南京大学2004量子力学考研真题

合集下载

量子力学经典题目及解答

量子力学经典题目及解答

8 a1
a2
a3
2 a1
a2
a3
第一章
补充:1.设 1 af1(x)ei(x和t) 2 bf2 (x)ei分(x别t表) 示
微观粒子的两个可能状态,求当粒子处于叠加态 1 2
时的相对几率分布。a,b为复常数, f1, f2为实函数。 解: 2 1 2 2 af1ei( xt) 2 bf2ei( xt) 2
n1
x
2
, px
h
x
n1h , 2a1
同理, py n2h / 2a2, pz n3h / 2a3 n1, n2, n3 1, 2,3
E
p2
2
1
2
(
px2
py2
pz2 )
h2
2
(
n1 2a1
)2
( n2 2a2
)2
( n3 2a3
)2
E h2 [( n1 )2 ( n2 )2 ( n3 )2 ] 2 2 [( n1 )2 ( n2 )2 ( n3 )2 ]
1
hv kT
1 c2
v T
d
c1v3dv ec2v/T 1
c1v3dv c2v /T
c1 c2
Tv2dv
----R-J公式
2.由玻尔角动量量子化条件导出氢原子能级公式 En
解: 角动量量子化条件,
es2 r2
Ln
v2
r
rnv
(向心力)
(1) (2)
r * (2) :
es2
(v2
)
(1)
(
的两组超越方程,经图解法求出束缚态的 后, k,可由(15)
得 2.8出分对子应间的的能范级德瓦E。n耳斯力所产生的势能可以近似的表示为

汇总高校量子力学考研试题

汇总高校量子力学考研试题

汇总⾼校量⼦⼒学考研试题习题1⼀、填空题1.玻尔的量⼦化条件为。

2.德布罗意关系为。

3.⽤来解释光电效应的爱因斯坦公式为。

4.波函数的统计解释:_______________________________________________________________________________________________5.为归⼀化波函数,粒⼦在⽅向、⽴体⾓内出现的⼏率为,在半径为,厚度为的球壳内粒⼦出现的⼏率为。

6.波函数的标准条件为。

7.,为单位矩阵,则算符的本征值为__________。

8.⾃由粒⼦体系,__________守恒;中⼼⼒场中运动的粒⼦___________守恒。

9.⼒学量算符应满⾜的两个性质是。

10.厄密算符的本征函数具有。

11.设为归⼀化的动量表象下的波函数,则的物理意义为_______________________________________________。

12.______;_______;_________。

28.如两⼒学量算符有共同本征函数完全系,则___。

13.坐标和动量的测不准关系是____________________________。

14.在定态条件下,守恒的⼒学量是_______________________。

15.隧道效应是指__________________________________________。

16.量⼦⼒学中,原⼦的轨道半径实际是指____________________。

17.为氢原⼦的波函数,的取值范围分别为。

18.对氢原⼦,不考虑电⼦的⾃旋,能级的简并度为,考虑⾃旋但不考虑⾃旋与轨道⾓动量的耦合时,能级的简并度为,如再考虑⾃旋与轨道⾓动量的耦合,能级的简并度为。

19.设体系的状态波函数为,如在该状态下测量⼒学量有确定的值,则⼒学量算符与态⽮量的关系为__________。

20.⼒学量算符在态下的平均值可写为的条件为____________________________。

量子力学习题集(NJU)

量子力学习题集(NJU)
2
h ¯ k2
Note:


−∞
[ ( )] dx exp − α2 x2 + iβx + iγx2 =
(
π α2 + iγ
)1/2
−β 2 (α2 − iγ ) exp 4 (α4 + γ 2 )
[
]
4. 设粒子处于二维无限深势井中, 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b; V (x) = ∞, 其它情况. 求粒子的能量本征值和本征函数,并讨论简并性。 参考答案:由于势阱无限深,在势阱外找到粒子的概率应该为零,因此势阱外的波函数为 ψ (x, y ) = 0. 在势井内部,定态薛定谔方程为 h ¯2 2 h ¯2 ∂2 ∂2 − ∇ ψ (x, y ) = − ( 2 + 2 )ψ (x, y ) = Eψ (x, y ). 2µ 2µ ∂x ∂y 这里,µ为粒子质量。做变量分离 ψ (x, y ) = f (x)g (y ), 我们有 其中,c > 0。 求解上面两个方程,我们有 f (x) = α eikx x + α e−ikx x , 1 2 g (y ) = β1 eiky y + β2 e−iky y ,
b
3

