雷达发展史
地质雷达发展历程
探地雷达的历史最早可追溯到20世纪初。
1904年,德国人Hülsmeyer首次将电磁波信号应用于地下金属体的探测。
1910年,Leimback和L鰓y以专利形式提出将雷达原理用于探地,他们用埋设在一组钻孔中的偶极天线探测地下相对高导电性质的区域,正式提出了探地雷达的概念。
1926年Hülsenbeck第一个提出应用脉冲技术确定地下结构的思路,他指出介电常数不同的介质交界面会产生电磁波反射。
由于地下介质具有比空气强得多的电磁衰减特性,加之地下介质情况的多样性,电磁波在地下的传播比空气中复杂的多,之后二三十年尽管在美国出现过一些相关的专利,这项技术很少被运用到其它领域,直到50年代后期,探地雷达技术才慢慢重新被人们所重视。
探地雷达在矿井(1960,J.C.Cook)、冰层厚度(1963,S.Evans)、地下粘土属性(1965,Barringer)、地下水位(1966,Lundien)的探测方面得到了应用。
1967年,一个与stern最初用于冰川探测的仪器类似的系统被设计研制出来,1972年Procello将其于探测月球表面结构。
同样在1972年,Rex Morcy和Art Drake开创了GSSI(Geophysical Survey Systems Inc.)公司,主要从事商业探地雷达的销售。
随着电子技术的发展,数字磁带记录问世,加之现代数据处理技术的应用,特别是拟反射地震处理的应用,探地雷达的实际应用范围在70年代以后迅速扩大,其中有:石灰岩地区采石场的探测(1971,Takazi;1973,kithara;)、淡水和沙漠地区的探测(1974,R.M.Morey;1976,P.K.Kadaba)、工程地质探测(1976,A.P.Annan 和J.L.Davis;1978,G.R.Olhoeft,L.T.Dolphin)、煤矿井探测(1975,J.C.Cook)、泥炭调查(1982,C.P.F.Ulriken)、放射性废弃物处理调查(1982,D.L.Wright;1985,O.Olsson)、以及地面和井中雷达用于地质构造填图(1997,M.Serzu )、水文地质调查(1996,A.Chanzy ;1997,Chieh-Hou Yang )、地基和道路下空洞及裂缝调查、埋设物探测、水坝的缺陷检测、隧道及堤岸探测等。
雷达简介
雷达的历史
1842年多普勒(ChristianAndreasDoppler)率先提出利用多 普勒效应的多普勒式雷达。
1921年业余无线电爱好者发现了短波可以进行洲际通信后,科 学家们发现了电离层。短波通信风行全球。
1934年,一批英国科学家在 R.W.瓦特领导下对地球大气层进 行研究。有一天,瓦特被一个偶然观察到的现象吸引住了。它发现荧 光屏上出现了一连串明亮的光点,但从亮度和距离分析,这些光点完 全不同于被电离层反射回来的无线电回波信号。经过反复实验,他终 于弄清,这些明亮的光点显示的正是被实验室附近一座大楼所反射的 无线电回波信号。瓦特马上想到,在荧光屏上既然可以清楚地显示出 被建筑物反射的无线电信号,那么活动的目标例如空中的飞机,不是 也可以在荧光屏上得到反映吗?
8
对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测 出目标的距离。同时用频率过滤方法检测目标的多普勒频率谱线,滤 除干扰杂波的谱线,可使雷达从强杂波中分辨出目标信号。所以脉冲 多普勒雷达比普通雷达的抗杂波干扰能力强,能探测出隐蔽在背景中 的活动目标。
脉冲多普勒雷达于 20世纪 60年代研制成功并投入使用。20世 纪 70年代以来,随着大规模集成电路和数字处理技术的发展,脉冲 多普勒雷达广泛用于机载预警、导航、导弹制导、卫星跟踪、战场侦 察、靶场测量、武器火控和气象探测等方面,成为重要的军事装备。 装有脉冲多普勒雷达的预警飞机,已成为对付低空轰炸机和巡航导弹 的有效军事装备。此外,这种雷达还用于气象观测,对气象回波进行 多普勒速度分辨,可获得不同高度大气层中各种空气湍流运动的分布 情况。
中国雷达发展史观后感
中国雷达发展史观后感
通过观看《中国雷达发展史》这部影片,了解到许多在当时十分先进的雷达技术及其背后默默付出工作人员,真是可歌可泣。
通过学习,知道了每台高精度雷达都需要严格控制尺寸,需要按照比例缩小设计。
现在有些国家对高新科技很崇拜,却忽略基础技术和关键零件的研究。
而且他们不能理解,世界上最尖端的高科技就隐藏在普通大众身边:“能看得见”的汽车玻璃水;马路上奔跑着的二手旧自行车……实际上这只是冰山一角。
因此我认识到,自己应该加倍努力学好本领,将来更好地报效祖国!
