可变点B的坐标,我们可以计算出两点之间的距离D,并代入公式求解体积。
完成以上步骤后,我们就得到了平面直角坐标系体积动点问题的求解方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)若抛物线的对称轴与直线 AC 相交于点 B,E 为直线 AC 上的任意一点,过点 E 作 EF∥BD
交抛物线于点 F,以 B,D,E,F 为顶点的四边形能否为平行四边形?若能,求点 E 的坐标;
若不能,请说明理由;(注:要分类讨论;E
(1,2)或(
1+
17 2
,3+
17 2
)或(
1-
17 2
∴
2= 2 4+y 2+1 2=2
,解得,xy==-11.
若以 BC 为对角线,AB,AC 为邻边构成平行四边形,则 AD,BC 的中点重合
∴ -212+2+yx==41+22+13,解得,xy==53.
若以 AC 为对角线,AB,BC 为邻边构成平行四边形,则 BD,AC 的中点重合
3+x -1+1
y ·A(1,5)
角度进行考查,会有一部分同学不习惯,无从下手.启示平 时学习要注意发散思考,教师组织教学时多注意变式教学,
·B′ቤተ መጻሕፍቲ ባይዱ3,1)
突破思维定势.关于距离和的最小值结论需要根据三角形的
O ·M
x
B
(3,-1)
5
任意两边之和大于第三边理解,而象此题这样的关于距离差 的最大值结论需要根据三角形的任意两边之差小于第三边来理解.
2、【解析】如下图所示,取 B(3,-1)关于 x 轴的对称点为 B′,则 B′的坐标为(3, 1).作直线 AB,它与 x 轴的交点即为所求的点 M.使用待定系数法求得直线 AB 的解析式
为 y=-2x+7,令 y=0,得-2x+7=0,解得 x= 7 ,所以点 M 的坐标为( 7 ,0).
2
2
【点评】此题属于最值类问题,将平面直角坐标系、对称点、 轴对称、一次函数等知识糅合在一起考查.这类问题中,以 往考查较多的是到两定点的距离和最大,而此题从距离差的
∴D1E1= D1C1= , ∴D1E1=B2E2= , ∴cos30°=
=
,
解得:B2C2= ,
∴B3E4= , cos30°=
,
解得:B3C3= ,
则 WC3= , 根据题意得出:∠WC3 Q=30°,∠C3 WQ=60°,∠A3 WF=30°, ∴WQ= × = ,
FW=WA3•cos30°= × = ,
⑤当 AB 不平行于坐标轴,也不在坐标轴上时,AB= x2 x1 2 y2 y1 2
△⑥平面直角坐标系中,点到直线的距离:
已知点 P( x 0, y 0)、直线 L: Ax By C 0 ,
y B2
B(x2,y2)
则点 P( x 0, y 0)到直线 L: Ax By C 0 的
的坐标分别是( )
A.M(5,0),N(8,4)
B.M(4,0),N(8,4)
C.M(5,0),N(7,4)
D.M(4,0),N(7,4)
7、若点 A(m-3,1-3m)在第三象限,则 m 的取值范围是
.
1
◆例题精讲
例 1、如图,在直角坐标系中,矩形 ABCO 的边 OA 在 x 轴上,边 OC 在 y 轴上,点 B 的坐标
平面直角坐标系中有关计算的问题
◆知识讲解
①点 P(a,b)到 x 轴的距离为
,到 y 轴距离为
,到原点距离为
。
②点 P(a,b):若点 P 在 x 轴上 a 为任意实数,b=
;
若点 P 在 y 轴上 a=
,b 为任意实数;
若点 P 在一,三象限坐标轴夹角平分线上 a=
;
若点 P 在二,四象限坐标轴夹角平分线上 a=
则点 A3 到 x 轴的距离是:FW+WQ= + =
,
故选:D.
点评: 此题主要考查了正方形的性质以及锐角三角函数的应用等知识,根据已知得出 B3C3 的长是解题关键.
6
d 距 离公式为
Ax0 By0 C
A2 B2
△⑦平面直角坐标系中,两平行线之间的距离:
A(x1,y1) A2
A1 O
C
x B1
两条平行直线 l1:Ax By C1 0 l2:Ax By C2 0
之间的距离是
d
C1 C2 A2 B2
⑧若直线 y k1x b1 与直线 y k2 x b2 平行时, k1 k2 ;若直线 y k1x b1 与直线
【运用】 (1)如图,矩形 ONEF 的对角线交于点 M,ON、OF 分别在 x 轴和 y 轴上,O 为坐标原
点,点 E 的坐标为(4,3),则点 M 的坐标为______;
(2)在直角坐标系中,有 A(-1,2),B(3,1),C(1,4)三点,另有一点 D 与点 A、B、C 构成平行四边形的顶点,求点 D 的坐标.