f (x) = A sin(k x), x g (y ) = B sin(ky y ). 进行归一化后,有 2 nπx mπx ψn,m (x, y ) = √ sin( ) sin( ). a b ab
而本征能量为 En,m = 当a = b时,则本征能量为 En,m =
2 2
4
h ¯ 2 π 2 n2 . 2ma2
于是, 1 ψ (x, 0) = √ [ψ1 (x) + eiϕ ψ2 (x)]. 2 (2) 1 h h ψ (x, t) = √ [ψ1 (x)e−iE1 t/¯ + eiϕ ψ2 (x)e−iE2 t/¯ ]. 2 |ψ (x, t)|2 = ψ ∗ (x, t)ψ (x, t) E1 − E2 1 2 2 (x) + ψ2 (x) + 2ψ1 (x)ψ2 (x) cos(ϕ + t)]. = [ψ1 2 h ¯ (3) ∫ ⟨x ˆ⟩ = 利用, ∫

南京大学2004年哲学综合专业课考研真题试卷

南京大学2004年哲学综合专业课考研真题试卷

南京大学2004年哲学综合专业课考研真题试卷
311哲学综合
一、简述题
1、马克思主义哲学创立的理论前提是什么?
2、“社会一旦有技术上的需要,比十所大学更能把科学推向前进”,谈谈你对这句话的认识。

3、“我们突破前人,前人也突破我们”,运用认识论原理说明你
的认识。

二、思考题
1、马克思,恩格斯在《德意志形态》中,实际上和对--实践的唯
物主义者,革命化实际反对和改变事物现状,用马克思主义哲学
谈谈对马克思主义哲学基本精神的理解。

2、真理是政治权力的运行规则,金钱的游戏规则等联系在一起的,所以走上真理观上的相对主义,所以试比较马克思主义真理相对性。

三、简答题
1、如何理解“观察渗透理论”?
2、创造性思维的特点与作用?
四、论述题
1、论述自然辩证法的创立发展反映了科学技术发展的历史必然性。

2、论述如何正确协调人与自然的关系
3、科学发展有哪些形式?如何评价西方科学哲学中的科学发展模式?
418科学思想史
一、简述题
1、简述热二律与进化的矛盾,如何认识?
2、如何理解毕达哥拉斯学派在西方科学思想史上的地位?
3、简述笛卡儿派与牛顿派的争论?
二、论述题
1、论述量子力学思想发展的基本体系。

2、论述科学史对理解两种文化的关系有何意义?
3、论述科学与技术联系、区别、相互联系。

4、论述从科学技术是第一生产力到知识经济到历史必然性。

5、论述网络与社会的关系及其对人的影响作用。

6、从科学技术哲学角度对“新型工业化”的理解。

量子力学考试题

量子力学考试题

量子力学考试题量子力学考试题(共五题,每题20分)1、扼要说明:(a )束缚定态的主要性质。

(b )单价原子自发能级跃迁过程的选择定则及其理论根据。

2、设力学量算符(厄米算符)∧F ,∧G 不对易,令∧K =i (∧F ∧G -∧G ∧F ),试证明:(a )∧K 的本征值是实数。

(b )对于∧F 的任何本征态ψ,∧K 的平均值为0。

(c )在任何态中2F +2G ≥K3、自旋/2的定域电子(不考虑“轨道”运动)受到磁场作用,已知其能量算符为S H ??ω=∧H =ω∧z S +ν∧x S (ω,ν>0,ω?ν)(a )求能级的精确值。

(b )视ν∧x S 项为微扰,用微扰论公式求能级。

4、质量为m 的粒子在无限深势阱(0<x</x5、某物理体系由两个粒子组成,粒子间相互作用微弱,可以忽略。

已知单粒子“轨道”态只有3种:a ψ(→r ),b ψ(→r ),c ψ(→r ),试分别就以下两种情况,求体系的可能(独立)状态数目。

(i )无自旋全同粒子。

(ii )自旋 /2的全同粒子(例如电子)。

量子力学考试评分标准1、(a ),(b )各10分(a )能量有确定值。

力学量(不显含t )的可能测值及概率不随时间改变。

(b )(n l m m s )→(n’ l’ m’ m s ’)选择定则:l ?=1±,m ?=0,1±,s m ?=0 根据:电矩m 矩阵元-e →r n’l’m’m s ’,n l m m s ≠0 2、(a )6分(b )7分(c )7分(a )∧K 是厄米算符,所以其本征值必为实数。