电影《中国雷达发展史》生动的反映了我们国家自主研制并成功装备军队使用、为国民经济建设服务的各种先进的预警机和地面监测站所构成的一个完整体系,以及先进的雷达技术在抗洪救灾、保护国防安全等方面发挥的重要作用。
该影片充分展示了新中国几代人艰苦奋斗、无私奉献、开拓创新、自强不息的奋斗历程,激励人们勇于拼搏、敢于胜利、积极向上、锐意改革,走创业兴邦之路。
学习了党的光辉历程和优良传统,接受了一次思想政治教育和爱国主义教育。
今年七月份,汶川大地震,再次让我感受到了“国无防不立,民无兵不安”的伟大与坚定。
当下,虽然天气已入秋,但如果遇到危险事情也绝对不能退缩,哪怕前面刀山火海,也要做一名战士挺身而出,打响生命保卫战!另外还深刻的懂得,只有把人民群众放在心里,才会从心底真正去热爱和尊敬那些离我们远去的老英雄,同样也值得我们年轻人学习的是那些舍小家顾大家,为了国家和人民甘愿牺牲的无私奉
献精神。
相信在每位中华儿女的心中,永远铭记一条根:万众一心、众志成城!。
L波段雷达课件
K波段 18 - 27 GHz 16.67 - 11.11 mm W波段 75 - 110 GHz 4.00 - 2.73 mm
Ka波段 27 - 40 GHz 11.11 - 7.50 mm D波段 110 - 170 GHz 2.73 - 1.76 mm
雷达的用途及分类
������ 预警雷达(发现洲际导弹,尽早地发出预警警报) ������ 搜索和警戒雷达(发现飞机)
无线电频率分配表
雷达波段的划分
波段名称 频率范围
波长范围
波段Байду номын сангаас称 频率范围
波长范围
L波段 1 - 2GHz 300.00 - 150.00 mm U波段 40 - 60 GHz 7.50 - 5.00 mm
S波段 2 - 4 GHz 150.00 - 75.00 mm E波段 60 - 90 GHz 5.00 - 3.33 mm
引导指挥雷达(歼击机的引导和指挥作战) ������ 火控雷达(控制火炮或导弹对空中目标进行瞄准) ������ 战场监视雷达(坦克或军车) ������ 机载雷达、无线电测高仪、雷达引信。
������ 气象雷达 ������ 航空管制雷达(一、二次雷达) ������ 宇宙航行雷达 ������ 遥感设备
气象雷达的分类
按工作原理分类:
������ 常规天气雷达(如711、712、713)、
������ 多普勒雷达(如CINRAD/SA、CINRAD/CA 、 CINRAD/CD、CINRAD/CC )、 714CDN
������ 双波长雷达、 ������ 偏振雷达(极化雷达如WSR-98D/XD)、 ������ 双(多)基地雷达。
测风雷达的功能参数
第二讲 国内外地质雷达技术发展状况
第二讲国内外地质雷达技术发展状况(历史与现状)探地雷达的历史最早可追溯到20世纪初,1904年,德国人Hulsmeyer首次将电磁波信号应用与地下金属体的探测。
1910年Leimback和Lowy以专利形式在1910年的专利,他们用埋设在一组钻孔里的偶极子天线探测地下相对高的导电性质的区域,并正式提出了探地雷达的概念。
1926年Hulsenbeck第一个提出应用脉冲技术确定地下结构的思路,指出只要介电常数发生变化就会在交界面会产生电磁波反射,而且该方法易于实现,优于地震方法[1,2]。
但由于地下介质具有比空气强得多的电磁衰减特性,加之地下介质情况的多样性,电磁波在地下的传播比空气中复杂的多,使得探地雷达技术和应用受到了很多的限制,初期的探测仅限于对波吸收很弱的冰层厚度(1951,B.O.Steenson,1963,S.Evans)和岩石和煤矿的调查(J.C.Cook)等。
随着电子技术的发展,直到70探地雷达技术才重新得到人们的重视,同时美国阿波罗月球表面探测实验的需要,更加速了对探地雷达技术的发展,其发展过程大体可分为三个阶段:第一阶段,称为试验阶段,从20世纪70年代初期到70年代中期,在此期间美国,日本、加拿大等国都在大力研究,英国、德国也相继发表了论文和研究报告,首家生产和销售商用GPR的公司问世,即Rex Morey和Art Drake成立的美国地球物理测量系统公司(GSSI),日本电器设备大学也研制出小功率的基带脉冲雷达系统。
此期间探地雷达的进展主要表现在,人们对地表附近偶极天线的辐射场以及电磁波与各种地质材料相互作用的关系有了深刻的认识,但这些设备的探测精度、地下杂乱回波中目标体的识别、分别率等方面依然存在许多问题。
第二阶段,也称为实用化阶段,从20世纪70年代中后其到80年代,在次期间技术不段发展,美国、日本、加拿大等国相继推出定型的探地雷达系统,在国际市场,主要有美国的地球物理探测设备公司(GSSI)的SIR系统,日本应用地质株式社会(OYO)的YL-R2地质雷达,英国的煤气公司的GP管道公司雷达,在70年代末,加拿大A-Cube公司的Annan和Davis等人于1998年创建了探头及软件公司(SSI),针对SIR系统的局限性以及野外实际探测的具体要求,在系统结构和探测方式上做了重大的改进,大胆采用了微型计算机控制、数字信号处理以及光缆传输高新技术,发展成了EKKO Ground Penetrating Radar 系列产品,简称EKKO GPR系列。
雷达技术简介及发展展望
摘要:文章简要介绍了雷达技术发展简史和雷达技术在现代国防中的地位和作用,简述了几种先进雷达的体制和技术的基本原理以及国外的先进雷达应用情况,提出了现代战争下雷达技术发展展望。
0 前言雷达(Radar)是英文“Radio Detection and Ranging”缩写的译音,意思是无线电检测和定位。
近年来更广义的Radar的定义为:利用电磁波对目标检测/定位/跟踪/成像/识别。
雷达是战争中关键的侦察系统之一,它提供的信息是决策的主要基础。
雷达可用于战区侦察,也可用于战场侦察。
装有雷达导引头的导弹、灵巧炸弹能精确地、有效地杀伤目标。
