二次根式的概念和性质

合集下载

二次根式知识点总结

二次根式知识点总结

二次根式知识点总结二次根式是数学中的一种常见的根式表达式,它可以表示为$\sqrt{a}$ 的形式,其中 $a$ 是一个非负实数。

在学习二次根式时,常常会涉及到以下几个方面的知识点。

一、二次根式的性质:1. 非负性:对于任何非负实数 $a$,二次根式 $\sqrt{a}$ 都是非负实数。

2. 平方性:相对应的,对于任何非负实数 $a$,二次根式$\sqrt{a}$ 的平方等于 $a$,即 $(\sqrt{a})^2=a$。

3. 两个二次根式可以相等:如果两个二次根式 $\sqrt{a}$ 和$\sqrt{b}$ 相等,那么 $a$ 和 $b$ 必须相等,即$\sqrt{a}=\sqrt{b}$ 可推出 $a=b$。

二、二次根式的运算:1. 加减运算:两个二次根式可以进行加减运算,只要它们的被开方数相同即可。

即 $\sqrt{a} \pm \sqrt{b}=\sqrt{a \pm b}$。

2. 乘法运算:两个二次根式相乘,可以将它们的被开方数相乘并开方。

即 $\sqrt{a} \cdot \sqrt{b}=\sqrt{ab}$。

3. 除法运算:两个二次根式相除,可以将它们的被开方数相除并开方。

即 $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$。

4. 有理化分母:当二次根式的分母不含二次根式时,可以通过有理化分母的方法将其转化为含有二次根式的形式。

有理化分母的基本方法是将分母有理化,即乘以一个适当的形式为 $\sqrt{x}$ 的分子与分母相等的有理数,从而使得分母成为没有二次根式的有理数。

三、二次根式的化简:1.合并同类项:当二次根式相加或相减时,可以合并同类项,即将其中具有相同被开方数的二次根式相加或相减,并保持其他二次根式不变。

2.分解因式:当一个二次根式的被开方数可以分解成互质因子的乘积时,可以利用分解因式的方法进行化简。

3.化简根式:当二次根式的被开方数可以开方时,可以进行化简,即将其转化为整数、分数或者更简单的二次根式的形式。

二次根式总结

二次根式总结

二次根式总结一、引言二次根式是数学中一个重要的概念,涉及到对平方根的运算和性质。

掌握好二次根式的基本知识对于理解和解决数学问题至关重要。

本文将对二次根式进行总结,从定义、性质到应用方面进行探讨。

二、定义与基本性质二次根式可以表示为√a(其中a≥0),这里√a称为二次根,a称为被开方数。

在二次根式中,一些基本性质需要予以关注。

首先,二次根式满足乘法分配律。

对于任意的非负实数a和b,有√(ab)=√a × √b。

这个性质与平方根的性质一致,可以利用它对二次根式进行简化。

其次,二次根式可以进行合并化简。

如果a和b都是非负实数,则√a + √b可以合并成一个根式。

例如,√2 + √3 = √(2+3) = √5。

这一点在化简二次根式的过程中常常应用到。

另外,二次根式的乘法也有一定的规律。

对于任意非负实数a 和b,有(√a × √b) = √(ab)。

同样地,在乘法的过程中可以利用这一性质对二次根式进行化简。

三、进一步探讨与应用1. 二次根式的化简化简二次根式是使用二次根式的基本性质,将复杂的根式表示简化为更简洁的形式。

例如,√8可以化简为2√2,√5 × √3可以化简为√15。

化简二次根式有助于简化运算和解决数学问题。

在化简二次根式时,可以利用约束性质,并通过提取公因数的方式进行。

例如,对于√8,可以提取公因数2,即√(2 × 4) = 2√2。

2. 二次根式的加减运算二次根式的加减运算可以通过化简和合并根式进行。

对于√a + √b,如果a和b无法合并,则不能再继续进行简化。

例如,对于√2 + √3,不能再进行进一步的运算。

但是可以计算其近似值,如√2 ≈ 1.414,√3 ≈ 1.732,因此√2 + √3 ≈ 1.414 + 1.732 ≈ 3.146。

3. 二次根式的乘除运算二次根式的乘除运算可以利用乘法分配律和二次根式的乘法规律进行。

利用这两个性质,可以轻松地计算复杂的二次根式。

