α-淀粉酶综述

合集下载

α淀粉酶

α淀粉酶

6制药和临床化学分析
已有报道,基于α一淀粉酶的液体稳定试剂已应用于全自动生化分析仪(CibaComingExpress)临床化学系统。
二α—淀粉酶的研究现状
1国内α一淀粉酶研究现状
1965年,我国开始应用淀粉芽孢杆菌BF一7658生产一淀粉酶,当时只有无锡酶制剂厂独家生产。1967年杭州怡糖厂实现了应用α一淀粉酶生产饴糖的新工艺,可以节约麦芽7%~10%,提高出糖率10%左右。1964年我国开始了酶法水解淀粉生产葡萄糖工艺的研究。l979年9月通过了酶法注射葡萄糖新工艺的鉴定,并先后在华北制药厂、河北东风制药厂、郑州嵩山制药厂等单位得到应用,取得了良好的经济效益。
2淀粉的液化作用和糖化作用
α一淀粉酶的主要市场是淀粉水解的产物,如葡萄糖和果糖。淀粉被转化为高果糖玉米糖浆(HFCS)。由于他们的高甜度,被用于饮料工业中软饮料的甜味剂。这个液化过程就用到在高温下热稳定性好的α一淀粉酶。α一淀粉酶在淀粉液化上的应用工艺已经相当成熟,而且有很多相关报道。
3纤维脱浆
由于α一淀粉酶是具有重要应用价值的工业酶,周内外很多课题组对它进行了研究。国内有代表性的研究单位有:四川大学,主要研究α一淀粉酶的生产菌株及其培养条件;江南大学,主要研究α一淀粉酶的结构以及应用性能,如耐热性、耐酸性;西北大学,主要研究α一淀粉酶的变性机理以及环境对α一淀粉酶的影响;华南理工大学,主要研究α一淀粉酶的固定化和动力性质;还有华中农业大学,中国科学院沈阳应用生态研究所,天津科技大学,南开大学生命科学学院,中国农业科学院,中国科学院微生物研究所等多家研究机构对多种α一淀粉酶生产菌的一淀粉酶基因进行了克隆以及表达研究。国外有代表性的研究单位有:加拿大的UniversityofBritishColumbia,他们对人胰腺的一淀粉酶结构和作用机理进行了深入的研究;丹麦的Carlsberg实验室主要研究大麦α一淀粉酶结构域与结合位点;美国的WesternRegionalResearchCenter主要研究大麦的α一淀粉酶与抗菌素的作用以及大麦α一淀粉酶的活性位点。

淀粉酶的种类

淀粉酶的种类

淀粉酶的种类一、引言淀粉酶是一类可以将淀粉分解成糖类的酶,广泛存在于动植物体内。

在生物学领域中,淀粉酶的种类非常丰富,不同种类的淀粉酶具有不同的特点和应用价值。

本文将对淀粉酶的种类进行详细介绍。

二、α-淀粉酶α-淀粉酶是一种能够将α-1,4-糖苷键水解的酶,主要作用于淀粉分子内部连接α-1,4-糖苷键的部分。

它能够将多糖链断裂成小分子糖,并且还能进一步水解出葡萄糖单元。

α-淀粉酶广泛存在于生物体内,包括动物、植物和微生物等。

三、β-淀粉酶β-淀粉酶是另一种重要的淀粉水解酶,它能够将β-1,4-糖苷键水解。

与α-淀粉酶不同的是,β-淀粉酶主要作用于支链上连接α-1,6-糖苷键的部分。

它能够将支链上的小分子糖水解出来,同时也能将主链上的糖分解成较小的分子。

四、γ-淀粉酶γ-淀粉酶是一种能够水解淀粉和糊精的酶,它主要作用于α-1,4-糖苷键和α-1,6-糖苷键。

与α-淀粉酶和β-淀粉酶不同的是,γ-淀粉酶具有较高的耐热性和碱性。

因此,它在工业上被广泛应用于制备糊化淀粉、葡萄糖浆等产品。

五、其他淀粉酶除了上述三种常见的淀粉酶外,还存在着许多其他类型的淀粉酶。

例如:α-amylase、β-amylase、glucosidase等。

这些淀粉酶在生物体内发挥着重要的作用,并且也被广泛应用于食品加工、医药制造等领域。

六、总结综上所述,淀粉酶是一类重要的生物催化剂,在生物学和工业领域都具有广泛的应用价值。

不同种类的淀粉酶具有不同的特点和应用场景,深入了解淀粉酶的种类和作用机理,对于提高淀粉加工效率、改善食品质量等方面都具有重要意义。

低温α-淀粉酶

低温α-淀粉酶

低温α-淀粉酶
低温α-淀粉酶(Low-temperature α-amylase)是一种能在较低温度下活性的α-淀粉酶。

这类酶通常能够在相对较低的温度范围内(一般在10°C到40°C之间)保持其催化活性,因此对于一些需要在低温条件下进行生产或处理的工业应用具有重要意义。

以下是低温α-淀粉酶的一些特点和应用领域:
1.活性温度:低温α-淀粉酶的活性温度一般在较低的范围内,
适合在低温环境下进行工业生产。

2.来源:这类酶可以从一些适应低温环境的微生物中提取,例如
一些生活在寒冷环境的细菌或真菌。

3.食品工业:低温α-淀粉酶在食品工业中有一些应用,例如在
低温条件下制备一些涉及到淀粉降解的食品制品,如糖浆和面粉的加工。

4.酿酒工业:在啤酒酿造等过程中,低温α-淀粉酶可以用于麦
芽中淀粉的降解,有助于发酵过程的进行。

5.生物燃料生产:在生物质降解和生物燃料生产的过程中,低温
α-淀粉酶的活性温度范围可能更适合在低温条件下操作。

6.洗涤剂生产:低温α-淀粉酶也可能用于洗涤剂的生产,尤其
是那些需要在低温下进行的洗涤工艺。

这些特性使得低温α-淀粉酶在一些需要低温工艺的工业领域中具有潜在的应用前景。

不同的酶可能有不同的特性,因此在具体应用中需要选择适合特定条件的酶。

α-淀粉酶

α-淀粉酶

根据淀粉酶对淀粉的水解方式不同,可将其分为α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和异淀粉酶等。

其中,α-淀粉酶(α-1,4-葡聚糖-4-葡聚糖苷酶)多是胞外酶,其作用于淀粉时可从分子内部随机地切开淀粉链的α-1,4糖苷键,而生成糊精和还原糖,产物的末端残基碳原子构型为α-构型,故称α-淀粉酶。

