讲义一元二次方程讲义
2024年中考数学一轮复习提高讲义:一元二次方程
一元二次方程知识梳理1.一元二次方程方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫作一元二次方程.2.一元二次方程的特点(1)含有一个未知数.(2)未知数的最高次数是 2.(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax²+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.(4)将方程化为一般形式:ax²+bx+c=0时,应满足a≠0.3.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax²+bx+c=0(a≠0).其中ax²是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.4.一元二次方程的解法(1)直接开平方法.(2)配方法.(3)公式法.(4)因式分解法.5.根的判别式一元二次方程根的判别式为Δ=b²−4ac.典型例题例 1若关于x 的一元二次方程(m−1)x²+5x+m²−3m+2=0的常数项为0,则 m 的值等于( ).A. 1B. 2C.1或2D.0分析首先为保证( (m−1)x²+5x+m²−3m+2=0是一元二次方程,则m−1≠0;;其次,根据题意,常数项为0,则m²−3m+2=0.解 B例2已知方程x²+bx+a=0有一个根是-a(a≠0),则下列代数式的值恒为常数的是( ).A. abB. a/bC. a+bD. a-b分析将根代入方程,得a²−ab+a=0,提取公因式得到a(a-b+1)=0.解将-a代入原方程,得a(a-b+1)=0因为a≠0所以a-b=-1选 D.例3解下列一元二次方程.①9(x−1)²=(2x+1)²(用因式分解法)②x²−5x+2=0(用公式法)③y²−10y−10=0(用配方法)④(x+2)²−25=0(直接开平方法)解①9(x−1)²=(2x+1)²9(x−1)²−(2x+1)²=0[3(x-1)+(2x+1)][3(x-1)-(2x+1)]=0(5x-2)(x-4)=0x1=25,x2=4②x²−5x+2=0△=25-8=17x1=5+√172,x2=5−√172③y²−10y−10=0(y−5)²=35y1=√35+5,y2=−√35+5④(x+2)²−25=0(x+2)=±5x₁=3,x₂=−7例 4已知x²−x−1=0,求−x³+2x²+2014的值.分析 方法一,将 −x³+2x²+2014变形为含有 (x²−x )的形式;方法二,将 x²=x +1代入 −x³+2x²+2014逐次降幂.解 方法一 因为 −x³+2x²+2014=−x³+x²+x²+2014=x (−x 2+x )+x 2+2014⋯;又因为 x²−x −1=0,所以 −x 2+x =−1,将②代入①得原式= x ×(−1)+x 2+2014=−x +x 2+2007=−(−x 2+x )+2014⋯③;将②代入③得原式=-(-1)+2014=2015.方法二 −x 3+2x 2+2014=−x ⋅x 2+2x 2+2014又因为 x²−x −1=0,所以 x 2=x +1将②代入①得原式= −x (x +1)+2(x +1)+2014=−x²+x +2+2014=−1+2+2014=2015双基训练1. 方程 2x 2−1=√3x 的二次项系数是 ,一次项系数是 ,常数项是2.把一元二次方程(x+1)(1-x)=2x 化成二次项系数大于零的一般式是 ,其中二次项系数是 ,一次项系数是 ,常数项是 .3.关于x 的方程( (m −1)x²+(m +1)x +3m +2=0,当 m 时为一元一次方程,当m 时为一元二次方程.4.请写出一个根为x=-1,另一根满足-1<x<1的一元二次方程 .5.在方程 (x−1x+3)2−4(x−1x+3)+1=0中,如果设 y =x−1x+3,那么原方程可以化为关于y 的整式方程是 .6.已知 6x²+xy −2y²=0,则Ixy 的值为 .7.关于x 的方程(1)ax²+bx +c =0;(2)x²−4x =8+x²;(3)1+(x-1)(x+1)=0;(4)(k²+1)x²+kx +1=0)中,一元二次方程的个数为( ).A. 1B. 2C. 3D.48.如果 (m +3)x²−mx +1=0是一元二次方程,则( ).A. m≠-3B. m≠3C. m≠0D. m≠-3且m≠09.已知方程 x²−2(m²−1)x +3m =0的两个根是互为相反数,则m 的值是 ( ).A. m=±1B. m=-1C. m=1D. m=010.关于x 的一元二次方程( (a −1)x²+x +a²−1=0的一个根是0,则a 的值( ).A. 1B. -1C.1或-1D. 1211. 方程( (x −1)²−3(x −1)−4=0的较适当的解法是( ).A.开平方B.因式分解C.配方法D.公式法12.用配方法解下列方程时,配方有错误的是( ).A.x²−2x −99=0化为 (x −1)²=100B.x²+8x +9=0化为 (x +4)²=25C.2t²−7t −4=0化为 (t −74)2=8116D.3y²−4y −2=0化为 (y −23)2=109 13.下面是李刚同学在一次测验中解答的填空题,其中答对的是( ).A.若 x²=4,则x=2B. 方程x(2x-1)=2x-1的解为x=1C.若 x²+2x +k =0的一个根为1,则k=-3;D.若分式 x 2−3x+2x−1的值为零,则x=1,214.若(x+y)(x+y+2)-8=0,则x+y 的值是( ). A. -4 或2 B. -2或 4 C.−32或3 D.3或-215.关于x 的方程 2²x²+(2k −1)x +1=( 有实数根,则下列结论正确的是( ).A. 当 k =12时方程的两根互为相反数B.当k=0时方程的根是x=--1C.当k=±1时方程的两根互为倒数D. 当 k ≤14时方程有实数根16.等腰三角形的两边的长是方程 x²−20x +91=0的两个根,则此三角形的周长为( ).A.27B.33C.27 和33D.以上都不对17.用适当的方法解下列一元二次方程①25x²−36=0 ②2(x −1)²=x²−1③2x²−7x +3=0 circle4x 2+2(√2−1)x +3−2√2=018.关于x 的方程 (m −√3)x m 2−1−x +3=0是一元二次方程,则m= .19.如果关于x 的一元二次方程 x²+px +q =0的两根分别为 x₁=3,x₂=1,那么这个一元二次方程是( ). A.x²+3x +4=0 B.x²−4x +3=0C.x²+4x −3=0D.x²+3x −4=0 20.已知 x²+3xy −4y²=0(y ≠0),求 x−y x+y 的值.能力提升21.方程( (x−2)²=9的解是( ).A.x₁=5,x₂=−1B.x₁=−5,x₂=1C.x₁=11,x₂=−7D.x₁=−11,x₂=722.如果关于 x 的方程mx²−2(m+2)x+m+5=0没有实根,那么关于x 的方程(m−5)x²−2(m+2)x+ m=0的实根个数为( ).A.2个B.1个C.0个D.不确定23. 关于x的方程( (m−2)x m2−2−x+4=0是一元二次方程,则m=.24.用配方法解一元二次方程:. x²−2x−2=0.的值为零,求 x 的值.25.若分式x2−3x−4|x−3|−126. 若3x²−x−1=0,求6x³+7x²−5x+2014的值.27.试证明:不论m 为何值,方程2x²−(4m−1)x−m²−m=0总有两个不相等的实数根.,求它的另一个根和 m 的值.28.已知方程2x²−3x−m=0的一个根是1229.已知关于x的方程kx²-2(k+1)x+k-1=0有两个不相等的实数根.(1)求 k 的取值范围.(2)是否存在实数k,使此方程的两个实数根的倒数和等于0?若存在,求出 k 的值;若不存在,说明理由.30.当 k 取何值时,一元二次方程x²−(2k−3)x+2k−4=0(1)有两个正根.(2)有两个异号根,且正根的绝对值较大.拓展资源31.简单高次方程的解法(换元法、因式分解法).(1)x¹−x²−20=0(2)(x²−x)²−7x²+7x+10=0(3)(x-1)(x-2)(x-3)(x-4)=24(4)x³−x²−x+1=0(5)5(x2+1)x+1+6(1+x)x2+1=1732.用配方法求代数式的最大值或最小值.(1)2x²+40x−88(2)12(t+10)(30−t)33.已知关于x 的方程(m−2)x²−2(m−1)x+m+1=0有实数根,求m 的非负整数值.34.若关于x的方程ax²−2ax−3=0有实数根,求a 的取值范围.35.已知关于x的方程x²−2mx−3m²+8m−4=0.(1)求证:当m>2时,原方程总有两实数根.(2)若原方程的两根一个小于5,另一个大于2,求m 的取值范围.1.2,- √3,--12. x²+2x-1=0,1,2,-13.=1,≠14.x²+x =05.y²−4y +1=06. 12或 −237. B8. A9. B 10. B11. B 12. B 13. C 14. A 15. D 16. C 17.①x=± 65;②x ₁=1,x ₂=3; ③.x ₁= 12,x ₂=3;④x=1- √218.−√3 19. B 20. 53或0. 21. A 22. A 23. -224.x 1=√3+1,x 2=−√3+1 25. x=-1 26.201727. 因为 Δ=(4m −1)²+8(m²+m )=24m²+1>0 28.1,m=-1 29.(1) △=12k+4>0,则 k >−13且 k≠0.(2)不存在.理由如下:因为 1x 1+1x 2=0x 1+x 2x 1x 2=0 k=-1与 k >−13矛盾.所以不存在.30.(1) k>2且≠ 52;(2)32<k <2 31.(1)x =±√5;(2)x 1=2,x 2=−1,x 3=1+√212,x 4=1−√212;(3)x₁=0,x₂=5;(4)x=±1;(5)x =3±√172. 32.(1) 当x=-10时,有最小值-288;(2)当t=10时,有最大值200.33. m≤3,m=0,1,2,334.a≤-3或a>0.35.(1) 提示: Δ=16m²−32m +16=16(m −1)²;(2)m<0或 m >43.。
一元二次方程全章复习讲义
一元二次方程 内容简介:1. 了解一元二次方程的定义及一元二次方程的一般形式:20(0)ax bx c a ++=≠.2. 掌握一元二次方程的四种解法,并能灵活运用.3. 掌握一元二次方程根的判别式,并能运用它解相应问题.4. 掌握一元二次方程根与系数的关系,会用它们解决有关问题.5. 会解一元二次方程应用题. 知识点一:一元二次方程的定义及一般形式【知识要点】一元二次方程的一般形式:20(0)ax bx c a ++=≠例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx xm m 是关于x 的一元二次方程,则m 的值为 。
针对练习:1、方程782=x 的一次项系数是 ,常数项是 。
2、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
知识点二:一元二次方程的解【知识要点】1、 当已知一元二次方程的一个根时,要熟练地将这个根代入原方程,并灵活运用得到的等式。
2、 在20(0)ax bx c a ++=≠中,x 取特殊值时,a 、b 、c 之间满足的关系式。
例1、已知322-+y y 的值为2,则1242++y y 的值为 。
例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
例3、一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m x x 的两个根,则m 的值为 。
针对练习:1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。
九年级数学讲义(一元二次方程)
九年级数学讲义(一元二次方程)I 、理理知识要点(一)一元二次方程的有关概念1.对于一元二次方程的定义理解应抓住其本质,也就是它必须同时满足这样的三个条件:(1)是整式方程;(2)只含一个未知数;(3)未知数的最高次数是2。
要注意一元二次方程中的“元”和“次”是对整理化简之后而言的,因此一个方程是否为一元二次方程应“形”、“神”兼备。
如:02)12(23=-+--x x x x 是整式方程,化简后为0222=--x x 应是一元二次方程,而不是三次方程。
2.一元二次方程的一般式:我们把)0(02≠=++a c bx ax 叫做一元二次方程的一般式,其中2ax 、bx 、c 分别叫做二次项、一次项、常数项,a 、b 分别叫做二次项系数、一次项系数。
需要注意的是(1)“a≠0”是一般式的重要组成部分,不可遗漏;(2)方程的右边必须为0;(3)每一项及其系数都包括它本身的符号。