初二数学二次根式知识点解析

初二数学二次根式知识点解析

二次根式的定义性质和概念如果一个数的平方等于a,那么这个数叫做a的平方根。

a可以是具体的数,也可以是含有字母的代数式。

即:若,则x叫做a的平方根,记作x= 。

其中a叫被开方数。

其中正的平方根被称为算术平方根。

关于二次根式概念,应注意:被开方数可以是数,也可以是代数式。

被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。

二次根式的性质:1.任何一个正数的平方根有两个,它们互为相反数。

如正数a的算术平方根是,则a的另一个平方根为﹣ ;最简形势中被开方数不能有分母存在。

2.零的平方根是零,即 ;3.有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。

4.无理数可用有理数形式表示, 如: 。

二次根式的几何意义1、(a≥0)[任何一个非负数都可以写成一个数的平方的形式;利用此性质在实数范围内因式分解];2、都是非负数;当a≥0时, ;而中a取值范围是a≥0,中取值范围是全体实数。

3、c= 表示直角三角形内,斜边等于两直角边的平方和的根号,即勾股定理推论;4、逆用可将根号外的非负因式移到括号内,如﹙a>0﹚,﹙a<0﹚﹙a≥0﹚,﹙a<0﹚5、注意: ,即具有双重非负性。

算术平方根正数a的正的平方根和零的平方根统称为算术平方根,用(a≥0)来表示。

0的算术平方根为0.开平方运算求一个非负数的平方根的运算,叫做开平方。

开平方与平方互为逆运算。

化简化简二次根式是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。

最简二次根式定义概要(❶被开方数不含分母❷被开方数中不含能开得尽的因数或因式)二次根式化简一般步骤:①把带分数或小数化成假分数;②把开方数分解成质因数或分解因式;③把根号内能开得尽方的因式或因数移到根号外;④化去根号内的分母,或化去分母中的根号;⑤约分。

有理化因式两个含有二次根式的代数式相乘,如果他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式注意﹙①他们必须是成对出现的两个代数式;②这两个代数式都含有二次根式;③这两个代数式的积化简后不再含有二次根式④一个二次根式可以与几个二次根式互为有理化因式﹚分母有理化在分母含有根号的式子中,把分母的根号化去,叫做分母有理化。

二次根式知识点总结及其应用

二次根式知识点总结及其应用

二次根式知识点总结及其应用二次根式是指形如√a的数,其中a为一个非负实数。

在学习二次根式的过程中,我们需要掌握以下几个重要的知识点。

1.二次根式的定义和性质二次根式是数学中的一种运算符号,表示一个非负实数的算术平方根。

如果a≥0,则√a是一个实数;如果a<0,则√a是一个虚数。

二次根式的性质有以下几点:(1)非负数的非负平方根是一个实数,记作√a,其中a≥0;(2)非负实数a的平方根必须满足:如果x是a的平方根,则-x也是a的平方根;(3)二次根式的运算规律:√ab=√a·√b,√(a/b)=√a/√b。

2.简化二次根式简化二次根式是指将一个二次根式写成最简形式。

其中的关键是将根号下的数分解成若干个因数的平方。

一般地,对于一个非负实数a,我们可以将其分解为质因数的乘积,然后将其中的每个质因数的平方提取出来写成一个二次根式。

例如,对于√12,我们可以将12分解为2×2×3,然后将2和3的平方根提取出来,得到√12=2√33.二次根式的四则运算对于二次根式的加、减、乘、除,我们需要根据运算规律来进行计算。

(1)加减:对于两个二次根式的加减,可以先化简,然后将其中的同类项合并。

例如,计算√3+2√3,可以化简得到3√3,再将3√3与2√3相加,得到5√3(2)乘法:对于两个二次根式的乘法,使用运算法则√ab=√a·√b,将根号下的数分解后相乘。

例如,计算(√2+√3)(√2-√3),可以用分配律展开,得到2-3=-1(3)除法:对于两个二次根式的除法,也使用运算法则√(a/b)=√a/√b,将根号下的数分解后相除。