α-淀粉酶来源广泛,主要存在发芽谷物的糊粉细胞中,当然,从微生物到高等动、植物均可分离到,是一种重要的淀粉水解酶,也是工业生产中应用最为广泛的酶制剂之一。

它可以由微生物发酵制备,也可以从动植物中提取。

不同来源的α-淀粉酶的性质有一定的区别,工业中主要应用的是真菌和细菌α-淀粉酶。

目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业,是一种重要工业用酶。

如在淀粉加工业中,微生物α-淀粉酶已成功取代了化学降解法;在酒精工业中能显著提高出酒率。

其应用于各种工业中对缩短生产周期,提高产品得率和原料的利用率,提高产品质量和节约粮食资源,都有着极其重要的作用。

相对地,关于α-淀粉酶抑制剂国内外也有很多研究报道,α-淀粉酶抑制剂是糖苷水解酶的一种。

它能有效地抑制肠道内唾液及胰淀粉酶的活性,阻碍食物中碳水化合物的水解和消化,降低人体糖份吸收、降低血糖和血脂的含量,减少脂肪合成,减轻体重。

有报道表明,α-淀粉酶可以帮助改善糖尿病患者的耐糖量。

α-淀粉酶是淀粉及以淀粉为材料的工业生产中最重要的一种水解酶,其最早的商业化应用在1984年,作为治疗消化紊乱的药物辅助剂。

现在,α-淀粉酶已广泛应用于食品、清洁剂、啤酒酿造、酒精工业和造纸工业。

在焙烤工业中的应用:α-淀粉酶用于面包加工中可以使面包体积增大,纹理疏松;提高面团的发酵速度;改善面包心的组织结构,增加内部组织的柔软度;产生良好而稳定的面包外表色泽;提高入炉的急胀性;抗老化,改善面包心的弹性和口感;延长面包心储存过程中的保鲜期在啤酒酿造中的应用:啤洒是最早用酶的酿造产品之一,在啤洒酿造中添加α-淀粉酶使其较快液化以取代一部分麦芽,使辅料增加,成本降低,特别在麦芽糖化力低,辅助原料使用比例较大的场合,使用α-淀粉酶和β-淀粉酶协同麦芽糖化,可以弥补麦芽酶系不足,增加可发酵糖含量,提高麦汁率,麦汁色泽降低,过滤速度加快,提高了浸出物得率,同时又缩短了整体糊化时间。

α-淀粉酶的生产工艺1综述

α-淀粉酶的生产工艺1综述

种子扩大培养
1)孢子制备 将保存在淀粉琼脂斜面上的枯草芽孢杆菌孢子用无 菌水洗下,接种到锥形瓶中,在35℃静置培养2~4天,待 长出大量孢子后作为接种用的种子。 2)种子制备 将保藏的菌种接种到马铃薯茄子瓶斜面(20%马铃薯 煎出汁加MgSO4·7H2O 5 mg/L,琼脂2%,pH 6.7~7.0), 37℃培养3天。然后接入到20L种子罐,37℃搅拌,通风培 养12~14小时。此时菌种进入对数生长期(镜检细胞密集, 粗壮整齐,大多数细胞单独存在,少数呈链状,发酵液pH 6.3~6.8,酶活5~10U/mL),再接种到发酵罐。
4)溶氧的控制 α -淀粉酶发酵是需氧发酵,无论是基质的氧化,菌 体的生长还是产物的合成均需大量的氧气。若发酵液中氧 气不足,可通过加大通气量,适当降低温度,提高罐压, 补水,提高搅拌速度来控制。 5)染菌的控制 严格无菌操作,种子灭菌要彻底,净化空气设备, 操作要慎重,设备灭菌要彻底。若在前期染菌,应重新灭 菌;中期染菌,应偏离杂菌生长条件;后期染菌,可提前 或及时放罐。
3)纯化
α -淀粉酶的纯化方法可采用凝胶过 滤法,就是以特定的凝胶物质为分子筛装 入层析柱,再通过分离溶液时大于凝胶孔 径的分子会被排阻在胶粒外,因此它们将 “绕道通过”;小于该孔径的分子,由于 可以自由出入胶粒内外,因此将沿着胶粒 缝隙而直接流出。通过一段程度的凝胶层 析柱后,大小分子将依次先后流出。

3.发酵培养基
发酵培养基的要求是营养要适当丰富 和完全适合于菌种的生理特性和要求,使 菌种迅速生长、健壮,能在比较短的周期 内充分发挥产生菌合成发酵产物的能力, 但要注意成本和能耗。 α -淀粉酶的发酵培养基配方是:麸皮 70%、小米糠20%、木薯粉10%、烧碱0.5%, 加水使水量达60%,常压蒸汽灭菌1h。

耐高温α淀粉酶研究进展

耐高温α淀粉酶研究进展

耐高温α 淀粉酶研究进展郑元木摘要: 耐高温α-淀粉酶是重要的工业用酶之一,本文简要综述了该酶结构、性质、作用机制、分离纯化方法及生产工艺流程和用途。

关键词:耐高温α-淀粉酶;作用机制;生产工艺;用途α-淀粉酶全称为α-1,4-葡聚糖水解酶(EC3.2.1.1),作用于淀粉时,可从分子内部切开α-1,4-糖苷键而生成糊精和还原糖,由于产物的末端葡萄糖残基C1碳原子为α-构型,故得名为α-淀粉酶[1]。

耐高温α-淀粉酶不同于中温α-淀粉酶和α-淀粉酶普通高温,具有优越的耐热性能、酶活力高和较宽的pH适应范围等特性,故在工业中得到广泛的应用。

1 结构、功能、作用机制比较不同来源的耐高温α-淀粉酶氨基酸序列发现,虽然有的氨基酸序列相似性不足30%,但它们的三级结构极为相似,这也表明三级结构是催化活性的关键因素[2]。