(二)一元二次方程的解法1.直接开平方法:用此法可解形如c x =2、)0()(2≥=+c c b ax 或可化为这种形式的一类方程,这种解法的优点是能迅速准确地求出方程的解,缺点是只适用于一些特殊的方程。
2.配方法:配方法是一种重要的数学思想方法,它的应用非常广泛,解方程只是它的一个具体应用。
任何一个形如bx x +2的二次式,都可以通过加一次项系数一半的平方的方法配成一个二项式的完全平方,把方程归结为能用直接开平方法来求解的方程。
实际上我们解一元二次方程时,一般是不用此法的,主要是要掌握这种配方的思想方法。
3.公式法:我们可以通过配方法推导出求一元二次方程)0(02≠=++a c bx ax 的解的公式)04(2422≥--±-=ac b aac b b x ,称为求根公式。
用公式的一般步骤:(1)把方程化成一般式;(2)求出ac b 42-的值,若ac b 42-≥0,将a 、b 、c 的值代入求根公式,求出方程的根;若ac b 42-<0,则原方程没有实数根。
一元二次方程培优专题讲义(最新整理)
数学培优专题讲义:一元二次方程一.知识的拓广延伸及相关史料1.一元二次方程几种解法之间的关系解一元二次方程有下列几种常用方法:(1)配方法:如,经配方得2670x x ++=,再直接用开平方法;2(3)2x +=(2)公式法;(3)因式分解法。
这三种方法并不是孤立的,直接开平方法,实际也是因式分解法,解方程,只2670x x ++=要变形为即可,或原方程22(3)0x +-=经配方化为,再求解时,2670x x ++=2(3)2x +=还是归到用平方差公式的因式分解法,所以配方法归为用因式分解法的手段。
公式法在推导公式过程中用的是配方法和直接开平方法,因此,它还是归到因式分解法,所不同的是,公式法用一元二次方程的系数来表示根,因而可以作为公式。
由此可见,对因式分解法应予以足够的重视。
因式分解法还可推广到高次方程。
2.我国古代的一元二次方程提起代数,人们自然就把它和方程联系起来。
事实上,过去代数的中心问题就是对方程的研究。
我国古代对代数的研究,特别是对方程解法的研究有着优良的传统,并取得了重要成果。
下面是我国南宋数学家杨辉在1275年提出的一个问题:”直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?”答:”阔二十四步,长三十六步.”这里,我们不谈杨辉的解法,只用已学过的知识解决上面的问题.上面的问题选自杨辉所著的《田亩比类乘除算法》。
原题另一个提法是:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步?”这个问题同样可以类似求解.3. 掌握数学思想方法,以不变应万变。
本章内容蕴涵了丰富的数学方法,主要有转化思想、类比思想、降次法、配方法等。
(1)转化思想我们知道,解方程的过程就是不断地通过变形把原方程转化为与它等价的最简单方程的过程。
因此,转化思想就是解方程过程中思维活动的主导思想。
在本章,转化无所不在,无处不有,可以说这是本章的精髓和特色之一,其表现主要有以下方面:①未知转化为已知,这是解方程的基本思路:②一元二次方程转化为一元一次方程,这是通过将原方程降次达到的:③特殊转化为一般,一般转化为特殊。
一元二次方程讲义全
一元二次方程讲义全一元二次方程讲义考点一、概念1)定义:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。
2)一般表达式:ax^2+bx+c=(a≠0)注:当b=0时可化为ax^2+c=0,这是一元二次方程的配方式。
3)四个特点:只含有一个未知数;且未知数次数最高次数是2;是整式方程。
要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。
如果能整理为ax^2+bx+c=(a≠0)的形式,则这个方程就为一元二次方程。
4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0)。
4)难点:如何理解“未知数的最高次数是2”:①该项系数不为0;②未知数指数为2;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x的一元二次方程的是()A。
(x+1)^3=2(x+1)B。
2√x+1-11=0C。
ax^2+bx+c=0D。
x^2+2x=x^2+1变式:当k≠0时,关于x的方程kx^2+2x=x^2+3是一元二次方程。
例2、方程(m+2)x^m+3mx+1=0是关于x的一元二次方程,则m的值为。
考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;典型例题:例1、已知2y^2+y-3的值为2,则4y^2+2y+1的值为。
例2、关于x的一元二次方程(a-2)x^2+x+(a^2-4)=0的一个根为-2,则a的值为。
说明:任何时候,都不能忽略对一元二次方程二次项系数的限制。
例3、已知关于x的一元二次方程ax^2+bx+c=0(a≠0)的系数满足a+c=b,则此方程必有一根为-1.说明:本题的关键点在于对“代数式形式”的观察,再利用特殊根“-1”巧解代数式的值。
例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为。
一元二次方程解法讲义(全4讲)
一元二次方程解法讲义(全四讲)第一讲 直接开平一、学习目标了解形如()()20x h k k +=≥的一元二次方程的解法——直接开平方法;能够熟练而准确的运用开平方法求一元二次方程的解.二、知识回顾1.什么叫做平方根?平方根有哪些性质?平方根的定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根.用式子表示:若x 2=a ,则x 叫做a 的平方根.记作x=如:9的平方根是3±;425的平方根是25±.平方根的性质:(1)一个正数有两个平方根,这两个平方根是互为相反数的; (2)0的平方根是0; (3)负数没有平方根.2.x 2=4,则x=±2.想一想:求x 2=4的解的过程,就相当于求什么的过程?三、新知讲解四、典例探究1.用直接开平方法求一元二次方程的解【例1】解方程:(1)2x 2﹣8=0;(2)(2x ﹣3)2=25.分析:(1)先变形得到x 2=4,然后利用直接开平方法求解;(2)首先两边直接开平方可得2x ﹣3=±5,再解一元一次方程即可.解答:解:(1)x 2=4,两边直接开平方,得x1=2,x2=﹣2.(2)两边直接开平方,得2x﹣3=±5,则2x﹣3=5,2x﹣3=﹣5,所以x=4,x=﹣1.点评:本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法求解.总结:运用直接开平方法解一元二次方程,首先要将一元二次方程的左边化为含有未知数的完全平方式,右边化为非负数的形式,然后直接用开平方的方法求解.练1.(2015•东西湖区校级模拟)解方程:(2x+3)2﹣25=0分析:先移项,写成(x+a)2=b的形式,然后利用数的开方解答.解答:解:移项得,(2x+3)2=25,开方得,2x+3=±5,解得x1=1,x2=﹣4.点评:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.练2.(2014秋•昆明校级期中)解方程:9(x+1)2=4(x﹣2)2.分析:两边开方,即可得出两个一元一次方程,求出方程的解即可.解答:解:两边开方得:3(x+1)=±2(x﹣2),即3(x+1)=2(x﹣2),3(x+1)=﹣2(x﹣2),解得:x1=﹣7,x2=.点评:本题考查了解一元二次方程和解一元一次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.2.用直接开平方法判断方程中字母参数的取值范围【例2】(2015春•南长区期末)若关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤0分析:根据直接开平方法的步骤得出x2=k,再根据非负数的性质得出k≥0即可.解答:解:∵x2﹣k=0,∴x2=k,∵一元二次方程x2﹣k=0有实数根,∴k≥0,故选:C..点评:此题考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解的类型有:x2=a (a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”总结:先把方程化为“左平方,右常数”的形式,且把系数化为1,再根据一元二次方程有无解来求方程中字母参数的取值范围.练3.(2015春•利辛县校级月考)已知一元二次方程mx2+n=0(m≠0,n≠0),若方程有解,则必须()A.n=0 B.m,n同号 C.n是m的整数倍 D.m,n异号分析:首先求出x2的值为﹣,再根据x2≥0确定m、n的符号即可.解答:解:mx2+n=0,x2=﹣,∵x2≥0,∴﹣≥0,∴≤0,∵n≠0,∴mn异号,故选:D.点评:此题主要考查了直接开平方法解一元二次方程,关键是表示出x2的值,根据x2的取值范围确定m、n的符号.练4.(2015•岳阳模拟)如果关于x的方程mx2=3有两个实数根,那么m的取值范围是.解:∵关于x的方程mx2=3有两个实数根,∴m>0.故答案为:m>0.五、课后小测一、选择题1.(2015•石城县模拟)方程x2﹣9=0的解是()A.x=3 B.x=9 C.x=±3 D.x=±92.(2015•河北模拟)已知一元二次方程x2﹣4=0,则该方程的解为()A.x1=x2=2 B.x1=x2=﹣2 C.x1=﹣4,x2=4 D.x1=﹣2,x2=23.(2015•杭州模拟)关于x的方程a(x+m)2+n=0(a,m,n均为常数,m≠0)的解是x1=﹣2,x2=3,则方程a(x+m﹣5)2+n=0的解是()A.x1=﹣2,x2=3 B.x1=﹣7,x2=﹣2 C.x1=3,x2=﹣2 D.x1=3,x2=84.(2015•江岸区校级模拟)如果x=﹣3是一元二次方程ax2=c的一个根,那么该方程的另一个根是()A.3 B.﹣3 C.0 D.15.(2014•枣庄)x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间 D.x1,x2都小于36.(2014春•淮阴区校级月考)方程(1﹣x)2=2的根是()A.﹣1,3 B.1,﹣3 C., D.,7.(2012秋•内江期末)已知a2﹣2ab+b2=6,则a﹣b的值是()A. B.或 C.3 D.8.方程x2=0的实数根有()A.1个 B.2个 C.无数个 D.0个9.方程5y2﹣3=y2+3的实数根的个数是()A.0个 B.1个 C.2个 D.3个二、填空题10.(2015•泉州)方程x2=2的解是.11.(2014•怀化模拟)方程8x2﹣72=0解为.三、解答题12.(2014•祁阳县校级模拟)解方程:(x ﹣2)2﹣16=0.13.(2014秋•青海校级月考)解方程:.14.已知一元二次方程x 2﹣4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程.(1)你选的m 的值是 ;(2)解这个方程.第二讲 配方法一、 学习目标1.掌握用配方法解一元二次方程的一般步骤; 2.学会利用配方法解一元二次方程. 二、知识回顾1.形如2()x m n +=(n ≥0)的一元二次方程,利用求平方根的方法,立即可得而解出方程的根,这种解一元二次方程的方法叫“直接开平方法”.2.如果方程能化成x 2=p 或(mx +n )2=p (p ≥0)的形式,那么利用直接开平方法可得xmx+n三、新知讲解 1.配方法的依据配方法解一元二次方程的依据是完全平方公式2222()a ab b a b ±+=±及直接开平方法.2.配方法的步骤(1)化—— 化二次项系数为1如果一元二次方程的二次项系数不是1,那么在方程的两边同时除以二次项系数,把二次项系数化为1. (2)移——移项通过移项使方程左边为 二次项 和 一次项 ,右边为 常数项 . (3)配——配方1.形如2()x m n +=(n ≥0)的一元二次方程,利用求平方根的方法,立即可得而解出方程的根,这种解一元二次方程的方法叫“直接开平方法”.在方程两边都加上 一次项系数一半的平方 ,根据完全平方公式把原方程变为2()x m n +=(n ≥0)的形式.(4)解——用直接开平方法解方程. 四、典例探究1.配方法解一元二次方程 【例1】(2015•科左中旗校级一模)用配方法解下列方程时,配方有错误的是( )A .x 2﹣2x ﹣99=0化为(x ﹣1)2=100B .x 2+8x+9=0化为(x+4)2=25 C .2t 2﹣7t ﹣4=0化为(t﹣)2=D .3x 2﹣4x ﹣2=0化为(x ﹣)2=【解析】配方法的一般步骤: (1)把常数项移到等号的右边; (2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.根据以上步骤进行变形即可.