快速脉冲群测试原理及对策

合集下载

电快速脉冲群测试参数,常见问题及解决方法

电快速脉冲群测试参数,常见问题及解决方法

电快速瞬变脉冲群测试常见问题及处理措施:
本项测试主要测试系统抗脉冲群干扰性能。

出现的问题如下:
①被测设备通讯暂时性异常中断。

②显示器闪道、闪屏、黑屏。

③被测试设备故障,如死机需要人工重启等。

④被测设备误动作,如内部继电器误动作等。

⑤被测设备指示灯闪亮。

⑥被测设备功能异常,如出现倒机等。

处理此类问题的一般方法如下:
①在线的机柜输入端加磁环。

②屏蔽线屏蔽层可靠接地。

③采取隔离措施,如通讯增加隔离。

④系统设计要选择抗干扰性强的通讯方式,如采用CAN、422等通讯方式,不
要采用232通讯方式。

一定要采用双绞屏蔽线进行配线,一对双绞线要设置
在一对信号上,如R+、R-用一对双绞线。

电快速脉冲群试验大型电器试验方法

电快速脉冲群试验大型电器试验方法

电快速脉冲群试验大型电器试验方法以电快速脉冲群试验大型电器试验方法为标题,我们将介绍一种用于大型电器试验的电快速脉冲群试验方法。

该方法是一种常用的电器试验方法,用于测试大型电器在电快速脉冲群作用下的耐受能力。

本文将详细介绍该试验方法的原理、步骤和应用。

电快速脉冲群试验是一种电器试验方法,用于模拟大型电器在电快速脉冲群作用下的工作环境。

该试验方法可以评估电器的耐受能力,并验证其设计和制造是否符合标准要求。

该方法在电气工程、电力系统和电子设备等领域得到广泛应用。

该试验方法的原理是通过施加电快速脉冲群到待测电器上,观察其对脉冲群的耐受程度。

电快速脉冲群是由高压脉冲组成的,其特点是脉冲间隔时间短、脉冲幅值高、脉冲上升时间和下降时间快。

通过改变脉冲群的参数,可以模拟不同的工作环境和故障情况。

该试验方法的步骤如下:1. 准备试验设备:包括电快速脉冲群发生器、高压电源、电流测量仪等。

确保设备能够提供稳定的电压和电流。

2. 设定脉冲参数:根据试验要求和标准要求,设定脉冲群的参数,如脉冲幅值、脉冲间隔时间、脉冲上升时间和下降时间等。

3. 连接测试电路:将待测电器与电快速脉冲群发生器和电流测量仪连接起来,确保电路连接正确。

4. 施加脉冲群:通过电快速脉冲群发生器,将设定好的脉冲群施加到待测电器上。

观察待测电器在脉冲群作用下的电流变化和电器的工作状态。

5. 观察和记录结果:根据试验要求,观察待测电器在脉冲群作用下的工作状态。

记录电流变化、电器的工作状态和任何异常现象。

该试验方法的应用范围广泛。

例如,在电力系统中,可以使用该方法测试变压器、断路器、隔离开关等设备的耐受能力。

在电子设备中,可以使用该方法测试电源、开关电源等设备的稳定性和可靠性。

该方法还可以用于评估电器的抗干扰能力和电磁兼容性。

电快速脉冲群试验是一种常用的大型电器试验方法,用于评估电器在电快速脉冲群作用下的耐受能力。

该方法的原理简单,步骤清晰,应用范围广泛。

电快速脉冲群测试及对策

电快速脉冲群测试及对策

电快速脉冲群实验(IEC 61000-4-4 EFT/Burst Test)及其对策综述一.试验波形电快速瞬变脉冲群抗扰度试验,目的是验证由闪电、接地故障或切换电感性负载而引起的瞬时扰动的抗干扰能力。

这种试验是一种耦合到电源线路、控制线路、信号线路上的由许多快速瞬变脉冲组成的脉冲群试验。

此波形不是感性负载断开的实际波形(感性负载断开时产生的干扰幅度是递增的),而实验所采用的波形使实验等级更为严酷。

电快速脉冲群是由间隔为300ms的连续脉冲串构成,每一个脉冲串持续15ms,由数个无极性的单个脉冲波形组成,单个脉冲的上升沿5ns,持续时间50ns,重复频率5K。

根据傅立叶变换,它的频谱是从5K--100M的离散谱线,每根谱线的距离是脉冲的重复频率。

二.实验设备1. 电快速脉冲发生器其中储能电容的大小决定单个脉冲的能量;波形形成电阻和储能电容配合,决定了波形的形状;阻抗匹配电阻决定了脉冲发生器的输出阻抗(标准为50欧姆);隔直电容则隔离了脉冲发生器中的直流成分。

2.耦合/去耦网络交/直流电源端口的耦合/去耦网络(CDN---Couple and Decouple networks),这个网络提供了在不对称条件下把试验电压施加到受试设备的电源端口的能力。

这里所谓不对称干扰是指电源线与大地之间的干扰。

可以看到从试验发生器来的信号电缆芯线通过可供选择的耦合电容加到相应的电源线(L1、L2、L3、N及PE)上,信号电缆的屏蔽层则和耦合/去耦网络的机壳相连,机壳则接到参考接地端子上。

耦合/去耦网络的作用是将干扰信号耦合到EUT并阻止干扰信号干扰连接在同一电网中的不相干设备。

一些电快速脉冲发生器已将耦合/去耦网络集成于一体。

3.电容耦合夹关于电容耦合夹的应用,在GB/T17626.4的第6.3节中指出,耦合夹能在受试设备各端口的端子、电缆屏蔽层或受试设备的任何其他部分无任何电连接的情况下把快速瞬变脉冲群耦合到受试线路上。

电快速脉冲群及其对策

电快速脉冲群及其对策

电快速脉冲群及其对策电快速脉冲群实验及其对策综述RT电快速脉冲群实验(IEC61000-4-4 EFT/Burst Test)及其对策综述一.试验波形电快速瞬变脉冲群抗扰度试验,目的是验证由闪电、接地故障或切换电感性负载而引起的瞬时扰动的抗干扰能力。

这种试验是一种耦合到电源线路、控制线路、信号线路上的由许多快速瞬变脉冲组成的脉冲群试验。

此波形不是感性负载断开的实际波形(感性负载断开时产生的干扰幅度是递增的),而实验所采用的波形使实验等级更为严酷。

电快速脉冲群是由间隔为300ms的连续脉冲串构成,每一个脉冲串持续15ms由数个无极性的单个脉冲波形组成,单个脉冲的上升沿5ns,持续时间50ns,重复频率5K。