例如,计算(√8)/(√2),可以化简得到√2,即(√8)/(√2)=√24.二次根式的应用二次根式在数学和实际生活中有广泛的应用。

(1)几何应用:二次根式常用于计算几何图形的面积和边长。

例如,计算正方形的对角线长度、矩形的对角线长度等。

(2)物理应用:二次根式常用于计算一些物理问题。

二次根式知识点总结

二次根式知识点总结

二次根式知识点总结王亚平1. 二次根式的概念二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中a 叫被开方数,只有当a 是一个非负数时,a 才有意义.2. 二次根式的性质1. 非负性:)0(≥a a 是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到. 2.)0()(2≥=a a a注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:)0()(2≥=a a a 3. ⎩⎨⎧<-≥==)0()0(2a a a a a a 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.3. 最简二次根式和同类二次根式1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式4. 二次根式计算——分母有理化1.分母有理化定义:把分母中的根号化去,叫做分母有理化。

2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。

有理化因式确定方法如下:①单项二次根式:利用a a a =⋅来确定,如:a 与a ,b a +与b a +,b a -与b a -等分别互为有理化因式。

②两项二次根式:利用平方差公式来确定。

如b a +与b a -,b a +与b a -,y b x a +与y b x a -分别互为有理化因式。

3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;5. 二次根式计算——二次根式的乘除1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。

)0,0(≥≥⋅=b a b a ab2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。

专题01 二次根式的有关概念和性质(知识点串讲)(解析版)

专题01 二次根式的有关概念和性质(知识点串讲)(解析版)

专题01 二次根式的有关概念和性质知识网络重难突破知识点一 二次根式的有关概念 二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。

【注意】 1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。

2.二次根式是一个非负数。

3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。

二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

【典型例题】1.(2018·黔西县期中)下面式子是二次根式的是( A ) A 21a +B 333C 1-D .12a 2.(2019·朝阳市期中)下列各式中不是二次根式的是(B ) A 21x +B 4-C 0D 2()a b -3.(2018·48n n 是( B ) A .6B .3C .48D .24.(2018·26的值在( D ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.(2019·虹桥区期末)在平面直角坐标系中,点M (a ,b )的坐标满足(a ﹣3)22b -0,则点M 在( A )A .第一象限B .第二象限C .第三象限D .第四象限6.(2019·孝感市期中)已知三角形的三边长为a 、b 、c ,如果2(5)12130a b c -+--=,则△ABC 是( C )A .以a 为斜边的直角三角形 B .以b 为斜边的直角三角形C .以c 为斜边的直角三角形D .不是直角三角形7.(2019·滨州市期中)下列式子:①13;②3-;③﹣21x +;④327;⑤2(2)-,是二次根式的有(B )A .①③ B .①③⑤C .①②③D .①②③⑤8.(2019·汕头市期末)若211a aa a--=,则a 的取值范围是( D ) A .0a >B .1a ≥C .01a ≤≤D .01a <≤9.(2019·抚顺市期末)若二次根式51x -有意义,则x 的取值范围是( B ) A .x >15B .x≥15C .x≤15D .x≤510.(2018·德州市期末)使代数式34x x --有意义的自变量x 的取值范围是(C ) A .x≥3B .x >3且x≠4C .x≥3且x≠4D .x >311.(2017·东胜市期末)方程有两个实数根,则的取值范围(B )A .B .且C .D .且12.(2018·泉州市期中)若a ab+有意义,那么直角坐标系中点A(a,b)在( A ) A .第一象限B .第二象限C .第三象限D .第四象限知识点二 二次根式的性质 二次根式的性质:1.含有两种相同的运算,两者都需要进行平方和开方。

二次根式的有关概念和性质

二次根式的有关概念和性质

专题01二次根式的概念和性质(知识点考点串编)【思维导图】例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是()个A .3个B .4个C .5个D .6个练习2.(2021·河北·结果相同的是( ).◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号。

