沪科版七年级上数学知识点总结
沪科版七年级上数学知识点总结
![沪科版七年级上数学知识点总结](https://img.taocdn.com/s3/m/46708a2754270722192e453610661ed9ad5155f4.png)
沪科版七年级上数学知识点总结研究必备欢迎下载沪科版七年级上数学知识点总结(一)2014年10月第一章:有理数一、有理数的意义1-1正数和负数1、为什么初中数学要引入负数?答:正数和负数是在实际需要中产生的,我们可以用正数和负数来表示相反意义的量。
2、在生产和生活中,相反意义的量主要有哪些?请列举:答:常见的有:(1)温度高于度记作“+”,低于度记作“-”。
(2)高度高于海平面记作“+”,低于海平面记作“-”。
(3)高于正常水位记作“+”,低于正常水位记作“-”。
(4)超过标准重量记作“+”,低于标准重量记作“-”。
(5)储蓄中存入为正,取研究必备欢迎下载出为负。
(6)收入为正,支出为负。
(7)盈余为正,亏损为负。
(8)上升为正,下降为负。
(9)进为正,出为负。
(10)增加为正,减少为负。
(11)向东为正,向西为负。
……3、你了解以下各种数的界说和规模吗?并举例。
正数:大于的数,叫做正数。
分为正整数和正分数。
(a >)负数:小于的数,叫做负数。
分为负整数和负分数。
(a <)既不是正数,也不是负数。
整数:正整数。
负整数统称整数。
分数:正分数、负分数统称分数。
有理数:整数和分数统称有理数。
有理数又分为正有理数。
负有理数。
非负数:通常又把和正数称为非负数。
(a≥)非正数:和负数称为非正数。
(a≤)4、有理数的两种分类方法是什么?研究必备欢迎下载1-2数轴、相反数和绝对值1-2-1数轴1、什么是数轴?你能画好一条数轴吗?答:规定了原点、正方向、和单位长度的直线。
所有的有理数都可以用数轴上的点表示。
但数轴上的点并不是都表示有理数)。
2、数轴的三要素是什么?数轴的三要素有什么规定?答:原点(任意、标)、正方向(向右、箭头)和单位长度(合适)3、观察数轴,回答下列题目。
1)有无最大的正数?(没有)。
有无最小的正数?(没有)。
有无最小的正整数?(有,是1)。
2)有无最小的负数?(没有)。
有无最大的负数?(没有)。
沪科版-七年级上数学-期末复习-整式
![沪科版-七年级上数学-期末复习-整式](https://img.taocdn.com/s3/m/45353258dcccda38376baf1ffc4ffe473368fd1f.png)
一对一七年级数学教师辅导(fǔdǎo)讲义课题期末复习(2)—整式授课时间:备课时间:教学目标期末复习查漏补缺。
教学内容知识点透析【知识点复习】一、代数式1、用字母表示数;2、字母a它表示一个数,可能是正数,可能是0,也可能是负数;3、代数式=整式+分式4、整式=单项式+多项式(1)、单项式:数与字母的乘积或单个字母和数字。
单项式次数:所有字母指数之和;单项式系数:单项式中的数字因数。
(2)、多项式:几个单项式的和。
多项式次数:等于次数最高项的次数;常数项、几次几项式、升幂降幂排序。
二、整式加减1、同类项:字母相同、相同字母的指数也相同的项。
2、整式加减运算(关键步骤:合并同类项)三、找规律1、等差类型:相邻两项之差相等;例如1,2,3,4,······2、等比类型:相邻两项之商相等 ab n, ab n-c ;例如3,6,12,24,48······(3×20,3×21,3×22,3×23······)3、幂类型: n2型、n2-a型;例如 1,4,9,16······(12,22,32,42······)4、和类型:例如1,3,6,10······(1,1+2,1+2+3,1+2+3+4,······)。
【基本题型练习解析及标准步骤】【易错题练习分析】一、基础练习:1、化简下列各式:⑴⑵⑶⑷2、化简求值:(1)、(2),其中二、专题讲座:(一)去括号例1、-[-4+(ab -2a )]-2ab【解答过程】:【小结】:对于带中括号的多项式,一般按以下步骤进行化简:①先去小括号,②在中括号内化简;③去掉中括号;④再次化简。
沪教初一上数学知识点归纳总结
![沪教初一上数学知识点归纳总结](https://img.taocdn.com/s3/m/7b1fd00b302b3169a45177232f60ddccdb38e64f.png)
沪教初一上数学知识点归纳总结初一上学期数学知识点归纳总结
第一章:数与式
数与算式、数的分类与表示、数与有序数对、约分与有序整数对第二章:代数式与方程
代数式的认识、代数式的运算、代数式的应用、方程式的认识、方程式的解和分类
第三章:图形的认识
点与直线、角与线段、集合与图形、平面图形的认识
第四章:几何变换
平移、翻转、旋转、变形与拼合
第五章:数据的使用
统计的认识、简单统计图、其他统计图、四则运算与数据的应用第六章:比例与数学语言
比例的认识、比与比例、比例的性质、比例的运用、数学语言与写作
第七章:常用分数
分数的认识、分数与几何图形、比例与分数、分数的简便计算
第八章:百分数
百分数的认识、百分数与分数、百分数的运算、百分数的应用
第九章:实数
实数的认识、带有根号的实数、实数的性质
第十章:运算与法则
加法与减法的规律、乘法与除法的规律、取整与四舍五入、小数和分数的加减、乘法和除法运算
第十一章:一步一步
一步法运算、等式的应用、一次方程的解、一次方程的应用
第十二章:三角形
三角形的认识、等边三角形、等腰三角形、直角三角形、其他三角形
第十三章:角的性质
垂直线与直角、锐角和钝角、相交线与内角和
第十四章:面积与体积
平面图形的面积、正方体和长方体的体积
初中数学知识点归纳总结到此结束。
接下来,我们将逐一详细介绍每个章节,并提供一些例题和解析,以帮助同学们更好地理解和掌握
这些知识点。
同学们在学习过程中,可以结合课本上的知识点进行复习和练习,提高自己的数学水平。
希望本篇总结对您有所帮助。
数学沪科版七年级(上册)本章小结与复习
![数学沪科版七年级(上册)本章小结与复习](https://img.taocdn.com/s3/m/57aa602d7ed5360cba1aa8114431b90d6c858939.png)
符号不同的两个数,其中一个是另 一个的相反数. (1)数a的相反数是-a. (a是任意一个有理数); (2)0的相反数是0. (3)若a、b互为相反数,则a+b=0.