根据傅立叶变换,它的频谱是从5K--100M 的离散谱线,每根谱线的距离是脉冲的重复频率。

二•实验设备1.电快速脉冲发生器其中储能电容的大小决定单个脉冲的能量;波形形成电阻和储能电容配合,决定了波形的形状;阻抗匹配电阻决定了脉冲发生器的输出阻抗(标准为50欧姆);隔直电容则隔离了脉冲发生器中的直流成分。

2.耦合/去耦网络交/直流电源端口的耦合/去耦网络(CDN---Couple and Decouple networks),这个网络提供了在不对称条件下把试验电压施加到受试设备的电源端口的能力。

这里所谓不对称干扰是指电源线与大地之间的干扰。

可以看到从试验发生器来的信号电缆芯线通过可供选择的耦合电容加到相应的电源线(L1、L2、L3、N及PE上,信号电缆的屏蔽层则和耦合/去耦网络的机壳相连,机壳则接到参考接地端子上。

耦合/去耦网络的作用是将干扰信号耦合到EUT并阻止干扰信号干扰连接在同一电网中的不相干设备。

一些电快速脉冲发生器已将耦合/去耦网络集成于一体。

3.电容耦合夹关于电容耦合夹的应用,在GB/T17626.4的第6.3节中指出,耦合夹能在受试设备各端口的端子、电缆屏蔽层或受试设备的任何其他部分无任何电连接的情况下把快速瞬变脉冲群耦合到受试线路上。

快速瞬变脉冲群抗扰度试验

快速瞬变脉冲群抗扰度试验

快速瞬变脉冲群抗扰度试验哎呀,你们可真是让我费劲了!今天咱们要聊一聊那个神奇的话题——快速瞬变脉冲群抗扰度试验。

听起来好像是个很严肃的话题,但别担心,我会尽量让它变得轻松愉快一些。

咱们得先了解一下这个试验是干什么用的。

快速瞬变脉冲群抗扰度试验,顾名思义,就是测试电子设备在面对快速瞬变脉冲群时,能否保持稳定工作,不受干扰。

这可是非常重要的一项测试,因为在现代社会中,电子设备无处不在,而这些设备都需要具备抗干扰的能力,才能确保我们的日常生活和工作能够正常进行。

那么,这个试验到底是怎么进行的呢?其实,它就像是一场严格的考试。

科学家们会设计一个特殊的信号,这个信号包含了各种各样的快速瞬变脉冲群。

然后,他们会将这个信号发送给电子设备,看看设备是否能够在这样的环境下正常工作。

如果设备能够保持稳定,那么说明它具备了抗干扰的能力;反之,如果设备出现了故障,那么就需要对它进行改进,提高它的抗干扰能力。

说到这,你可能会觉得这个试验挺简单的。

其实,这可不是那么回事!因为在这个试验中,电子设备需要面对各种各样的干扰,比如电磁干扰、射频干扰等等。

这些干扰可能会让设备产生误报、漏报等问题,从而影响到我们的日常生活和工作。

因此,电子设备在面对这些干扰时,需要具备强大的抗干扰能力,才能够顺利通过这个试验。

那么,我们该如何提高电子设备的抗干扰能力呢?其实,这个问题并不好回答。

因为抗干扰能力涉及到很多方面的因素,比如电路设计、元器件选择、信号处理等等。

要想提高电子设备的抗干扰能力,我们需要从多个方面入手,进行全面的优化。

我们要保证电路的设计合理。

一个优秀的电路设计可以有效地降低干扰的影响,提高设备的稳定性。

因此,在设计电路时,我们要充分考虑各种因素,力求达到最佳的效果。

我们要选择合适的元器件。

元器件的质量直接影响到设备的性能,因此我们要尽量选择高质量的元器件,以提高设备的抗干扰能力。

我们还要对信号进行有效的处理。

在实际应用中,信号可能会受到各种各样的干扰,因此我们需要对信号进行滤波、放大等处理,以消除干扰的影响。

电快速瞬变脉冲群解决办法 与方案

电快速瞬变脉冲群解决办法  与方案

电快速瞬变脉冲群抗扰度试验问题及解决方法1.电快速瞬变脉冲群抗扰度试验相关问题的具体情况电快速瞬变脉冲群产生的原理:当电感性负载(如继电器、接触器等)在断开时,由于开关触点间隙的绝缘击穿或触点弹跳等原因,在断开处产生的瞬态骚扰。

当电感性负载多次重复开关,则脉冲群又会以相应的时间间隙多次重复出现。

这种瞬态骚扰能量较小,一般不会引起设备的损坏,但由于其频谱分布较宽,所以会对移动电话机的可靠工作产生影响。

该试验是一种将由许多快速瞬变脉冲组成的脉冲群耦合到移动电话机的电源端口的试验。

试验脉冲的特点是:瞬变的短上升时间、重复出现和低能量。

该试验的目的就是为了检验手机在遭受这类暂态骚扰影响时的性能。

一般认为电快速瞬变脉冲群之所以会造成手机的误动作,是因为脉冲群对线路中半导体结电容充电,当结电容上的能量累积到一定程度,便会引起手机的误操作。

具体表现为在测试过程中移动电话机通信中断、死机、软件告警、控制及存储功能丧失等。

2.电快速瞬变脉冲群抗扰度试验相关问题的分析电快速瞬变脉冲波形通过充电器直接传导进手机,导致主板电路上有过大的噪声电压。

当单独对火线或零线注入时,尽管是采取的对地的共模方式注入,但在火线和零线之间存在差模干扰,这种差模电压会出现在充电器的直流输出端。

当同时对火线和零线注入时,存在着共模干扰,但对充电器的输出影响并不大。

造成手机在测试过程中出现问题的原因是复杂的,具体表现为:1)前期设计时未考虑电快速瞬变脉冲群抑制功能,没有添加相关的滤波元器件,PCB设计综合布线时也没有注意线缆的隔离,主板接地设计也不符合规范,另外关键元器件的也没有采取屏蔽保护措施等;2)生产厂在元器件供应商的选择上没有选用性能可靠的关键器件,导致测试过程中器件老化或者器件失效,从而容易受到电快速瞬变脉冲的干扰;3)在整机生产组装过程中,加工工艺及组装水平出现的问题可能会导致产品一致性不好,个别送检手机存在质量问题;4)检测过程中由于其他测试项出现问题导致整改,可能由于整改方案的选择会影响到电快速瞬变脉冲群测试不合格。