【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。

2.二次根式是一个非负数。

3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。

A .321-+B .321+-C .321++D .321--练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a-C .32a-D .23a -例.(2021·n 的最小值是( )A .2B .4C .6D .8练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B.1C .7D .±1练习3.(2021·全国·n 的值是( )A .B .1C .2D .5例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C.x >2D .x ≠2练习1.(2022·全国·九年级专题练习)函数y =x 的取值范围是( )A .x ≥2B .x >﹣2C .x ≤2D .x <2练习2.(2022·全国·九年级专题练习)函数y 中自变量x 的取值范围是()◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

二次根式的有关概念和性质

二次根式的有关概念和性质

专题01二次根式的概念和性质(知识点考点串编)【思维导图】◎考点1:二次根式的值例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0【答案】B【解析】【分析】把0x =解题即可【详解】◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。

【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。

2.二次根式是一个非负数。

3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。

解:把0x =2=故选:B .【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是( )个A .3个B .4个C .5个D .6个【答案】B 【解析】【分析】0)a >的代数进行分析得出答案.【详解】共4个.故选:B .【点睛】0)a >的代数式,正确把握定义是解题关键.练习2.(2021·河北·结果相同的是( ).A .321-+B .321+-C .321++D .321--【答案】A【解析】【分析】根据有理数运算和二次根式的性质计算,即可得到答案.【详解】2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a -C .32a -D .23a -【答案】C【解析】【分析】由题意直接根据二次根式的性质以及去绝对值的方法,进行分析运算即可.【详解】解:∵12a <<,212132a a a a a a -=---=-+-=-.故选:C.【点睛】本题考查二次根式和去绝对值,熟练掌握二次根式的性质以及去绝对值的方法是解题的关键.◎考点2:求二次根式中的参数例.(2021·n 的最小值是( )A .2B .4C .6D .8【答案】C【解析】【分析】=,则6n 是完全平方数,满足条件的最小正整数n 为6.【详解】解:=∴6n 是完全平方数;∴n 的最小正整数值为6.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D .-1【答案】D【解析】【分析】根据非负数的性质可求出x 、y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵0x +=,∴x +2=0,y -2=0,∴x =﹣2,y =2,∴220190192=12x y -æöæöç÷è=-ç÷èøø.故选:D .【点睛】本题主要考查了非负数的性质,明确实数绝对值和二次根式的非负性以及﹣1的奇次幂的性质是解题关键.练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B .1C .7D .±1【答案】D【解析】【分析】根据二次根式的性质求出x 、y 的值,再代入求解即可.解:由题意可得:24020x x -+¹=,,解得:2x =,故3y =,则21x y -=,故2x y -的平方根是:±1.故选:D .【点睛】本题考查了关于二次根式的运算问题,掌握二次根式的性质、平方根的性质是解题的关键.练习3.(2021·全国·n 的值是( )A .0B .1C .2D .5【答案】D【解析】【分析】首先化简二次根式进而得出n 的最小值.【详解】=∴最小正整数n 的值是5.故选D .【点睛】本题考查了二次根式的定义,正确化简二次根式得出是解题的关键.例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C .x >2D .x ≠2【答案】C 【解析】◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

二次根式的概念和性质

二次根式的概念和性质

【答案】
2 ,9 5
【解析】
2a 2b c 2a 2b c 4 2 5b c 5a 5b c 5a 25 5
3


3 12 3 3 3 12 9 36 3 6 9

12、 (2013 初二上期末大兴区)若最简二次根式
a _________
1 1 5 1 5; 16 4 16 4
4
2
4, ;
7、估计 88 的大小应( ) A.在 9.1~9.2 之间 B.在 9.2~9.3 之间 C.在 9.3~9.4 之间 D.在 9.4~9.5 之间 【答案】 C 【解析】 设 88 9 x( x是小数部分) ;则有: 9 x 88 ,即: x2 18x 7 ,得 18x 7 , x 0.38 ,
二次根式比较大小的方法 (1) a b 0 a b (2)二次根式比较大小:能直接比较大小的直接比较;不能直接比较大小的,先平方再比 较. (3)估算法 (4)分子有理化 (5)倒数法 七、二次根式的乘除 二次根式的乘除法
第 2 页,共 17 页
二次根式
二次根式的乘法法则: a b ab ( a 0 , b 0 ) . 二次根式的除法法则:
3 2 2 a 4与 6a 2 1 是同类二次根式,则 2 3
【答案】 1 【解析】 该题考查的是二次根式. 满足下列两个条件的二次根式,叫做最简二次根式: (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式. 几个二次根式化成最简二次根式后, 如果被开方数相同, 这几个二次根式叫做同类二次根式. 根据题意可列: a2 4 6a2 1 解得: a 1