(b )∧F ψ=λψ,ψ∧F =λψ K =ψ∧K ψ=i ψ∧F ∧G -∧G ∧F ψ =i λ{ψ∧G ψ-ψG ψ}=0 (c )(∧F +i ∧G )(∧F -i ∧G )=∧F 2+∧G 2-∧Kψ(∧F +i ∧G )(∧F -i ∧G )ψ=︱(∧F -i ∧G )ψ︱2≥0 ∴<∧F 2+∧G 2-∧K >≥0,即2F +2G ≥K 3、(a),(b)各10分(a) ∧H =ω∧z S +ν∧x S =2 ω[1001-]+2 ν[0110]=2 [ωννω-]∧H ψ=E ψ,ψ=[b a ],令E =2λ,则[λωννλω---][b a ]=0,︱λωννλω---︱=2λ-2ω-2ν=0 λ=±22νω+,E 1=-2 22νω+,E 2=222νω+ 当ω?ν,22νω+=ω(1+22ων)1/2≈ω(1+2 22ων)=ω+ων22E 1≈-2 [ω+ων22],E 2 =2[ω+ων22](b )∧H =ω∧z S +ν∧x S =∧H 0+∧H’,∧H 0=ω∧z S ,∧H ’=ν∧x S∧H 0本征值为ω 21±,取E 1(0)=-ω 21,E 2(0)=ω 21相当本征函数(S z 表象)为ψ1(0)=[10],ψ2(0)=[01 ]则∧H ’之矩阵元(S z 表象)为'11H =0,'22H =0,'12H ='21H =ν 21E 1=E 1(0)+'11H +)0(2)0(12'21E E H-=-ω 21+0-ων2241=-ω21-ων241 E 2=E2(0)+'22H +)0(1)0(22'12E E H -=ω 21+ων2414、E 1=2222ma π,)(1x ψ=0sin 2a xa π a x x a x ≥≤<<,00x =dx x a ?021ψ=2sin 202a dx a x x a a=?π x p =-i ?=a dx dx d011ψψ-i ?=aa x d a 020)sin 21(2π x xp =-i ??-=aaa x d a x x a i dx dx d x 0011)(sin sin 2ππψψ =-a a x xd a i 02)(sin 1π =0sin [12a a x x a i π --?adx a x 02]sin π=0+?=ai dx ih 02122 ψ 四项各5分5、(i ),(ii )各10分(i )s =0,为玻色子,体系波函数应交换对称。

南京大学2000年量子力学专业课考研真题试卷

南京大学2000年量子力学专业课考研真题试卷

南京大学2000年量子力学专业课考研真题试卷
一.一维谐振子处在状态,,求:
(1)势能的平均值(7分)
(2)动能的几率分布函数(7分)
(3)动能的平均值(7分)
提示:
二.质量为m的粒子在一维势场中运动,求,
(1)决定束缚态能级的方程式(15分)
(2)至少存在一个束缚态的条件(5分)
三.质量为m的粒子在一维势场中运动,其中是小的实常数,试用微扰论求准到一次方的基态能量.(20分)
四.两个自旋的非全同粒子系的哈密顿量,求的能量本征值和相应的简并度.(20分)
五.
(1)设氢原子处于沿z方向的均匀静磁场中,不考虑自旋,在弱磁场情形下求n=2能级的分裂情况.(10分)
(2)如果沿z方向不仅有均匀静磁场,还有均匀静电场,再用微扰论求n=2能级的分裂情况.(9分)。

量子力学统考真题答案解析

量子力学统考真题答案解析

量子力学统考真题答案解析近年来,量子力学成为物理学领域研究的热点,其在现代科技中的应用也越发广泛。

因此,掌握量子力学相关知识成为了很多学生的目标。

本文将对一些量子力学统考真题的答案进行解析,帮助读者更好地理解这一领域的知识。

真题一:在泊松括号的定义中,以下哪个性质是正确的?A. 反对称性B. 可加性C. 分配律D. 结合律答案解析:泊松括号的正确性质是反对称性,即对于量子力学中的两个算符A和B,其泊松括号满足{A, B} = -{B, A}。

可加性、分配律和结合律均不是泊松括号的性质。

真题二:以下哪个选项是描述薛定谔方程解的最准确的描述?A. 波函数是一种物理量B. 波函数是一种运动学参数C. 波函数描述了粒子的运动状态D. 波函数描述了粒子的位置答案解析:准确描述薛定谔方程解的选项是C,即波函数描述了粒子的运动状态。