乘积是1的两个数互为倒数. (1)a的倒数是 1a(a≠0); (2)0没有倒数 ;
(3)若a与b互为倒数,则ab=1.
一个数a的绝对值就是数轴上表示 数a的点与原点的距离.
减去一个数,等于加上这个数的相反数. 即 a-b=a+(-b)
例:分别求出数轴上两点间的距离: ①表示2的点与表示-7的点; ②表示-3的点与表示-1的点.
解 ① |2-(-7)|=|2+7|=|9|=9 ②|-3-(-1)|=|-3+1|=|-2|=2
①同号相乘 若a>0,b>0,则 ab=+|a|×|b| 若a<0,b<0,则 ab=+|a|×|b|
1×1 2=1-12;2×1 3=12-13;
3×1 4=13-14;4×1 5=14-15;
…
根据上述规律计算:1×1 2+2×1 3+3×1 4+4×1 5+…+
1 2016×2017
.
解:原式=(1-12)+(12-13)+(13-14)+(14-15)+…+(20116-20117) =1+(-12+12)+(-13+13)+(-14+14)+…+(-20116+20116)-20117 =1-20117 =22001167.
②异号相乘 若a>0,b<0,则 ab= -|a|×|b| 若a<0,b>0,则 ab= -|a|×|b|
①求n个相同因数的积的运算,叫做乘方.
即 a·a·a·····a= an
n个 ②正数的任何次幂都是正数;
沪科版数学七年级上册 第1章 小结与复习
![沪科版数学七年级上册 第1章 小结与复习](https://img.taocdn.com/s3/m/8f99cf6dac02de80d4d8d15abe23482fb5da0241.png)
3.5>|
-2
|>0.5>0>
1 3
>
1
3 5
>-2>-3.5
针对训练
6. 某日零点,北京、上海、重庆、宁夏的气温分别是
﹣4℃、5℃、6℃、﹣8℃,当时这四个城市中气温最
低的是 ( D )
A.北京 B.上海 C.重庆 D.宁夏
考点七 科学记数法 例7 将数 13 445 000 000 000 km 用科学记数法表示
考点九 有理数的运算
例9
计算
(1)
0.125
3
1 4
3
1 8
11
2 3
0.25;
(2)
7 12
3 4
5 6
5 18
(36);
3
2
1 12
1 12
;
(4)
(24
)
2
2 3
2
5
1 2
1 6
(0.5)2.
解:(1)
0.125
3
1 4
3
1 8
11
2 3
0.25
(1) 一个数在数轴上对应的点到原点的距离叫做这个 数的绝对值
(2) 一个正数的绝对值是它本身. 一个负数的绝对值是它的相反数. 0 的绝对值是 0.
6. 有理数大小的比较 (1) 数轴上表示的两个数,右边的总比左边的大. (2) 正数大于 0,0 大于负数,正数大于负数;
两个负数,绝对值大的反而小.
5 8
-3
2
绝对值 3.5 3.5 0
2
2
13 5
1 3 0.5
针对训练
4.