在反洲际弹道导弹系统,反战术弹道导弹系统中,雷达是主要的探测器。
雷达技术在导航、海洋、气象、环境、农业、森林、资源勘测、走私检查等方面都起到了重要作用。
下面简要叙述雷达技术发展简史。
雷达技术首先在美国应用成功。
美国在1922年利用连续波干涉雷达检测到木船,1933年6月利用连续波干涉雷达首次检测到飞机。
该种雷达不能测距。
1934年美国海军开始发展脉冲雷达。
英国于1935年开始研究脉冲雷达,1937年4月成功验证了CH(Chain Home)雷达站,1938年大量的CH雷达站投入运行。
英国于1939年发展飞机截击雷达。
1940年由英国设计的10cm波长的磁控管由美国生产。
磁控管的发展是实现微波雷达的最重要的贡献。
1940年11月,美国开发微波雷达,在二次世界大战末期生产出了10cm的SCR-584炮瞄雷达,使高射炮命中率提高了十倍。
二战中,俄、法、德、意、日等国都独立发展了雷达技术。
但除美国、英国外,雷达频率都不超过600MHz。
二战中,由于雷达的很大作用,产生了对雷达的电子对抗。
研制了大量的对雷达的电子侦察与干扰设备,并成立了反雷达特种部队。
二战后,特别是五、六十年代,由于航空航天技术的飞速发展,用雷达探测飞机、导弹、卫星、以及反洲际弹道导弹的需要,对雷达提出了远距离、高精度、高分辨率及多目标测量的要求,雷达进入蓬勃发展阶段,解决了一系列关键性问题:脉冲压缩技术、单脉冲雷达技术、微波高功率管、脉冲多卜勒雷达、微波接收机低噪声放大器(低噪声行波管、量子、参量、隧首二极管放大器等)、相控阵雷达。
雷达信号处理与图像识别技术发展
雷达信号处理与图像识别技术发展随着现代科技的飞速发展,雷达信号处理与图像识别技术在军事、民用、医疗等各个领域中的应用越来越广泛。
本文将从历史背景、技术原理、应用现状和未来发展等方面,探讨雷达信号处理和图像识别技术的发展历程和未来前景。
一、历史背景雷达技术源于20世纪初期,最初是在第一次世界大战中被发明的。
当时,雷达被用于检测来袭敌机。
20世纪30年代,英国的雷达技术得到了重大发展,成功实现了对德国轰炸机的远程控制。
20世纪50年代,雷达技术开始应用于民用领域,例如航空交通管制和气象预报。
60年代后期,计算机的发展为雷达信号处理和图像识别技术的应用奠定了基础。
二、技术原理雷达信号处理和图像识别技术是由多个技术和方法组成的,包括雷达原理、信号处理、模式识别、人工智能等。
雷达原理是实现雷达探测和测量的基础,主要包括雷达发射、接收和信号处理等环节。
信号处理是数据的处理和分析,主要将接收到的信号进行分析提取,包括时间域和频域等处理方式。
模式识别是图像识别技术的基础,主要包括特征提取、分类与识别等环节。
人工智能则是一种新兴的技术,可以应用于机器学习、深度学习等领域,实现对大量数据的快速分析和处理。
三、应用现状雷达信号处理和图像识别技术在军事和民用领域中得到了广泛应用。
在军事领域中,雷达技术通过空中、水下和地面等不同的传感设备,完成了战场情报的收集和态势感知。
在民用领域中,雷达技术应用于航空交通管制、自动驾驶汽车、气象预报等领域,为人们的生产和生活带来了很大的便利。
图像识别技术则应用于智能家居、安全监控、医疗诊断等领域。
例如,在医疗诊断中,图像识别技术可以帮助医生识别和分析医学图像,提高医疗水平。
在安全监控中,图像识别技术可以通过识别图像中的关键信息,判断是否存在异常情况。
在智能家居中,则可以通过图像识别技术为居民提供更加智能化和人性化的服务。
四、未来发展雷达信号处理和图像识别技术的未来发展将继续深化其在军事、民用、医疗等领域中的应用。
中国国防军事近代史作业——激光雷达测量技术的发展概况
《中国近代国防科技史》课程报告激光雷达(LIDAR)测量技术单位:四院五队姓名:周杰学号:GS12041103激光雷达(LIDAR)测量技术激光雷达(LIDAR)测量技术是从20世纪中后期逐步发展起来的一门高技术,可用于地球科学和行星科学等许多领域。
美国早在20世纪70年代阿波罗登月计划中就使用了激光测高技术。
20世纪80年代,激光测高技术得到了迅速发展,人们研制出了实用的、可靠的激光测高传感器,其中包括航天飞机激光测高仪( Shuttle Laser Altimeter, SLA )、火星观测激光测高仪(Mars Observer Laser Altimeter, MOLA)以及月球观测激光测高仪(LunarObserver Laser Altimeter, LOI.A )。
借助这些激光测高仪,人们可以获取地球、火星及月球上高垂直分辨率的星体表面的地形信息,这对于研究地球和火星等行星的真实形状有着重要的科学意义。
上述这些激光测高仪的激光束的指向一般是固定的,需依靠搭载激光测高仪的飞行器绕星体的周期运动来获得星体上大范围离散分布的激光脚点的高程数据。
20世纪90年代前后,随着GPS动态定位和高精度姿态确定等定位、定姿技术的发展成熟,人们设计将激光测高仪安置在飞机上,同时为了提高采点效率和带宽,采用扫描的方式来改变激光束的发射方向,将这些设备有机地集成在一起协同工作,就构成了一个机载激光雷达测量系统。
随后几年,机载激光雷达测量技术蓬勃发展,欧美等发达国家先后研制出了多种机载激光雷达测量系统。
机载激光雷达测量技术的发展为我们获取高时空分辨率的地球空间信息提供了一种全新的技术手段,使我们从传统的人工单点数据获取变为连续自动数据获取,不仅提高了观测的精度和速度,而且使数据的获取和处理朝智能化和自动化的方向发展。
机载激光雷达测量技术可广泛用于快速获取大面积三维地形数据、快速生成DEM等数字产品。
机载激光雷达测量在灾害监测、环境监测、海岸侵蚀监测、资源勘察、森林调查、测绘和军事等力一面的使用具有独特的优势和广泛的使用前景。
什么是雷达
什么是雷达雷达(Radar)是一种利用电磁波进行探测和测量的技术。
它是由英文Radio Detection and Ranging(无线电探测和测距)缩写而来。