量子力学中的波函数是对粒子运动状态的描述,可以通过求解薛定谔方程得到。

真题三:以下哪个选项是正确的?对于一个哈密顿量H,若其本征态满足ψ = Cψ,其中C为常数,则A. H是没有本征值的。

B. ψ是H的本征态。

C. ψ是H的本征值。

D. ψ不是H的本征态。

答案解析:本题要求判断给定情况下的哈密顿量H与其本征态之间的关系。

根据题目中给出的条件,可以得出结论:ψ是H的本征态。

因为薛定谔方程的解包含了波函数和能量本征值,ψ满足薛定谔方程,因此可以认为ψ是H的本征态。

真题四:以下哪个量是角动量算符的一个本征值?A. 平动动量B. 能量C. 电荷D. 波长答案解析:角动量算符的一个本征值是角动量,选项A的平动动量与角动量概念不同,选项B的能量与角动量没有直接关系,选项C的电荷也与角动量无关,只有选项D的波长与角动量有一定关系,因此答案选D。

通过以上对量子力学统考真题的答案解析,希望可以帮助读者更好地理解量子力学知识。

量子力学是一门复杂而且深奥的学科,需要持续的学习和思考。

只有通过理论的学习和实践的应用,我们才能真正掌握量子力学的精髓,为科学技术的发展做出贡献。

历年南京师范大学839量子力学考研真题试卷与答案详解

历年南京师范大学839量子力学考研真题试卷与答案详解

历年南京师范大学839量子力学考研真题试卷与答案详解历年南京师范大学839量子力学考研真题试卷与答案详解一、考试解读:part 1 学院专业考试概况:①学院专业分析:含学院基本概况、考研专业课科目:量子力学的考试情况;②科目对应专业历年录取统计表:含南师大物理学专业的历年录取人数与分数线情况;③历年考研真题特点:含南师大考研专业课量子力学各部分的命题规律及出题风格。

part 2 历年题型分析及对应解题技巧:根据南师量子力学各专业考试科目的考试题型(简答题、计算题、证明题、综合题等),分析对应各类型题目的具体解题技巧,帮助考生提高针对性,提升答题效率,充分把握关键得分点。

part 3 近年真题分析:最新真题是南师考研中最为珍贵的参考资料,针对最新一年的南师考研真题试卷展开深入剖析,帮助考生有的放矢,把握真题所考察的最新动向与考试侧重点,以便做好更具针对性的复习准备工作。

part 4 未来考试展望:根据上述相关知识点及真题试卷的针对性分析,提高考生的备考与应试前瞻性,令考生心中有数,直抵南师大考研的核心要旨。

part 5 南师大考试大纲:①复习教材罗列(官方指定或重点推荐+拓展书目):不放过任何一个课内、课外知识点。

②官方指定或重点教材的大纲解读:官方没有考试大纲,高分学长学姐为你详细梳理。

③拓展书目说明及复习策略:专业课高分,需要的不仅是参透指定教材的基本功,还应加强课外延展与提升。

part 6 专业课高分备考策略:①考研前期的准备;②复习备考期间的准备与注意事项;③考场注意事项。

part 7 章节考点分布表:罗列南师大考研专业课量子力学的专业课试卷中,近年试卷考点分布的具体情况,方便考生知晓南师大考研专业课试卷的侧重点与知识点分布,有助于考生更具针对性地复习、强化,快准狠地把握高分阵地。

二、南师大历年真题与答案详解:整理南师大该科目的1997-2018年考研真题,并配有2010-2018年真题答案详解,本部分包括了(解题思路、答案详解)两方面内容。

量子力学4

量子力学4

南京大学2002年硕士研究生入学考试试题———量子力学一、 一维自由粒子的状态由波函数()kx kx x cos 21sin2+=ψ描述。

求粒子的动量平均值和动能平均值。

(20分)二、 粒子被约束在半径为r 的圆周上运动1) 设立“路障”进一步限制粒子在00ϕϕ<<的一段圆弧上运动,即()⎩⎨⎧<<∞<<=πϕϕϕϕϕ2,0,000V ,求解粒子的能量本征值和本征函数;2) 设粒子处在上述情形的基态,现突然撤去“路障”,问撤去“路障”后,粒子仍然处在最低能量态的几率是多少?(20分)提示:在柱坐标系下22222211zuu u u ∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∇ϕρρρρρ 三、 设算符ˆˆˆN a a +=且ˆˆ,1a a +⎡⎤=⎣⎦,证明:如果ψ是N ˆ的本征函数,对应的本征值为λ,那么,波函数ψ=ψa ˆ1也是N ˆ的本征函数,对应的本征值为1-λ,而波函数ψ=ψ+a ˆ2也是N ˆ的本征函数,对应的本征值为1+λ。

(20分)四、 一个粒子在二维无限深势阱()⎩⎨⎧∞<<=elsewhere ay x x V ,,0,0中运动,设加上微扰xy H λ=1()a y x <<,0,求基态和第一激发态的一阶能量修正(20分)五、 若电子处于z S ˆ的本征态,试证在此态中,y S ˆ取值为2 -或2的几率各为21。