电快速瞬变脉冲群(EFT)测试故障解决措施

电快速瞬变脉冲群(EFT)测试故障解决措施

电快速瞬变脉冲群(EFT)测试故障解决措施电快速脉冲群(EFT)测试故障解决措施(电源线、信号线)针对电源线试验的措施解决电源线干扰问题的主要方法是在电源线入口处安装电源线滤波器,阻止干扰进入设备。

快速脉冲通过电源线注入时,可以是差模方式注入,也可以是共模方式注入。

对差模方式注入的一般可以通过差模电容(X电容)和电感滤波器加以吸收。

若注入到电源线上的电压是共模电压,滤波器必须能对这种共模电压起到抑制作用才能使受试设备顺利通过试验。

下面是用滤波器抑制电源线上的电快速脉冲的方法。

(1) 设备的机箱是金属的:这种情况是最容易的。

因为机箱是金属的,它与地线面之间有较大的杂散电容,能够为共模电流提供比较固定的通路。

这时,只要在电源线的入口处安装一只含有共模滤波电容的电源线滤波器,共模滤波电容就能将干扰旁路掉,使其回到干扰源。

由于电源线滤波器中的共模滤波电容受到漏电流的限制,容量较小,因此对于干扰中较低的频率成分主要依靠共模电感抑制。

另外,由于设备与地线面之间的接地线具有较大的电感,对于高频干扰成分阻抗较大,因此设备接地与否对试验的结果一般没有什么影响。

除了选择高频性能良好的滤波器以外,在安装滤波器时,注意滤波器应靠近金属机箱上的电源入口处,防止电源线二次辐射造成的干扰。

(2) 设备机箱是非金属的:如果设备的机箱是非金属的,必须在机箱底部加一块金属板,供滤波器中的共模滤波电容接地。

这时的共模干扰电流通路通过金属板与地线面之间的杂散电容形成通路。

如果设备的尺寸较小,意味着金属板尺寸也较小,这时金属板与地线面之间的电容量较小,不能起到较好的旁路作用。

在这种情况下,主要靠电感发挥作用。

此时,需要采用各种措施提高电感高频特性,必要时可用多个电感串联。

针对信号线试验应采取的措施快速脉冲通过信号/控制线注入时,由于是采用容性耦合夹注入,属共模注入方式。

(1) 信号电缆屏蔽:从试验方法可知,干扰脉冲耦合进信号电缆的方式为电容性耦合。

电快速脉冲群试验中粗大误差分析及解决方案

电快速脉冲群试验中粗大误差分析及解决方案

电快速脉冲群试验中粗大误差分析及解决方案电快速脉冲群试验(EFT)是电子设备电磁干扰测试的一种常见方法,该测试可以模拟现实环境中的瞬态电磁干扰,评估设备是否能够正常工作。

而在EFT测试过程中,由于种种因素造成的粗大误差是不可避免的,因此需要对其进行分析及解决。

本文就对此展开探讨。

一、EFT试验中的粗大误差在EFT试验中,当测试设备受到高能脉冲时,会产生电磁波并进入线路中,可能导致线路中出现峰值电压或电流,可能引起设备闪烁,重新启动或直接崩溃。

如果这些峰值过大,就会超出设备能够忍受的范围,从而可能导致损坏设备。

粗大误差通常是由于EFT测试(ENE(N)、CENELAC、SABS/IEC等标准)中电路的共振或谐振引起的,如下所示:1. 瞬间负载变化这是EFT试验中的常见粗大误差之一,由于大量电流在极短时间内瞬间产生并消失,通常是由于电容器的共振引起的,这会导致测试设备电压波动,设备可能会重新启动或直接崩溃。

2. 阻抗不匹配由于由于测试设备输入端和电源之间的组件的电抗不匹配,导致试验中发生共振,产生粗大误差。

阻抗不匹配通常是由于路由、线路等组件的电抗不匹配引起的。

3. 内部共振当测试设备的内部结构共振时,测试电路也会共振,这会导致测试电压过大,从而损坏测试设备。

以上就是EFT试验中常见的三种粗大误差,它们都带来了极大的威胁。

所以必须采取一些措施来减少它们带来的风险。

二、降低粗大误差的解决方案要对EFT测试中的粗大误差加以解决,可以采取以下几个方面的策略:1. 降低测试设备的灵敏度这是最常见的解决方法。

降低测试设备的灵敏度可以减少测试辐射,从而降低线路中电磁波的能量,减少测试设备的电压波动。

2. 保护设备采用各种保护电路,如电源线滤波器、抑制器、隔离变压器等,或采用专用的电磁兼容性测试电源来减少瞬时负载变化。

3. 更换组件可以更换测试设备中有问题的组件来解决粗大误差问题。

更换组件可使测试设备的谐振频率发生变化,从而避免谐振,减少粗大误差。

电快速瞬变脉冲群测试原理

电快速瞬变脉冲群测试原理

电快速瞬变脉冲群测试原理嘿,朋友们!今天咱来聊聊电快速瞬变脉冲群测试原理。

这玩意儿啊,就像是电路世界里的一场特别挑战!你想啊,电路就好比是一个繁忙的城市,电流就像来来往往的车辆和人群。

而电快速瞬变脉冲群呢,就像是突然闯入这个城市的一群捣乱分子!它们会在瞬间制造出很多快速变化的干扰信号。

这些脉冲群可厉害了,它们来势汹汹,就像一阵狂风暴雨突然袭击电路这个城市。

它们会让电路中的各种元器件受到影响,就好像人们在狂风中被吹得东倒西歪一样。

那为什么要进行这样的测试呢?这就好比我们要给城市做个“抗压测试”呀,得看看它能不能经得住这些捣乱分子的折腾。

测试的时候呢,会模拟出这些脉冲群,然后看看电路系统会有啥反应。

是不是很像我们在玩游戏,给游戏角色设置各种难关,看它能不能过关斩将!如果电路系统在这样的干扰下还能正常工作,那就说明它够厉害,够坚强!这电快速瞬变脉冲群测试原理,其实就是在考验电路的“免疫力”。

就跟咱人一样,得有个好身体,才能抵抗各种病菌的侵袭。

电路也得有强大的“抵抗力”,才能在各种复杂的电磁环境中安然无恙啊!你说要是电路没有经过这样的测试,那万一遇到点干扰就出问题了,那不就麻烦啦!就像我们人要是身体不好,稍微有点风吹草动就生病,那多闹心啊!所以啊,这电快速瞬变脉冲群测试可太重要啦,可不能小瞧它!它就像是电路的“保护神”,通过它的检验,我们才能放心地使用各种电子设备。