雷达系统能够发送出一束电磁波,并接收其反射回来的信号,通过分析这些信号的特征来确定目标物体的位置、速度、方向和其他属性。
雷达技术的发展历史可以追溯到20世纪初。
最初,雷达主要用于军事领域,用于探测和追踪敌方飞机和舰船。
随着科技的进步,雷达技术逐渐应用于民用领域,如天气预报、航空导航和交通控制等。
雷达系统由发射器、接收器和信号处理器组成。
当雷达发射器发出一束电磁波时,它会遇到目标物体并被反射回来。
接收器接收这些反射的信号,并将其传送给信号处理器进行分析。
雷达系统的探测原理基于“回波时间差”原理。
当雷达发射信号时,它记录下发射和接收之间的时间间隔。
通过测量这个时间间隔,可以确定目标物体与雷达系统之间的距离。
通过连续发射信号并记录回波时间差,雷达系统可以得到目标物体的运动信息,如速度和方向。
雷达系统还可以通过分析回波信号的特征来获得目标物体的其他属性。
例如,通过比较接收到的信号的强度和频率变化,雷达系统可以确定目标物体的大小、形状和材质。
这些信息对于区分不同类型的目标物体至关重要。
雷达技术的应用非常广泛。
在军事领域,雷达系统被用于飞机、舰船和导弹的导航和目标追踪。
在天气预报中,雷达系统用于探测降雨和研究气象现象。
在航空导航中,雷达系统用于引导飞机降落和防止碰撞。
此外,雷达技术还被用于交通控制、无人驾驶汽车和安防领域等。
与传统的光学传感器相比,雷达具有许多优势。
首先,雷达系统可以在复杂的天气条件下工作,如雨雪、雾和浓雾。
其次,雷达可以远距离探测目标物体,无需直接视线。
此外,雷达系统对目标物体的大小和形状并不敏感,因此可以在不同环境下进行可靠的探测。
然而,雷达技术也存在一些局限性。
由于雷达使用的是电磁波,因此在某些情况下可能会被其他电子设备干扰。
此外,雷达对目标物体的分辨率有限,无法对小尺寸的物体提供详细信息。
雷达的历史回顾
雷达的历史回顾都世民雷达是英文名词“Radar”的音译,它的原意是:无线电探测和定位。
早先概念是:由雷达发射机产生具有给定参数的电磁波,经天线辐射到空间,通过天线波束在空间扫描,一旦目标出现,就会对辐照的电磁波产生反射和散射,此反射波和散射波再被雷达天线接收,送至接收机,经检波、放大和信息处理后,即可获得空中目标的位置和目标的其它属性。
这里所说的发射机就是雷达的辐射源。
因此这种雷达称作有源雷达。
后来,随着电子技术、雷达技术和各种武器技术的发展,如今雷达的概念有所扩展,除上述有源雷达外,又派生出无源雷达,也就是说这种雷达没有辐射源,这种雷达是借用空间已有的电波,照射到目标所形成的囬波来探测目标。
如今学术界称这种雷达为外辐射源雷达。
从雷达本身看,它是无辐射源,实际上是有源,这源是外部辐射源。
雷达的诞生1864年,伟大的电磁之父麥克斯韦(JamesC1erkMaxwe11)发表了巨著“电磁学通论”,从数学和物理学,论证了电磁波的存在,并指出光就是电磁波!1886年,赫兹(HeinerichHertz)巧夺天工,他发明了天线,将谐振回路形成的电磁波,辐射到空间,证实了电磁波的存在。
1897年,波波夫利用无线电波探测物体。
1897J J Thompson)展开对真空管内阴极射线的研究。
1903年-1904年,德国侯斯美尔(Christian Hulsmeyer)发明了船用防撞雷达,获得了专利权。
这种雷达只能测量目标的距离。
同年,世界上出现了第一架飞机。
1906年,德弗瑞斯特(De Forest Lee)发明真空三极管,是世界上第一种可放大信号的主动电子元件.1914-1918年,第一次世界大战。
飞机在战场上的作用越来越大。
当时飞机飞行速度不高,人们是通过声波探测来提前预警飞机信息。
因此有的科普作家认为雷达的诞生从声波探测开始,也有人认为雷达的诞生是起始于多普勒效应的发现。
1916年,马可尼(Marconi Franklin)开始研究短波信号反射。
脉冲压缩发展史
脉冲压缩雷达(pulse compressiON radar),是发射已调制(或编码)的宽脉冲,对回波信号进行压缩处理得到窄脉冲的雷达。
为获得脉冲压缩的效果,发射的宽脉冲采取编码形式,并在接收机中经过匹配滤波器的处理。
脉冲压缩雷达能有效地解决常规脉冲雷达中增大探测距离与提高距离分辨率的矛盾,因而获得广泛的应用。
脉冲压缩雷达发展历史初期的脉冲雷达, 发射的是固定载频的脉冲,其距离分辨力反比于发射脉冲宽度。
要增加作用距离,就要求加大发射脉冲宽度,这样必然会降低距离分辨力。
雷达作用距离和雷达分辨能力正是雷达的两项重要性能指标。
因此,必须解决这一矛盾。
自从40年代提出匹配滤波理论和50年代初P.M.伍德沃德提出雷达模糊原理之后,人们认识到雷达的距离分辨力与发射脉冲宽度无关,而是正比于发射脉冲频带宽度。
只要对发射宽脉冲进行编码调制,使其具有大的频带宽度,对目标回波进行匹配处理后就能获得分辨力很好的窄脉冲输出,即τp≈1/B。
式中τp为处理后的输出脉冲宽度;B为发射脉冲频带宽度。
根据这一原理,发射脉冲宽度和带宽都足够大的信号,雷达就能同时具有大的作用距离和高的距离分辨力,还可以使单一脉冲具有较好的速度分辨力。
因为根据雷达模糊原理,速度分辨力与发射脉冲时宽τ成正比。
这种信号的脉冲压缩倍数为τ/τp≈τB。
脉冲压缩雷达信号处理方式1、模拟脉冲压缩在脉冲压缩处理中已广泛应用的一种器件是声表面波器件。
它是用换能器将电磁波能转换成声波,使声波在基体的表面传播。
这种表面波称为瑞利波,具有非色散的性质。
但只要把叉指换能器间隔按一定规律变化,就可制成色散延迟线。
当换能器受到电脉冲冲击时,在各对叉指间便产生波长为2d的声波。
叉指对的排列使内侧的间隔小,因此内侧叉指对发送和接收的频率高,传播的路程短,高频延时小;外侧叉指对的间隔大,发送和接收的频率低,传播的路程长,低频延时大。
控制叉指对的间隔,可使延迟线产生线性的或某种规律的非线性的色散信号(即调频信号)。
简述雷达发展史