-1
的倒数是
-3
;-1 1
七年级数学上知识点沪科版
![七年级数学上知识点沪科版](https://img.taocdn.com/s3/m/222b22bf82d049649b6648d7c1c708a1284a0a24.png)
七年级数学上知识点沪科版七年级数学上知识点概览对于初中阶段的学生来说,数学学科是十分重要的,其中七年级数学是初中数学学科的一个重要组成部分。
本文将为大家概括沪科版七年级数学上的知识点,帮助学习者更好地掌握数学学科。
一、整数整数是数学中的基础概念,七年级数学主要涉及整数的四则运算,以及分数的概念和应用。
在整数的学习中,学习者需要掌握正数、负数和零的概念,以及它们之间的关系。
同时,要掌握加、减、乘、除四则运算的定义和性质,能够进行简单的整数的混合运算。
此外,学生还需要了解字符运算的概念和应用,例如字符加法、减法等。
二、分数分数是七年级数学的另一个重要知识点。
学习者需要了解分数的定义和基本性质,能够将分数化为最简形式,进行分数的加、减、乘、除等基本运算,并且能够应用到实际生活中的问题中。
三、代数式代数式也是七年级数学的一个重要组成部分,它是初中阶段从算术向代数过渡的关键环节。
学生需要了解代数式的概念,能够识别各种类型的代数式,并且能够进行代数式的加、减、乘、除等基本运算。
同时,学生还需要熟练掌握代数式的展开和因式分解的方法。
四、方程式方程式在数学中是一种基本的问题解决方法。
学生需要了解方程式的基本概念与形式,并能够利用代数式的相关知识解决简单的一元一次方程和一元一次方程组。
此外,学生还需要学习实际问题转化为方程式的方法和技巧,这对其后续的数学学习非常重要。
五、几何基础几何基础也是七年级数学中必要的内容。
学习者需要了解线段、角、三角形、四边形等几何概念,以及它们的相互关系和性质。
同时,学生还需要熟练掌握几何图形的绘制方法,物理实验的图形绘制方法,以及基本的几何结论。
六、统计学最后,统计学也是七年级数学的一部分,包括频率、概率等概念。
学生需要掌握频率和概率的基本概念,提高其数据分析和判断能力。
学生还需要掌握各种图表的绘制和解读,并能够将在实际生活中遇到的问题转化为数据进行处理。
总之,以上是七年级数学上知识点沪科版的一个概览,仅是对各知识点的简单介绍。
(完整版)沪科版七年级数学上册复习提纲
![(完整版)沪科版七年级数学上册复习提纲](https://img.taocdn.com/s3/m/92a8bc2ff524ccbff021843f.png)
沪科版七年级数学上册复习提纲第一章有理数1.1 正数与负数①大于0的数叫正数。
②在正数前面加上“-”号的数,叫做负数。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。
⑤正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2 数轴①通常用一条直线上的点表示数,这条直线叫数轴。
②数轴三要素:原点、正方向、单位长度。
③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
④只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
⑦两个负数,绝对值大的反而小。
1.3 有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。
②负数小于零,零小于正数,负数小于正数。
③两个负数的比较大小,绝对值大的反而小。
1.4 有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。
1.5 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
1.6 有理数的乘方①求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。
沪科版七年级上册数学知识点汇总(最新最全)
![沪科版七年级上册数学知识点汇总(最新最全)](https://img.taocdn.com/s3/m/ab5c9ade0342a8956bec0975f46527d3240ca6c8.png)
七年级上册数学知识汇总第一章有理数1.1 正数和负数①负数的定义与作用:益者为正,反之为负,解决了生活中相反意义的量的问题;②基准(0)的取法:常规与特指(静态),前者(动态)。
③有理数:整数和分数的统称。
有两种分类:正整数正整数整数0 正数正分数有理数负整数有理数0(整分性)正分数(大小性)负数负整数分数负分数负分数1.2数轴、相反数、和绝对值①数轴:规定了原点、正方向、单位长度的直线。
(3+1)②相反数:M与-M互为相反数,要有整体思想,要变都变,0的相反数是本身(0)。
③绝对值︱a︱=︱a-0︱≥0:表示数a 到原点的距离.●︱3-1︱=2表示数3 到数1的距离.●︱3+1︱=4表示数3 到数-1的距离,或1到-3的距离.●正向(由已知推未知):求绝对值时易单解,逆向(由未知推已知):求绝对值易双解.●绝对值的化简(极为重要)M M>0 M M≥0(非负数) ︱M︱= 0 M=0 ︱M︱=-M M<0 -M M≤0(非正数)*绝对值易需分类讨论,再答题时尽量使用数学语言推理,培养逻辑能力.1.3 有理数的大小①利用数形结合表示数(字母)及相反数,再利用正数>0>负数,右数大于左数进行答题.②从数轴上发现:既没有最大的有理数,也没有最小的有理数,但:有最小的正整数1,有最大的负整数-1,有绝对值最小的数0.1.4~1.5有理数的常规计算加法减法加减混合乘法除法乘除混合四则混合及简算1.6 有理数的乘方:来自乘法而高于乘法a n①结果为幂指数底数●结果较小时需计算具体值,计算方法不同于乘法;●符号结果:正数的任何次方为正数,负数的偶次方为正,奇次方为负;②科学计数法:将一个绝对值较大的数写成M=a×10n(1≤︱a︱<10,n=“整数位”-1)第二章整式加减2.1 代数式①用字母表示数的好处:简洁、规律.偶数:2n 奇数: 2n±1②日历表的规律:左右差1,上下差7.找规律三部曲:自然排列序列化(提炼公式)反馈(体现:特殊一般特殊)③代数式(含运算符号的数与字母的结合体,双单也是.)书写格式:●数与数相乘,称号不可省;数与字母相乘时,称号省数在前,字母与字母相乘时称号省;●除号写成分数线;●单位问题:最后一步加减后带单位需加括号,最后一步乘除时,不加括号.