数学八年级下册二次根式

数学八年级下册二次根式

数学八年级下册二次根式
一、二次根式的定义
二次根式是指形如√a(a≥0)的式子,其中a叫做二次根式的被开方数。

二、二次根式的性质
1. 偶次根式的被开方数可取一切正数,因此二次根式是双钩性质的体现。

2. 当二次根式中的被开方数小于0时无意义,说明开偶次方时,要求底数非负。

三、二次根式的运算
1. 乘法运算:二次根式相乘(除),把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行相加或相乘。

2. 加法运算:几个二次根式合并成一项时,需要把被开方数相同的二次根式进行合并。

四、二次根式的应用
1. 求实际问题的解:在解决实际问题时,需要把实际问题转化为数学问题,再利用二次根式进行求解。

2. 判断近似值是否合理:在进行近似计算时,需要利用二次根式对结果进行判断,看是否符合实际要求。

总之,二次根式是数学中的一个重要概念,它具有广泛的应用,需要我们熟练掌握其定义、性质和运算。

二次根式主要知识点

二次根式主要知识点

二次根式主要知识点二次根式是一个重要的数学概念,主要涉及到一些基本定义、性质和运算法则。

以下是关于二次根式的主要知识点的详细解释:1.二次根式的定义:对于非负实数a,它的二次根式表示为√a。

如果a是一个非负实数的平方,则√a是一个实数。

否则,√a是一个虚数。

2.二次根式的符号:一般情况下,√a表示正根式。

我们通常将正根式表示为√a=b,其中b≥0。

负根式表示为-√a=-b,其中b≥0,它们之间的关系是:-√a=√a*(-1)。

3.二次根式的基本性质:a)正根式的值总是非负实数。

b)负根式的值总是负实数或者是虚数。

c)对于任何非负实数a和b,如果a=b,则√a=√b。

d)对于任何非负实数a,(√a)^2=a。

4.二次根式的化简:当二次根式的被开方数有一个因子是一些完全平方数时,可以将其化简。

例如,√16=√(4*4)=45.二次根式的加减法:a)当两个二次根式的被开方数相同时,可以进行加减法。

例如,√5+√5=2√5b)当两个二次根式的被开方数不同时,无法进行加减法。

6.二次根式的乘法:对于任何非负实数a和b,有√(a*b)=√a*√b。

例如,√2*√3=√67.二次根式的除法:对于任何非负实数a和b,有√(a/b)=√a/√b。

例如,√6/√2=√38.混合根式:混合根式是指含有不同次方的根式。

例如,√(2+√3)。

对于混合根式,通常需要根据具体情况进行化简或者进行运算。

9.二次根式的大小比较:对于任何非负实数a和b,如果a>b,则√a>√b。

例如,√2>√110.二次根式的应用:二次根式在数学和物理等领域有广泛的应用。

例如,在几何学中,二次根式可以表示长度、面积和体积等量;在物理学中,二次根式可以表示速度、加速度和力等物理量。

总结起来,二次根式是数学中的一个重要概念,它涉及到一些基本定义、性质和运算法则,如根式的符号、基本性质、化简、加减法、乘除法、大小比较和应用等。

掌握这些知识点,有助于我们更好地理解和运用二次根式。

二次根式的定义及性质

二次根式的定义及性质

二次根式的定义及性质1、二次根式的定义形如)0(≥a a 的代数式叫二次根式(1)式子中含有二次根号“”;(2)a 可以表示数也可以表示代数式(3)二次根式)0(≥a a 表示非负数a 的算术平方根,0≥a ,即二次根式的两个非负性 二次根式的两个非负性:)0(≥a a ;0≥a ,具有非负性的还有02≥a ;0≥a ;几个非负数的和等于零,那么这几个非负数均为零。