想象一下,如果你的手机、电脑啥的,动不动就因为一点干扰出问题,那你不得烦死啦!所以啊,感谢这个测试原理吧,让我们的电子生活更加稳定可靠。

总之呢,电快速瞬变脉冲群测试原理就是为了让电路变得更强大,更能适应各种环境。

它虽然看不见摸不着,但却在默默地守护着我们的电子世界。

咱可得好好了解了解它,这样才能更好地享受电子科技带来的便利呀!这就是电快速瞬变脉冲群测试原理,你懂了不?。

电快速瞬变脉冲群EFT原理及解决方法

电快速瞬变脉冲群EFT原理及解决方法

电快速瞬变脉冲群EFT原理及解决方法
径,并将放电电流有效地限制在此路径中。

(3)采用滤波方式,阻止幅射骚扰耦合到继电器及装置中。

一般滤波器应为分流电容或一系列电感,以及由以上两种滤波器的混合方式。

(4)通过印制线路板的设计来提高系统的静电放电抗扰度的能力,印制线路板上的印制线可以成为静电放电中产生电磁发射的天线。

为了降低这些天线的耦合作用,在设计印制线路板上的印制线时应尽可能的短,印制线包围的面积应尽可能的小。

在设计时,所有的元器件应均匀分布印制板的整个区域,以减小共模耦合。

使用多层印制线路板和栅格的走线方式也可以减小耦合,抑制共模辐射骚扰。

(5)对电缆进行屏蔽和滤波,防止电缆成为接收电磁骚扰的天线。

另一方面,特别是电缆与外壳相连时,电缆也应能提供一个低阻抗的通道。

(6)在继电器及装置的软件设计中增加对静电放电抑制措施,它对继电器及装置工作严重失常是有效的方法。

这些措施有“刷新”、“检查”并“恢复”等。

“刷新”过程涉及到周期性复位到休止状态,并刷新显示器和指示器状态。

“检查”过程用于决定程序是否正确执行,它们在一定间隔时间被激活,以确认程序是否在完成某个功能。

如果这功能没有实现,一个“恢复”程序被激活。

快速瞬变脉冲群测试的要点及对策

快速瞬变脉冲群测试的要点及对策

快速瞬变脉冲群测试的要点及对策一:前叙脉冲群抗扰度试验的国家标准为GB/T17626.4(2008),它等同于国际标准IEC61000-4-4。

该标准对EFT 的定义、工作原理、测量方法及试验发生器等进行了详细的规定,成为其它相关标准引用和参考的基础.脉冲群抗扰度试验是一种使用较为普遍的抗扰度试验项目,同时也是在所有抗扰度试验项目中属于比较难做,比较难于通过的一个试验项目。

本文通过综合其他研究者的研究成果并结合自己多年的检验工作实践,针对EFT对电子产品的不同影响特点,提出相应的对策方案供相关产品设计人员参考。

二: 脉冲群瞬变干扰的形成原理2.1 GB/T17626.4认为EFT是由于感性负载在断开或接通时,因开关触点间隙的绝缘击穿或触点弹跳等缘故,在开关处会产生一连串的暂态脉冲(脉冲群)骚扰。

当感性负载多次重复通断,则脉冲群又会以相应的时间间隙多次重复出现。

产生此类脉冲的原因包括:小型感性负载切换、继电器触电跳动(传导干扰);高压开关装置切换(辐射干扰)。

EFT的特点是上升时间快,持续时间短,能量低,但具有较高的重复频率。

EFT 一般不会引起设备的损坏,但由于其干扰频谱分布较宽,会对设备正常工作产生影响。

其干扰机理为EFT 对线路中半导体结电容单向连续充电累积,引起电路乃至设备的误动作。

下图是供电线路、机械开关和电感性负载(图中用一个继电器带铁芯的电感线圈作代表,其中L2是铁芯线圈本身的电感量,R是电感线图的内阻,C2是线圈匝间和层间的集中参数等效电容)组成的小系统.正常工作时,开关S闭合,继电器铁芯线圈有稳态电流流过,使继电器处在工作状态。

一旦开关S断开,上述现象将不复存在。

但考虑到继电器铁芯线圈本身是一个电感,根据电感性负载电流不能突变的原理,开关S的断开使主回路的电流实际上是被切断了,这时继电器铁芯线圈的电流连续性问题只能靠自身来解决了,亦即继电器的铁芯线圈中的能量通过向分布电容转移的方式来保持铁芯线圈中电流的连续性。

电快速脉冲群测试及对策

电快速脉冲群测试及对策

电快速脉冲群实验(IEC 61000-4-4 EFT/Burst Test)及其对策综述一.试验波形电快速瞬变脉冲群抗扰度试验,目的是验证由闪电、接地故障或切换电感性负载而引起的瞬时扰动的抗干扰能力。

这种试验是一种耦合到电源线路、控制线路、信号线路上的由许多快速瞬变脉冲组成的脉冲群试验。

此波形不是感性负载断开的实际波形(感性负载断开时产生的干扰幅度是递增的),而实验所采用的波形使实验等级更为严酷。

电快速脉冲群是由间隔为300ms的连续脉冲串构成,每一个脉冲串持续15ms,由数个无极性的单个脉冲波形组成,单个脉冲的上升沿5ns,持续时间50ns,重复频率5K。

根据傅立叶变换,它的频谱是从5K--100M的离散谱线,每根谱线的距离是脉冲的重复频率。

二.实验设备1. 电快速脉冲发生器其中储能电容的大小决定单个脉冲的能量;波形形成电阻和储能电容配合,决定了波形的形状;阻抗匹配电阻决定了脉冲发生器的输出阻抗(标准为50欧姆);隔直电容则隔离了脉冲发生器中的直流成分。

2.耦合/去耦网络交/直流电源端口的耦合/去耦网络(CDN---Couple and Decouple networks),这个网络提供了在不对称条件下把试验电压施加到受试设备的电源端口的能力。

这里所谓不对称干扰是指电源线与大地之间的干扰。

可以看到从试验发生器来的信号电缆芯线通过可供选择的耦合电容加到相应的电源线(L1、L2、L3、N及PE)上,信号电缆的屏蔽层则和耦合/去耦网络的机壳相连,机壳则接到参考接地端子上。

耦合/去耦网络的作用是将干扰信号耦合到EUT并阻止干扰信号干扰连接在同一电网中的不相干设备。

一些电快速脉冲发生器已将耦合/去耦网络集成于一体。

3.电容耦合夹关于电容耦合夹的应用,在GB/T17626.4的第6.3节中指出,耦合夹能在受试设备各端口的端子、电缆屏蔽层或受试设备的任何其他部分无任何电连接的情况下把快速瞬变脉冲群耦合到受试线路上。