④代值格式:先化简当什么时原式代值结果⑤单项式(仅含乘号,双单也是):系数:数字部分(注意:“-”,数的乘方,分数,兀)单项式次数:字母部分(所有字母的指数和,到底出现几个字母)●系数为±1,指数为1时,1一定要省.不是单项式.●单个数与字母是单项式,包括0与兀;字母的倒数如1a2.2整式(单项式与多项式的统称)加减:本质就是去括号与合并同类项.①同类项:所含字母相同且对应指数也相同,几个常数项也是单项式;②合并同类项:系数相加减,其它不变;③去(添)括号:遇正不变,遇负全变,倍数共有;④几个项能够加减,说明它们就是同类项,不含某个字母(或与其无关)说明化简后这个字母对应项的系数为0;第三章一次方程与方程组3.1 一元一次方程及其解法①一元一次方程的概念(3+1);②等式的四个基本性质(第2性质易错);③熟练掌握去分母解一元一次方程的步骤及易错点;3.2一元一次方程的应用①相关公式行程问题:S=VT利息问题:利息=本金×利率×年数本息和=本金+利息利润=售价-成本②用方程解应用题的技巧:审题! 审题!还是审题!具体:设法:简单题直接设,难题间接设,有比例可比例设;设元:多个未知量时应设一表多,注意设小不设大,设整不设分以方便解方程.3.3 二元一次方程组及其解法①二元一次方程的概念(3+1),解有无数组,往往求特征根.②二元一次方程组的概念(3+1),解往往是唯一组,(复杂的方程应先化简)解法如下:代入法有四种,一般选择系数为±1;加减法有两种;整体思想.③注意含参问题,选择正确的关系式建立方程组.④在求多项式的值时往往用整体思想.3.4二元一次方程组的应用①简单的设一元,复杂的设二元.②一般而言,数量和关系易建立方程,另一个方程与列代数式有很大关系,建立方程组时要考察整体与对应个体的关系.第四章直线与角4.1 几何图形①欧拉公式:点+面-线=24.2 线段、射线、直线①命名方式;②公里1 两点确定一条直线;公里2 两直线相交有唯一的交点;公里3 两点之间,线段最短.4.3 线段的长短比较①线段的合成与加减;②中点三段论③几何题没有图时易双解,正向推理时注意逻辑格式,逆向时可设方程(组).4.4~4.5角与计算①角的顶义(静态与动态)与命名(有四种);②角的计算:角的单位、角的进率、角的转化;③角的合成与加减;④角的三段论;4.6 用尺规作线段与角①尺规作图的思想:利用直尺的直与圆规的曲及截取功能作已知线段和角及其合成.。
沪科版七年级上册数学知识点总结
![沪科版七年级上册数学知识点总结](https://img.taocdn.com/s3/m/398b388f76eeaeaad1f330d6.png)
七年级上册数学知识总结第一单元有理数一、有理数分类整数和分数统称为有理数正整数整数 0 正有理数负整数有理数有理数 0正分数分数负有理数负分数二、数轴:规定了原点、正方向、单位长度的直线。
1、数轴的三要素:原点、正方向、单位长度;2、任意有理数都可以用数轴上的一个点来表示。
三、相反数、绝对值1、相反数:只有符号不同的两个数,这两个数叫做互为相反数。
规定:0的相反数是0。
数a的相反数是 -a。
a的相反数是﹣a,0的相反数还是0;特点:互为相反数的两个数和为0,商为﹣1。
2、绝对值:在数轴上,表示数a的点到原点的距离,叫做数a的绝对值。
特点:(1)绝对值恒大于等于0 即│a│≥0;(2)正数的绝对值是它本身,0的绝对值是0,一个负数的绝对值是它的相反数;当a>0时,|a| =a;当a=0时,|a| =0;当a<0时,|a| =﹣a;(3)两个绝对值的和为0,当且仅当两个绝对值都为0时成立。
因为|a|+|b|=0 所以|a|=0,|b|=0四、有理数大小1、正数>0>负数;2、两个负数相比,绝对值大的反而小;绝对值小的反而大。
五、有理数的运算1.加法法则:(1)同号两数相加,取与加数相同的符号,并把绝对值相加。
(2)异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)互为相反数的两个数相加得0。
(4)一个数同0相加,仍得这个数。
2.减法法则:减去一个数,等于加上这个数的相反数。
有理数减法法则也可以表示成:a – b = a + (-b)3、加法交换律:两个数相加,交换加数的位置,和不变。
字母表达式是:a+b=b+a4、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
字母表达式是:(a+b)+c=a+(b+c)5、乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
沪科版初中数学知识点总结
![沪科版初中数学知识点总结](https://img.taocdn.com/s3/m/98c37835f4335a8102d276a20029bd64793e626e.png)
沪科版初中数学知识点总结一、数与代数1. 有理数- 有理数的定义- 有理数的分类(正数、负数、整数、分数)- 有理数的四则运算- 绝对值的概念与计算2. 整数- 整数的性质- 素数与合数- 整数的因数与倍数- 质因数分解3. 分数与小数- 分数的基本性质- 分数的四则运算- 小数的意义与性质- 小数的四则运算4. 代数表达式- 单项式与多项式- 代数式的加减运算- 乘法公式(平方差、完全平方等)- 分式与分式的运算5. 一元一次方程- 方程的建立与解法- 实际问题的数学建模- 列方程解实际问题6. 二元一次方程组- 代入法与消元法- 方程组的解集与方程的解7. 不等式与不等式组- 不等式的性质与解法- 一元一次不等式- 一元一次不等式组8. 函数- 函数的概念与表示- 函数的性质(单调性、对称性等) - 线性函数与二次函数的图像与性质二、几何1. 平面图形- 点、线、面的基本性质- 角的概念与分类(邻角、对顶角等) - 三角形的分类与性质- 四边形的分类与性质2. 圆的基本性质- 圆的定义与性质- 圆周角与圆心角的关系- 切线的性质与判定- 圆与圆的位置关系3. 空间图形- 空间直线与平面的位置关系- 空间图形的展开与折叠- 多面体与旋转体的性质4. 相似与全等- 全等三角形的判定与性质- 相似三角形的判定与性质- 相似多边形与相似比5. 几何变换- 平移、旋转、对称的概念与性质- 几何图形的组合与分割6. 解析几何- 坐标系的建立与应用- 点的坐标与线段的长度- 直线与圆的方程三、统计与概率1. 统计- 数据的收集与整理- 频数与频率的概念- 统计图表的绘制与解读(条形图、折线图、饼图)2. 概率- 随机事件的概念- 概率的计算与应用- 事件的可能性与条件概率以上是沪科版初中数学的主要知识点总结。