2、二次根式的主要性质 (1)())0(2≥=a a a (2)⎪⎩⎪⎨⎧<-=>==)0()0(0)0(2a a a aa a a3、分母有理化:把分母中的根号化去,叫做分母有理化.方法:①单项二次根式:利用a =来确定.②两项二次根式:利用平方差公式()()22b a b a ba -=-+来确定.如: aa4、最简二次根式:被开方数中不含分母,并且被开方数中不含开的尽方的因数或因式叫最简二次根式 最简二次根式的条件①号内不含有开的尽方的因数或因式,②根号内不含有分母,③分母不含有根号。

5、 同类二次根式:被开方数相同的最简二次根式叫做同类二次根式6、 乘法公式:)0,0______(≥≥=⋅b a b a ;反之:)0,0_______(≥≥=b a ab7、除法公式:)0,0______(>≥=b a ba ;反之:)0,0______(>≥=b a b a 8、合并同类二次根式:__________________;=-=+a n a m a n a m形如)0(≥a a 的代数式叫二次根式例1、下列式子中二次根式的个数有( )(1)31(2)3-(3)12+-x (4)38(5)2)31(-(6))1(1>-x x A.2个 B.3个 C.4个 D.5个【变式练习】1、下列各式中,一定是二次根式的有______________________________① a ;②z y +;③6a ;④32+x ;⑤962++x x ;⑥12-x2、222++a a 是不是二次根式?___________(填“是”或“否”)二次根式)0(≥a a 表示非负数a 的算术平方根,0≥a ,即二次根式的两个非负性例2、(2012.德阳)使代数式12-x x 有意义的x 的取值范围是( ) A.0≥x B.21≠x C.210≠≥x x 且 D.一切实数 例3、 函数1213-+-=x x y 的自变量x 的取值范围是_______________【变式练习】1、 使12--x x 在实数范围内有意义的x 的取值范围是______________ 2、(2012.杭州)已知0)3(<-a a ,若a b -=2,则b 的取值范围是___________3、若2)(11y x x x +=---,则______=-y x())0(2≥=a a a例4、计算: (1) (2) (3) (4)(b ≥0) (5)【变式练习】计算: (1); (2); (3); (4). ⎪⎩⎪⎨⎧<-=>==)0()0(0)0(2a a a a a a a例5、化简: (1); (2); (3); (4).例6、2x =,则x 的取值范围是 。