电快速脉冲群测试

电快速脉冲群测试

电快速脉冲群测试(EFT)
测试目的:
验证由闪电,接地故障和感性负载引起的瞬时扰动的抗干扰能力,此干扰将耦合到电源线路,信号线路和控制线路。

测试要求:
干扰信号峰值1.5KV,输入频率5KHZ,脉冲持续时间15ms,脉冲周期300ms,每次测试2min,耦合网络,L,N,L_N分别加正负脉冲。

测试不通过原因分析:
脉冲群干扰主要存在传导干扰和辐射干扰,传导干扰是共模电流通过电源线的传导施加干扰,辐射干扰是传导干扰在电源线上发生的溢出现象,从空间施加的干扰。

针对传导干扰,可以从电源入手,加磁环滤除干扰
针对辐射干扰,可以从空间采取围追堵截的方式防止其扩散,即用屏蔽的方法减少辐射干扰。

附录Q 快速瞬变脉冲群测试的要点及对策

附录Q  快速瞬变脉冲群测试的要点及对策

快速瞬变脉冲群测试的要点和主要对策发布时间:2012-10-10 点击次数:201快速瞬变脉冲群测试的要点及对策一:前叙脉冲群抗扰度试验的国家标准为GB/T17626.4(2008),它等同于国际标准IEC61000-4-4。

该标准对EFT 的定义、工作原理、测量方法及试验发生器等进行了详细的规定,成为其它相关标准引用和参考的基础.脉冲群抗扰度试验是一种使用较为普遍的抗扰度试验项目,同时也是在所有抗扰度试验项目中属于比较难做,比较难于通过的一个试验项目。

本文通过综合其他研究者的研究成果并结合自己多年的检验工作实践,针对EFT对电子产品的不同影响特点,提出相应的对策方案供相关产品设计人员参考。

二: 脉冲群瞬变干扰的形成原理2.1 GB/T17626.4认为EFT是由于感性负载在断开或接通时,因开关触点间隙的绝缘击穿或触点弹跳等缘故,在开关处会产生一连串的暂态脉冲(脉冲群)骚扰。

当感性负载多次重复通断,则脉冲群又会以相应的时间间隙多次重复出现。

产生此类脉冲的原因包括:小型感性负载切换、继电器触电跳动(传导干扰);高压开关装置切换(辐射干扰)。

EFT的特点是上升时间快,持续时间短,能量低,但具有较高的重复频率。

EFT一般不会引起设备的损坏,但由于其干扰频谱分布较宽,会对设备正常工作产生影响。

其干扰机理为EFT对线路中半导体结电容单向连续充电累积,引起电路乃至设备的误动作。

下图是供电线路、机械开关和电感性负载(图中用一个继电器带铁芯的电感线圈作代表,其中L2是铁芯线圈本身的电感量,R是电感线图的内阻,C2是线圈匝间和层间的集中参数等效电容)组成的小系统.正常工作时,开关S闭合,继电器铁芯线圈有稳态电流流过,使继电器处在工作状态。

一旦开关S断开,上述现象将不复存在。

但考虑到继电器铁芯线圈本身是一个电感,根据电感性负载电流不能突变的原理,开关S的断开使主回路的电流实际上是被切断了,这时继电器铁芯线圈的电流连续性问题只能靠自身来解决了,亦即继电器的铁芯线圈中的能量通过向分布电容转移的方式来保持铁芯线圈中电流的连续性。

电快速瞬变脉冲群抗扰度试验原理及试验方法

电快速瞬变脉冲群抗扰度试验原理及试验方法
g) 分别使用正、负极性脉冲。
h) 每个试验项目时间为5分钟
4试验等级
试验等级:
1级:具有良好保护的环境;
2级:受保护的环境;
3级:典型的工业环境下
4级:严酷的工业环境。
电快速瞬变脉冲群抗扰度试验
原理和试验方法
1电快速瞬变脉冲群抗扰度试验原理
1.1电快速瞬变脉冲群的产生及影响。电路中,机械开关对电感性负载的切换,通常会对同一电路的其他电气和电子设备产生干扰,如切断感性负载,继电器触点弹跳等。
影响:单个脉冲的能量较小,一般不会造成设备故障,但使设备产生误动作的情况经常出现。容易出现的场合:电力设备或监控电网的设备、使用在工业自动化环境下的设备、医疗监护等检测微弱信号设备等。
图2电快速瞬变脉冲群试验连接关系图
2电快速瞬变脉冲群信号波形
特点:
脉冲成群出现:15ms
重复频率较高:5kHz
脉冲波形上升时间短:5ns/50ns
单个脉冲的能量0 ^ 3=75个
快速瞬变脉冲群信号波形如图3所示,快速瞬变脉冲群概略图如图4所示。
1.2信号发生器电路
为了能模拟重现EFT产生的现象,发生器的工作原理图如图1所示。
图1电快速瞬变脉冲群信号发生器电路
U—高压源;Rc—充电电阻;Cc—储能电容器;Rs—脉冲持续时间成形电阻;Rm—阻抗匹配电阻;Cd—隔直电容(10nF)
1.3发生器参数要求:
极性—正负极性;
输出形式—同轴输出50Ω;
发生器隔直电容—10nF;
单个脉冲的上升时间—5(1±30%)ns;
脉冲持续时间—50(1±30%)ns;
与供电电源的关系—异步;
脉冲群持续时间—15(1±20%)ms;
脉冲群周期—300(1±20%)ms;

脉冲群测试 解决方法

脉冲群测试 解决方法

脉冲群测试解决方法
脉冲群测试是一种常见的测试方法,用于对电子设备进行测试和分析。

但在实际应用中,脉冲群测试可能会遇到一些问题,比如测试结果不准确或测试设备出现故障等。

为了解决这些问题,以下是一些脉冲群测试的解决方法:
1. 选择合适的测试设备:选择合适的脉冲群测试设备非常重要。

应该选择质量可靠、性能稳定的设备,以确保测试结果准确可靠。

2. 正确设置测试参数:在进行脉冲群测试之前,应该根据测试对象的特点和需求,正确设置测试参数。

例如,测试频率、测试电压等参数应该根据具体情况进行调整。

3. 进行校准测试:在进行脉冲群测试之前,应该进行校准测试,以确保测试设备的准确性和可靠性。

校准测试应该定期进行,以保证测试结果的准确性。

4. 注意电磁干扰:脉冲群测试过程中,可能会受到外界电磁干扰。

因此,应该选择测试环境良好的地方进行测试,并采取必要的防护措施,例如使用屏蔽罩等。

5. 定期维护测试设备:脉冲群测试设备应该定期进行维护和保养,以保证设备的性能和可靠性。

维护工作包括清洁设备、更换易损件等。

总之,脉冲群测试作为一种重要的测试方法,在实际应用中需要注意一些细节和技巧,以确保测试结果的准确性和可靠性。

- 1 -。

电快速脉冲群及其对策

电快速脉冲群及其对策

电快速脉冲群实验及其对策综述RT电快速脉冲群实验(IEC 61000-4-4 EFT/Burst Test)及其对策综述一.试验波形电快速瞬变脉冲群抗扰度试验,目的是验证由闪电、接地故障或切换电感性负载而引起的瞬时扰动的抗干扰能力。