这些知识点构成了初中数学的基础框架,学生需要掌握这些概念、公式和解题方法,以便为高中数学学习打下坚实的基础。
沪科版七年级数学上册基础知识点总结
![沪科版七年级数学上册基础知识点总结](https://img.taocdn.com/s3/m/71c09773804d2b160a4ec011.png)
沪科版七年级数学上册知识总结第一章有理数1.1 正数与负数①大于0的数叫正数。
②在正数前面加上“-”号的数,叫做负数。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。
⑤正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2 数轴①通常用一条直线上的点表示数,这条直线叫数轴。
②数轴三要素:原点、正方向、单位长度。
③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
④只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(绝对值等于本身的有:正数和0,绝对值等于其相反数的有:负数和0)⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
⑦两个负数,绝对值大的反而小。
⑧倒数:如果两个数的乘积为1,则这两个数互为倒数。
倒数等于其本身的有1和-11.3 有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。
②负数小于零,零小于正数,负数小于正数。
③两个负数的比较大小,绝对值大的反而小。
1.4 有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。
(注:单独一个数字或字母也是代数式)2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。
沪科版七年级上册数学知识点三篇
![沪科版七年级上册数学知识点三篇](https://img.taocdn.com/s3/m/e7673a0f58eef8c75fbfc77da26925c52cc59146.png)
【导语】学习是每个⼀个学⽣的职责,⽽学习的动⼒是靠⾃⼰的梦想,也可以这样说没有⾃⼰的梦想就是对⾃⼰的⼀种不责任的表现,也就和⼈失⾛⾁没啥两样,只是改变命运,同时知识也不是也不是随意的摘取。
要通过⾃⼰的努⼒,要把我⾃⼰⽣命的钥匙。
以下是⽆忧考为您整理的《沪科版七年级上册数学知识点三篇》,供⼤家学习参考。
沪科版七年级上册数学知识点篇⼀ 单项式与多项式 1、没有加减运算的整式叫做单项式。
(数字与字母的积---包括单独的⼀个数或字母) 2、⼏个单项式的和,叫做多项式。
其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进⾏代数式分类时,是以所给的代数式为对象,⽽⾮以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
单项式 1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独⼀个数或⼀个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的⼀个数字是单项式,它的系数是它本⾝。
7、单独的⼀个⾮零常数的次数是0。
8、单项式中只能含有乘法或乘⽅运算,⽽不能含有加、减等其他运算。
9、单项式的系数包括它前⾯的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数⽆关。
多项式 1、⼏个单项式的和叫做多项式。
2、多项式中的每⼀个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、⼀个多项式有⼏项,就叫做⼏项式。
5、多项式的每⼀项都包括项前⾯的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数的项的次数,叫做这个多项式的次数。
整式 1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
沪科版七年级上册数学知识点6篇
![沪科版七年级上册数学知识点6篇](https://img.taocdn.com/s3/m/e3e97c4426284b73f242336c1eb91a37f11132a8.png)
沪科版七年级上册数学知识点6篇单项式与多项式1、没有加减运算的整式叫做单项式。
(数字与字母的积---包括单独的一个数或字母)2、几个单项式的和,叫做多项式。
其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
说明:①依据除式中有否字母,将整式和分式区分开;依据整式中有否加减运算,把单项式、多项式区分开。
②进展代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从形状来看。
单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中全部字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数的项的次数,叫做这个多项式的次数。
整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不肯定是单项式。
4、整式不肯定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,根据代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式1、单项式:(1)由数和字母的乘积组成的代数式叫做单项式。
沪科版七年级上册数学知识点总结
![沪科版七年级上册数学知识点总结](https://img.taocdn.com/s3/m/29c2bb0511a6f524ccbff121dd36a32d7375c717.png)