二次根式知识点

二次根式知识点

二次根式知识点二次根式是高中数学中的重要知识点,主要涉及到二次方程、二次函数和根的性质等内容。

下面将从概念、性质、应用和解题方法等方面详细探讨二次根式相关知识,共计2000字。

第一部分:概念和性质引入二次根式的概念,首先需要明确根的定义。

根,也称为平方根,是指一个非负数b,使得b的平方等于一个给定的数a。

根的符号为√,如√a表示根号下a。

在二次根式中,被开方的数被称为被开方数或者被开方式,√a称为二次根式。

二次根式的性质包括如下几点:1. 二次根式的结果为非负数,即√a≥0。

2. 二次根式的结果可以是一个有限小数,也可以是一个无限循环小数。

3. 二次根式的运算可以进行加、减、乘、除等操作,遵循相应的运算规则。

第二部分:应用二次根式在数学中的应用广泛,下面介绍几个常见的应用场景。

1. 几何中的长度计算:在三角形或其他几何图形中,二次根式可以用来计算边长、斜边等长度。

例如,在勾股定理中,直角三角形的斜边长度就可以通过二次根式求解。

2. 物理中的速度计算:在物理中,速度的大小通常使用二次根式表示。

例如,某物体从静止开始以匀加速度运动,其速度可以表示为v=a√t,其中a为加速度,t为时间。

3. 统计中的标准差计算:在统计学中,标准差用于衡量数据的离散程度。

标准差的计算中涉及到对平方根的运算。

第三部分:解题方法解决二次根式相关问题需要掌握一些常用的解题方法。

1. 提取公因式法:当二次根式分子、分母都有相同的因式时,可以提取公因式进行简化。

例如,化简√(20/45),可以提取公因式得到√(4/9)。

2. 平方差公式:平方差公式可以用来化简一些特殊形式的二次根式。

例如,化简√(a-b)(a+b),可以利用平方差公式得到√(a^2-b^2)。

3. 有理化分母法:当二次根式的分母是一个二次根式时,可以通过有理化分母的方法来进行化简。

例如,化简1/√3,可以将分母有理化为√3/3。

4. 定理运算法:在一些复杂的二次根式运算中,可以通过引入一个合适的定理来进行化简。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
(2)
(3)
( a ) a
2
(a 2) 2 a
2
例5:已知:x<0,化简: 16 x
2
解 :
16x (4 x ) 4 x
2 2
∵x<0 , ∴4x<0, ∴原式 = -4x
练一练:
化简 : x 6 x 9 x 2 x 1
2 2
(其中 -1 x 3)
a
2
a , ( a 0)
a
a , (a 0。 )
2
利用这个式子,我们可以把任何一个非负数写 2 成一个数的平方的形式。如 4= 4 。

试一试(4)把下列各数写成平方的形式:
3=
3 ,
2
5 2
5 2
2
0.04

0.04

2
( a ) a (a 0)
1.要使下列式子有意义,求字母X 的取值范围 1 (1) 3 x (2)
2x 5
由3 x 0得:x 3
(3) 1 x
5 由2 x 5 0得:x 2
x 1 x 0 由 得:x 1且x 0 x0
2.(1)
3 ( 3) ____
2
(2) x - 2 x + 1( x = -
2
3)
解:(1)
(3 - p ) 2 = | 3 - p |
∵ 3- p < 0 ∴ (3 - p ) 2 = p - 3 (2)
x2 - 2x + 1 = ( x - 1) 2 = | x - 1|
当x=∴当x=-
3 时,x-1<0 3时,
x2 - 2 x + 1 = 1+ 3
2
2 2 ( ) 7
2
面积 a
a
a
2 7
1 1 2 ( 2 ) 2 3 3
( 5 ) 5
2 2 -2 ( ) 3 3
二次根式的性质(3)
算一算: 02 = 0 ; 22 = 2 ; (-2)2 = 2 ; 32 = 3 ; (-3)2 = 3 。
想一想: a2 等于什么呢?
3,
注意:为了方便起见,我们把一个数的算术平方根 1 也叫做二次根式。如
2
思考: a 1 是不是 二次根式?
不是,它是 二次根式 的代数式.
形如 a (a 0)的式子叫做二次根式.
1.表示a的算术平方根 2. a可以是数,也可以是式. 3. 形式上含有二次根号
a ≥0
4. a≥0,
( 双重非负性)
注意:几个非负数的和为0,则每一个非负数必为0。
1.已知:
x4
+
2x y
=0,求 x-y 的值.
解:由题意,得 x-4=0 且 2x+y=0 解得 x=4,y=-8 x-y=4-(-8)= 4+ 8 =12 2.已知x,y为实数,且
x 1
A.3
+3(y-2)2 =0,则x-y的值为(
D )
B.-3
它必须具备如下特点: 1、根指数为 2; 2、被开方数必须是非负数。
想一想: 10 、 -5 、 8 a +0.1
2
3
5 3 、 (-2)
2
a (a<0﹚、
、 -a (a<0﹚是不是二次根式?
定义: 像 a 2 2500 , , b 3 这样表示的算术
s
平方根,且根号内含有字母的代数式叫做二 次根式。
?
做一做: 要使下列各式有意义,字母的取值必 须满足什么条件? 1、 x+3 3、 1 x 2、 2-5x 4、 a2+1 x-1 6、 x-2
5、 x-3 + 4-x
二次根式的性质(1)
非负数的算术平方根仍然是非负数。 性质 1: a ≥0 (a≥0) (双重非负性)
引例:|a-1|+(b+2) 2=0 , 则 a= b=
解: x
3- x 0
5 0