(20分)南京大学2003年硕士研究生入学考试试题——量子力学专 业: 理论物理,凝聚态物理 一、一个质量为μ的粒子处于一维谐振子势()2212Vx x μω=中运动,ω为谐振子的本征振动频率。

如果0t =时,该粒子处于态()()()021,03x x c x ψψψ=+,其中()0x ψ和()2x ψ分别为一维谐振子的基态和第二激发态的能量本征波函数,c 为待定常数且0c >。

1) 根据归一化条件,求待定常数c ;(5分) 2) 求t 时刻粒子所处的状态(),x t ψ;(5分)3) 求测量粒子的能量所能得到的可能值和测到这些值的几率; (10分) 4) 求粒子能量的平均值; (5分)5) 若在t τ=时刻,粒子所处的势场突然变为()'2213Vx x μω=,求粒子在τ时刻处于新的势场 ()'Vx 的第一激发态的几率。

北京大学南京大学量子力学考研试题题库

北京大学南京大学量子力学考研试题题库

峪F黢 嘁ing
参 C)haptcΓ 1 0ri胥 :ins OfQuantum Physics
α1apter2 M【rtthcmatic1b()ls OfQ11ar、 tt1mλ4ec丨】anics Chaptcr3 POstulatcs OfQuantulvl人丌cchani(;s
C∷haptcr4 ()haptcr5
j的

^=o^不
征值 和本和f函


学 (b)在 宏农象巾,求 箅符
ε的铡i阵 表示 ,以 及 月的本 征竹 和l本 征 函数 。
)供ε 奋兀二砷 · ⑹ 求从 ⒔农象到 捻表象^的和幺i∷ 变换知阵。
(;罗
:(∶
彳a艹 £甫:口
″ι
w
厶 \ 丿

+ d
n
` 丨

\ ︑
R”
●夕
一b' 丶
0
d
丿
一 一
6,Ⅵ so″ 】而 ε 阝勿 切 /lT伤 nⅠ `卩 c犭 tRf/饣
ቤተ መጻሕፍቲ ባይዱ
J冫 幻 /s氵
)l飞 1nlC Ⅱ I。
PA· M· IⅡ rac
C,·
ρ .J· ∫·Sakur缸
sy11a笾冫us
考 7`3eP而
刀c洌es
q厂 Q溺 nFⅣ 饲
∧亻0c向 佣

冫4th刚 itiOn
f‘
吹 ,
Ⅳ o初 mQ“ 溺/PrⅡ Jlf姒佗c九四崩 cs,Rc∽ scd Edi⒈ iOn 衤1.
王鸳?矿廴卩 嚅
。dFˇ 石 .
饣 马∷助赳 η
乙耕 ”:
·
爹 亻 鲁

免费的南大历年《量子力学》的真题

免费的南大历年《量子力学》的真题

南京大学1998年硕士研究生考试试题——量子力学(一) 20分 有半壁无限高势垒的一维阱 ()ax a x x V x V ><<<⎪⎩⎪⎨⎧∞=000在0V E <的情形下,该系统是否总存在一个束缚态?如果回答是否定的,那么系统中至少有一个束缚态的存在的充要条件是什么?(二)20分 一个取向用角坐标θ和ϕ确定的转子,作受碍转动,用下述哈密顿量描述:()ϕ2cos ˆˆ22 B L A H+=,式中A 和B 均为常数,且B A >>,2ˆL 是角动量平方算符,试用一级微扰论计算系统的p 能级(1=l )的分裂,并标出微扰后的零级近似波函数。

(三)20分求在一维无限深势阱中,处于()x n ψ态时的粒子的动量分布几率()2p n φ 。

(四)20分 试判断下列诸等式的正误,如果等式不能成立,试写出正确的结果: (1)i j x i p jx i peee21ˆˆˆˆˆˆˆˆ-⋅+⋅⋅⋅=⋅ ?式中i ˆ和j ˆ分别是x 和y 方向的单位矢量。