七年级上册数学知识总结第一单元有理数一、有理数分类整数和分数统称为有理数正整数整数 0 正有理数负整数有理数有理数 0正分数分数负有理数负分数二、数轴:规定了原点、正方向、单位长度的直线;1、数轴的三要素:原点、正方向、单位长度;2、任意有理数都可以用数轴上的一个点来表示;三、相反数、绝对值1、相反数:只有符号不同的两个数,这两个数叫做互为相反数;规定:0的相反数是0;数a的相反数是-a;a的相反数是﹣a,0的相反数还是0;特点:互为相反数的两个数和为0,商为﹣1;2、绝对值:在数轴上,表示数a的点到原点的距离,叫做数a的绝对值;特点:1绝对值恒大于等于0 即│a│≥0;2正数的绝对值是它本身,0的绝对值是0,一个负数的绝对值是它的相反数;当a>0时,|a| =a;当a=0时,|a| =0;当a<0时,|a| =﹣a;(3)两个绝对值的和为0,当且仅当两个绝对值都为0时成立;因为|a|+|b|=0 所以|a|=0,|b|=0四、有理数大小1、正数>0>负数;2、两个负数相比,绝对值大的反而小;绝对值小的反而大;五、有理数的运算1.加法法则:1同号两数相加,取与加数相同的符号,并把绝对值相加;2异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3互为相反数的两个数相加得0; 4一个数同0相加,仍得这个数;2.减法法则:减去一个数,等于加上这个数的相反数;有理数减法法则也可以表示成:a – b = a + -b3、加法交换律:两个数相加,交换加数的位置,和不变;字母表达式是:a+b=b+a4、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变;字母表达式是:a+b+c=a+b+c5、乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;6、几个有理数相乘,积的符号是如何确定的1几个不等于0的数相乘,积的符号由负因数的个数决定;当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;2几个数相乘,有一个因数为0,积就为0;7、几个不等于0的数相乘,首先确定积的符号,然后把绝对值相乘;8、乘法交换律:两个数相乘,交换因数的位置,积不变;ab=ba;9.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变;abc=abc;10.乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加;ab+c=ab+ac11.什么是互为倒数如果两个有理数的乘积是1,那么称这两个有理数互为倒数;aa 1•=1a ≠0; 12、有理数除法的法则1:1两数相除,同号得正,异号得负,并把绝对值相除;20除以任何一个不等于0的数,都得0;0不能作除数13、有理数除法的法则2:除以一个不为0的数,等于乘上这个数的倒数;b a ÷=b a 1• b ≠0 14、除了0以外,所有的数都有倒数,并且正数的倒数是正数,负数的倒数是负数;15、有理数的乘方:1n 个相同的因数a 相乘,,记作n a ;求n 个相同因数的积的运算,叫做乘方;乘方的结果叫幂;相同的因数叫底数,相同因数的个数叫指数;n a 读作a 的n 次方;n a 看作a 的n 次方的结果时,也可以读作a 的n 次幂;一个数可以看作这个数本身的一次方,指数1通常省略不写;2、正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数;3任何数的偶次幂都是一个非负数a n2≥04一般的,一个绝对值大于10的数都可以记成±a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫做科学记数法;1≤a <10一个数的科学记数法中,10的指数n 比原数的整数位数少1,如原数有8位,指数就是7; 10的几次方,结果就是1后面带几个0;5 乘方运算中a n 的底数是a,指数是n,乘方的结果叫做幂;6 a 2≥0 一个数的偶数次幂恒是非负数两个平方数的和为0,当且仅当两个平方数都为0时成立; 因为a2+b2=0 所以a2=0 ,b2=0一个绝对值与一个平方数的和为0,当且仅当两者都为0时成立;因为a2+|b|=0 所以a2=0,|b|=0 7任何非0数的0次幂都等于1 a0=1,a≠0;8科学记数法c= a×10n,1≤ a<1016、混合运算:运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,就先算括号里面的;17.近似数1一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位;2什么叫有效数字从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫这个数的有效数字;3、两个近似数1.6和1.60,它们相同吗为什么答:这两个数大小是相同的,但是它们表示的精确程度是不同的,1.6表示精确到十分位即0.1,它有两个有效数字,分别是1和6;而1.60表示精确到百分位即0.01,它有三个有效数字,分别是1、6和0;因此,从这个意义上说,1.6和1.60是不相同的,第二章整式加减一、代数式1、定义:由数和表示数的经有限次加、减、乘、除、和开方等所得的式子,或含有字母的数学表达式称为代数式;注意:1不包括等于号=、、≠、≤、≥、<、>、、≈;2可以有绝对值;例如:|x|,|-2.25| 等;2、字母a它表示一个数,可能是正数,可能是0,也可能是负数;二. 单项式:数与字母的乘积或单个字母和数字;系数:1单项式中的常数叫做单项式的;例如3x的系数是3;2如果一个单项式只含有字母因数,是的单项式系数为1,是的单项式系数为-1,例如系数为1;系数为-1;3如果只是一个数字,是本身;如5的系数还是5;次数:一个单项式中,所有字母的和叫做这个单项式的;则的次数为1+2=3,又如,次数为2+1=3,单独一个非零数的次数是0;例如 5的次数为0,系数为5三.