解得
- 5≤x<3
练习:求下列二次根式中字母的取值范围:
(1) a 1 (2)
1 1 2a
(3) ( a 3) 2
2
4 6
7
2 5x
2x 1 1 x
5 2 x 1
x 5 3 2x
(8 )
练习与反馈
2、 a 表示什么? 表示非负数a的算术平方根
试一试 :说出下列各式的意义;
1 16, 81, 0, , 0.04; 49
观察:
上面几个式子中,被开方数的特点? 被开方数是非负数 即 : a 0
1.二次根式的概念
a (a≥0)表示非负数 a 的算术平方根,
形如 a (a≥0)的式子叫做二次根式。
x0
x0
1 (7) 1 2a
3 x (8) | x | 4
求二次根式中字母的取值范围的基本依据: ①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。
例 2:要使 x-1 有意义,字母 x 的取值必须满足 什么条件? 解:由 x-1≥0,得 x≥1。
问:将式子 x-1 改为 1-x ,则字母 x 的取值必须 满足什么条件呢?
C.1
D.-1
练习
1.已知 y =
x- 2 + 2 - x + 3,求x、y的值.
x=2,y=3 2.已知 a 4 | 3 a | a ,求a的值. a≥4 a 4 a 3 a,即 a 4 3 a-4=9,则 a=13
12 n为一个整数, 求自然数n的值.
性质 2:( a )2 = a (a≥0)
性质 3:当 a≥0 时, a2 = 当 a<0 时, a2 = 也就是说: a2 = a -a |a| ; 。

a a
2
例2 计算:
(1)
2
a (a 0) a (a 0)
2
(10) ( 15 )
2
(2) [ 2 (2) ] 2 2 2
二 次 根 式
三个性质
2、
a
2
a a 0
3、
1、 ab a b a 0, b 0 两个公式
a2
a a 0
a 2、 b
a b
(a 0, b 0)
四种运算
加 、减、乘、除
题型:最简二次根式:
1、被开方数不含分数; 2、被开方数不含开的尽方的因数或因式; 注意:分母中不含二次根式。
n≤12 n = 3,8,11,12
二次根式的性质(2)
想一想
2
a a 0 等于什么?请举例验证.
性质2: a a, (a 0)

2
3
试一试(3)计算:
2
= 3
5 = 2
2
5 2

0.04 = 0.04

2
我们已经得到:
根据等式的定义,可得
例 4:已知 a+2 +|3b-9|+(4-c)2=0, 求 2a-b+c 的值。 解:∵ a+2 ≥0、|3b-9|≥0、(4-c) 2≥0,
又∵ a+2 +|3b-9|+(4-c) 2=0, ∴a+2=0 , 3b-9=0 ,4-c=0 。 ∴a= -2 , b= 3 ,c= 4。 ∴2a-b+c=2×(-2) -3+4 = -3。
化简:
(1)
2
10
( 2)
2
a
4
(3) (4)
(5)
1 2a a
2
ab
2 2
(a<0,b>0) (a>1 )
2
( x 1) 9 6 x x
(1<x<3 )
( a ) a(a 0)
2
a ( a 0 ) 2 a a a(a 0)
注意区别 a 与( a)
二次根式的双重非负性解析
经常作为隐含条件,是解题的关键 例 已知 x - 1 +
x- 1+ y + 3 = 0 ,求x+y的值 y + 3 ≥0,
解:∵ x - 1 ≥0,
y+ 3 = 0
∴ x - 1 =0, y + 3 =0 ∴x=1,y=-3 ∴x+y=-2

求下列二次根式的值
(1) (3 - p )
2
2
x 1 (2)当 x 1 时, (1 x) ____
(3) ( x 2) 2 x 2 , 则X的取值范围是___ x2
(4)若
( x 7) , 1 x7 x7 则X的取值范围是___
2
小结一下
求二次根式中字母的取值范围的基本依据:
①被开方数不小于零; ②分母中有字母时,要保证分母不为零。
练习1:把下列各式化为最简二次根 3 式 1 2 x 2
5
5 5
32
7
2 7 7
3y
4 2
x 6 xy 3y
练习:把下列各式化成最简二次根式
x-2 例 3:要使 有意义,字母 x 的取值必须满足 x-3 什么条件?
解:由 x-2≥0,且 x-3≠0,
得 x≥2 且 x≠3。
x-2 想一想: 假如把题目改为: 要使 有意义, x-1 字母 x 的取值必须满足什么条件? x≥2
想一想:一个正数的算术平方根是 正数 。 零的算术平方根是
0。
性质 3:当 a≥0 时, a2 = 当 a<0 时, a2 = 也就是说: a2 =
相关文档
最新文档