耐高温α-淀粉酶都是由三个结构域组成,即为结构域A、结构域B、结构域C。

地衣芽孢杆菌是生产耐高温α-淀粉酶最重要的菌种,以地衣芽孢杆菌耐高温α-淀粉酶为例(结构如图一)[3]。

结构域A为8个α-螺旋和8个β-折叠交替组成的α/β桶状结构,该结构较为刚性,维持酶的基本构象。

结构域B具有较大的柔性,推测它可能与底物特异性结合有关,主要由一个或几个β-折叠构成。

结构域C构成α-淀粉酶的碳端,由反平行β-折叠组成,它包含的氨基酸少,距离活性位点远,缺乏柔性,目前它的功能尚不清楚。

α-淀粉酶的催化活性口袋位于结构域A和B之间,在α/β桶状结构的底部。

此外,在结构域A和B之间还发现有一个或几个钙离子及其他金属离子结合位点,推测它可能与稳定酶的结构有关。

耐高温α-淀粉酶属于水解酶类,能随机水解淀粉、糖原及降解物内部的α-D-1,4糖苷键,使溶液的粘度迅速下降,产生可溶性糊精、低聚糖及少量麦芽糖、葡萄糖。

对于耐高温α-淀粉酶作用机制的研究,Nielsen JE[4]等提出了如图二模型。

该模型认为催化中心位于α/β桶状结构的底部,Glu261和Asp231是起催化作用的两个重要残基。

α-淀粉酶结构

α-淀粉酶结构

α-淀粉酶结构植物和动物体内都存在一种重要的酶类物质,它被称为α-淀粉酶。

α-淀粉酶是一种能够催化淀粉分子水解的酶,它在生物体内发挥着重要的功能。

本文将详细介绍α-淀粉酶的结构特点和功能。

α-淀粉酶是由一条由氨基酸组成的多肽链构成的,它的分子量通常在10-100 kDa之间。

α-淀粉酶的结构非常复杂,包括多个结构域和功能区域。

其中,最重要的是催化区域和结合区域。

催化区域是α-淀粉酶的关键部分,它包含有特定的氨基酸残基,能够与淀粉分子中的特定化学键发生作用。

这些氨基酸残基通常包括谷氨酸、天冬氨酸和组氨酸等。

催化区域通过与淀粉分子结合,并对其进行剪切和水解,从而将淀粉分解成较小的糖分子。

结合区域是α-淀粉酶的另一个重要部分,它能够与淀粉分子中的非催化部分结合,从而使淀粉分子更加稳定。

结合区域通常由一些疏水性氨基酸残基组成,它们与淀粉分子上的疏水性残基相互作用,从而增强了α-淀粉酶与淀粉分子的结合能力。

除了催化区域和结合区域,α-淀粉酶的结构还包括一些辅助区域和调控区域。

辅助区域通常是一些与酶的稳定性和折叠状态相关的结构域,它们能够帮助α-淀粉酶保持其稳定的结构。

调控区域则可以通过与其他蛋白质或小分子结合,从而影响α-淀粉酶的活性和功能。

α-淀粉酶在生物体内发挥着重要的功能。

它能够催化淀粉的水解反应,将淀粉分解成可溶性的糖分子,从而提供能量和营养物质。

此外,α-淀粉酶还参与了一系列与淀粉代谢相关的生物过程,如淀粉的合成和降解、淀粉颗粒的形成和分解等。

总结起来,α-淀粉酶是一种能够催化淀粉水解的酶,它的结构复杂而多样。

催化区域和结合区域是α-淀粉酶的关键部分,它们通过与淀粉分子的特定区域结合,并对其进行剪切和水解。

α-淀粉酶在生物体内发挥着重要的功能,参与了淀粉代谢的各个环节。

对α-淀粉酶结构的研究有助于我们更好地理解其功能和调控机制,为相关领域的研究提供了重要的基础。

α-淀粉酶结构

α-淀粉酶结构

α-淀粉酶结构引言:α-淀粉酶是一种重要的酶类蛋白,广泛存在于生物体内。

它在食物消化、工业生产和医学应用等方面具有重要作用。

本文将主要介绍α-淀粉酶的结构特点和功能。

一、α-淀粉酶的基本结构:α-淀粉酶是一种酶类蛋白,它由多肽链组成,具有复杂的三维结构。

其结构特点主要包括以下几个方面:1.1 氨基酸序列:α-淀粉酶的氨基酸序列决定了其空间结构和功能。

通过测序技术可以确定α-淀粉酶的氨基酸序列,从而进一步研究其结构和功能。

1.2 二级结构:α-淀粉酶的二级结构主要包括α螺旋和β折叠。

这些二级结构的排列方式决定了α-淀粉酶的立体结构和稳定性。

1.3 三级结构:α-淀粉酶的三级结构是指其氨基酸链的空间排列方式。

它由多个不同的结构域组成,包括催化结构域、结合结构域等。

这些结构域相互作用形成具有特定功能的酶活性中心。

二、α-淀粉酶的功能:α-淀粉酶作为一种消化酶,在生物体内起着关键的作用。

它的功能主要包括以下几个方面:2.1 淀粉消化:α-淀粉酶能够将淀粉分解成糊精和糊精酶。

糊精酶进一步将糊精分解成葡萄糖,提供能量给生物体。

2.2 食物消化:α-淀粉酶在胃和小肠中发挥作用,帮助人体消化食物中的淀粉,使其转化为可供人体吸收利用的简单糖类。

2.3 工业生产:α-淀粉酶在工业生产中也有重要应用。

它可以用于酿造、制糖、制醋等过程中,促进淀粉的降解和转化,提高产品质量和产量。

2.4 医学应用:α-淀粉酶在医学上也具有一定的应用价值。

它可以用于治疗胃肠道疾病、辅助食物消化和促进营养吸收等方面。

三、α-淀粉酶的研究进展:随着科学技术的不断发展,对α-淀粉酶的研究也取得了许多重要进展。

3.1 结构解析:通过X射线晶体学和核磁共振等技术,研究人员对α-淀粉酶的结构进行了深入解析,揭示了其复杂的三维结构。

3.2 功能研究:通过对α-淀粉酶的功能及其活性中心的研究,人们对其催化机理和底物特异性有了更深入的了解。

3.3 应用拓展:近年来,研究人员还通过工程菌株和蛋白工程等手段,改造和改良α-淀粉酶,使其在工业生产和医学应用中发挥更大的作用。

α - 淀粉酶的应用与发展

α - 淀粉酶的应用与发展

100 年前,酶制品就被应用在食品工业方面 。 食品工业方面, α - 淀粉酶主要被广泛应用于烘焙工业中,主要是用于面包的 加工, 比如能增加面包的体积,面质松软可 口,通过对面包组织结构的改善,改变其柔软 度与外表光泽,还 能够提高面包的保质期和保鲜期,酶类特殊的作用更是能够提 高 面包的发酵速度。 在清洁行业, α -淀粉酶也有着很好的作用。在社会飞速 发展的今天,清洁剂,α - 淀粉酶由于其 温和无害的性质,并且 清洗时不需要用到高温,现如今的洗衣 粉 中就有着α -淀粉酶的加入。如今α -淀粉酶几乎应用到了 大部分的清洁剂中。 在造纸工业中, α -淀粉酶很好的保护纸张表面的作 用,可以使其免受机器加工的 损伤,同时也能将纸质进行改良, 使纸张的硬度和受用度都能得到提高。人们平时 所用的 淀粉却有着很高的局限性,比如浓度太高,在这种情况下,就需 要加入 α - 淀粉酶来对淀粉进行降解,使其浓度能够达到造纸工业的标准。 在生物工程行业, α - 淀粉酶也有着广泛的应用。由于近 几年来生物工程发展迅 猛, α - 淀粉酶在此领域的应用价值也 被逐渐挖掘出来,主要是被应用在医药和临 床行业。在医药方 面, α -淀粉酶主要用于助消化剂和一些有助消化的药物,因为 其特有的耐酸性,再经过适当的开发会非常适合胃酸性环境。
英国在1963年证实其安全性, 1995 年美国批准 α - 淀粉酶可 以用于烘焙工业
全剧终
α - 淀粉酶的应用与发展
---presented by ning Zhou
引 言
α -淀粉酶是一种从微生物到高等植物广泛遍布的酶, α - 淀粉酶作为酶类的一种,被应用于各个领域,在医药和食品 行业等更是被广泛应用。可以说随着 α - 淀粉酶的更多研究 与提取方式的高效发展,其被应用的行业也会随之产生进步, 而目前大规模生产 α -淀粉酶的方法是微生物发酵法,虽然说 α -淀粉酶在植物和动物中也能够提取,但是自从第二次世界 大 战后抗生素出现,微生物发酵法也成为了大规模生产的主 流。