简述雷达发展史是:
1935年,英国罗伯特·沃森研制出世界上第一台雷达。
1940年,多腔体磁控管雷达被研制出来。
1942年,雷达开始量产并运用在实战中。
二战结束后,雷达开始朝着高频、高精度、高灵活、小型化的方向不断演进,并出现了无源雷达、多基地雷达、机载预警雷达、微波成像雷达、毫米波雷达、激光雷达等。
1950-1960年间,雷达被应用在反洲际导弹系统、人造卫星、宇宙飞船中。
1970—1990年间,出现了合成孔径雷达、相控阵雷达、脉冲多普勒雷达等。
进入21世纪,雷达功能更加丰富,集通信、指挥控制、电子战于一身,并进一步朝着智能化、网络化发展。
雷达的发展历史
雷达的发展历史工作原理雷达天线把发射机提供的电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波。
这些反射波载有该物体的信息并被雷达天线接收,送至雷达接收设备进行处理,提取人们所需要的有用信息并滤除无用信息,由此获得目标至雷达的距离、距离变化率(径向速度)、方位、高度等信息。
第一代雷达(1924—1938)这一代雷达仅利用电磁波的反射,简单地实现一些功能,例如测距,测量电离层的高度,观测飞机报警等。
它所利用的频段仅是几十兆赫,因此分辨力和精度都很低,测距仅有几十公里。
第二代雷达(1939—1960左右)这一代雷达不仅在雷达的器件上有很大进步,而且在技术上更加先进。
器件上采用了电子管—磁控管,是工作频率达到了几百几千几万几十万兆,提高了雷达的分辨力和精度,实现了机载雷达小型化。
在技术上,这一代主要是采用了动目标显示技术,同时还有单脉冲测角和跟踪以及脉冲压缩技术等,实现了发现移动目标及其测速等功能,测距达到几千公里,并能跟踪超音速飞机。
第三代雷达(1971—1990左右)电子计算机、微处理器、微波集成电路和大规模数字集成电路等应用到雷达上,使第三代雷达性能大大提高,同时减小了体积和重量,提高了可靠性。
在雷达新体制、新技术方面,1971年加拿大伊朱卡等3人发明相控阵(全息矩阵)雷达。
与此同时,数字雷达技术在美国出现,主要以相控阵雷达为主。
相控阵雷达的优点(1)波束指向灵活,能实现无惯性快速扫描,数据率高;(2)一个雷达可同时形成多个独立波束,分别实现搜索、识别、跟踪、制导、无源探测等多种功能;(3)目标容量大,可在空域内同时监视、跟踪数百个目标;(4)对复杂目标环境的适应能力强;(5)抗干扰性能好。
相控阵雷达与机械扫描雷达相比,扫描更灵活、性能更可靠、抗干扰能力更强,能快速适应战场条件的变化。
第四代雷达(2000—)这一代雷达还未发展完全,尚有待研究。
这一代将利用更加微小和可靠的器件,进一步减小雷达的体积和重量,以把雷达安装在能适应各种环境的车上,增加雷达的机动性。
中国雷达简史
中国雷达简史
中国雷达在20世纪初期经历了一段艰苦的起步阶段,但随着科技的进步和人才培养的加强,中国雷达技术逐渐发展壮大,取得了一系列重要的突破。
中国雷达的发展可以追溯到上世纪40年代末期,当时中国科学家开始研制雷达系统。
起初,由于技术实力的不足,中国的雷达系统只能借助苏联的技术支持。
然而,随着中国科学家的不懈努力,中国雷达开始逐渐取得独立研发的能力。
在上世纪50年代初期,中国成功研制出了自己的雷达系统,并在军事领域取得了重要的突破。
这一成果使中国在国际上获得了广泛的赞誉,并为中国雷达的进一步发展奠定了基础。
在随后的几十年里,中国雷达技术不断发展。
在上世纪80年代,中国成功研制出了一系列先进的雷达系统,包括空中警戒雷达、导弹预警雷达等。
这些系统的研制不仅提高了中国的国防能力,也为中国的科技发展树立了榜样。
随着科技的进步,中国雷达技术不断更新换代。
在21世纪初期,中国开始研制高性能雷达系统,以满足现代战争的需求。
这些新型雷达系统在探测距离、分辨率和抗干扰能力方面都有了显著的提升,为中国军事装备的现代化提供了重要支持。
除了军事领域,中国雷达技术也在民用领域取得了广泛应用。
例如,
在气象预测、空中交通管制和自然灾害监测等方面,雷达技术发挥着重要作用。
中国的雷达技术不仅满足了国内需求,还为世界各国提供了技术支持。
总的来说,中国雷达经历了一段起步艰难的历程,但随着科技的进步和人才的培养,中国的雷达技术逐渐发展壮大。
中国的雷达系统在军事和民用领域都取得了重要的突破,为国家的安全和发展做出了重要贡献。
雷达介绍
19
四,雷达的应用
预 警 飞 机
, ,
,
用
20
四,雷达的应用
哈工大高频地波 超视距雷达
21
四,雷达的应用
2,警戒雷达(防空)
作用距离>400km 分辨力要求不高 方位360o L波段(1~2G)
22
四,雷达的应用
3,引导指挥雷达(监视雷达)
能对多批次目标同时检测 测量目标的精度和分辨力较高 S波段(2~4G)
10
三,雷达的发展历史
1842年,奥地利物理学 年 家多卜勒 卜勒——率先提出了 家多卜勒 速度与音高关系的多卜勒 效应. 1865英国物理学家 英国物理学家 Maxwell ——描述了电磁 场理论 1886德国物理学家 德国物理学家 Hertz ——发现了电磁场 并证明了 Maxwell 的理论
了近地应用时的作用距离 ◆极窄的波束使得对于运动目标的搜索和捕获比较困 难,通常需要靠其他手段来引导.
应用:飞行器空间交会测量 ,目标精密跟踪,瞄准,直升机防撞告警 ,化学
战剂和局部风场测量 ,水下目标探测 (蓝绿激光0.5um可探测深达百米的目标)
38
五,雷达的分类 按安装位置分
地面雷达 机载雷达 天基雷达 舰载雷达
9
二,雷达和无线电通信的比较
雷达与无线电通信的共同点: 二者的理论基础是一致的,都涉及到电路与系统,电磁场与微 波技术,信号与信息处理,计算机应用等学科; 电子系统大部分相似,都包括发射机,接收机,信号处理机等.
总体来说,雷达系统比通信系统要复杂得多;雷达对 信息获取的要求更高,难度更大;雷达的信号形式更 多,更复杂,信号处理更复杂.