解:A 、∵x 2﹣2x ﹣99=0,∴x 2﹣2x=99,∴x 2﹣2x+1=99+1,∴(x ﹣1)2=100,故A 选项正确.B 、∵x 2+8x+9=0,∴x 2+8x=﹣9,∴x 2+8x+16=﹣9+16,∴(x+4)2=7,故B 选项错误. C 、∵2t 2﹣7t ﹣4=0,∴2t 2﹣7t=4,∴t 2﹣t=2,∴t 2﹣t+=2+,∴(t ﹣)2=,故C 选项正确. D 、∵3x 2﹣4x ﹣2=0,∴3x 2﹣4x=2,∴x 2﹣x=,∴x 2﹣x+=+,∴(x ﹣)2=.故D 选项正确.故选:B .点评:此题考查了配方法解一元二次方程,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.练1用配方法解方程: x 2﹣2x ﹣24=0;(2)3x 2+8x-3=0;(3)x (x+2)=120.【解析】(1)移项,得x 2﹣2x=24,配方,得:x 2﹣2x+1=24+1,即:(x ﹣1)2=25, 开方,得:x ﹣1=±5, ∴x 1=6,x 2=﹣4.(2)两边除以3,得: 28103x x +-=, 移项,得:2813x x +=, 配方,得:222844()1()333x x ++=+,即:2245(x )()33+=,开方,得:4533x +=± ∴121,33x x ==- (3)整理,得:22120x x +=, 配方,得:2211201x x ++=+,即:2(1)121x +=,开方,得:111x +=±∴1210,12x x ==-点评:本题考查了解一元二次方程﹣﹣配方法.2.用配方法求多项式的最值【例2】(2015春•龙泉驿区校级月考)当x ,y 取何值时,多项式x 2+4x+4y 2﹣4y+1取得最小值,并求出最小值. 【解析】把所给代数式整理为两个完全平方式子与一个常数的和,最小值应为那个常数,从而确定最小值.解:x 2+4x+4y 2﹣4y+1=x 2+4x+4+4y 2﹣4y+1﹣4=(x+2)2+(2y ﹣1)2﹣4,又∵(x+2)2+(2y ﹣1)2的最小值是0,∴x 2+4x+4y 2﹣4y+1的最小值为﹣4. ∴当x=﹣2,y=时有最小值为﹣4.点评:本题考查配方法的应用;根据﹣4y ,4x 把所给代数式整理为两个完全平方式子的和是解决本题的关键.总结:配方法是求代数式的最值问题中最常用的方法.基本思路是:把代数式配方成完全平方式与常数项的和,根据完全平方式的非负性求代数式的最值.练2(2014•甘肃模拟)用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.【解析】将﹣8x 2+12x ﹣5配方,先把二次项系数化为1,然后再加上一次项系数一半的平方,然后根据配方后的形式,再根据a 2≥0这一性质即可证得.解:﹣8x 2+12x ﹣5=﹣8(x 2﹣x )﹣5=﹣8[x 2﹣x+()2]﹣5+8×()2=﹣8(x ﹣)2﹣, ∵(x ﹣)2≥0, ∴﹣8(x ﹣)2≤0, ∴﹣8(x ﹣)2﹣<0,即﹣8x 2+12﹣5的值一定小于0. 点评:此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.练3(2014秋•崇州市期末)已知a 、b 、c 为△ABC 三边的长.(1)求证:a2﹣b2+c2﹣2ac<0.(2)当a2+2b2+c2=2b(a+c)时,试判断△ABC的形状.【解析】(1)将不等式的左边因式分解后根据三角形三边关系判断代数式的符号即可;(2)将等式右边的项移至左边,然后配方即可.解:(1)a2﹣b2+c2﹣2ac=(a﹣c)2﹣b2=(a﹣c+b)(a﹣c﹣b)∵a、b、c为△ABC三边的长,∴(a﹣c+b)>0,(a﹣c﹣b)<0,∴a2﹣b2+c2﹣2ac<0.(2)由a2+2b2+c2=2b(a+c)得:a2﹣2ab+b2+b2﹣2bc+c2=0配方得:(a﹣b)2+(b﹣c)2=0∴a=b=c∴△ABC为等边三角形.点评:本题考查了配方法的应用,解题的关键是对原式正确的配方.五、课后小测一、选择题1.(2015•延庆县一模)若把代数式x2﹣2x+3化为(x﹣m)2+k形式,其中m,k为常数,结果为()A.(x+1)2+4 B.(x﹣1)2+2C.(x﹣1)2+4 D.(x+1)2+22.(2015•东西湖区校级模拟)一元二次方程x2﹣8x﹣1=0配方后为()A.(x﹣4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x﹣4)2=17或(x+4)2=17二、填空题3.(2015春•盐城校级期中)一元二次方程x2﹣6x+a=0,配方后为(x﹣3)2=1,则a= .4.(2014秋•营山县校级月考)当x= 时,代数式3x2﹣6x的值等于12.三、解答题5.(2015•东西湖区校级模拟)用配方法解方程:x2﹣2x﹣4=0.6.(2013秋•安龙县校级期末)试说明:不论x,y取何值,代数式x2+4y2﹣2x+4y+5的值总是正数.你能求出当x,y取何值时,这个代数式的值最小吗?7.(2014秋•蓟县期末)阅读下面的材料并解答后面的问题:小李:能求出x2+4x﹣3的最小值吗?如果能,其最小值是多少?小华:能.求解过程如下:因为x2+4x﹣3=x2+4x+4﹣4﹣3=(x2+4x+4)﹣(4+3)=(x+2)2﹣7而(x+2)2≥0,所以x2+4x﹣3的最小值是﹣7.问题:(1)小华的求解过程正确吗?(2)你能否求出x2﹣3x+4的最小值?如果能,写出你的求解过程.8.(2014秋•安陆市期末)阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4﹣(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值为4仿照上面的解答过程,求m2+m+4的最小值和4﹣2x﹣x2的最大值.9.(2014春•乳山市期末)已知代数式x2﹣2mx﹣m2+5m﹣5的最小值是﹣23,求m的值.10.(2014秋•江阴市期中)配方法可以用来解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1≥1,即:3a2+1有最小值1,此时a=0;同样,因为﹣3(a+1)2≤0,所以﹣3(a+1)2+6≤6,即﹣3(a+1)2+6有最大值6,此时 a=﹣1.①当x= 时,代数式﹣2(x﹣1)2+3有最(填写大或小)值为.②当x= 时,代数式﹣x2+4x+3有最(填写大或小)值为.③矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?第三讲公式法一、学习目标了解掌握一元二次方程根的判别式,不解方程能判定一元二次方程根的情况;理解一元二次方程求根公式的推导过程;掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况;学会利用求根公式解简单数字系数的一元二次方程.二、知识回顾1.什么是配方法?配方法解一元二次方程的一般步骤是什么?配方法:通过配方,先把方程的左边配成一个含有未知数的完全平方式,右边是一个非负数,然后运用直接开平方法求解,这种解一元二次方程的方法叫做配方法.配方法解一元二次方程的一般步骤:(1)移常数项到方程右边; (2)化二次项系数为1;(3)方程两边同时加上一次项系数一半的平方; (4)化方程左边为完全平方式;(5)若方程右边为非负数,则利用直接开平方法解得方程的根.2.怎样用配方法解形如一般形式ax 2+bx +c =0(a ≠0)的一元二次方程? 解:移项,得2,ax bx c +=-二次项系数化为1,得2,b c x x a a +=-配方,得222()(),22b b c bx x a a a a++=-+ 即:222424b b ac x a a -⎛⎫+= ⎪⎝⎭, 因为0,a ≠所以当240b ac ->时,2b x a-=;当240;2b b ac a -==-12时,x =x240b ac -=当时,原方程无解.三、新知讲解一元二次方程根的判别式24b ac -叫做一元二次方程ax 2+bx +c =0(a ≠0)根的判别式,通常用希腊字母∆表示它,即24b ac ∆=-.一元二次方程根的情况与判别式的关系(1)240b ac ∆=->⇔方程有两个不相等的实数根; (2)240b ac ∆=-=⇔方程有两个相等的实数根; (3)240b ac ∆=-<⇔方程没有实数根. 公式法解一元二次方程一般地,对于一般形式的一元二次方程ax 2+bx +c =0(a ≠0),当240b ac -≥时,它的两个根分别是1x =,2x =,这里,()2402b x b ac a-±=-≥叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.公式法解一元二次方程的一般步骤把方程化成一般形式:ax 2+bx +c =0(a ≠0);确定a ,b ,c 的值;求出24b ac -的值,并判断方程根的情况:当240b ac ->时,方程有两个不相等的实数根; 当240b ac -=时,方程有两个相等的实数根; 当240b ac -<时,方程没有实数根.当240b ac -≥时,将a ,b ,c 和24b ac -的值代入公式2b x a-=(注意符号).四、典例探究1.根据根的判别式判断一元二次方程根的情况【例1】(2015•重庆)已知一元二次方程2x 2﹣5x+3=0,则该方程根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 两个根都是自然数 D .无实数根分析:判断方程的根的情况,只要看根的判别式△=b 2﹣4ac 的值的符号就可以了. 解答:解:∵a=2,b=﹣5,c=3,∴△=b 2﹣4ac=(﹣5)2﹣4×2×3=1>0, ∴方程有两个不相等的实数根. 故选:A .点评:此题主要考查了一元二次方程根的判别式,要熟练掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.总结:求根的判别式时,应该先将方程化为一般形式,正确找出a ,b ,c 的值.根的判别式与一元二次方程根的情况的关系如下:当240b ac ->时,方程有两个不相等的实数根;当240b ac -=时,方程有两个相等的实数根;当240b ac -<时,方程没有实数根.练1.(2015•铜仁市)已知关于x 的一元二次方程3x 2+4x ﹣5=0,下列说法不正确的是( ) A .方程有两个相等的实数根 B .方程有两个不相等的实数根 C .没有实数根 D .无法确定 分析:先求出△的值,再判断出其符号即可.解答:解:∵△=42﹣4×3×(﹣5)=76>0, ∴方程有两个不相等的实数根. 故选B .点评:本题考查的是根的判别式,熟知一元二次方程ax 2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.练2.(2015•泰州)已知:关于x 的方程x 2+2mx+m 2﹣1=0 (1)不解方程,判别方程根的情况; (2)若方程有一个根为3,求m 的值. 分析:(1)找出方程a ,b 及c 的值,计算出根的判别式的值,根据其值的正负即可作出判断; (2)将x=3代入已知方程中,列出关于系数m 的新方程,通过解新方程即可求得m 的值.解答:解:(1)∵a=1,b=2m ,c=m 2﹣1,∵△=b 2﹣4ac=(2m )2﹣4×1×(m 2﹣1)=4>0,∴方程x2+2mx+m2﹣1=0有两个不相等的实数根;(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得,m=﹣4或m=﹣2.点评:此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.即用这个数代替未知数所得式子仍然成立.2.根据一元二次方程根的情况求参数的值或取值范围【例2】(2015•温州)若关于x的一元二次方程4x2﹣4x+c=0有两个相等实数根,则c的值是()A.﹣1 B.1 C.﹣4 D.4分析:根据方程根的情况与判别式的关系知△=42﹣4×4c=0,然后解一次方程即可.解答:解:∵一元二次方程4x2﹣4x+c=0有两个相等实数根,∴△=42﹣4×4c=0,∴c=1,故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.总结:已知方程根的情况求字母的值或取值范围时:先计算根的判别式;再根据方程根的情况列出关于根的判别式的等式或不等式求解;若二次项系数出现了字母,应注意“二次项系数不为0”.练3.(2015•凉山州)关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠2分析:根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac的意义得到m-2≠0且△≥0,即22-4×(m-2)×1≥0,然后解不等式组即可得到m的取值范围.