α-淀粉酶综述

α-淀粉酶综述

α-淀粉酶概述陈国威 2011-11-13摘要:α-淀粉酶分布十分广泛,遍及微生物至高等植物。

α-淀粉酶是一种十分重要的酶制剂,大量应用于粮食加工、食品工业、酿造、发酵、纺织品工业和医药行业等,是应用最为广泛的酶制剂之一。

本文概述了α-淀粉酶的发现和应用发展史、分离纯化及结构的研究史、催化机制及其研究史、工业化生产和应用现状与发展趋势等。

关键词:α-淀粉酶发现应用分离纯化结构催化机制研究史发展趋势Overview of α-amylaseAbstract:α-amylases are well distributed throughout microorganisms and other biological. α-amylases are one of the most popular and important form of industrial enzymes,which are used extensively for grain processing,food processing, brewing, fermentation, textile industry and pharmaceutical industry. This article outlines the discovery of α-amylase and application history, purification and structure of history, catalytic mechanism and its research history, industrial production and application status and development trends.Keywords:α-amylases; discovery; application; purification; structure; catalytic mechanism; research history; development trends.α- 淀粉酶( α- 1,4- D- 葡萄糖- 葡萄糖苷水解酶) 普遍分布在动物、植物和微生物中, 是一种重要的淀粉水解酶。

α-淀粉酶水解产物

α-淀粉酶水解产物

α-淀粉酶水解产物α-淀粉酶是一种重要的酶类,在生物体内起着至关重要的作用。

本文将探讨α-淀粉酶的水解产物及其相关内容。

α-淀粉酶是一种能够水解淀粉的酶,它能够将淀粉分解为较小的多糖分子。

淀粉是植物储存糖的主要形式,由大量的葡萄糖分子组成。

而α-淀粉酶通过水解作用,将淀粉分解为可溶性的糊精、麦芽糊精和糖等产物。

糊精是α-淀粉酶水解淀粉的主要产物之一。

它是一种由30-50个葡萄糖分子组成的多糖,具有较高的溶解度和胶凝能力。

糊精在食品工业中被广泛应用,常用于增稠剂、胶凝剂和稳定剂等方面。

此外,糊精还可以用于制备生物材料、微胶囊和药物缓释系统等。

另一个重要的水解产物是麦芽糊精。

麦芽糊精是由2-30个葡萄糖分子组成的多糖,其溶解度和胶凝能力较低。

由于其特殊的结构,麦芽糊精在食品工业中常用于调味剂、增甜剂和防结晶剂等方面。

此外,麦芽糊精还具有保湿、柔软和抗菌等特性,在化妆品和医药领域也有一定的应用。

除了糊精和麦芽糊精,α-淀粉酶的水解还会产生大量的葡萄糖。

葡萄糖是人体能量的重要来源,它可以被迅速吸收和利用。

葡萄糖在食品工业中也有广泛的应用,常用于制糖、酿酒和饮料等方面。

除了上述产物,α-淀粉酶的水解还会产生一些低聚糖,如麦芽糖和葡萄糖二聚体等。

这些低聚糖在食品工业中具有一定的应用,常用于增甜剂、调味剂和保湿剂等方面。

α-淀粉酶的水解产物包括糊精、麦芽糊精、葡萄糖和低聚糖等。

这些产物在食品工业、化妆品和医药领域都有广泛的应用。

通过研究α-淀粉酶的水解产物,我们可以更好地应用这些产物,开发出更多的功能性食品和产品,为人们的生活带来更多的便利和健康。

耐高温α-淀粉酶在啤酒生产中的应用

耐高温α-淀粉酶在啤酒生产中的应用

耐高温α-淀粉酶在啤酒生产中的应用
α-淀粉酶,又称为淀粉过氧化酶,是一种可以加速淀粉水解的酶。

α-淀粉酶可用于植物细胞壁淀粉的分解,从而实现中性糖和呈酸性糖的生产。

它是一种能够耐受高温的酶,在啤酒生产中非常重要,因为啤酒的制造需要一定的温度条件。

α-淀粉酶有着优越的耐高温性,这是植物细胞壁淀粉水解所需的核心酶,可以在生产过程中满足一定的温度要求,并有效地保持稳定的活性水平,促进啤酒的软化。

它可以在低温的条件(5—50℃)下对糊精开始水解,使糊精变成酒精和糖醇。

在高温条件下(50—95℃),α-淀粉酶能快速水解淀粉,生成浓缩麦汁,大大改善了果实的品质。

此外,α-淀粉酶还可以促进啤酒的消化,从而促进啤酒的制造过程。

此外,α-淀粉酶的性能稳定,能有效地抑制变质和逆转反应,使得啤酒的供应更稳定,啤酒的质量也越来越好。

总之,α-淀粉酶具有优越的耐高温性,可以有效地加工小麦,加速淀粉分解,生产出中性糖和呈酸性糖,从而促进啤酒生产。

啤酒制作过程中使用α-淀粉酶,可以提高啤酒的质量,让消费者享受更加高品质的啤酒。

浅析三类淀粉酶的功能

浅析三类淀粉酶的功能

浅析三类淀粉酶的功能在淀粉这个神秘而庞大的家族中,住着三位拥有神奇魔法的“剪刀手”——阿尔法淀粉酶、贝塔淀粉酶和葡糖淀粉酶。

它们各自掌握着独特的技艺,能够将淀粉分解成更小、更甜的分子,为我们的生活带来无尽的甜蜜与惊喜。

今天,就让我们一同踏上这场淀粉的奇幻旅程,见证这三位“魔法剪刀”的非凡魅力吧!一、阿尔法淀粉酶:随机应变的“魔法大师”阿尔法淀粉酶,简称α-淀粉酶,是淀粉家族中的一位随机应变的“魔法大师”。