(2)()[])(ˆˆˆˆ,ˆ'x f pip x f p px x x x = ?式中xi p x ∂∂= ˆ ,(3)系统的哈密顿算符为()r V p H+=μ2ˆˆ2 ,设()r n ϕ是归一化的束缚态波函数,则有:()n n n n r V r p ϕϕϕμϕ∇⋅=212ˆ2?(五)20分碱金属原子处在z 方向的外磁场B 中,微扰哈密顿为Bls H H H ˆˆˆ1+= ,其中S L dr dV r c H ls⋅⎪⎭⎫ ⎝⎛=121ˆ22μ ,()Z Z B S L c eB H 22+=μ , 当外磁场很弱时,那些力学量算符是运动积分(守恒量),应取什么样的零级近似波函数,能使微扰计算比较简单,为什么? 注: ()()()()ϕθπim mllm e m l m l l Y P cos !!412+-+=()x x P =01;()()2/12111x x P -=;()()x x x P 2/121213-=()()22213x x P -=专业: 理论物理、粒子物理与原子核物理(20分) 一、 t =0时,粒子的状态为][sin )(2kx A x =φ,求此时动量的可能测值和相应的几率,并计算动量的平均值。

2004年量子力学期末试题及答案

2004年量子力学期末试题及答案

2004年量子力学期末试题及答案一、(20分)已知氢原子在0=t 时处于状态 21310112(,,0)()()()010333x x x xψϕϕϕ⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中,)(x n ϕ为该氢原子的第n 个能量本征态。

求能量及自旋z 分量的取值概率与平均值,写出0>t 时的波函数。

解 已知氢原子的本征值为42212n e E nμ=-, ,3,2,1=n (1)将0=t 时的波函数写成矩阵形式()()()231133(,0)23x x x x ϕϕψϕ⎛⎫+ ⎪⎪= ⎪-⎪⎝⎭(2)利用归一化条件()()()()()()232***23112211233d 3332312479999x x cx x x x x ccϕϕϕϕ∞-∞⎛⎫+ ⎪⎛⎫⎪+-⋅ ⎪ ⎪ ⎪⎝⎭- ⎪⎝⎭⎛⎫=++=⎪⎝⎭⎰ (3)于是,归一化后的波函数为()()()()()()232311133(,0)23x x x x x x x ϕψϕ⎛⎫⎫+⎪+⎪ ⎪⎪==⎪⎪- ⎪⎪⎝⎭⎝⎭(4)能量的可能取值为123,,E E E ,相应的取值几率为()()()123412,0;,0;,0777W E W E W E === (5)能量平均值为()123442241207774111211612717479504E E E E e eμμ=++=⎡⎤-⨯+⨯+⨯=-⎢⎥⎣⎦(6)自旋z 分量的可能取值为,22-,相应的取值几率为1234,0;,0277727z z W s W s ⎛⎫⎛⎫==+==-= ⎪ ⎪⎝⎭⎝⎭(7)自旋z 分量的平均值为()340727214z s ⎛⎫=⨯+⨯-=- ⎪⎝⎭ (8)0>t 时的波函数()()()223311i i exp exp (,)i exp x E t x E t x t x E t ψ⎛⎫⎡⎤⎡⎤-+-⎪⎢⎥⎢⎥⎣⎦⎣⎦⎪= ⎪⎡⎤⎪- ⎪⎢⎥⎣⎦⎝⎭(9)二. (20分) 质量为m 的粒子在如下一维势阱中运动()00>V()⎪⎩⎪⎨⎧>≤≤-<∞=a x ax V x x V ,00 ,0.0若已知该粒子在此势阱中有一个能量20V E -=的状态,试确定此势阱的宽度a 。

2004年量子力学期末试题及答案

2004年量子力学期末试题及答案

2004年量子力学期末试题及答案一、(20分)已知氢原子在0=t 时处于状态21310112(,,0)()()()010333x x x x ψϕϕ⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中,)(x n ϕ为该氢原子的第n 个能量本征态。

求能量及自旋z 分量的取值概率与平均值,写出0>t 时的波函数。

解 已知氢原子的本征值为42212n e E n μ=-, ,3,2,1=n (1)将0=t 时的波函数写成矩阵形式()()()23113(,0)23x x x x ϕψϕ⎛⎫+ ⎪ ⎪= ⎪- ⎪⎝⎭(2) 利用归一化条件()()()()()()232***23112211233d 3332312479999x x c x x x x x c cϕϕϕϕ∞-∞⎛⎫+ ⎪⎛⎫ ⎪+-⋅ ⎪ ⎪ ⎪⎝⎭- ⎪⎝⎭⎛⎫=++= ⎪⎝⎭⎰ (3)于是,归一化后的波函数为()()()()()()23231113(,0)23x x x x x x x ϕψϕ⎫⎫+⎪⎪⎪⎪==⎪⎪- ⎪⎪⎝⎭⎝⎭(4) 能量的可能取值为123,,E E E ,相应的取值几率为()()()123412,0;,0;,0777W E W E W E ===(5) 能量平均值为()123442241207774111211612717479504E E E E e e μμ=++=⎡⎤-⨯+⨯+⨯=-⎢⎥⎣⎦ (6)自旋z 分量的可能取值为,22-,相应的取值几率为1234,0;,0277727z z W s W s ⎛⎫⎛⎫==+==-=⎪ ⎪⎝⎭⎝⎭ (7) 自旋z 分量的平均值为()340727214z s ⎛⎫=⨯+⨯-=- ⎪⎝⎭(8)0>t 时的波函数()()()223311i i exp exp (,)i exp x E t x E t x t x E t ψ⎫⎡⎤⎡⎤-+-⎪⎢⎥⎢⎥⎣⎦⎣⎦⎪= ⎪⎡⎤ ⎪- ⎪⎢⎥⎣⎦⎝⎭(9)二. (20分) 质量为m 的粒子在如下一维势阱中运动()00>V()⎪⎩⎪⎨⎧>≤≤-<∞=a x a x V x x V ,00 ,0.0 若已知该粒子在此势阱中有一个能量2V E -=的状态,试确定此势阱的宽度a 。