解答:解:∵关于x的一元二次方程(m-2)x2+2x+1=0有实数根,∴m-2≠0且△≥0,即22-4×(m-2)×1≥0,解得m≤3,∴m的取值范围是 m≤3且m≠2.故选:D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.用公式法解一元二次方程【例3】用公式法解下列方程:(1)x2+2x﹣2=0;(2)y2﹣3y+1=0;(3)x2+3=2x.分析:(1)求出b2﹣4ac的值,代入公式x=求出即可;(2)求出b2﹣4ac的值,代入公式y=求出即可;(3)求出b2﹣4ac的值是负数,即可得出原方程无解.解答:解:(1)这里a=1,b=2,c=﹣2,∵b2﹣4ac=22﹣4×1×(﹣2)=12>0,∴x==﹣1,∴x1=﹣1+,x2=﹣1﹣;(2)这里a=1,b=﹣3,c=1.∵b2﹣4ac=(﹣3)2﹣4×1×1=5>0,y=,∴y1=,y2=;(3)移项,得x2﹣2x+3=0,这里a=1,b=﹣2,c=3.∵b2﹣4ac=(﹣2)2﹣4×1×3=﹣4<0.∴原方程没有实数根.点评:本题主要考查学生运用公式法正确解方程的能力,前提是先判断判别式的符号,再根据情况代入求根公式求解.总结:公式法的实质是配方法,只不过省去了配方的过程,而直接利用了配方的结论;运用公式法求解一元二次方程要注意两个前提:(1)先将一元二次方程化为一般形式,即确定a,b,c的值;(2)必须保证b2-4ac≥0.练4.(2014•锦江区模拟)解方程:x(x﹣2)=3x+1.分析:整理后求出b2﹣4ac的值,再代入公式求出即可.解答:解:x(x﹣2)=3x+1,整理得:x2﹣5x﹣1=0,b2﹣4ac=(﹣5)2﹣4×1×(﹣1)=29,x=,x1=,x2=.点评:本题考查了解一元二次方程的应用,能正确运用公式法解一元二次方程是解此题的关键,难度适中.练5.当x是何值时,3x2+4x﹣8的值和2x2﹣1的值相等?分析:根据3x2+4x﹣8的值和2x2﹣1的值相等,即可列出方程,然后利用公式法即可求解.解答:解:根据题意得:3x2+4x﹣8=2x2﹣1,即x2+4x﹣7=0,a=1,b=4,c=﹣7,△=b2﹣4ac=16+28=44>0,则x==﹣2.点评:本题考查了公式法解一元二次方程,注意公式运用的条件:判别式△≥0.五、课后小测一、选择题1.(2015•云南)下列一元二次方程中,没有实数根的是()A.4x2﹣5x+2=0 B.x2﹣6x+9=0 C.5x2﹣4x﹣1=0 D.3x2﹣4x+1=02.(2015•贵港)若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为()A.﹣1 B.0 C.1 D.23.(2015•烟台)等腰直角三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A.9 B.10 C.9或10 D.8或104.(2015•株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=15.(2013•日照)已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是()A.﹣2<x1<﹣1 B.﹣3<x1<﹣2 C.2<x1<3 D.﹣1<x1<0二、填空题6.(2011秋•册亨县校级月考)用公式法解方程2x2﹣7x+1=0,其中b2﹣4ac= ,x1= ,x2= .三、解答题7.(2014秋•通山县期中)用公式法解方程:2x2﹣4x=5.8.(2014秋•金溪县校级月考)解方程:2x2﹣2x﹣5=0.9.(2013春•石景山区期末)用公式法解方程:x(x)=4.10.(2015•梅州)已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.11.(2015•咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.12.(2015•昆山市一模)已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)若x1、x2是原方程的两根,且|x1﹣x2|=2,求m的值.13.(2015•南充一模)已知关于x的一元二次方程kx2﹣2(k﹣1)x+k﹣2=0(k≠0)(1)小明考查后说,它总有两个不相等的实数根.(2)小华补充说,其中一个根与k无关.请你说说其中的道理.第四讲因式分解法一、学习目标1.会用因式分解法解一元二次方程;2.会用换元法解一元二次方程;3.灵活选用简便的方法解一元二次方程.二、知识回顾1.分解因式的常用方法有哪些?(1)提取公因式法:am+bm+cm= m(a+b+c)(2)公式法:22()()-2(-)++=+222a ab b a b+=,a b a b a ba ab b a b-=+-,2222()(3)十字相乘法:2()()()+++=++x a b x ab x a x b三、新知讲解1.因式分解法把一个多项式分解成几个整式乘积的形式叫做分解因式.当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们可以使两个一次式分别等于0,从而实现降次. 这种解一元二次方程的方法称为因式分解法.2.因式分解法解一元二次方程的步骤:①把方程的右边化为0;②用提公因式法、公式法(这里指因式分解中的公式法)或十字相乘法把方程左边化成两个一次因式乘积的形式;③令每一个因式分别等于0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.3.因式分解法的条件、理论依据因式分解法解一元二次方程的条件是:方程右边等于0,而左边易于分解;理论依据是:如果两个因式的积等于零,那么至少有一个因式等于零.四、典例探究1.用因式分解法解一元二次方程【例1】用因式分解法解方程:(1)2(2x -1)2=(1-2x );(2)4(y +2)2=(y -3)2. 【解析】(1)移项,提取公因式;(2)移项并利用平方差公式分解因式求解.解:(1)2(2x -1)2=(1-2x )移项,得2(2x -1)2-(1-2x )=0,即:2(2x -1)2+(2x -1)=0,因式分解,得(2x-1)[2(2x-1)+1]=0, 整理,得(2x-1)(4x-1)=0, 解得x 1=12,x 2=14;(2)4(y +2)2=(y -3)2移项,得4(y +2)2-(y -3)2=0因式分解,得[2(y+2)+(y-3)][2(y+2)-(y-3)]=0 整理,得(3y+1)(y+7)=0 解得y 1=-13,y 2=-7.总结:用因式分解法解一元二次方程,是利用了“当ab=0时,必有a=0或者b=0”的结论. 因式分解法解一元二次方程的步骤: (1)把方程的右边化为0;(2)用提公因式法、公式法(这里指因式分解中的公式法)或十字相乘法把方程左边化成两个一次因式乘积的形式;(3)令每一个因式分别等于0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解.练1(2014秋•赵县期末)用因式分解法解方程:x 2﹣6x+9=(5﹣2x )2解:x 2﹣6x+9=(5﹣2x )2,(x ﹣3)2﹣(5﹣2x )2=0, 因式分解得:(x ﹣3+5﹣2x )(x ﹣3﹣5+2x )=0, 整理得:(2﹣x )(3x ﹣8)=0, 解得:x 1=2,x 2=.点评:此题主要考查了因式分解法解一元二次方程,正确分解因式是解题关键.2.用换元法解一元二次方程【例2】(2014•山西校级模拟)解方程(x ﹣1)2﹣5(x ﹣1)+4=0时,我们可以将x ﹣1看成一个整体,设x ﹣1=y ,则原方程可化为y 2﹣5y+4=0,解得y 1=1,y 2=4.当y=1时,即x ﹣1=1,解得x=2;当y=4时,即x ﹣1=4,解得x=5,所以原方程的解为x 1=2,x 2=5.利用这种方法求方程(2x+5)2﹣4(2x+5)+3=0的解.【解析】先设2x+5=y ,则方程即可变形为y 2﹣4y+3=0,解方程即可求得y (即2x+5)的值,进一步可求出x 的值.解:设x ﹣1=y ,则原方程可化为y 2﹣4y+3=0, 所以(y ﹣1)(y ﹣3)=0 解得y 1=1,y 2=3.当y=1时,即2x+5=1, 解得x=﹣2;当y=3时,即2x+5=3, 解得x=﹣1,所以原方程的解为:x1=﹣2,x2=﹣1.点评:本题运用换元法解一元二次方程.总结:换元法在解特殊一元二次方程的时候用的较多,运用了整体思想.在一元二次方程中,某个代数式几次出现,用一个字母来代替它可以简化问题时,我们可以考虑用换元法来解.解高次方程时,通过换元的方法达到降次的目的.练2(2015•呼和浩特)若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=_______.【解析】设a+b=x,则原方程转化为关于x的一元二次方程,通过解该一元二次方程来求x(即a+b)的值.解:设a+b=x,则由原方程,得4x(4x﹣2)﹣8=0,整理,得(2x+1)(x﹣1)=0,解得x1=﹣,x2=1.则a+b 的值是﹣或1.故答案是:﹣或1.点评:本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.练3解方程:(x2-3)2-5(3-x2)+4=0.【解析】设x2-3=y,则原方程转化为关于y的一元二次方程,通过解该一元二次方程来求y(即x2-3)的值.解:设x2-3=y,则原方程可化为y2-5(-y)+4=0,即:y2+5y+4=0,因式分解得:(y+1)(y+4)=0,解得y1=-1,y2=-4.当y1=-1时,x2-3=-1,即x2=2,解得x=当y2=-4时,x2-3=-4,即x2-3=-1,方程无实数根.综上,x=3.灵活选用方法解一元二次方程【例3】(2014秋•漳县校级期中)选择适当方法解下列方程:(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2);(3)2x2﹣2x﹣5=0;(4)(y+2)2=(3y﹣1)2.【解析】(1)利用配方法得到(x ﹣)2=,然后根据直接开平方法求解;(2)先变形得到3(x﹣2)2﹣x(x﹣2)=0,然后利用因式分解法解方程;(3)先计算判别式的值,然后利用求根公式法求解;(4)先变形得到(y+2)2﹣(3y﹣1)2=0,然后利用因式分解法解方程.解:(1)x2﹣5x=﹣1,x2﹣5x+()2=﹣1+()2,(x﹣)2=,x﹣=±,所以x1=,x2=;(2)3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,所以x1=2,x2=3;(3)△=(﹣2)2﹣4×2×(﹣5)=48x===,所以x1=,x2=;(4)(y+2)2﹣(3y﹣1)2=0,(y+2+3y﹣1)(y+2﹣3y+1)=0,y+2+3y﹣1=0或y+2﹣3y+1=0,所以y1=﹣,y2=.点评:本题考查了一元二次方程的四种常见解法.总结:解一元二次方程常用的方法有直接开平方法、配方法、公式法和因式分解法,根据一元二次方程的特征,灵活选用解方程的方法,可以起到事半功倍的作用.(1)一般地,当一元二次方程一次项系数为0时,即形如ax2+c=0形式的一元二次方程,应选用直接开平方法.(2)若常数项为0,即形如ax2+bx=0的形式,应选用因式分解法.(3)若一次项系数和常数项都不为0,即形如ax2+bx+c=0的形式,看左边的整式是否能够因式分解,如果能,则宜选用因式分解法;不然选用公式法;不过当二次项系数是1,且一次项系数是偶数时,用配方法也较简单.(4)公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的. 因此在解方程时,我们首先考虑能否应用直接开平方法、因式分解法等简单方法,若不行,则再考虑公式法(适当也可考虑配方法).练4(2015春•无锡校级期中)选择合适的方法解下列方程.(1)x2﹣5x﹣6=0;(2)3x2﹣4x﹣1=0;(3)x(x﹣1)=3﹣3x;【解析】(1)根据因式分解法,可得方程的解;(2)根据公式法,可得方程的解;(3)根据因式分解法,可得方程的解;(4)根据公式法,可得方程的解.解:(1)因式分解,得 (x ﹣1)(x ﹣6)=0,解得x 1=6,x 2=﹣1; (2)a=3,b=﹣4,c=﹣1,x 1=,x 2=;(3)方程化简得x 2+2x ﹣3=0, 因式分解,得(x+3)(x ﹣1)=0, 解得x 1=1,x 2=﹣3;(4)a=1,b=﹣2,c=1,x 1=1+,x 2=﹣1+.点评:本题考查了解一元二次方程,根据方程的特点选择适当的方法是解题关键.五、课后小测 一、选择题1.方程(x-16)(x+8)=0的根是( )A. x 1=-16,x 2=8B. x 1=16,x 2=-8C. x 1=16,x 2=8D. x 1=-16,x 2=-8 2. 方程5x(x+3)=3(x+3)的解为( ) A.123,35x x == B.35x = C.123,35x x =-=- D.123,35x x ==-3.(2015•滕州市校级模拟)方程x 2﹣2x=3可以化简为( )A .(x ﹣3)(x+1)=0B .(x+3)(x ﹣1)=0C .(x ﹣1)2=2D .(x ﹣1)2+4=0 二、填空题4.(2015•丽水)解一元二次方程x 2+2x ﹣3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程 . 5.(2014•杭州模拟)方程x (x+1)=2(x+1)的解是 .6.(2013秋•苏州期末)已知(x 2+y 2+1)(x 2+y 2+2)=6,则x 2+y 2的值为 . 三、解答题 7.(2014秋•静宁县期末)解下列方程:(1)x 2﹣2x+1=0(2)x 2﹣2x ﹣2=0(3)(x ﹣3)2+2(x ﹣3)=0. 8.(2014秋•沧浪区校级期末)解下列方程:(1)x 2﹣4x ﹣3=0(2)(x ﹣2)2=3(x ﹣2) (3)2(﹣x )2﹣(x ﹣)﹣1=0.9.(2014秋•宛城区校级期中)为了解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1看作一个整体,然后设x 2﹣1=y ,则(x 2﹣1)2=y 2,那么原方程可化为y 2﹣5y+4=0,解得y 1=1,y 2=4.当y=1时,x 2﹣1=1,x 2=2,x=±.。