它擅长在淀粉分子的任何位置施展魔法,剪切α-1,4-葡萄糖苷键,将淀粉链剪成一段段较短的分子片段。

这些片段包括低聚糖、麦芽糖和葡萄糖等,都是我们熟悉的甜味来源。

α-淀粉酶的工作方式充满了随机性,它更倾向于水解淀粉链中间的键,而不是末端的键。

然而,它也有个小小的“盲点”,就是无法水解支链淀粉的α-1,6键以及紧靠1,6分支点的α-1,4-键。

尽管如此,它在淀粉水解过程中仍然扮演着举足轻重的角色,为我们带来了许多美味的食品。

二、贝塔淀粉酶:按部就班的“工艺大师”与阿尔法淀粉酶相比,贝塔淀粉酶更像是一位按部就班的“工艺大师”。

它只能从淀粉分子的非还原性末端开始,一步一步地切下两个葡萄糖单位,也就是一个麦芽糖分子。

这样,淀粉链就会逐渐缩短,最终变成一系列较小的分子。

β-淀粉酶的工作非常细致且有条理,它不仅能水解直链淀粉的α-1,4-糖苷键,还能处理支链淀粉分子分支点外的α-1,4-糖苷键。

但是,它也有一个“小遗憾”,就是无法水解支链淀粉的α-1,6-糖苷键和直链淀粉中的α-1,3-糖苷键。

尽管如此,它在淀粉水解的过程中同样发挥着不可替代的作用,为我们带来了许多美味的食品和工业原料。

三、葡糖淀粉酶:精准定位的“甜蜜使者”最后一位“魔法剪刀”是葡糖淀粉酶,它是一位精准定位的“甜蜜使者”。

葡糖淀粉酶能够从淀粉分子的非还原性末端开始,逐步水解α-1,4-糖苷键和α-1,6-糖苷键,最终生成葡萄糖。

它的工作方式非常精准,能够确保每个淀粉分子都被完全水解成葡萄糖分子。

α淀粉酶酶活定义

α淀粉酶酶活定义

α-淀粉酶(Alpha-amylase)是一种酶,它催化淀粉分解成较小的碳水化合物,如糊精和麦芽糖。

α-淀粉酶酶活定义指的是这种酶的活性,即它在一定条件下催化淀粉分解的能力。

酶活通常以单位时间内催化反应的量来表示,例如单位时间内分解的淀粉量或生成的糊精量。

α-淀粉酶酶活的单位通常是国际单位(International Units, UI),1 UI的α-淀粉酶在一定条件下(如一定的温度、pH值、底物浓度等)能够在1分钟内分解一定量的淀粉。

酶活的测定通常需要一个标准化的过程,包括底物的准备、酶的稀释、反应条件的设定、反应时间的控制以及产物的定量分析。

常用的定量方法包括滴定法、比色法、光谱法等。

在实际应用中,α-淀粉酶广泛用于食品工业,如面包制作、酿酒和洗涤剂生产中,也在医学和生物化学研究中作为研究工具。

a-淀粉酶的简介[最新]

a-淀粉酶的简介[最新]

淀粉酶【拼音:diàn-fěn méi;英文:Amylase】是一种水解酶,是目前发酵工业上应用最广泛的一类酶。

淀粉酶一般作用于可溶性淀粉、直链淀粉、糖原等α-1,4-葡聚糖,水解α-1,4-糖苷键的酶。

根据作用的方式可分为α-淀粉酶(EC3.2.1.1.)与β-淀粉酶(EC3.2.1.2.)。

α-淀粉酶广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物。

微生物的酶几乎都是分泌性的。

此酶以Ca2+为必需因子并作为稳定因子,既作用于直链淀粉,亦作用于支链淀粉,无差别地切断α-1,4-链。

因此,其特征是引起底物溶液粘度的急剧下降和碘反应的消失,最终产物在分解直链淀粉时以麦芽糖为主,此外,还有麦芽三糖及少量葡萄糖。

另一方面在分解支链淀粉时,除麦芽糖、葡萄糖外,还生成分支部分具有α-1,6-键的α-极限糊精。

一般分解限度以葡萄糖为准是35-50%,但在细菌的淀粉酶中,亦有呈现高达70%分解限度的(最终游离出葡萄糖)。

β-淀粉酶与α-淀粉酶的不同点在于从非还原性末端逐次以麦芽糖为单位切断α-1,4-葡聚糖链。

主要见于高等植物中(大麦、小麦、甘薯、大豆等),但也有报告在细菌、牛乳、霉菌中存在。

对于象直链淀粉那样没有分支的底物能完全分解得到麦芽糖和少量的葡萄糖。

作用于支链淀粉或葡聚糖的时候,切断至α-1,6-键的前面反应就停止了,因此生成分子量比较大的极限糊精。

从上述的α-淀粉酶和β-淀粉酶的作用方式,分别提出α-1,4-葡聚糖-4-葡萄糖水解酶(α-1,4-glucan 4-glucanohydrolase)和α-1,4-葡聚糖-麦芽糖水解酶(α-1,4-glucan maltohydrolase)的名称等而被使用。

α-淀粉酶是一种内切葡萄糖苷酶,属于淀粉酶α-淀粉酶催化水解淀粉会使淀粉黏度迅速下降,所以又称为液化淀粉酶。

理化性质:米黄色、灰褐色粉末。

能水解淀粉中的α-1,4,葡萄糖苷键。

α-淀粉酶的研究及应用[文献综述]

α-淀粉酶的研究及应用[文献综述]

毕业论文文献综述生物工程α-淀粉酶的研究及应用淀粉酶是一种水解酶,是目前发酵工业上应用最广泛的一类酶。

淀粉酶一般作用于可溶性淀粉、直链淀粉、糖原等α-1,4-葡聚糖,水解α-1,4-糖苷键的酶。

根据作用的方式可分为α-淀粉酶(EC3.2.1.1.)与β-淀粉酶(EC3.2.1.2.)。

因α-淀粉酶作用于淀粉时从淀粉分子的内部随机切开α-1,4糖苷键,生成糊精和还原糖,而β-淀粉酶从非还原性末端逐次以麦芽糖为单位切断α-1,4-葡聚糖链生成分子量比较大的极限糊精,且α-淀粉酶分布更广泛,已是一种十分重要的酶制剂,α-淀粉酶大量应用于粮食加工、食品工业、酿造、发酵、和医药行业等,它占了整个酶制剂市场份额的25%左右[1]。