。
③A(x1,y1),B(x1,y2):A,B 关于 x 轴对称 x1=
,y1=
;
A、B 关于的 y 轴对称 x1=
,y1=
;
A、B 关于原点对称 x1=
,y1=
;
④AB∥x 轴 y1=y2 且 x1≠x2;AB∥y 轴 x1=x2 且 y1≠y2(A,B 表示两个不同的点).
当 AB 平行于 x 轴时,AB=|x2-x1|; 当 AB 平行于 y 轴时,AB=|y2-y1|;
,3-
17 2
)。)
(4)若 P 是抛物线上位于直线 AC 上方的一个
动点,求△APC 的面积的最大值.( 27 ) 8
◆发散思维
3
1、求函数 y= x2 1 x2 4x 8 的最小值.
2、已知点 A(1,5),B(3,-1),点 M 在 x 轴上,当 AM-BM 最大时,点 M 的坐标为 .
y k2 x b2 垂直时, k1 k2 1 。
◆课前热身
1、点 A(-2,-3)到 x 轴的距离是
,到 y 轴的距离是
。
2、若点 P 在第三象限且到 x 轴的距离为 2 ,到 y 轴的距离为 5,则点 P 的坐标是
。
3、已知点M (3,b), N (a,5) :
(1)若点M、N两点都在第一、三象限角平分线上,则a ___,b ___
4
A.
B.
C.
D.
例 2、【答案】解:(1)∵四边形 O NEF 是矩形, ∴点 M 是 OE 的中点. ∵O(0,0),E(4,3),
∴点 M 的坐标为(2,32).
(2)设点 D 的坐标为(x,y). 若以 AB 为对角线,AC,BC 为邻边构成平行四边形,则 AB,CD 的中点重合
1+x -1+3
◆课后作业
1、已知 A,B,C,D 点的坐标如图 1 所示,E 是图中两条虚线的交点,若△ABC 和△ADE 相似,则 E 点的坐标为_______.
2、如图,在平面直角坐标系中,等边三角形 ABC 的顶点 B,C 的坐标分别为(1,0),
(3,0),过坐标原点 O 的一条直线分别与边 AB,AC 交于点 M,N,若 OM=MN,
◆巩固练习 1、在平面直角坐标系中,坐标轴上到点 A(6,-8)的距离等于10的点共有( )
A、1 个 B、2 个 C、3 个 D、4 个 2、已知在平面直角坐标系中,点 P(1-a,2a+5)到两坐标轴的距离相等,求 a 的值并确定
点 P 的坐标。
3、已知平面直角坐标系中点 A(0,-3),点 B 与点 A 在同一坐标轴上,且|AB|=8, 求点 B 的坐标
∴
2= 2 12+y=2+24
,解得,xy==-53.
综上可知,点 D 的坐标为(1,-1)或(5,3)或 (-3,5). 发散思维【答案】1、解:函数的解析式可化为
x2 1 x2 4x 8 = x 02 0 12 x 22 0 22
令 A(0,1),B(2,2),P(x,0),则问题转化为在 x 轴上求一点 P(x,0),使得|PA|+|PB| 取最小值.
(2)若点M、N两点都在第二、四象限角平分线上,则a ___,b ___ 4、点 A 在 x 轴上,距离原点 4 个单位长度,则 A 点的坐标是 _______________。
5、平面直角坐标系中,与点(2,-3)关于原点中心对称的点是
。
6、如图所示,在平面直角坐标系中,菱形 MNPO 的顶点 P 坐标是(3,4),则顶点 M、N
◆课后作业答案:2、(54,
3 4)
3、分 析:
利用正方形的性质以及平行线的性质分别得出 D1E1=B2E2=
,B2C2=
,进而得出
B3C3= ,求出 WQ= × = ,FW=WA3•cos30°= × = ,即可得出答案.
解答: 解:过小正方形的一个顶点 W 作 FQ⊥x 轴于点 Q,过点 A3F⊥FQ 于点 F, ∵正方形 A1B1C1D1 的边长为 1,∠B1C1O=60°,B1C1∥B2C2∥B3C3, ∴∠B3C3 E4=60°,∠D1C1E1=30°,∠E2B2C2=30°,
则点 M 的坐标为______________.
y
M
A
N M
OB M
Cx
3、已知在平面直角坐标系中放置了 5 个如图所示的正方形(用阴影表示),点 B1 在 y 轴 上,点 C1、E1、E2、C2、E3、E4、C3 在 x 轴上.若正方形 A1B1C1D1 的边长为 1,∠B1C1O=60°, B1C1∥B2C2∥B3C3,则点 A3 到 x 轴的距离是( )
2
◆拓展提高 例 3、如图,已知抛物线 y=﹣x2+bx+c 与一直线相交于 A(﹣1,0),C(2,3)两点,与 y 轴交于点 N.其顶点为 D.
(1)抛物线及直线 AC 的函数关系式; y x2 2x 3; y x 1