这种试验是一种耦合到电源线路、控制线路、信号线路上的由许多快速瞬变脉冲组成的脉冲群试验。

此波形不是感性负载断开的实际波形(感性负载断开时产生的干扰幅度是递增的),而实验所采用的波形使实验等级更为严酷。

电快速脉冲群是由间隔为300ms的连续脉冲串构成,每一个脉冲串持续15ms,由数个无极性的单个脉冲波形组成,单个脉冲的上升沿5ns,持续时间50ns,重复频率5K。

根据傅立叶变换,它的频谱是从5K--100M的离散谱线,每根谱线的距离是脉冲的重复频率。

二.实验设备1. 电快速脉冲发生器其中储能电容的大小决定单个脉冲的能量;波形形成电阻和储能电容配合,决定了波形的形状;阻抗匹配电阻决定了脉冲发生器的输出阻抗(标准为50欧姆);隔直电容则隔离了脉冲发生器中的直流成分。

2.耦合/去耦网络交/直流电源端口的耦合/去耦网络(CDN---Couple and Decouple networks),这个网络提供了在不对称条件下把试验电压施加到受试设备的电源端口的能力。

这里所谓不对称干扰是指电源线与之间的干扰。

可以看到从试验发生器来的信号电缆芯线通过可供选择的耦合电容加到相应的电源线(L1、L2、L3、N及PE)上,信号电缆的屏蔽层则和耦合/去耦网络的机壳相连,机壳则接到参考接地端子上。

耦合/去耦网络的作用是将干扰信号耦合到EUT并阻止干扰信号干扰连接在同一电网中的不相干设备。

一些电快速脉冲发生器已将耦合/去耦网络集成于一体。

3.电容耦合夹关于电容耦合夹的应用,在GB/T17626.4的第6.3节中指出,耦合夹能在受试设备各端口的端子、电缆屏蔽层或受试设备的任何其他部分无任何电连接的情况下把快速瞬变脉冲群耦合到受试线路上。

快速脉冲群测试原理及对策

快速脉冲群测试原理及对策

快速脉冲群测试原理及对策快速瞬变脉冲群干扰机理实验的目的电快速瞬变脉冲群EFT 试验的目的是验证电子设备机械开关对电感性负载切换、继电器触点弹跳、高压开关切换等引起的瞬时扰动的抗干扰能力。

这种试验方法是一种耦合到电源线路、控制线路、信号线路上的由许多快速瞬变脉冲组成的脉冲群试验。

容易出现问题的场合有电力设备或监控电网的设备、使用在工业自动化上面的设备、医疗监护等检测微弱信号设备。

2.干扰的特点EFT的特点是上升时间快,持续时间短,能量低,但具有较高的重复频率。

EFT一般不会引起设备的损坏,但由于其干扰频谱分布较宽,会对设备正常工作产生影响。

其干扰机理为EFT对线路中半导体结电容单向连续充电累积,引起电路乃至设备的误动作。

1.电快速瞬变脉冲群测试及相关要求不同的电子、电气产品标准对EFT 抗扰度试验的要求是不同的,但这些标准关于EFT 抗扰度试验大多都直接或间接引用GB/T17626.4 这一电磁兼容基础标准,并按其中的试验方法进行试验。

下面就简要介绍一下该标准的内容。

2.生器和试验波形a.信号发生器图1 信号发生器其中,U为高压直流电源,Rc为充电电阻,Cc为储能电容,Rs为内部的放电电阻,Rm为阻抗匹配电阻,Cd为隔直电容,R0为外部的负载电阻,Cc的大小决定了单个脉冲的能量,Cc和Rs的配合决定了脉冲波的形状(特别是脉冲的持续时间),Rm决定了脉冲群发生器的输出阻抗(标准规定是50Ω),Cd则隔离了脉冲群发生器输出波形中的直流成分,免除了负载对脉冲群发生器工作的影响。

B.实验波形试验发生器性能的主要指标有三个:单个脉冲波形、脉冲的重复频率和输出电压峰值。

GB/T 17626.4 要求试验发生器输出波形应如图1,2 所示。

图2 快速脉冲群概略图图3 接50欧负载时单个脉冲波形EFT 是由间隔为300ms 的连续脉冲串构成,每一个脉冲串持续15ms,脉冲波形组成,单个脉冲的上升沿5ns,持续时间50ns,重复频率5kHz 和100kHz。

电快速脉冲群测试及对策

电快速脉冲群测试及对策

电快速脉冲群实验(IEC 61000-4-4 EFT/Burst Test)及其对策综述一.试验波形电快速瞬变脉冲群抗扰度试验,目的是验证由闪电、接地故障或切换电感性负载而引起的瞬时扰动的抗干扰能力。

这种试验是一种耦合到电源线路、控制线路、信号线路上的由许多快速瞬变脉冲组成的脉冲群试验。

此波形不是感性负载断开的实际波形(感性负载断开时产生的干扰幅度是递增的),而实验所采用的波形使实验等级更为严酷。

电快速脉冲群是由间隔为300ms的连续脉冲串构成,每一个脉冲串持续15ms,由数个无极性的单个脉冲波形组成,单个脉冲的上升沿5ns,持续时间50ns,重复频率5K。

根据傅立叶变换,它的频谱是从5K--100M的离散谱线,每根谱线的距离是脉冲的重复频率。

二.实验设备1. 电快速脉冲发生器其中储能电容的大小决定单个脉冲的能量;波形形成电阻和储能电容配合,决定了波形的形状;阻抗匹配电阻决定了脉冲发生器的输出阻抗(标准为50欧姆);隔直电容则隔离了脉冲发生器中的直流成分。

2.耦合/去耦网络交/直流电源端口的耦合/去耦网络(CDN---Couple and Decouple networks),这个网络提供了在不对称条件下把试验电压施加到受试设备的电源端口的能力。