目前工业生产上都以微生物发酵法大规模生产α-淀粉酶。

但随着社会需求的增大,工业生产对α-淀粉酶的需求量也越来越大,急需寻找满足生产需要的具新型特征的酶制剂。

因此本文主要讨论以α-淀粉酶为代表的淀粉酶的研究及应用。

1 α-淀粉酶的研究1.1 α-淀粉酶分离纯化方法的研究高纯度α-淀粉酶是一种重要的水解淀粉类酶制剂,可用于研究酶反应机理和测定生化反应平衡常数等。

分离纯化α-淀粉酶的方法很多,一般都是依据酶分子的大小、形状、电荷性质、溶解度、稳定性、专一性结合位点等性质建立的。

要得到高纯度的α-淀粉酶,往往需要将各种方法联合使用。

盐析沉淀、凝胶过滤层析、离子交换层析、疏水作用层析、亲和层析和电泳等,是蛋白质分离纯化的主要方法。

用吸附树脂法、40%乙醇从α-淀粉酶发酵液中分离高活性α-淀粉酶,用离子交换法和透析法对初酶液进行脱盐处理,最后用DEAE-纤维素纯化α-淀粉酶,所得酶活力为60153U/g,酶活性回收率为66.04%[2]。

另通过乙醇沉淀、离子交换层析和凝胶过滤层析等方式,从白曲霉菌A. kawachii的米曲粗抽出液中,分离纯化到两个耐酸性α-淀粉酶比活性极高的组分。

用疏水吸附法和DEAE-cellulose(二乙氨基乙基-纤维素)柱层析法分离纯化α-淀粉酶,所得酶活力为110 000 U/g。

α淀粉酶产生菌的研究进展综述

α淀粉酶产生菌的研究进展综述

α-淀粉酶产生菌的研究进展综述1309030202 刘铭迪【摘要】:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。

目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。

本文对α-淀粉酶产生菌的研究进展进行了相关综述。

【关键词】:α淀粉酶产生菌;耐受;性质;应用【正文】:α一淀粉酶(α一1,4一D一葡萄糖一葡萄糖苷水解酶)普遍分布在动物、植物和微生物中,是一种重要的淀粉水解酶。

它以随机作用方式切断淀粉、糖原、寡聚或多聚糖分子内的α一1,4葡萄糖苷键,产生麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广的酶制剂之一。

它可以由微生物发酵制备,也可以从动植物中提取。

不同来源的α淀粉酶的性质有一定的区别,工业中主要应用的是真菌和细菌α一淀粉酶。

目前,α一淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业,是一种重要工业用酶。

如在淀粉加工业中,微生物α一淀粉酶已成功取代了化学降解法;在酒精工业中能显著提高出酒率。

其应用于各种工业中对缩短生产周期,提高产品得率和原料的利用率,提高产品质量和节约粮食资源,都有着极其重要的作用。

1、α一淀粉酶的性质不同来源的α一淀粉酶的酶学和理化性质有一定的区别,它们的性质对在其工业应用中的应用影响也较大,在工业生产中要根据需要使用合适来源的酶,因此对淀粉酶性质的研究也显得比较重要。

目前关于不同来源仅一淀粉酶性质的研究已经很多,但将它们进行完整归纳的比较少,本文将其性质进行总结,为以后α一淀粉酶的应用提高相关依据。

1.1 底物特异性α一淀粉酶和其它酶类一样,具有反应底物特异性,不同来源的淀粉酶反应底物也各不相同,通常α一淀粉酶显示出对淀粉及其衍生物有最高的特异性,这些淀粉及衍生物包括支链淀粉、直链淀粉、环糊精、糖原质和麦芽三糖等。

(整理)α-淀粉酶综述

(整理)α-淀粉酶综述

α-淀粉酶综述佚名2013-10-06摘要:α-淀粉酶分布十分广泛,遍及微生物至高等植物。

α-淀粉酶是一种十分重要的酶制剂,大量应用于粮食加工、食品工业、酿造、发酵、纺织品工业和医药行业等,是应用最为广泛的酶制剂之一。

本文概述了α-淀粉酶的发现和应用发展史、分离纯化及结构的研究史、催化机制及其研究史、工业化生产和应用现状与发展趋势等。

关键词:α-淀粉酶发现应用分离纯化结构催化机制研究史发展趋势α- 淀粉酶( α- 1,4- D- 葡萄糖- 葡萄糖苷水解酶) 普遍分布在动物、植物和微生物中, 是一种重要的淀粉水解酶。