主要在自由空间作直线传播,其次是沿着 调频(AM)无线电广播 电报 通信 地球表面传播和经电离层反射传播
中国雷达技术发展史
中国雷达技术发展史
中国雷达技术的发展历程中,取得了许多重要的成就。
1953年,中国成功研发了新中国第一款自行设计的314甲雷达,这是我国早期雷达网的骨干雷达。
1955年,我国成功研发了第一部米波远程警戒雷达,这在我国早期雷达网中起到了关键作用。
之后在1977年,我国成功研发了第一部远程战略预警雷达,这使得我国能够更好地预测和防范敌方攻击。
进入21世纪,我国的雷达技术发展更是取得了重大突破。
2007年,我国成功研发了第一部空警2000机载预警雷达,这是我国机载预警雷达的里程碑。
2012年,我国成功研发了第一部气球载雷达,这使得我国在浮空平台预警手段建设方面取得了重大突破。
2015年,我国成功研制了第一部国产化数字阵列预警机雷达,实现了“小平台、大预警”的能力。
在最新的发展中,2017年,我国成功研发了第一部机载三面阵有源相控阵火控雷达,这是我国雷达技术的一项重大创新。
总的来说,中国雷达技术的发展历程是一个不断创新和进步的过程。
雷达
摘要本文从雷达发展史、现代雷达的新技术以及对未来雷达发展的展望三方面来讲述现代雷达的发展。
重点介绍了现代雷达的新技术相控阵雷达的原理和特点,并指出雷达的弱点及未来发展方向。
关键词:雷达,新技术,发展引言雷达是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。
因此,雷达也被称为“无线电定位”。
一:发展简史雷达的基本概念形成于20世纪初。
但是直到第二次世界大战前后,雷达才得到迅速发展。
早在20世纪初,欧洲和美国的一些科学家已知道电磁波被物体反射的现象。
1922年,意大利G.马可尼发表了无线电波可能检测物体的论文。
美国海军实验室发现用双基地连续波雷达能发觉在其间通过的船只。
1925年,美国开始研制能测距的脉冲调制雷达,并首先用它来测量电离层的高度。
30年代初,欧美一些国家开始研制探测飞机的脉冲调制雷达。
1936年,美国研制出作用距离达40公里、分辨力为457米的探测飞机的脉冲雷达。
1938年,英国已在邻近法国的本土第二次世界大战期间,由于作战需要,雷达技术发展极为迅速。
就使用的频段而言,战前的器件和技术只能达到几十兆赫。
大战初期,德国首先研制成大功率三、四极电子管,把频率提高到500兆赫以上。
这不仅提高了雷达搜索和引导飞机的精度,而且也提高了高射炮控制雷达的性能,使高炮有更高的命中率。
1939年,英国发明工作在3000兆赫的功率磁控管,地面和飞机上装备了采用这种磁控管的微波雷达,使盟军在空中作战和空-海作战方面获得优势。
大战后期,美国进一步把磁控管的频率提高到10吉赫,实现了机载雷达小型化并提高了测量精度。
在高炮火控方面,美国研制的精密自动跟踪雷达 SCR-584,使高炮命中率从战争初期的数千发炮弹击落一架飞机,提高到数十发击中一架飞机。
海岸线上布设了一条观测敌方飞机的早期报警雷达链。
气象雷达发展史
气象雷达发展史一、简介气象雷达是一种利用雷达技术来探测大气中降水和云的仪器。
它通过发射无线电波并接收其反射信号来获取降水和云的信息,从而实现天气预报和气象研究的目的。
本文将介绍气象雷达的发展历程,包括早期雷达技术、气象雷达的诞生与发展、现代气象雷达技术的进展等。
二、早期雷达技术早在20世纪初,雷达技术就开始出现并得到广泛应用。
雷达以其能够探测目标并提供目标位置、速度等信息的优势,被广泛应用于军事和航空等领域。
然而,早期的雷达技术在探测大气中的降水和云等天气信息方面还存在一些限制。
三、气象雷达的诞生与发展20世纪40年代末,随着气象学的发展和对天气预报需求的增加,人们开始探索利用雷达技术来探测大气中的降水和云。
1950年代初,美国的气象学家们在佛罗里达州成功地使用雷达来探测降水,并实现了实时天气观测。
这标志着气象雷达的诞生。
此后,各国纷纷开始研制和应用气象雷达,并取得了一系列重要成果。
四、气象雷达技术的进展随着科技的不断进步,气象雷达技术也不断发展。
20世纪60年代,气象雷达开始应用计算机技术,实现了自动化处理和显示观测数据。
20世纪80年代,数字雷达技术的出现使气象雷达的探测能力得到了极大提升。
数字雷达能够实现更高的分辨率和更精确的数据处理,使气象雷达在天气预报和气象研究中发挥了更重要的作用。
五、现代气象雷达技术的应用随着气象雷达技术的不断进步,现代气象雷达已经成为一种重要的天气观测和预报工具。
它能够提供丰富的降水和云的信息,并通过数据处理和分析来预测天气变化。
现代气象雷达还能够实现多普勒效应的探测,从而获取目标的运动信息,为天气预报提供更准确的数据支持。
六、气象雷达的发展前景随着科技的不断进步,气象雷达技术仍然在不断发展。
未来,气象雷达有望实现更高的分辨率、更精确的数据处理和更准确的天气预报。
同时,随着人工智能和大数据技术的应用,气象雷达还可以与其他观测设备和模型相结合,实现更全面、精确的天气观测和预报。
气象雷达发展史
雷达的昨天、今天、明天摘要:本文简要介绍了雷达技术发展简史和雷达技术在天气预测中的地位和作用。
天气雷达是监测、预警突发灾害性天气最有效的手段。
介绍了国内外天气雷达的发展现状,以及我国天气雷达总体技术水平和应用能力与发达国家的差距,然后分析制约天气雷达技术发展的一些因素,最后根据新一代天气雷达技术特点以及国际天气雷达领域的前沿应用提出了我国天气雷达的发展趋势。
一、前言雷达(Radar)是英文“Radio Detection and Ranging”缩写的译音,意思是“无线电探测和测距”,即用无线电的方法发现目标并测定它们的空间位置。
因此,雷达也被称为“无线电定位”。
雷达是利用电磁波探测目标的电子设备。
雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。
近年来更广义的Radar的定义为:利用电磁波对目标检测/定位/跟踪/成像/识别。