这里所谓不对称干扰是指电源线与大地之间的干扰。

可以看到从试验发生器来的信号电缆芯线通过可供选择的耦合电容加到相应的电源线(L1、L2、L3、N及PE)上,信号电缆的屏蔽层则和耦合/去耦网络的机壳相连,机壳则接到参考接地端子上。

耦合/去耦网络的作用是将干扰信号耦合到EUT并阻止干扰信号干扰连接在同一电网中的不相干设备。

一些电快速脉冲发生器已将耦合/去耦网络集成于一体。

3.电容耦合夹关于电容耦合夹的应用,在GB/T17626.4的第6.3节中指出,耦合夹能在受试设备各端口的端子、电缆屏蔽层或受试设备的任何其他部分无任何电连接的情况下把快速瞬变脉冲群耦合到受试线路上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

快速脉冲群测试原理及对策快速瞬变脉冲群干扰机理实验的目的电快速瞬变脉冲群EFT 试验的目的是验证电子设备机械开关对电感性负载切换、继电器触点弹跳、高压开关切换等引起的瞬时扰动的抗干扰能力。

这种试验方法是一种耦合到电源线路、控制线路、信号线路上的由许多快速瞬变脉冲组成的脉冲群试验。

容易出现问题的场合有电力设备或监控电网的设备、使用在工业自动化上面的设备、医疗监护等检测微弱信号设备。

2.干扰的特点EFT的特点是上升时间快,持续时间短,能量低,但具有较高的重复频率。

EFT一般不会引起设备的损坏,但由于其干扰频谱分布较宽,会对设备正常工作产生影响。

其干扰机理为EFT对线路中半导体结电容单向连续充电累积,引起电路乃至设备的误动作。

1.电快速瞬变脉冲群测试及相关要求不同的电子、电气产品标准对EFT 抗扰度试验的要求是不同的,但这些标准关于EFT 抗扰度试验大多都直接或间接引用GB/T17626.4 这一电磁兼容基础标准,并按其中的试验方法进行试验。

下面就简要介绍一下该标准的内容。

2.生器和试验波形a.信号发生器图1 信号发生器其中,U为高压直流电源,Rc为充电电阻,Cc为储能电容,Rs为内部的放电电阻,Rm为阻抗匹配电阻,Cd为隔直电容,R0为外部的负载电阻,Cc的大小决定了单个脉冲的能量,Cc和Rs的配合决定了脉冲波的形状(特别是脉冲的持续时间),Rm决定了脉冲群发生器的输出阻抗(标准规定是50Ω),Cd则隔离了脉冲群发生器输出波形中的直流成分,免除了负载对脉冲群发生器工作的影响。

B.实验波形试验发生器性能的主要指标有三个:单个脉冲波形、脉冲的重复频率和输出电压峰值。

GB/T 17626.4 要求试验发生器输出波形应如图1,2 所示。

图2 快速脉冲群概略图图3 接50欧负载时单个脉冲波形EFT 是由间隔为300ms 的连续脉冲串构成,每一个脉冲串持续15ms,脉冲波形组成,单个脉冲的上升沿5ns,持续时间50ns,重复频率5kHz 和100kHz。

为了保证5kHz 和100kHz 注入的能量具有等效性,当用100kHz 的重复频率代替5kHz 时,EFT的持续时间从15ms 缩减到0.75ms。

传统上使用5kHz的重复频率,然而100 kHz更接近实际情况。

在电力上一般要求为100 kHz。

C.干扰实验等级受试设备的被试验部分主要包括设备的供电电源端口,保护接地,信号和控制端口。

图4 测试电压峰值需要注意,并不是信号和控制信号在相同测试等级下信号发生器输出电压就比对电源测试的电压要低,实际信号发生器输出的信号幅度是一致的,是由负载阻抗决定的。

信号线一般阻抗为50欧,信号发生器内有50串接电阻。

所以信号测量电压应为0.5xVp(开路)。

此电压可以正负偏差10%。

耦合装置GB/T17626.4提供的耦合装置有两种:耦合/去耦网络和容性耦合夹。

一般情况下,耦合/去耦网络主要用于电源端口试验,容性耦合夹主要用于I/O端口和通信端口试验。

耦合/去耦网络。

耦合/去耦网络的作用是将干扰信号耦合到受试设备并阻止干扰信号连接到同一电网中的不相干设备。

图5耦合装置耦合脉冲干扰是通过33nF的电容,同时施加到L1、L2、L3、N、PE信号上。

信号电缆的屏蔽层则和耦合/去耦网络的机壳相连, 机壳则接到参考接地端子上。

这表明脉冲群干扰实际上是加在电源线与参考地之间, 即加在电源线上的干扰是共模干扰。

容性耦合夹。

对于采用耦合夹的试验来说, 耦合夹能在受试设备各端口的端子、电缆屏蔽层或受试设备的其他部分无任何电连接的情况下把快速瞬变脉冲群耦合到受试线路上。

电容耦合夹的结构如图?所示。

试验中受试线路的电缆放在耦合夹的上下两块耦合板之间, 耦合夹本身应尽可能地合拢, 以提供电缆和耦合夹之间的最大耦合电容。

耦合夹与电缆之间的典型电容是50-200pf。

图6容性耦合夹电快速瞬变脉冲群试验失败原因分析从干扰施加方式分析对电源线通过耦合/去耦网络施加EFT 干扰时,信号发生器输出的一端通过33nF 的电容注入到被测电源线上,另外一端通过耦合单元的接地端子与大地相连;对信号/控制线通过容性耦合夹施加EFT 干扰时,信号发生器输出通过耦合板与受试电缆之间的分布电容进入受试电缆,而受试电缆所接收到的脉冲是相对接地板而言的。

这两种干扰注入方式都是对大地的共模注入方式。

因此,所有的差模抑制方法对此类干扰无能为力。

从干扰传输方式分析脉冲群的单个脉冲波形前沿tr达到5ns,脉宽达到50ns,这就注定了脉冲群干扰具有极其丰富的谐波成分。

幅度较大的谐波频率至少可以达到1/πtr,亦即可以达到64MHz左右,相应的波长为5m。

对于一根载有60MHz以上频率的电源线来说,如果长度为1M,由于导线长度已经可以和信号的波长可比,不能再以普通传输线来考虑,信号在线上的传输过程中,部分依然可以通过传输线进入受试设备(传导发射),部分要从线上逸出,成为辐射信号进入受试设备(辐射发射)。