南京理工大学考研题

南京理工大学考研题

[][]的平均值为多少?态上力学量)在少?(体系能量的平均值为多出现的概率是多少可测得哪些值?各个值态的体系进行能量测量)对处于求(是正的实数。

,其中,的矩阵表示分别为:学量及力系哈密顿量算符为态空间中得基矢,体和、中,态十一、已经体系处于状的可能值是多少?下,力学量)()(十、求在状态的几率为多少?的值为的本征态,求在此态中)如果粒子处于的本征值和本征态;()表象中,求(九、在)能量至一级修正。

(示;)微扰哈密顿的矩阵表。

写出(《,其中矩阵表示为八、体系哈密顿算符的分)能量至二级修正值。

(为实数。

用微扰公式求,且七、在能量表象中分)。

(。

证明,六、设分)。

(中算符的表示为五、试证明在动量表象分)(的本征值和本征函数。

分量四、求角动量的分的可微函数,试证明:是三、设分)彼此正交。

(同能级的束缚态波函数)中运动,证明属于不(二、粒子在一维势场分)流密度。

(计算其几率密度和几率的粒子处于定态波函数一、质量为试题(量子力学)年硕士研究生入学考试南京理工大学A A H A HS L J Y S Y S S S S S S H b a E E a E b b a E H i S S pi x I z pf i q f p q q q f i p q x V e rm Z Z Z Z y x y x Z y x Zikr Z ψψαωαωϕϕϕϕϕϕψϕθχϕθχψααααββαβαϕ3)2(?1010100001ˆ200020001ˆˆˆ212121-ˆˆˆ),(),(231222ˆ,ˆ1ˆ2112002002ˆ15,,ˆ152ˆ,2ˆ100115ˆ15-i ˆ)15.(2)(,)(,,1515,12004003213211121-1021020102012⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=++=+=⎥⎦⎤⎢⎣⎡+==⎪⎪⎪⎭⎫ ⎝⎛=≠⎪⎪⎭⎫+ ⎝⎛+=-==⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=∂∂=∂∂====ψ南京理工大学2005年硕士研究生入学考试试题[][]()()面。

南京大学考研量子力学试题2001-2009

南京大学考研量子力学试题2001-2009

南京大学2001年硕士研究生入学考试试题———量子力学 专业: 理论物理、、凝聚态物理、光学等一、有一质量为μ的粒子处于长度为a 的一维无限深势阱中()⎩⎨⎧<<><∞=a x a x x x V 0,0;0,,在t=0时刻,粒子的状态由波函数()⎩⎨⎧<<-><=a x x a Ax a x x x 0),(;0,0ψ描述。

求: (20分) 1.归一化常数A; 2.粒子能量的平均值; 3.t=0时刻,粒子能量的几率分布; 4. 人艺t>0时刻的波函数的级数表达式。

提示:96145,3,14π=∑⋅⋅⋅=n n二、考虑势能为()⎩⎨⎧<>=0,00,0x x V x V 的一维系统,其中0V 为正常数。

若一能量为E 的粒子从-∞=x 处入射,其透射系数和反射系数各为多少?考虑E 的所有可能值。

(20分)三、有一质量为μ的粒子,在一维谐振子势场()2221x x V μω=中运动。

在动能μ22p T =的非相对论极限下,基态能ω 210=E ,基态波函数为()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=ψ24102exp x x μωπμω。