一元二次方程讲义
一元二次方程讲义1.解方程2(2)9x -=. 2(3x ﹣1)2=8.例题3:配方法1.已知方程260xx q +=-可以配方成27x p =(-)的形式,那么262x x q +=-可以配方成下列的( ) A. 25x p =(-) B. 29x p =(-) C. 229x p +=(-) D. 225x p +=(-) 2.用配方法解方程:2420x x ++=练习:1. 用配方法解方程:x 2﹣7x+5=0. 2x 2﹣3x+1=0.x 2﹣6x ﹣7=0.例题4.公式法1.一元二次方程4x 2﹣2x+=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断2.用公式法解方程:03822=+-x x.练习:1.用公式法解方程:3x 2+5(2x+1)=0.练习:1.“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.”互联网+”时代,中国的在线教育得到迅猛发展.根据中国产业信息网数据统计分析,2015年中国在线教育市场产值约为1600亿元,2017年中国在线教育市场产值在2015年的基础上增加了900亿元.(1)求2015年到2017年中国在线教育市场产值的年平均增长率;(2)若增长率保持不变,预计2018年中国在线教育市场产值约为多少亿元?例题2:利润问题1.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?练习:1.今年本市蜜桔大丰收,某水果商销售一种蜜桔,成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式;(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?(销售利润=销售价﹣成本价)例题3:面积问题1.某中学标准化建设规划在校园内的一块长36米,宽20米的矩形场地ABCD上修建三条同样宽的人行道,使其中两条与AB平行,另一条与AD平行,其余部分种草(如图所示),若使每一块草坪的面积都为96平方米.求人行道的宽。
一元二次方程专题 讲义
1 =0 2
(3)2x2+1=3x
(4)3x2-6x+4=0
5
整理人:王子明
九年级上第一章 一元二次方程专题讲义
知识点 3:公式法 (1) 解一元二次方程时, 可以先将方程化为一般形式 ax2+bx+c=0, 当 b2-4ac≥0 时, 将 a、 b、c 代入式子 x=
b b 2 4ac 就得到方程的根. 2a b b 2 4ac 叫做一元二次方程的求根公式. 2a
知识点 4:因式分解法 依据 A.B=0 则 A=0 或 B=0 因式分解法要使方程一边为两个一次因式相乘,另一边为 0, 再分别使各一次因式等于 0 ※方程特点:左边可以分解为两个一次因式的积,右边为“0” , ※ 方 程 形 式 : 如
ax m 2 bx n 2
,
x a x b x a x c
2
公式: x
b b 2 4ac 2 , a 0, 且b 4ac 0 2a
考点:用公式法解方程 例 1 用公式法解下列方程. (1)2x2-x-1=0 (2)x2+1.5=-3x (3) x2- 2 x+
ห้องสมุดไป่ตู้
1 =0 2
(4)4x2-3x+2=0
6
整理人:王子明
九年级上第一章 一元二次方程专题讲义
2
9
整理人:王子明
九年级上第一章 一元二次方程专题讲义
1.4 根的判别式及应用 课标知识与能力目标 4.不解方程判断方程根的情况 5.根据方程根的情况确定字母参数的取值范围 6.应用根的判别式证明方程根的情况 7.构造一元二次方程,应用根的判别式解决相关的存在性问题 考点 1:不解方程判断方程根的情况 例 1 下列四个结论中,正确的是 ( )
《一元二次方程》复习经典讲义--绝对经典实用
《一元二次方程》复习经典讲义基础知识1、一元二次方程方程中只含有一个未知数,而且未知数的最高次数是2的方程,一般地,这样的方程都整理成为形如脳」「冰4;"『:寫占门的一般形式,我们把这样的方程叫一元二次方程。
其中'分别叫做一元二次方程的二次项、一次项和常数项,a b分别是二次项和一次项的系数。
如|满足一般形式「丁:、1,工宀L分别是二次项、一次项和常数项,2,—4分别是二次项和一次项系数。
注:如果方程中含有字母系数在讨论是否是一元二次方程时,则需要讨论字母的取值范围。
2.—元二次方程求根方法(1)直接开平方法形如•的方程都可以用开平方的方法写成' ,求出它的解,这种解法称为直接开平方法。
(2)配方法通过配方将原方程转化为V;工己丿的方程,再用直接开平方法求解。
配方:组成完全平方式的变形过程叫做配方。
配方应注意:当二次项系数为1时,原式两边要加上一次项系数一半的平方,若二次项系数不为1,只需方程两边同时除以二次项系数,使之成为1。
(3)公式法求根公式:方程小* X 「的求根公式_b 丄v b2-4ac2ti步骤:1)把方程整理为一般形式::匚『“甩.m」:,确定a b、c。
2)计算式子卜In的值。
3)当八心心-时,把a、b和卜L LI的值代入求根公式计算,就可以求出方程的解。
(4)因式分解法把一元二次方程整理为一般形式后,方程一边为零,另一边是关于未知数的二次三项式,如果这个二次三项式可以作因式分解,就可以把这样的一元二次方程转化为两个一元一次方程来求解,这种解方程的方法叫因式分解法。
3、一兀二次方程根的判别式的定义运用配方法解一元二次方程过程中得到显然只有当护仏“时,才能直接开平方得:也就是说,一元二次方程卅r吐m沁珥只有当系数'耳、满足条件託=眇一盘供訣氐时才有实数根.这里「n 叫做一元二次方程根的判别式.4、判别式与根的关系在实数范围内,一元二次方程'的根由其系数「、耳、确定,它的根的情况(是否有实数根)由二•,确定.设一元二次方程为' 7 ' 11■ 「,其根的判别式为:则hbph' ■4tjcr①1■- ' =■方程门厂山应二::緘町有两个不相等的实数根■br V ——丫——…_ _②方程' f'有两个相等的实数根•一.③.匸方程农用沁没有实数根.若I,4,匸为有理数,且二为完全平方式,则方程的解为有理根;若△为完全平方式,同时血是%的整数倍,则方程的根为整数根.说明:⑴用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有两个不相等的实数根时,:;有两个相等的实数根时,人-J;没有实数根时,「1⑵在解一元二次方程时,一般情况下,首先要运用根的判别式—氐判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根)•当亠忙仝:时,方程有两个相等的实数根(二重根),不能说方程只有一个根.①当时二抛物线开口向上二顶点为其最低点;②当…「时=抛物线开口向下二顶点为其最高点.5、一元二次方程的根的判别式的应用一元二次方程的根的判别式在以下方面有着广泛的应用:⑴运用判别式,判定方程实数根的个数;⑵利用判别式建立等式、不等式,求方程中参数值或取值范围;⑶通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.6韦达定理b如果能畋;:;的两根是;:,贝U " -丿.(隐含的条件:•「「)特别地,当一元二次方程的二次项系数为1时,设',’‘是方程"'的两个根,贝U '-7、韦达定理的逆定理以两个数,”为根的一元二次方程(二次项系数为1 )是F -(x t ^x2)x^x l x2 -0一般地,如果有两个数’,•满足<,「,那么',•'必定是加亠脉V.U =比爭為的两个根.8、韦达定理与根的符号关系在£已护仏心1J的条件下,我们有如下结论:-<0 丄邸⑴当・时,方程的两根必一正一负•若- ,则此方程的正根不小于负-*<0根的绝对值;若「,则此方程的正根小于负根的绝对值.->0 --> o⑵当J 时,方程的两根同正或同负.若」,则此方程的两根均为正--<0根;若「,则此方程的两根均为负根.更一般的结论是:若,'■是煜。
讲义一元二次方程讲义
考点一、概念(1)内容:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元次方程。
⑵一般表达式:ax2 bx c二0(a = 0)(3)关键点:强调对最高次项的讨论:①次数为“ 2”;②系数不为“ 0”。
典型例题:例1、下列方程中是关于x的一元二次方程的是( )J 2 “ 1 1A 3x 1 -2x1B 22=0x x2 2 2C ax bx c = 0D x 2x = x 1变式:当k ___________ 时,关于x的方程kx22^x23是一元二次方程。
例2、方程m - 2 x im - 3mx 1=0是关于x的一元二次方程,则m的值为________________________________________________________________________________________ 。
针对练习:1、方程8x2=7的一次项系数是______________ ,常数项是______________ 。
2、若方程m-1x2: m*x=1是关于x的一元二次方程,则m的取值范围考点二、方程的解⑴内容:使方程两边相等的未知数的值,就是方程的解。
⑵应用:①利用根的概念求代数式的值;典型例题:例1、已知2y2• y-3的值为2,则4y2• 2y • 1的值为_____________________ 。
例2、关于x的一元二次方程a「2 x2• x • a2「4 = 0的一个根为0,贝U a的值为_______________ 。
说明:任何时候,都不能忽略对一元二次方程二次项系数的限制.例3、已知关于x的一元二次方程ax2• bx • c = 0 a = 0的系数满足a b,则此方程必有一根为。
说明:本题的关键点在于对“代数式形式”的观察,再利用特殊根“ -1”巧解代数式的值。
例4、已知a = b,a2-2a -1 =0,b2-2b -1 = 0,求a b 二____________________变式:若a2-2a -1=0,b2-2b-1=0,则a b的值为_______________________ 。
初一数学一元二次方程全章精品讲义
当 <0,方程无实数解。
典例分析:
题型1:根据判别式判断根的情况
例1:方程 的根的情况()
A、该方程有两个相等的实数根B、该方程有两个不相等的实数根
C、该方程没有实数根D、无法确定
例2:不解方程判断下列方程根的情况
(1) (2) (3)
(4) (5)
题型2:利用跟的判别式求方程中某个字母的值或取值范围
d=====( ̄▽ ̄*)b_____________________________________
例2:已知 是完全平方式,则 的值为______。
例3:若 是完全平方公式,则 的值为_______。
例4:根据完全平方式填空
(1) (2)
(3) (4)
题型2:用配方法解一元二次方程
例1:用配方法解下列方程:
例3:已知一元二次方程 的两个根分别为 ,则二次三项式 可分解为_________________。
例4:在实数范围为定义一种运算“*”,其规则为 ,根据这个规矩,方程 的解为______________。
例5:若关于 的方程 与 有相同的实数根,则 的值为_______。
例6:已知 为非负数,方程
(2)如果方程有两个相等的实数根,是判断△ABC的形状,并说明理由。
(3)如果△ABC是等边三角形,试求出这个一元二次方程的根。
例3:已知 的两边AB、AD的长是关于x的方程 的两个实数根。
(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长?