其作用于淀粉时从淀粉分子的内部随机切开α-1,4糖苷键,生成糊精和还原糖。

由于产物的末端残基碳原子构型为α构型,故称α-淀粉酶。

现在α-淀粉酶泛指能够从淀粉分子内部随机切开α-1,4糖苷键,起液化作用的一类酶。

1 α-淀粉酶的发现和应用史1.1 α-淀粉酶的发现啤酒是最古老的酒精饮料,发酵是其关键步骤,其中所包含的糖化过程就是把淀粉转化为糖。

这个转化过程的机理一直都没有被弄清楚,直到淀粉的发现。

在19世纪早期,许多科学家都在研究谷物提取物中淀粉的消化机理。

Nasse(1811年)发现,从生物体中提取的淀粉能过被转化为糖,而从被沸水杀死的植物细胞中提取的淀粉不能被转化为糖。

Kirchhoff(1815年)做了一个巧妙的实验。

他将4份的冷水加入到2份的淀粉中,并边加边搅拌。

之后加入20份的沸水使其形成一层厚厚的淀粉糊。

在淀粉糊还是余温的时候,加入被粉碎的麸质(或麦芽),然后在40-60°列式温度下水浴。

1-2小时后发现,淀粉糊开始缓慢液化。

8-10小时后,淀粉糊被转化为一种甜的溶液。

之后,他将其通过过滤和蒸发浓缩得到了糖浆,品尝后发现,其和发酵液一样甜。

在操作的过程中,他注明了实验过程中仅添加了非常少的麸质,并且得到的糖浆与淀粉的量成正比。

此外,如果在加入麸质前加入几滴高浓度的硫磺酸,最终就没有糖生成。

α-淀粉酶分子结构·式

α-淀粉酶分子结构·式

α-淀粉酶分子结构·式α-淀粉酶是一种酶类分子,能够加速淀粉分子的水解反应。

它们主要存在于生物体内,可以被分为多种类型,包括胰α-淀粉酶、唾液α-淀粉酶和真菌α-淀粉酶等等。

由于分子结构的差异,它们在催化淀粉分子的过程中可能具有不同的催化机制。

在化学性质方面,α-淀粉酶是一种水解酶,它的催化作用就是将淀粉分子水解成小分子物质。

这种水解反应是反应物和酶分子之间的化学反应,需要在一定的反应条件下进行。

除此之外,α-淀粉酶在催化淀粉水解反应过程中还需要参与一些辅助反应。

α-淀粉酶分子结构的组成也是十分复杂的。

这种酶具有多个结构域,包括催化域、结合域和调控域等等。

对于不同种类的α-淀粉酶来说,它们的分子结构存在差异。

例如,胰α-淀粉酶的分子结构是由两个链体组成的,一条链体是催化域,另一条链体是结合域。

唾液α-淀粉酶则是由一条链体组成的,包括全部催化域、结合域和调控域。

而真菌α-淀粉酶的分子结构则更加多样化,可能表现为具有多个域的的分子结构。

对于不同种类的α-淀粉酶来说,它们的分子结构也会决定它们催化淀粉水解反应的机制。

例如,胰α-淀粉酶在催化淀粉分子水解时,主要采用一个两步法的机制,其中包括两个水解反应。

在第一个水解反应中,淀粉分子会被裂解成一系列葡萄糖单元,称为糊精。

在接下来的第二个水解反应中,糊精的末端单元会被切断,形成可溶性的葡萄糖单元。

唾液α-淀粉酶和真菌α-淀粉酶的催化机制则可能略有不同。

这些酶可能会主要采用单步水解法,其中淀粉分子会被直接裂解成葡萄糖单元。

此外,α-淀粉酶的分子结构还会决定它们对不同类型的淀粉分子具有什么样的亲和性。

例如,胰α-淀粉酶主要对淀粉分子中的α-1,4-糖苷键具有亲和性,而对于分枝淀粉分子,则很少会进一步加速它们的水解反应。

总之,在研究α-淀粉酶的分子结构时,需要考虑酶的组成、催化机制和对不同类型淀粉分子的亲和性等方面。

这有助于我们更好地理解这种酶的功能和应用,为未来的生物技术研究提供更加坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

α-淀粉酶综述佚名2013-10-06摘要:α-淀粉酶分布十分广泛,遍及微生物至高等植物。

α-淀粉酶是一种十分重要的酶制剂,大量应用于粮食加工、食品工业、酿造、发酵、纺织品工业和医药行业等,是应用最为广泛的酶制剂之一。

本文概述了α-淀粉酶的发现和应用发展史、分离纯化及结构的研究史、催化机制及其研究史、工业化生产和应用现状与发展趋势等。

关键词:α-淀粉酶发现应用分离纯化结构催化机制研究史发展趋势α- 淀粉酶( α- 1,4- D- 葡萄糖- 葡萄糖苷水解酶) 普遍分布在动物、植物和微生物中, 是一种重要的淀粉水解酶。

其作用于淀粉时从淀粉分子的内部随机切开α-1,4糖苷键,生成糊精和还原糖。

由于产物的末端残基碳原子构型为α构型,故称α-淀粉酶。

现在α-淀粉酶泛指能够从淀粉分子内部随机切开α-1,4糖苷键,起液化作用的一类酶。

1 α-淀粉酶的发现和应用史1.1 α-淀粉酶的发现啤酒是最古老的酒精饮料,发酵是其关键步骤,其中所包含的糖化过程就是把淀粉转化为糖。

这个转化过程的机理一直都没有被弄清楚,直到淀粉的发现。

在19世纪早期,许多科学家都在研究谷物提取物中淀粉的消化机理。

Nasse(1811年)发现,从生物体中提取的淀粉能过被转化为糖,而从被沸水杀死的植物细胞中提取的淀粉不能被转化为糖。

Kirchhoff(1815年)做了一个巧妙的实验。

他将4份的冷水加入到2份的淀粉中,并边加边搅拌。

之后加入20份的沸水使其形成一层厚厚的淀粉糊。

在淀粉糊还是余温的时候,加入被粉碎的麸质(或麦芽),然后在40-60°列式温度下水浴。

1-2小时后发现,淀粉糊开始缓慢液化。

8-10小时后,淀粉糊被转化为一种甜的溶液。

之后,他将其通过过滤和蒸发浓缩得到了糖浆,品尝后发现,其和发酵液一样甜。

在操作的过程中,他注明了实验过程中仅添加了非常少的麸质,并且得到的糖浆与淀粉的量成正比。

此外,如果在加入麸质前加入几滴高浓度的硫磺酸,最终就没有糖生成。

从这个实验中他得到结论1)麸质是一种能够使温水中的淀粉粉末转化为糖的物质。

2)作为种子发芽的结果,相比种子内的物质而言,麸质能过将更多的淀粉转化为糖。

至此,Kirchhoff奠定了发现谷物中一种能够将淀粉转化为糖的蛋白质的基础。

另一个研究进展是由Payen和Persoz(1833年)发现。

他们发现在发酵液的酒精析出物中含有一种对热不稳定的物质,它能使淀粉转化为糖。

他们将其称为“diastase”,它就是现代所说的淀粉酶。

1886年,Lintner发现了两种淀粉酶-淀粉液化酶和淀粉糖化酶。

1924年,Kuhn 将淀粉水解酶归为两类。

将发酵过程中能够将淀粉水解为β-淀粉酶,其能够将淀粉水解为β型麦芽糖。

将能够液化和糊化淀粉的酶称为α-淀粉酶,其作用于淀粉的产物表现为低旋光性,这一点为α型麦芽糖和相关糖的特性[1]。

1.2 α-淀粉酶的应用史及现状早在1833年payen从麦芽抽提液中用酒精沉淀出白色沉淀,可以使200倍的淀粉液化, 取名为“diastase”,并出售用于棉布的退浆。

1894 年tadamin用麸皮培养米曲霉制造淀粉酶作为消化剂, 建立了高峰制药厂―现miles公司的前身。

1913年法国Bioden与Effront 发明用枯草杆菌生产α-淀粉酶, 以其耐热性取代了麦芽淀粉酶用于棉布的退浆, 创建了rapedase工厂(现并入了gist brocades 公司)。

从此酶制剂工业揭开序幕。

第二次世界大战后, 随着抗生素工业的发展,微生物的培养技术、发酵工艺和发酵罐的革新, 酶制剂工业有了飞跃的发展, 进人了工业化大生产的阶段。

1949年日本采用深层通风培养法生产α-淀粉酶。

1959年, 日本采用淀粉酶和糖化酶进行淀粉的液化和糖化, 确定了酶法制造葡萄糖浆的工艺, 革除了沿用100年酸水解工业, 使淀粉出糖率由80% 提高到100% 。