因此,受试设备受到的干扰实际上就是传导与辐射的结合。

很明显,传导和辐射的比例和电源线长度相关,线路越短,传导成分越多,而辐射比例越小;反之辐射比例就大。

单纯对EFT 干扰施加端口采取传导干扰抑制(例如加滤波器)方式无法完全克服此类干扰的影响。

根据EFT 干扰造成设备失效的机理分析单个脉冲的能量较小,不会对设备造成故障。

但由于EFT 是持续一段时间的单极性脉冲串,它对设备线路结电容充电,经过累积,最后达到并超过IC 芯片的抗扰度电平,将引起数字系统的位错、系统复位、内存错误以及死机等现象。

因此,线路出错会有个时间过程,而且会有一定偶然性和随机性。

而且很难判断究竟是分别施加脉冲还是一起施加脉冲设备更容易失效。

也很难下结论设备对于正向脉冲和负向脉冲哪个更为敏感。

测试结果与设备线缆布置、设备运行状态和脉冲参数、脉冲施加的组合等都有极大的相关性。

而不能简单认为在EFT 抗扰度试验中受试设备有一个门槛电平,干扰低于这个电平,设备工作正常;干扰高于这个电平,设备就失效。

正是这种偶然性和随机性给EFT 对策的方式和对策部位的选择增加了难度。

同时,大多数电路为了抵抗瞬态干扰,在输入端安装了积分电路,这种电路对单个脉冲具有很好的抑制作用,但是对于一串脉冲则不能有效抑制。

IEC61000-4-4 新版标准在单组脉冲群注入受试设备的脉冲总量没变(仍为75 个)的情况下,将脉冲重复频率从5kHz 提高到100kHz,单位时间内的脉冲密集程度大大增加了。

单位时间内的脉冲个数越多,对结电容的电荷积累也越快,越容易达到线路出错的阈限。

因此,新的标准把脉冲重复频率提高,其本质上也是将试验的严酷程度提高。

这样能通过旧标准EFT 测试的产品,在按照新标准进行测试时未必能通过。

从EFT 干扰的幅度分析与其它瞬态脉冲一样,EFT 抗扰度测试时施加在被测线缆上的EFT 脉冲幅度从几百伏到数千伏。

对付此类高压大能量脉冲,仅依靠屏蔽、滤波和接地等普通电磁干扰抑制措施是远远不够的。

对此类脉冲应先使用专用的脉冲吸收电路将脉冲干扰的能量和幅度降低到较低水平再采取其他的电磁干扰抑制措施,这样才能使被测设备有效抵抗此类干扰。

从EFT 干扰传输途径分析如图3 所示,EFT 干扰主要通过以下几种途径干扰被测设备的正常工作,包括:a)EFT 干扰通过耦合单元进入设备的电源线和控制信号线,在这些线缆上产生高达数千伏的共模脉冲噪声并沿着这些线缆进入被测设备内部,当通过接口滤波器时干扰有所衰减,但依然有较高的干扰电压进入设备内部电源和PCB 电路,影响PCB 的正常工作。

b)同时,注入到电源线或信号控制线上的EFT 干扰会在传导的过程中向空间辐射,这些辐射能量感应到邻近的电缆上,通过这些电缆进入设备内部对电路形成干扰,当没有对EUT 所有连接电缆采取EFT 防护措施时,较易出现这种现象。

c)注入到电源线或信号控制线上的EFT 干扰进入设备内部后,直接通过空间辐射被PCB 电路接收,对电路形成干扰。

当PCB 接口上有良好滤波措施,但传输线缆与电路距离较近时,容易出现这种现象。

图7EFT测试失败原因分析示意图电子产品通过电快速瞬变脉冲试验的对策抑制EFT 干扰的一般对策从上一节分析我们可知,EFT 干扰有以下几个特点:a)EFT 干扰以共模方式侵入敏感设备;b)EFT 干扰在传递过程中通过辐射和传导两种方式影响被测设备电路;c)EFT 干扰是由一组组的密集的单极性脉冲构成,对敏感设备电路结点的影响具有连续累积性;d)EFT 干扰侵入敏感设备的频率覆盖中高频频率段,且电源端口的频谱分量比信号端口低频分量更丰富;e)EFT 干扰是一种典型的高压快速脉冲干扰;f)EFT 干扰主要通过三种路径影响敏感设备电路:直接通过干扰线传导进入敏感设备电路;通过干扰线辐射到相邻的干扰线,再从相邻干扰线进入敏感设备电路;通过干扰线辐射直接进入敏感设备电路。

针对这些特点,我们采取的对策包括:a)对直接传导干扰应以共模抑制为主;b)为抑制传导和辐射两者途径的干扰,我们除对端口线进行滤波外,还需对敏感电路进行屏蔽;c)为了有效抑制这种密集的单极性脉冲,单纯使用反射型电容、电感滤波会很快饱和,考虑到电源和信号传递RC 类的吸收滤波器未必适用,较好的方式是利用高频铁氧体对高频干扰呈阻性,能直接吸收高频干扰并转化为热能的特性,来吸收此类干扰;d)选择传输线滤波电路应覆盖侵入的EFT 干扰的频谱范围;e)对EFT 类共模的高压快速脉冲干扰,若在干扰通道先采用对地的脉冲吸收器吸收大部分脉冲电压和能量,再配合吸收式共模滤波器,可起到事半功倍的效果;f)为了对EFT 干扰侵入敏感设备的三条路径都有较好的防范,我们除对干扰直接传输通道采取脉冲吸收和滤波,对空间辐射采取屏蔽等措施外,为防止EFT 干扰通过空间辐射到非EFT 干扰直接侵入的端口线,再从这些端口线侵入敏感设备,应让这些端口线与其他端口线加以空间分隔,并对些端口也采取适当的共模干扰抑制措施。

EFT 干扰传输环路图8 所示为EFT 干扰传输环路。

EFT 是共模干扰,它必须通过大地回路完成整个干扰环路。

EFT 干扰源通过传导或空间辐射以共模方式进入敏感设备电源线或控制信号线,通过这些线缆以传导或辐射方式进入敏感设备内部PCB 电路。

若EUT 为金属外壳,PCB 上的EFT 干扰通过PCB 与金属外壳间杂散电容C1 或直接通过接地端子传输到金属外壳,再通过金属外壳与大地之间杂散电容C2 传输到大地,由大地返回EFT 干扰源。

若EUT 为非金属外壳,PCB 上的EFT 干扰通过PCB 与大地之间较小的杂散电容C3 传输到大地,由大地返回EFT 干扰源。

完成整个干扰环路。

图8EFT干扰传输环路示意图针对电源线试验的措施解决电源线EFT 干扰问题的主要方法是在被测设备电源线入口处安装瞬态脉冲吸收器和吸收型的共模电源线滤波器,阻止EFT 干扰进入被测设备。

相关文档
最新文档