多项式1由有限个单项式的和组成的代数式叫做多项式;2项:在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做;一个多项式合并同类项后有几项就叫做几项式;在多项式中它的项分别是、2x和18,其中18是常数项,它是三项式;3次数:多项式中,次数最高的项的次数,就是这个多项式的次数,如:中,这一项的次数最高,这个多项式的次数就是,这个多项式就是八次三项式;4排列:有时为了计算需要,可以将多项式各项的位置根据按照其中某个字母的指数大小顺序来排列;例如:把多项式按字母x指数从大到小的顺序排列,写成,这叫做把多项式按字母x的降幂排列,若按x指数从小到大排列,则就是把多项式按字母x的升幂排列,写成,也可以是多项式中的其他字母;单项式整式四、整式代数式多项式分式五、整式加减1.同类项:所含字母相同,并且相同字母的也相同的项,叫做同类项;2.合并同类项:把多项式中的合并成一项,叫做合并同类项;几个常数项也是同类项例如,和是同类项中与是同类项与是同类项-7和29也是同类项3.合并同类项法则:同类项的系数相加减,所得的结果作为系数,字母和字母的不变;合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变;字母不变,相加减;4、合并同类项的理论依据就是,5、去括号法则:1括号前面是“+”号,去括号时把括号连同它前面的“+”号去掉,括号内的各项都不改变符号;2括号前面是“-”号,去括号时把括号连同它前面的“-”号去掉,括号内的各项都改变符号;a+b-c+d=a+b-c+d a-b-c+d=a-b+c-d6.添括号法则:(3)所添括号前面是“+”号,括到括号里的各项都不变符号;a+b-c+d =a+b-c+d4所添括号前面是“-”号,括到括号里的各项都改变符号;a-b+c-d =a-b-c+d六、找规律1、等差类型:相邻两项之差相等;例如1,2,3,4,······2、等比及相关类型:相邻两项之商相等ab n, ab n-c ;例如3,6,12,24,48······3×20,3×21,3×22,3×23······3、幂及相关类型: n2型、n2-a型;例如 1,4,9,16······12,22,32,42······4、和类型:例如1,3,6,10······1,1+2,1+2+3,1+2+3+4,······第三章一次方程与方程组一、一元一次方程指只含有一个未知数、未知数的次数都是1且等式两边都是整式的方程;一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题等;2、方程的解也叫做方程的根3、解一次方程和一次方程组关键步骤:去分母→去括号→移项→合并同类项→系数化为1二、等式的性质1、性质1 等式两边同时加减去一个数或整式,结果还是等式;如果a=b ,则 a±c=b±c;2、性质2 等式两边同时乘除去一个数或整式,结果还是等式除时不能除0;如果a=b ,则ac=bc ,a÷c=b÷c﹙c≠0﹚3.性质3 如果a=b,那么b=a 对称性4性质 4 如果a=b,b=c,那么a=c;传递性。
七年级上沪科版数学知识点
![七年级上沪科版数学知识点](https://img.taocdn.com/s3/m/c88b41152bf90242a8956bec0975f46527d3a7ef.png)
七年级上沪科版数学知识点七年级上学期的数学课程是初中数学的重要入门阶段。
本文将介绍沪科版七年级上学期数学的知识点,希望对学生学习初中数学有所帮助。
一、有理数有理数是指整数、正分数、负分数、0。
有理数之间可以进行加、减、乘、除运算,还可以比较大小。
有理数还有“绝对值”的概念,即设x是任意一个有理数,那么|x|表示x的绝对值,如果x大于0,那么它的绝对值|x|=x,如果x小于0,那么它的绝对值|x|=-x。
在学习有理数的同时,学生还需要掌握有关有理数的简便运算法则,例如数的约分、通分等。
二、代数式的计算代数式是指含有字母、数字以及运算符号的数学表达式。
在初中数学中,代数式的运算变得更加复杂,需要通过学习代数式的展开、合并、提公因数、分解等方法,来完成复杂的代数式计算。
同时,还要求学生熟练掌握二元一次方程的解法,并能够顺利解决一些涉及代数式的实际问题。
三、平面图形本学期还将学习平面图形,其中包括如何对几何图形进行分类、认识平行四边形和长方形的区别、计算多边形中内角和外角大小、集中掌握三角形和四边形中不同角的性质等知识。
这些几何知识的较为突出的应用场景在于平面图形的测量和面积的计算,因此学会计算面积的方法对学生的各种几何题目的解答有着很大的帮助。
四、数据的统计与分析数据的统计与分析是数学比较实用的应用领域之一。
本学期还将学习数据的统计方法,比如极差、平均数、中位数、众数等,以及在实际问题中应用这些统计方法的技巧,例如制作数据图表、调查分析等。
同时,也将学习如何用图表来表示数据和进行简单的数据处理、但这些同样需要学生具备良好的组织能力和表达能力。
五、三角形的运算图形和计算的组合在初中数学中是常见的,三角形是最典型的例子之一。
在三角形的学习过程中,学生需要学会如何通过角度的计算来判断三角形的性质,如解决三角形中的角和边问题,包括利用三角函数来计算角度、在三角形中使用相似三角形来判定侧边比例等。
同时加强训练,提高实战能力,可使同学们在理论学习的过程中更加容易掌握和应用到实际操作中。
沪科版七年级数学上册复习提纲
![沪科版七年级数学上册复习提纲](https://img.taocdn.com/s3/m/5ab9e6c050e2524de5187ec4.png)
沪科版七年级数学上册复习提纲第一章有理数1.1 正数与负数0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
1.2 数轴、相反数、绝对值数轴三要素:原点、正方向、单位长度。
只有符号不同的两个数叫做互为相反数。
数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
1.3 有理数的两种分类方式1.4有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。
②负数<零<正数③两个负数的比较大小,绝对值大的反而小。
1.5 有理数混合运算的运算顺序最先乘方,先乘除后加减,有括号先算括号里面的。
第二章整式的加减2.1用字母表示数1、偶数:能被2整除的整数叫偶数(如:-4、-2、0、2、4、)2、奇数:不能被2整除的整数叫做奇数(如:-5、-3、-1、1、3、5)2.2代数式1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。