(2)若AB的长为2,那么平行四边形ABCD的周长为多少?
6、求证:关于 的一元二次方程 恒有两个实数根.
7、已知关于 的方程
(1)当该方程的一个根为1时,求 的值及该方程的另一个根
(完整word版)一元二次方程讲义
第23章 一元二次方程1.一元二次方程只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程.一般形式:c b a c bx ax ,,(02=++是已知数,)0≠a 。
其中c b a ,,分别叫做二次项的系数,一次项的系数,常数项。
(1)下列方程中,是关于x 的一元二次方程的是( )A x 1+x 2=1B 212+x -21-x =1C x 2-x +1=0D 2x 3-5xy -4y 2=0(2)将方程x 2+3=x +3x 化成一般形式是____________,二次项系数是____________,一次项系数是____________,常数项是____________。
(3)关于x 的方程m 2x -3x=2x -mx+2是一元二次方程,m 应满足什么条件?(4)已知关于x 的一元一次方程(m -2)2x +3x+2m -4=0,有一个解是0,求m 的值.(1)下列方程 ①-x 2+2=0 ②2x 2-3x =0 ③ -3x 2=0 ④ -3x 2=0 ⑤ x 2+x1=0 ⑥232+x =5x ⑦ 2x 2-3=(x -3)(x 2+1)中是一元二次方程的有( ) A 2个 B 3个 C 4个 D 5个(2)方程(m+1)2x -(2m+2)x+3m -1=0有一个根为0,则m 的值为( ) A 32 B 31 C -32 D -31(1)若()5112=-+m x m 是一元二次方程,则m= 。
(2)一元二次方程()()0112=-+++c x b x a 化成一般形式为01342=++x x ,试求(2a+b )·3c 的值.2.一元二次方程的解法(1)直接开平方法(1)方程2x =1 的实数根的个数是 。
(2)用直接开平方法解下列方程① 92x -25=0 ② ()422=+x若方程()0212=--n m x ,试说明方程根的情况. (2)因式分解法(1)方程2x -1=0的根是 。
一元二次方程复习讲义
一元二次方程复习讲义【知识回顾】1、一元二次方程的概念:形如:ax 2+bx +c =0(a ≠0)概念中的三个要点:①____________,②____________,③____________.不是整式的式子可能是____________,____________.2、一元二次方程的解法:(1)直接开平方法:(2)配方法:(3)因式分解法:(4)公式法:求根公式:()042422≥--±-=ac b a ac b b x 3、一元二次方程的根的判别式:(1)当 时,方程有两个不相等.....的实数根; (2)当 时,方程有两个相等....的实数根; (3)当 时,方程没有实数根...... 4、韦达定理:如果ax 2+bx +c =0(a ≠0)有两个根x 1,x 2,那么x 1+x 2=b a -,x 1x 2=c a ; 推论:①222121212()2x x x x x x +=+-,②12121211x x x x x x ++=,③22121212()()4x x x x x x -=+-,④22111212121222212()4x x x x x x x x x x x x x x ++-+==,⑤12||x x -= 5、用方程解决实际问题:握手模型 增长率模型 降价模型等【基础训练】1、解下列方程(1)(2x +3)2-25=0.(直接开平方法) (2) 02722=--x x (配方法)(3)()()2322+=+x x (因式分解法) (4)2260x x +-=(公式法)2、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请选择你认为适当的方法解以下方程.①2310x x -+=; ②2(1)3x -=; ③230x x -=; ④224x x -=.3、一元二次方程2210x x -+=的解是 .4、方程24x x =的解是( )A .4x =B .2x =C .4x =或0x =D .0x = 5、方程(1)x x x -=的解是 .6、一元二次方程2(6)5x +=可转化为两个一次方程,其中一个一次方程是6x +=程是 .7、用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -= 8、下列方程中,有两个不相等实数根的是( )A .240x +=B .24410x x -+=C .230x x ++=D .2210x x +-= 9、一元二次方程0442=+-x x 的根的情况是( )A .有两个不相等的实数根;B .有两个相等的实数根;C .有一个实数根;D .没有实数根;10、已知一元二次方程032=++px x 的一个根为3-,则_____=p .11、关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为 .12、已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( )A .2-B .2C .3-D .3 13、三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 .14、某商品原价100元,连续两次涨价x %后售价为120元,下面所列方程正确的是( )A .2100(1)120x -=%;B .2100(1)120x +=%;C .2100(12)120x +=%;D .22100(1)120x +=%;15、一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是 .16、某种药品零售价经过两次降价后的价格为降价前的81%,则平均每次降价( )A .10%B .19%C .9.5%D .20%17、某商场第一季度的利润是82.75万元,其中一月份的利润是25万元,若利润平均月增长率为x ,则根据题意列方程为( )A .()75.821252=+x ;B .75.825025=+x ; C .75.827525=+x D .()()[]75.82111252=++++x x ;【能力提高】18、已知一元二次方程有一个根是2,那么这个方程可以是 (填上一个符合条件的方程即可)19、写出一个以—2和4为根的一元二次方程:_________________ _.20、已知m 是方程012=--x x 的一个根,则代数式m m -2的值等于 ( )A .1B .-1C .0D .2 21、关于x 的一元二次方程()220x mx m -+-=的根的情况是 ( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定22、关于x 的一元二次方程220x x m -+=有两个实数根,则m 的取值范围是 .23、在实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则,方程05)2(=*+x 的解为: ;24、将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成abc d ,定义abc d ad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x = . 25、a 、b 、c 分别是三角形的三边,则方程()022=++++b a cx x b a 的根的情况是( )A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 26、甲、乙、丙三家超市为了促销一种定价均为m 元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品最划算应到的超市是 ( )A .甲B .乙C .丙D . 乙或丙27、已知关于x 的方程x 2-2(m +1)x +m 2=0.(1)当m 取什么值时,原方程没有实数根.(2)对m 选取一个合适的非零整数,使原方程有两个实数根,并求这两个实数根这是一元二次方程根与系数的关系,我们利用它可以用来解题,例12,x x 是方程2630x x +-= 的两根,求2212x x +的值.解法可以这样:126,x x +=-123,x x =-则222212112()2x x x x x x +=+-=2(6)2(3)42--⨯-=. 请你根据以上解法解答下题:已知12,x x 是方程29、现将进货为40元的商品按50元售出时,就能卖出500件.•已知这批商品每件涨价1元,其销售量将减少10个.问为了赚取8000元利润,售价应定为多少?这时应进货多少件?30、某军舰以20海里/时的速度由西向东航行,一艘电子侦察船以30海里/时的速度由南向北航行,它能 侦察周周围50海里(含50海里)范围内的目标.如图,当该军舰行至A 处时,电子侦察船正位于A 处正南方向的B 处,且AB =90海里.若军舰和侦察船仍按原速度沿原方向继续航行,那么航行途中侦察船能否侦察到这艘军?如果能,最早何时能侦察到?如果不能,请说明理由.。
《一元二次方程根的判别式》 讲义
《一元二次方程根的判别式》讲义一、一元二次方程的一般形式我们先来看一元二次方程的一般形式:$ax^2 + bx + c = 0$(其中$a$、$b$、$c$是常数,且$a \neq 0$)。
在这个方程中,$a$被称为二次项系数,$b$是一次项系数,$c$是常数项。
二、根的判别式的定义接下来,我们要引入一个非常重要的概念——根的判别式,通常用符号“$\Delta$”表示,它的计算公式是$\Delta = b^2 4ac$。
那么,这个根的判别式到底有什么用呢?它可以用来判断一元二次方程根的情况。
三、根的判别式与方程根的关系当$\Delta > 0$时,方程有两个不相等的实数根。
比如说方程$x^2 5x + 6 = 0$,这里$a = 1$,$b =-5$,$c =6$,那么$\Delta =(-5)^2 4×1×6 = 25 24 = 1 > 0$,所以这个方程有两个不相等的实数根,通过求解可以得到$x_1 = 2$,$x_2 =3$。
当$\Delta = 0$时,方程有两个相等的实数根。
例如方程$x^2 4x + 4 = 0$,其中$a = 1$,$b =-4$,$c =4$,则$\Delta =(-4)^2 4×1×4 = 16 16 = 0$,所以这个方程有两个相等的实数根,即$x_1 = x_2 = 2$。
当$\Delta < 0$时,方程没有实数根。
像方程$x^2 + x + 2 = 0$,其中$a = 1$,$b = 1$,$c = 2$,此时$\Delta = 1^2 4×1×2 = 1 8 =-7 < 0$,所以这个方程没有实数根。
四、根的判别式的应用(一)不解方程判断根的情况在很多情况下,我们不需要求出方程的根,只需要判断根的情况。
比如给定一个方程$2x^2 + 3x 5 = 0$,我们可以通过计算$\Delta =3^2 4×2×(-5) = 9 + 40 = 49 > 0$,就能知道这个方程有两个不相等的实数根。
一元二次方程全章讲义
九年级上册第二章一元二次方程一、知识点梳理:知识点一:一元二次方程的定义 知识点二:开平方法解一元二次方程 知识点三:因式分解法解一元二次方程 知识点四:配方法解一元二次方程 知识点五: 一元二次方程的判别公式 知识点六:韦达定理 知识点七:二元一次方程应用题二、各知识点讲解:知识点一 :一元二次方程的定义 (一)知识点:1、只含有一个未知数x 的整式方程,并且都可以化成ax 2+bx+c=0(a 、b 、c 为常数,a ≠0)的形式,这样的方程叫做一元二次方程.2、判断一个方程是否为一元二次方程的依据(1)是一个整式方程 (2)只含有一个未知数(3)未知数的最高次数是2.这三个条件必须同时满足,缺一不可。
3、一元二次方程的二次项、二次项系数、一次项、一次项系数、常数项.一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下ax 2+bx+c=0(a 、b 、c 为常数,a ≠0)的形式.这种形式叫做一元二次方程的一般形式.其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.(二)、经典例题及相关练习例题1:判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x 2=4 (3) 3x 2-5x=0 (4) x 2-4=(x+2) 2 (5) ax 2+bx+c=0练习1、在下列方程中,一元二次方程的个数是( ).①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-5x=0 2、下列方程是一元二次方程的有__________。
(1)x 2+x1-5=0 (2)x 2-3xy+7=0(3)x+12 x =4(4)m3-2m+3=0 (5)22x2-5=0 (6)ax2-bx=43、下列方程中,是关于x的一元二次方程的有___________.①x2+2x+y=1 ②-5x2=0 ③2x2-1=3x④(m2+1)x+m2=6 ⑤3x3-x=0 ⑥x2+1x-1=0例2:一元二次方程一般形式、各项系数及常数项(1)一元二次方程(x+1)2-x==3(x2-2)化成一般形式是 .(2)把方程(1-3x)(x+3)=2x2+1化为一元二次方程的一般形式,并写出二次项,二次项系数,一次项,一次项系数及常数项.练习:1、把一元二次方程(x+2)(x-3)=4化成一般形式,得().A、x2+x-10=0B、x2-x-6=4C、x2-x-10=0D、x2-x-6=02、将方程3x2=2x-1化成一元二次方程的一般形式后,二次项系数、一次项系数和常数项系数可以是( )A. 3,2,-1B. 3,-2,-1C. 3,-2,1D. -3,-2,13、一元二次方程3x2-3x-2=0的一次项系数是________,常数项是_________.4、方程4x2=3x-2+1的二次项是 ,一次项是 ,常数项是5、把方程x(x+1)=4(x-1)+2化为一般形式,并写出它的二次项系数、一次项系数、常数项.例3:利用一元二次方程的定义解题(1)关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.练习1、已知(m+3)x2-3mx-1=0是一元二方程,则m的取值范围是。