1973耐热性α-淀粉酶投人生产。

从此淀粉酶的生产又进入了一个新阶段[2]。

据统计,α-淀粉酶和糖化酶是酶制剂的主要品种。

如美国1975年酶制剂总产值为5151万美元,淀粉酶类为1550万美元,1980年总产值是6681万美元,其中淀粉酶类约占20 %。

在日本,1976年酶制剂总销售额为2999百万日元,α-淀粉酶为1530百万日元,占50%。

将淀粉用α-淀粉酶液化、糖化酶糖化进而提取葡萄糖的工艺奠定了果糖浆和淀粉糖浆生产的基础,因而改变了糖品种的结构, 开辟了淀粉加工的新途径。

1980年, 美国果葡萄浆用量已达40 亿磅, 折合成湿淀粉为280万吨, 若加上未统计的数字, 估计实际可达500万吨。

仅生产可口可乐每年则需用糖浆100万吨[3]。

目前, 除开展大量常规诱变育种工作外, 国外已初步搞清了α一淀粉酶的调控基因, 探讨了有关转导转化和基因克隆等育种技术。

将枯草芽抱杆菌重组体的基因引入生产菌株阴, 使α-淀粉酶产量提高7 -10倍, 并已应用于食品和制酒工业, 给选育高产α-淀粉酶菌株开创了新的途径[4]。

α-淀粉酶在动物、植物、微生物中均能产生,但大量生产还是主要靠微生物发酵。

有关的属有:Bacillus ,Bacteroides,Clostridium,Thermomonospora,Acinetobacter,Thermophile,Pseudomonas,Streptomyces,Thermoactinomyces,Aspergillus,Mucor,Neurospora,Penicillium等。

世界许多国家都以枯草杆菌(B.subtilis)生产的细菌淀粉酶和米曲霉(Aspergillus oryzae)生产的真菌淀粉酶为主要产品[5]。

下面仅以真菌α-淀粉酶的生产应用现状为例说明。

目前国际上仅有诺维信、丹尼斯克和帝斯曼等少数几家大型酶制剂公司拥有真菌α-淀粉酶的先进的生产技术与产品,且一直处于国际领先水平,其发酵水平一般在2 000 U/g 以上( 固态发酵) 。

虽然,我国早在1965 年就已在无锡建成我国第一个酶制剂厂—无锡酶制剂厂,并相继在国内实现了α-淀粉酶、糖化酶、蛋白酶及高温α-淀粉酶等生物酶制剂的生产和利用。

但是,我国在很长一段时间内对真菌α-淀粉酶的生产却处于空白状态,或有少量的自主产品面市,仍然远不能满足市场需求,使得我国必须通过大量进口才得以满足国内食品或发酵等工业日益增长的使用需求。

随着真菌α-淀粉酶需求量的日益增加及其相对较昂贵的价格,使得近年来越来越多的国内研究者开始关注真菌α-淀粉酶研究与开发工作。

国内报道的发酵水平大多数为200-600 U/g。

至2004年,河南省科学院生物研究所与郑州海韦力食品有限公司合作,以米曲霉为出发菌株,通过粒子束、60Co、r-射线、微波、紫外线、亚硝酸和硫酸二乙酯等6 种物理和化学诱变剂交替作用方法选育出了一株产酶水平较高菌株,其平均生产水平为1283 U/g,“整体技术达到了国内同类研究的领先水平”。

时至今日,国内已有多家酶制剂公司拥有真菌α-淀粉酶产品,在一定程度上缓解了国内对该酶种需求的压力,然而因国内企业的生产水平和产品多样性距国际领先水平仍有一定差距,所以国内市场供应的真菌α-淀粉酶大部分来自国外企业,使得在该酶种的市场占有中,中国企业一直处于劣势[6]。

2 酶的催化机制、空间结构及研究史2.1 酶的催化机制α-淀粉酶在结构上的相似性使人们相信他们具有相似的催化机制。

McCarter、Davies均提出α-淀粉酶的催化过程包括三步,共发生2次置换反应。

第一步,底物某个糖残基要先结合在酶活性部位的-1亚结合位点,该糖基氧原子被充当质子供体的酸性氨基酸(如GLU)所质子化;第二步,-1亚结合位点的另一个亲核氨基酸(如ASP)对糖残基的C1碳原子进行亲核攻击,与底物形成共价中间产物,同时断裂C1-OR键,置换出底物的糖基配基部分;第三步,糖基配基离去之后,水分子被激活(这可能正是被刚去质子化的GLU所激活),这个水分子再将ASP的亲核氧与糖残基的C1之间的共价键C1-ASP水解掉,置换出酶分子的ASP残基,水解反应完成。

在第二次置换反应中,如果进攻残基不是水分子,而是一个带有游离羟基的糖(寡糖)ROH,那么酶分子的ASP残基被置换出去后,就发生了糖基转移反应而非水解反应[7]。

2.2 酶催化机制的研究史α-淀粉酶的结构首先由MATSUURA (MATSUURA et al., 1979; 1984)发现。

(KUSUNOKI et al., 1990)单斜晶体被提炼出。

斜方晶系的天然形态(BOEL et al., 1990)和阿卡波糖混合形态(BRZOZOWSKI et al., 1997)被提炼出来。

在单斜晶态分析中,在酶的活性部位发现了与麦芽糖的结合键。

于是根据分子模型的研究,底物和酶键结合的假设被提出来。

之后,根据阿卡波糖混合形态结构,证实了确实存在底物和酶键结合模型。

抑制剂阿卡波糖也被用于其他和淀粉酶结构分析中,用于模拟想象底物和酶键结合的模型(QIAN et al., 1994; FUJIMOTO et al.; 1998, KADZIOLA et al.; 1998, BRAYER et al., 2000) 。

它们的结构表明酶和底物可能有相互作用。

催化残基和底物之间的氢键是Asp206-O1(-1),O6(-1), Glu230-O1(-1), and Asp297-O2,O3(-1)[8]。

2.3 酶空间结构及研究史α-淀粉酶的三级空间结构是通过X衍射在3Aº溶液中应用多对同晶型置换法得到(Mat- suur,Y;Kusunoki,M;Date,W;Date,W;Harada,S;Bando,S; el at 1979 J.Biochem. 86,1773-1 783; 1980J.Biochem .87,1555-1558)。

其一级结构氨基酸排列顺序于1982年完成(Toda,H;Kondo,K et al 1982 Proc.Jpn.Acad.58B,208-212)。

分子结构模型的建立是通过应用骨架模型配合电子密度分布的结果完成的,而电子密度分布是通过分子置换技术而总结得到的(Bricogue,G 1976 Acta Cryst,A32,832-847)。

以下是关于α-淀粉酶(TTA)简要的空间结构的描述。

α-淀粉酶是由478个氨基酸残基组成,它们折叠在三级结构的两大区域。

其中,最初的380个残基组成了区域A,剩余的组成了区域B。

区域A包括一个(βα)8的超二级结构。

在(βα)8的超二级结构中,α螺旋和β折叠的空间分布与磷酸丙糖异构酶、丙酮酸激酶或醛缩酶类似。

区域B是由8条反向平行的β-片层组成。

相关文档
最新文档