雷达是战争中关键的侦察系统之一,它提供的信息是决策的主要基础。
雷达可用于战区侦察,也可用于战场侦察。
装有雷达导引头的导弹、灵巧炸弹能精确地、有效地杀伤目标。
在反洲际弹道导弹系统,反战术弹道导弹系统中,雷达是主要的探测器。
雷达技术在导航、海洋、气象、环境、农业、森林、资源勘测、走私检查等方面都起到了重要作用。
二、起源雷达的出现,是由于一战期间当时英国和德国交战时,英国急雷达显示器屏幕需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。
二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。
二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。
后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用电磁波探测目标的电子设备。
它发射电磁波对目标进行照射并接收其回波,由此获得目标至雷达的距离、距离变化率(径向速度)、方位、高度等信息。
雷达是英文RADAR(Radio Detection And Ranging)的译音,意为“无线电检测和测距”。
雷达的优点是白天黑夜均能检测到远距离的较小目标,不为雾、云和雨所阻挡。
雷达是现代战争必不可少的电子装备。
它不仅应用于军事,而且也应用于国民经济(如交通运输、气象预报和资源探测等)和科学研究(如航天、大气物理、电离层结构和天体研究等)以及其他一些领域。
发展简史雷达的基本概念形成于20世纪初。
但是直到第二次世界大战前后,雷达才得到迅速发展。
早在20世纪初,欧洲和美国的一些科学家已知道电磁波被物体反射的现象。
1922年,意大利G.马可尼发表了无线电波可能检测物体的论文。
美国海军实验室发现用双基地连续波雷达能发觉在其间通过的船只。
1925年,美国开始研制能测距的脉冲调制雷达,并首先用它来测量电离层的高度。
30年代初,欧美一些国家开始研制探测飞机的脉冲调制雷达。
1936年,美国研制出作用距离达40公里、分辨力为457米的探测飞机的脉冲雷达。
1938年,英国已在邻近法国的本土海岸线上布设了一条观测敌方飞机的早期报警雷达链。
第二次世界大战期间,由于作战需要,雷达技术发展极为迅速。
就使用的频段而言,战前的器件和技术只能达到几十兆赫。
大战初期,德国首先研制成大功率三、四极电子管,把频率提高到500兆赫以上。
这不仅提高了雷达搜索和引导飞机的精度,而且也提高了高射炮控制雷达的性能,使高炮有更高的命中率。
1939年,英国发明工作在3000兆赫的功率磁控管,地面和飞机上装备了采用这种磁控管的微波雷达,使盟军在空中作战和空-海作战方面获得优势。
大战后期,美国进一步把磁控管的频率提高到10吉赫,实现了机载雷达小型化并提高了测量精度。
在高炮火控方面,美国研制的精密自动跟踪雷达SCR-584,使高炮命中率从战争初期的数千发炮弹击落一架飞机,提高到数十发击中一架飞机。
40年代后期出现了动目标显示技术,这有利于在地杂波和云雨等杂波背景中发现目标。
高性能的动目标显示雷达必须发射相干信号,于是研制了功率行波管、速调管、前向波管等器件。
50年代出现了高速喷气式飞机,60年代又出现了低空突防飞机和中、远程导弹以及军用卫星,促进了雷达性能的迅速提高。
60~70年代,电子计算机、微处理器、微波集成电路和大规模数字集成电路等应用到雷达上,使雷达性能大大提高,同时减小了体积和重量,提高了可靠性。
在雷达新体制、新技术方面,50年代已较广泛地采用了动目标显示、单脉冲测角和跟踪以及脉冲压缩技术等;60年代出现了相控阵雷达;70年代固态相控阵雷达和脉冲多普勒雷达问世。
在中国,雷达技术从50年代初才开始发展起来。
中国研制的雷达已装备军队。
中国已经研制成防空用的二坐标和三坐标警戒引导雷达、地-空导弹制导雷达、远程导弹初始段靶场测量雷达和再入段靶场测量与回收雷达。
中国研制的大型雷达还用于观测中国和其他国家发射的人造卫星。
在民用方面,远洋轮船的导航和防撞雷达、飞机场的航行管制雷达以及气象雷达等均已生产和应用。
中国研制成的机载合成孔径雷达已能获得大面积清晰的测绘地图。
中国研制的新一代雷达均已采用计算机或微处理器,并应用了中、大规模集成电路的数字式信息处理技术,频率已扩展至毫米波段。
工作原理雷达天线把发射机提供的电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波。
这些反射波载有该物体的信息并被雷达天线接收,送至雷达接收设备进行处理,提取人们所需要的有用信息并滤除无用信息。
雷达可分为连续波雷达和脉冲雷达两大类。
单一频率连续波雷达是一种最为简单的雷达形式,容易获得运动目标与雷达之间的距离变化率(即径向速度)。
它的主要缺点是:①无法直接测知目标距离,如欲测知目标距离,则必须调频,但用调频连续波测得的目标距离远不及脉冲雷达精确;②在多目标的环境中容易混淆目标;③大多数连续波雷达的接收天线和发射天线必须分开,并要求有一定的隔离度。
脉冲雷达容易实现精确测距,而且接收回波是在发射脉冲休止期内,不存在接收天线与发射天线隔离的问题,因此绝大多数脉冲雷达的接收天线和发射天线是同一副天线。
由于这些优点,脉冲雷达(图1)在各种雷达中居于主要地位。
这种雷达发射的脉冲信号可以是单一载频的矩形脉冲,如普通脉冲雷达的情形;也可以是编码或调频形式的脉冲调制信号,这种信号可以增大信号带宽,并在接收机中经匹配滤波输出很窄的脉冲,从而提高雷达的测距精度和距离分辨力,这就是脉冲压缩雷达。
此外,雷达发射的相邻脉冲之间的相位可以是不相干(随机)的,也可以是具有一定规律的相干信号。
相干信号的频谱纯度高,能得到好的动目标显示性能。
目标定位对地面和海面目标定位,就是测量它相对于雷达的距离和方位。
对空中目标的定位则需要同时测量距离、方位和高度,这种雷达称为三坐标雷达。