一元二次方程讲义
一元二次方程讲义(总13页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第6讲 判别式和根与系数的关系【学习目标】1、 使学生会运用根与系数关系解题 2、对一元二次方程以及其根有更深刻的了解,培养分析问题和解决问题的能力【知识要点】1、一元二次方程的判别式:ac b 42-=∆,(1)当042>-ac b 时,方程有两个不相等的实数根,aacb b x 242-±-=;(2)当042=-ac b 时,方程有两个相等的实数根,abx x 221-==; (3)当042<-ac b 时,方程无实数解。
2、一元二次方程根与系数关系的推导:对于一元二次方程02=++c bx ax 其中0≠a ,设其根为21,x x ,由求根公式a acb b x x 24221-±-==,有ab x x -=+21,a cx x =⋅213、常见的形式:(1)212212214)()(x x x x x x -+=- (2))(3)(21213213231x x x x x x x x +-+=+ (3)21221214)(x x x x x x -+±=-【典型例题】例1 当m 分别满足什么条件时,方程2x 2-(4m+1)x +2m 2-1=0,(1)有两个相等实根;(2)有两个不相实根;(3)无实根;(4)有两个实根.例2、已知方程022=--c x x 的一个根是3,求方程的另一个根及c 的值。
例3、已知方程0652=--x x 的根是x 1和x 2,求下列式子的值: (1)2221x x + + 21x x (2)1221x x x x +例4、已知关于x 的方程3x 2-mx-2=0的两根为x 1 ,x 2,且31121=+x x , 求 ①m 的值; ②求x 12+x 22的值.例5、已知关于x 的方程(1)03)21(22=-+--a x a x 有两个不相等的实数根,且关于x 的方程(2)01222=-+-a x x 没有实数根,问a 取什么整数时,方程(1)有整数解【经典练习】姓名: 成绩:一、选择题1、方程012=--kx x 的根的情况是( )A 、有两个不相等的实数根B 、有两个相等的实数根C 、 没有实数根D 、 与k 的取值有关2、已知关于x 的一元二次方程0)1()1(22=+--k x k 的两根互为倒数,则k 的取值是( ).A 、2±B 、2C 、 2-D 、03、设方程0532=+-q x x 的两根为1x 和2x ,且0621=+x x ,那么q 的值等于( ). A 、32-B 、-2C 、91D 、92-4、如果方程12=+mx x 的两个实根互为相反数,那么m 的值为( ) A 、0 B 、-1 C 、1 D 、±15、已知ab ≠0,方程02=++c bx ax 的系数满足ac b =⎪⎭⎫⎝⎛22,则方程的两根之比为( )A 、0∶1B 、1∶1C 、1∶2D 、2∶3 二、填空题1、已知方程0432=--x x 的两个根分别是x 1和x 2,则21x x += _____,21x x =_____2、已知方程02=++b ax x 的两个根分别是2与3,则=a ,=b3、已知方程032=++k x x 的两根之差为5,k=?4、(1)已知方程x 2-12x+m=0的一个根是另一个根的2倍,则m= (2)方程 05242=++mx x 的一个根是另一个根的5倍,则m= ;51为根构造一个一元二次方程 三、简答题1、讨论方程04)1(4)1(22=----x m x m 的根的情况并根据下列条件确定m 的值。
一元二次方程讲义——绝对经典实用
一元二次方程基础知识1、 一元二次方程 方程中只含有一个未知数,而且未知数的最高次数是2的方程,一般地,这样的方程都整理成为形如ax bx c a 200++=≠()的一般形式,我们把这样的方程叫一元二次方程。
其中ax bx c 2,,分别叫做一元二次方程的二次项、一次项和常数项,a 、b 分别是二次项和一次项的系数。
如:24102x x -+=满足一般形式ax bx c a 200++=≠(),2412x x ,,-分别是二次项、一次项和常数项,2,-4分别是二次项和一次项系数。
注:如果方程中含有字母系数在讨论是否是一元二次方程时,则需要讨论字母的取值范围。
2. 一元二次方程求根方法 (1)直接开平方法形如x m m 20=≥()的方程都可以用开平方的方法写成x m =±,求出它的解,这种解法称为直接开平方法。
(2)配方法通过配方将原方程转化为()x n m m +=≥20()的方程,再用直接开平方法求解。
配方:组成完全平方式的变形过程叫做配方。
配方应注意:当二次项系数为1时,原式两边要加上一次项系数一半的平方,若二次项系数不为1,只需方程两边同时除以二次项系数,使之成为1。
(3)公式法求根公式:方程ax bx c a 200++=≠()的求根公式x b b ac ab ac =-±--≥224240()步骤:1)把方程整理为一般形式:ax bx c a 200++=≠(),确定a 、b 、c 。
2)计算式子b ac 24-的值。
3)当b ac 240-≥时,把a 、b 和b ac 24-的值代入求根公式计算,就可以求出方程的解。
(4)因式分解法把一元二次方程整理为一般形式后,方程一边为零,另一边是关于未知数的二次三项式,如果这个二次三项式可以作因式分解,就可以把这样的一元二次方程转化为两个一元一次方程来求解,这种解方程的方法叫因式分解法。
3、一元二次方程根的判别式的定义运用配方法解一元二次方程过程中得到 2224()24b b ac x a a -+=,显然只有当240b ac -≥时,才能直接开平方得:2b x a += 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.4、判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根1,2x =.②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122bx x a ==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根. 若a ,b ,c 为有理数,且∆为完全平方式,则方程的解为有理根;若∆为完全平方式,同时b -2a 的整数倍,则方程的根为整数根.说明:⑴用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有 两个不相等的实数根时,0∆>;有两个相等的实数根时,0∆=;没有实数根时,0∆<.⑵在解一元二次方程时,一般情况下,首先要运用根的判别式24b ac ∆=-判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根).当240b ac ∆=-=时,方程有两个相等的实数根(二重根),不能说方程只有一个根.①当0a >时⇔抛物线开口向上⇔顶点为其最低点;②当0a <时⇔抛物线开口向下⇔顶点为其最高点.5、一元二次方程的根的判别式的应用一元二次方程的根的判别式在以下方面有着广泛的应用: ⑴运用判别式,判定方程实数根的个数;⑵利用判别式建立等式、不等式,求方程中参数值或取值范围; ⑶通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.6、韦达定理如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12b x x a +=-,12cx x a =.(隐含的条件:0∆≥)特别地,当一元二次方程的二次项系数为1时,设1x ,2x 是方程20x px q ++=的两个根,则12x x p +=-,12x x q ⋅=.7、韦达定理的逆定理2一般地,如果有两个数1x ,2x 满足12b x x a +=-,12cx x a =,那么1x ,2x 必定是20(0)ax bx c a ++=≠的两个根.8、韦达定理与根的符号关系在24b ac ∆=-≥0的条件下,我们有如下结论:⑴当0c a <时,方程的两根必一正一负.若0b a -≥,则此方程的正根不小于负根的绝对值;若0b a -<,则此方程的正根小于负根的绝对值.⑵当0c a >时,方程的两根同正或同负.若0b a ->,则此方程的两根均为正根;若0b a -<,则此方程的两根均为负根. 更一般的结论是:若1x ,2x 是20(0)ax bx c a ++=≠的两根(其中12x x ≥),且m 为实数,当0∆≥时,一般地:① 121()()0x m x m x m --<⇔>,2x m <② 12()()0x m x m -->且12()()0x m x m -+->1x m ⇔>,2x m >③ 12()()0x m x m -->且12()()0x m x m -+-<1x m ⇔<,2x m <特殊地:当0m =时,上述就转化为20(0)ax bx c a ++=≠有两异根、两正根、两负根的条件.其他有用结论:⑴若有理系数一元二次方程有一根a +a a ,b 为有理数).⑵若0ac <,则方程20(0)ax bx c a ++=≠必有实数根. ⑶若0ac >,方程20(0)ax bx c a ++=≠不一定有实数根. ⑷若0a b c ++=,则20(0)ax bx c a ++=≠必有一根1x =. ⑸若0a b c -+=,则20(0)ax bx c a ++=≠必有一根1x =-.9、韦达定理的应用⑴已知方程的一个根,求另一个根以及确定方程参数的值; ⑵已知方程,求关于方程的两根的代数式的值; ⑶已知方程的两根,求作方程;⑷结合根的判别式,讨论根的符号特征;⑸逆用构造一元二次方程辅助解题:当已知等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理;⑹利用韦达定理求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱10、整数根问题对于一元二次方程20ax bx c ++=(0)a ≠的实根情况,可以用判别式24b ac ∆=-来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.方程有整数根的条件:如果一元二次方程20ax bx c ++=(0)a ≠有整数根,那么必然同时满足以下条件:⑵ 2b ak -=或2b ak -=,其中k 为整数. 以上两个条件必须同时满足,缺一不可.另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数)11、一元二次方程的应用1.求代数式的值;2. 可化为一元二次方程的分式方程。
一元二次方程(讲义)
是一元二次方程的重要组成部分。
方程,只有当时,才叫做一元二次方程。
如果且,它就是一元二次方程了。
解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合一元二次方程的定义。
(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。
如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。
如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。
ax2+bx+c=0 (a≠0)1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。
2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:(1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2一、关于一元二次方程概念的题目(一)选择题1.下列方程中有()是一元二次方程(1)(2)(3)(4)(5)(6)(A)(1)(5)(6)(B)(1)(4)(5)(C)(1)(3)(4)(D)(2)(4)(5)2.若方程是关于的一元二次方程,则的取值范围是()(A)(B)(C)或(D)且(二)填空题已知关于的方程当时,方程为一元二次方程,当时,方程为一元一次方程。
一元二次方程概念讲义