考虑T 与p 的关系的相对论修正,计算基态能级的移动E ∆至21c 阶。

(c 为光速)(20分) 四、氯化钠晶体中有些负离子空穴,每个空穴束缚一个电子。

可将这些电子看成束缚在一个尺度为晶格常数的三维无限深势阱中。

晶体处于室温,试粗略地估计被这些电子强烈吸收的电磁波的最长的波长。

(20分) 提示:电子质量fm MeV c MeV mc ⋅≈=197,511.02 ,晶格常数01A a ≈ 五、考虑自旋 21=S 的系统, 1.求算符zy S B S A T ˆˆˆ+=的本征值和归一化本征波函数;(A 、B 为实常数) 2.若此时系统正处在T ˆ的某一个本征态上,求此时测量y S ˆ结果为⎪⎭⎫ ⎝⎛+2 的几率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京大学 2004 年攻读硕士学位研究生入学考试试题(三小时三小时)) 考试科目名称及代码:
适用专业:
注意注意::
1. 所有答案必须写在“南京大学研究生入学考试答题纸”上,写在试卷和其他低上无效;
2. 本科目允许/不允许使用无字典存储和编程功能的计算器。

3. 本试卷中第一题至第四题为必做题,第五题和第六题中任选一题,做六题者按得分最低的五题计分。

一、已知电子质量为µ,电子电量为()e −,回答以下问题
1) 一个电子被限制在宽度为a 的一维无限深势阱中运动,请写出该体系的能级公式;
(5分)
2) 五个电子被限制在宽度为的一维无限深势阱中运动,不考虑电子和电子之间的库仑相互作用,请写出该体系的基态和第一激发态的能级公式; (10分)
3) 一个电子处于一维谐振子势场222
1x µω中运动,其中ω是谐振子势的本征圆频率,x 是电子的坐标,请写出该体系的能级公式;
(5分)
4) 如果电子在上题中的一维谐振子势场中运动,并且假定电子恰好处在某个能量本征态上,求电子的坐标和运量的平均值,这些平均值随时间变化么? (10分)
5) 请写出氢原子体系的能级公式和电子的基态波函数,这里假定原子核是不动的;
(10分) 6) 假定氢原子处于基态,求电子势能
−r e 2的平均值,其中是电子的径向坐标。

(10分)
二、假定电子的波函数在球坐标系下写为()()
()r g e r i θθϕθψϕcos sin ,,+=,其中()r g 仅为径向坐标r 的函数。

1) 求角动量平方2L 的可能测量值和相应的几率;
(10分) 2) 求角动量的z 分量z L 的可能测量值和平均值。

提示:头几项球谐函数的表达式如下 ()πϕθ41,0,0=
Y ,()θπ
ϕθcos 43,0,1=Y ,
()()ϕθπϕθi Y ±=±exp sin 83,1,1m
, ()()
1cos 3165,20,2−=θπϕθY , ()()ϕθθπϕθi Y ±=±exp cos sin 815,1,2m
, ()()ϕθπ
ϕθi Y 2exp sin 3215,22,2±=±。

三、S r 代表电子的自旋算符,()θϕθϕθcos ,sin sin ,cos sin =n r 为从原点指向单位球面上()ϕθ,方向的单位向量,其中θ是纬度,ϕ是经度。

1) 在()z S S ,2
表象下求自旋S r 在n r 方向上的投影S n S n r
r •=的本征值和相应的本征函数; (10分)
2) 假定电子处于n S 的某个本征态,那么测量z S 会得到哪些数值,相应的几率是多少,
测量z S 的平均值又是多少?
(10分) 四、一个质量为m ,无电荷但自旋为21,磁矩为s r h
r 02µµ−=的粒子在一维无限深势阱() ∞+=0x V L
x L x ><中运动,其中0µ和L 是正常数,x 是粒子的坐标,S r 是粒子的自旋算符。

现考虑在0<x 的半空间中有一沿z 方向的均匀磁场,
其大小为B ,而在0>x 的半空间中有一同样大小但沿x 方向的均匀磁场。

在弱磁场极限下用微扰论找出体系基
态的能级和波函数,并指出B 能作为弱磁场处理的具体条件。

(微扰只须计算到最低阶,自旋空间的波函数请在()z S S ,2的表象下写出。

) (30分)
五、一个质量为m 的无自旋的粒子在三维情形下与一个球对称势()()a r C r V −−=δ作用,
其中C ,a 为下常数,r 是径向坐标,为了保证该体系至少有一个束缚态存在,试问C 的值最小可以取多少? (30分)
六、一个质量为m 的无自旋的粒子受到中心势()()
a r ma r V /cosh 1222h −=的散射,其中a
是常数。

已知方程0cosh 22222=++y x y k dx y
d 有解()ik x
e y ikx m tanh ±=,在低能极限
下,求粒子能量为时E ,s 分波的散射截面及其角分布。

(30分)。

相关文档
最新文档