测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因为电磁波以光速传播,据此就能换算成目标的精确距离。
目标方位是利用天线的尖锐方位波束来测量。
在同样窄的波束条件下,用单脉冲方法可得到比单一波束更高的测量精度(见跟踪雷达)。
仰角靠窄的仰角波束测量。
根据目标的仰角和距离就能通过计算得到目标高度,精确的仰角同样可用单脉冲方法获得。
多普勒频率当雷达和目标之间有相对运动时,雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。
若目标作接近雷达的运动,则接收到的回波频率高于发射频率,多普勒频率是正值,相反为负值。
从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率(也称径向速度),它们之间的关系f d=2dR/λdt,式中f d为多普勒频率,λ为发射波长,dR/dt为距离变化率。
当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从比目标回波强得多的干扰杂波中检测和跟踪目标。
方法可分为非相干动目标显示和相干动目标显示。
非相干动目标显示是依靠目标和干扰物两者多普勒频率不同而产生的差拍频率,这个差拍频率可以直接从显示器上看出。
这种方式的优点是经济简单,缺点是性能不佳,因为必须有干扰物存在时才能通过差拍频率检测到目标,而当干扰杂波比目标回波强得多时,则会使差拍频率幅度变化极小而难以检测。
因此,性能优良的雷达均采用相干动目标显示的方法。
雷达要在强大干扰杂波中检测目标回波,必须有好的相干性,这就要用晶体振荡倍频放大式发射机。
在信号处理上,较简单的是用杂波滤波器,通常称为动目标显示技术;更复杂的是在杂波滤波器之后再串接一列在频率上相邻接的窄带滤波器组,这样就能获得更好的效果。
这种方式在低重复频率时通常称为动目标检测技术,地面动目标检测雷达有时还配有地杂波图以提高性能;在高脉冲重复频率时,通常称为脉冲多普勒技术。
性能先进的机载下视雷达均采用脉冲多普勒技术。
主要组成脉冲调制雷达的主要组成包括发射机、脉冲调制器、收发开关、天线、接收机、显示器和定时器等部分。
发射机它可以是一个磁控管振荡器。
这是微波雷达发射机早期的方式,简单的雷达仍在沿用。
现代的高性能雷达要求有相干信号和高的频率稳定度。
因此就需要用晶体振荡器作为稳定频率源,并通过倍频功率放大链得到所需的相干性、稳定度和功率。
放大链的末级功率放大管最常用的是功率行波管或速调管。
频率低于600兆赫时,可以使用微波三极管或微波四极管。
脉冲调制器它产生供发射机开关用的调制脉冲。
它必须具有发射高频脉冲所需要的脉冲宽度,并提供开关发射管所需的调制能量。
使用真空管或晶体管作为放电开关,称为刚管调制;使用氢闸流管对人工线储能作放电开关,称为软管调制。
此外,也可用电磁元件作脉冲开关调制。
对调制脉冲的一般要求是起边和落边较陡,脉冲顶部平坦。
收发开关它在发射脉冲时切断接收支路,尽量减少漏入接收支路的发射脉冲能量;当发射脉冲结束时断开发射支路,由天线接收的回波信号经收发开关全部进入接收支路。
收发开关通常由特殊的充气管组成。
发射时,充气管电离打火形成短路状态,发射脉冲通过后即恢复开路状态。
为了不阻塞近距离目标回波,充气管从电离短路状态到电离消除开路状态的时间极短,通常为微秒量级,对于某些雷达体制为纳秒量级。
天线雷达要有很高的目标定向精度,这就要求天线具有窄的波束。
搜索目标时,天线波束对一定的空域进行扫描。
扫描可以采用机械转动方法,也可以采用电子扫描方法。
大多数天线只有一个波束,但有的天线同时有几个波束。
分布在天线副瓣中的能量应尽量小,低副瓣天线是抗干扰所需要的。
接收机一般采用超外差式。
在接收机的前端有一个低噪声高频放大级。
放大后的载频信号和本振信号混频成中频信号。
模拟式信号处理(如脉冲压缩和动目标显示等)在中频放大级进行,然后检波并将目标信号输至显示器。
采用数字信号处理时,为了降低处理运算的速率,应该把信号混频至零中频;为了保持相位信息,零中频信号分解成二个互相正交的信号,分别进入不同的两条支路,然后对这两条支路作数字式处理,再将处理结果合并。
雷达雷达,将电磁能量以定向方式发设至空间之中,藉由接收空间内存在物体所反射之电波,可以计算出该物体之方向,高度及速度.并且可以探测物体的形状,以地面为目标的雷达可以探测地面的精确形状。
1922年美国泰勒和杨建议在两艘军舰上装备高频发射机和接收机以搜索敌舰。
1924年英国阿普利顿和巴尼特通过电离层反射无线电波测量赛层的高度。
美国布莱尔和杜夫用脉冲波来测量亥维塞层。
1931年美国海军研究实验室利用拍频原理研制雷达,开始让发射机发射连续波,三年后改用脉冲波1935年法国古顿研制出用磁控管产生16厘米波长的撜习窖捌鲾,可以在雾天或黑夜发现其他船只。
这是雷达和平利用的开始。
1936年1月英国W.瓦特在索夫克海岸架起了英国第一个雷达站。
英国空军又增设了五个,它们在第二次世界大战中发挥了重要作用。
1937年美国第一个军舰雷达XAF试验成功。
1941年苏联最早在飞机上装备预警雷达。
1943年美国麻省理工学院研制出机载雷达平面位置指示器,可将运动中的飞机柏摄下来,他胶发明了可同时分辨几十个目标的微波预警雷达。
1947年美国贝尔电话实验室研制出线性调频脉冲雷达。
50年代中期美国装备了超距预警雷达系统,可以探寻超音速飞机。
不久又研制出脉冲多普勒雷达。
1959年美国通用电器公司研制出弹道导弹预警雷达系统,可发跟踪3000英里外,600英里高的导弹,预警时间为20分钟。
1964年美国装置了第一个空间轨道监视雷达,用于监视人造地球卫星或空间飞行器。
1971年加拿大伊朱卡等3人发明全息矩阵雷达。
与此同时,数字雷达技术在美国出现。
雷达按照用途可以分为军用雷达和民用雷达,军用雷达包括警戒雷达,制导雷达,敌我识别等;而民用雷达包括导航雷达,气象雷达,测速雷达等。