8. 试判断关于x 的方程x k x kx x =+--)(122是不是一元二次方程,如果是,指出其二次项系数、一次项系数及常数项课后作业 A 组习题:1.下列方程中的一元二次方程是( ).A .3(x +1)2=2(x -1)B .21x+x 1-2=0 C .ax 2+bx +c =0 D .x 2+2x =(x +1)(x -1)2.把方程-5x 2+6x+3=0的二次项系数化为1,方程可变为( ).A .x 2+56x +53=0 B .x 2-6x -3=0 C .x 2-56x -53=0 D .x 2-56x +53=0 3.将方程3x 2=2x -1化成一元二次方程的一般形式后,二次项系数、一次项系数和常数项系数可以是( ) .A . 3,2,-1B .3,-2,-1C .3,-2,1D . -3,-2,14.把一元二次方程(x +2)(x -3)= 4化成一般形式,得( ).A .x 2+x -10=0B .x 2-x -6=4C .x 2-x -10=0D .x 2-x -6=05. 方程x 2+3x -x +1=0的一次项系数是( ).A .3B .-1C .3-1D .3x -x6.已知方程(m +2)x 2+(m +1)x -m =0,当m 满足__________时,它是一元一次方程;当m 满足___________时,它是一元二次方程.7.一元二次方程226x x -=的二次项系数、一次项系数及常数之和为 .8.关于x 的方程2322+-=-mx x x mx 是一元二次方程,m 应满足什么条件?B 组练习:把方程2226332kx x k x kx -+=--整理为20ax bx c ++=的形式,并指出各项的系数.签字确认学员 教师 班主任。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点一、概念(1)内容:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。
(2)一般表达式:)0(02≠=++a c bx ax(3)关键点:强调对最高次项的讨论:①次数为“2”;②系数不为“0”。
典型例题:例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。
针对练习:1、方程782=x 的一次项系数是 ,常数项是 。
2、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
考点二、方程的解⑴内容:使方程两边相等的未知数的值,就是方程的解。
⑵应用:①利用根的概念求代数式的值;典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为 。
例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
说明:任何时候,都不能忽略对一元二次方程二次项系数的限制.例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
说明:本题的关键点在于对 “代数式形式”的观察,再利用特殊根“-1”巧解代数式的值。
例4、已知b a ≠,0122=--a a ,0122=--b b ,求=+b a变式:若0122=--a a ,0122=--b b ,则ab b a +的值为 。
针对练习:1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。
2、已知m 是方程012=--x x 的一个根,则代数式=-m m 2 。
3、已知a 是0132=+-x x 的根,则=-a a 622 。
4、方程()()02=-+-+-a c x c b x b a 的一个根为( )A 1-B 1C c b -D a -5、若=•=-+y x 则y x 324,0352 。
作业:1、若方程()021=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。
2、已知关于x 的方程022=-+kx x 的一个解与方程311=-+x x 的解相同。
⑴求k 的值;⑵方程的另一个解。
考点三、解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型一、直接开方法:()m x m m x ±=⇒≥=,02※※对于()m a x =+2,()()22n bx m ax +=+等形式均适用直接开方法 典型例题:例1、解方程:();08212=-x ()216252x -=0; ()();09132=--x 例2、若()()2221619+=-x x ,则x 的值为 。
针对练习:1、下列方程无解的是( )A.12322-=+x xB.()022=-x C.x x -=+132 D.092=+x 类型二、因式分解法:()()021=--x x x x 21,x x x x ==⇒或※方程特点:左边可以分解为两个一次因式的积,右边为“0”,※方程形式:如()()22n bx m ax +=+,()()()()c x a x b x a x ++=++ ,0222=++a ax x 典型例题:例1、()()3532-=-x x x 的根为( )A 25=xB 3=xC 3,2521==x xD 52=x 例2、若()()044342=-+++y x y x ,则4x+y 的值为 。
变式1:()()=+=-+-+2222222,06b 则a b a b a 。
变式2:若()()032=+--+y x y x ,则x+y 的值为 。
变式3:若142=++y xy x ,282=++x xy y ,则x+y 的值为 。
例3、方程062=-+x x 的解为( )A.2321=-=,x xB.2321-==,x xC.3321-==,x xD.2221-==,x x 例4、解方程: ()04321322=++++x x例5、已知023222=--y xy x ,则yx y x -+的值为 。
变式:已知023222=--y xy x ,且0,0>>y x ,则y x y x -+的值为 。
针对练习:1、下列说法中:①方程02=++q px x 的二根为1x ,2x ,则))((212x x x x q px x --=++② )4)(2(862--=-+-x x x x .③)3)(2(6522--=+-a a b ab a④ ))()((22y x y x y x y x -++=-⑤方程07)13(2=-+x 可变形为0)713)(713(=-+++x x正确的有( )A.1个B.2个C.3个D.4个2、⑴写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数: ⑵写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数:3、若实数x 、y 满足()()023=++-+y x y x ,则x+y 的值为( )A 、-1或-2B 、-1或2C 、1或-2D 、1或24、方程:2122=+x x 的解是 。
类型三、配方法()002≠=++a c bx ax 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+⇒ ※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
典型例题:例1、试用配方法说明322+-x x 的值恒大于0,47102-+-x x 的值恒小于0。
例2、已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。
变式:若912322-+--=x x t ,则t 的最大值为 ,最小值为 。
例3、已知,x、y y x y x 0136422=+-++为实数,求y x 的值。
变式1:已知041122=---+x x xx ,则=+x x 1 . 变式2:如果4122411-++-=--++b a c b a ,那么c b a 32-+的值为 。
类型四、公式法⑴条件:()04,02≥-≠ac b a 且⑵公式: aac b b x 242-±-=,()04,02≥-≠ac b a 且 典型例题:例1、选择适当方法解下列方程:⑴().6132=+x ⑵()().863-=++x x ⑶0142=+-x x⑷01432=--x x ⑸()()()()5211313+-=+-x x x x说明:解一元二次方程时,首选方法是因式分解法和直接开方法、其次选用求根公式法;一般不选择配方法。
考点四、根的判别式ac b 42-根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。
典型例题:例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。
例2、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( )A.10≠≥且m mB.0≥mC.1≠mD.1>m例3、已知二次三项式2)6(92-++-m x m x 是一个完全平方式,试求m 的值.说明:若二次三项式为一个完全平方式,则其相应方程的判别式0=∆即:若042=-ac b ,则二次三项式c bx ax ++2)0(≠a 为完全平方式;反之,若c bx ax ++2)0(≠a 为完全平方式,则042=-ac b .针对练习:1、当k 时,关于x 的二次三项式92++kx x 是完全平方式。
2、已知方程022=+-mx mx 有两个不相等的实数根,则m 的值是 . 考点五、根与系数的关系⑴前提:对于02=++c bx ax 而言,当满足①0≠a 、②0≥∆时,才能用韦达定理。
⑵主要内容:ac x x a b x x =-=+2121, ⑶应用:整体代入求值。
典型例题:例1、已知一个直角三角形的两直角边长恰是方程07822=+-x x 的两根,则这个直角三角形的斜边是( )A.3B.3C.6D.6说明:要能较好地理解、运用一元二次方程根与系数的关系,必须熟练掌握b a +、b a -、ab 、22b a +之间的运算关系.例2、解方程组:说明:一些含有y x +、22y x +、xy 的二元二次方程组,除可以且代入法来解外,往往还可以利用根与系数的关系,将解二元二次方程组化为解一元二次方程的问题.有时,后者显得更为简便.例3、已知关于x 的方程()011222=+-+x k x k 有两个不相等的实数根21,x x ,(1)求k 的取值范围;(2)是否存在实数k ,使方程的两实数根互为相反数?若存在,求出k 的值;若不存在,请说明理由。
典型例题:1、关于x 的方程()03212=-++mx x m⑴有两个实数根,则m 为 ,⑵只有一个根,则m 为 。
2、解方程,判断关于x 的方程()3222-=+--k k x x 根的情况。
3、如果关于x 的方程022=++kx x 及方程022=--k x x 均有实数根,问这两方程是否有相同的根?若有,请求出这相同的根及k 的值;若没有,请说明理由。
考点六:一元二次方程应用题典型例题一例 某公司八月份售出电脑200台,十月份售出242台,这两个月平均每有增长的百分率是多少?分析 设平均每月的增长率为x .那么九月份售出电脑)200200(x +台,即)1(200x +台,十月份售出[]x x x )1(200)1(200+++台,即2)1(200x +台,于是根据题意,可以列出方程.解:设平均每月增长的百分率为x .依题意,有∴ 1.2,1.021-==x x (不符合题意,舍去)答:平均每月增长的百分率为10%.说明 在有关增长率的问题中,要掌握等量关系:p x a n =±)1(,其中a 为变化前的数,如本题中的200台,p 为变化后的数,如本题中的242台,x 为增长(降低)率,n 为变化次数,如本题从八月到十月份共变化两次,因此2=n .典型例题二例 某工厂第三年的产量比第一年的产量增长21%,平均每年比上一年增长的百分率为 .解 设平均增长率为x ,则211)1(2+=+x %.∴ 1.11±=+x .∴ 1.2,1.021-==x x (不合题意,舍去).∴ x =10%.说明:本题主要考查利用一元二次方程求平均数增长率的问题,解题关键是设出未知数,列出方程.典型例题四例 (安徽省,1997)如图,要建一个面积为1502m 的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一条墙,墙长为a 米,另三边用竹篱笆围成,如果篱笆的长为35米.(1)求鸡场的长与宽各为多少?(2)题中,墙的长度a 对题目的解起着怎样的作用?解 (1)设鸡场的宽为x 米,则.150)235(=-x x∴ .5.7,1021==x x当宽为10米时,长为35-20=15米.当宽为5.7米时,长为35-15=20米.(2)由(1)的结果可知,题中的墙长a 对于问题的解有严格的限制作用. 当15<a 时,问题无解;当2015<≤a 时,问题有一解,只可建宽为10米,长15米一种规格的鸡场; 当20≥a 时,问题有两解,可建宽10米,长15米,或宽为5.7米,长为20米两种规格的鸡场.说明:本题考查利用一元二次方程解与面积有关的实际问题,解题关键是设出未知数,表示出长与宽,根据面积公式列出方程,易错点是在讨论a 的限制作用时漏解或叙述不清.典型例题五例 将进货单价为40元的商品按50元出售时,能卖500个,已知该商品每涨价1元,其销售量就要减少10个,为了赚8000元利润,售价应定为多少,这时应进货多少个?分析:该题属于经营问题.设商品单价为)50(x +元,则每个商品得利润[]40)50(-+x 元,因为每涨价1元,其销售量会减少10个,则每个涨价x 元,其销售量会减少x 10个,故销售量为)10500(x -个,为了赚得8000元利润,则应有[]800040)50()10500(=-+⋅-x x ,进而可以求解.解 设每个商品涨价x 元,则销售价为)50(x +元,销售量为)10500(x -个. 根据题意,得[]800040)50()10500(=-+-x x ;整理,得解之,得101=x ,302=x .经检验,101=x ,302=x 都符合题意.当10=x 时,6050=+x ,40010500=-x当30=x 时,8050=+x ,20010500=-x答:要想赚8000元,售价应定为60元或80元,若售价为60元,则进货量应为400个;若售价为80元,则进货量应为200个.说明:根据题意列出相应的等量关系是解决问题的关键.对于本题要注意单价的上涨与销售量的减少之间的相互关系.典型例题六例 某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率。