(注:单独一个数字或字母也是代数式)2、代数式的写法3、单项式:由数字和字母乘积组成的式子。
单独一个数或一个字母也是单项式.(系数、次数)4、多项式:几个单项式的和。
(次数、项数)5、单项式和多项式统称为整式。
2.3整式的加减同类项、合并同类项、合并同类项法则、增括号、去括号第三章一次方程与方程组3.1 一元一次方程及其解法方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。
一元一次方程的判定:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;3)经整理后方程中未知数的次数是1.等式的性质:1)等式两边同时加上或减去同一个数或同一个式子,等式不变2)等式两边同时乘以或除以同一个不为零的数,等式不变.3)对称性4)传递性解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;解二元一次方程组、三元一次方程组:消元法:代入消元法、加减消元法应用:工程问题、储蓄问题、商品销售问题、配套问题、行船问题等第四章直线与角4.1常见的立体图形:圆柱、圆椎、圆台、球、长方体、四面体、点线面体:点动成线,线动成面,面动成体。
沪科版七年级上册数学知识点总结
![沪科版七年级上册数学知识点总结](https://img.taocdn.com/s3/m/3251f9843968011ca2009112.png)
沪科版七年级上册数学知识点总结第一单元有理数1、有理数分类整数和分数统称为有理数2、数轴:规定了原点、正方向、单位长度的直线。
(1)、数轴的三要素:原点、正方向、单位长度;(2)、任意有理数都可以用数轴上的一个点来表示。
三、相反数、绝对值1、相反数:只有符号不同的两个数,这两个数叫做互为相反数。
规定:0的相反数是0。
数a的相反数是-a。
a的相反数是﹣a,0的相反数还是0;特点:互为相反数的两个数和为0,商为﹣1。
2、绝对值:在数轴上,表示数a的点到原点的距离,叫做数a的绝对值。
特点:(1)绝对值恒大于等于0 即│a│≥0;(2)正数的绝对值是它本身,0的绝对值是0,一个负数的绝对值是它的相反数;当a>0时,|a| =a;当a=0时,|a| =0;当a<0时,|a| =﹣a;(3)两个绝对值的和为0,当且仅当两个绝对值都为0时成立。
因为|a|+|b|=0 所以|a|=0,|b|=0四、有理数大小1、正数>0>负数;2、两个负数相比,绝对值大的反而小;绝对值小的反而大。
五、有理数的运算1.加法法则:(1)同号两数相加,取与加数相同的符号,并把绝对值相加。
(2)异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)互为相反数的两个数相加得0。
(4)一个数同0相加,仍得这个数。
2.减法法则:减去一个数,等于加上这个数的相反数。
有理数减法法则也可以表示成:a – b = a + (-b)3、加法交换律:两个数相加,交换加数的位置,和不变。
字母表达式是:a+b=b+a 4、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
字母表达式是:(a+b)+c=a+(b+c)5、乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
6、几个有理数相乘,积的符号是如何确定的?(1)几个不等于0的数相乘,积的符号由负因数的个数决定。
初中数学知识点总结沪科版
![初中数学知识点总结沪科版](https://img.taocdn.com/s3/m/fc46ca951b37f111f18583d049649b6648d70906.png)
初中数学知识点总结沪科版一、初中数学知识点总结(沪科版)第一章一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
能使不等式成立的未知数的值,叫做不等式的解. 不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集. 求不等式解集的过程叫解不等式.由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。
等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式. 基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. (注:移项要变号,但不等号不变。
)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质<1>、若a>b, 则a+c>b+c;<2>、若a>b, c>0 则ac>bc若c<0, 则ac不等式的其他性质:反射性:若a>b,则bb,且b>c,则a>c三、解不等式的步骤:1、去分母; 2、去括号; 3、移项合并同类项; 4、系数化为1。
四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集。
五、列一元一次不等式组解实际问题的一般步骤:(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。
六、常考题型: 1、求4x-6 7x-12的非负数解. 2、已知3(x-a)=x-a+1r的解适合2(x-5) 8a,求a 的范围.3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪科版七年级上数学知识点总结Last revision date: 13 December 2020.沪科版七年级上数学知识点总结(一)2016年7月第一章:有理数一、有理数的意义1-1正数和负数1、为什么初中数学要引入负数?答:正数和负数是在实际需要中产生的,我们可以用正数和负数来表示相反意义的量。
2、在生产和生活中,相反意义的量主要有哪些?请列举:答:常见的有:(1)温度高于0度记作“+”,低于0度记作“-”。
(2)高度高于海平面记作“+”,低于海平面记作“-”。
(3)高于正常水位记作“+”,低于正常水位记作“-”。
(4)超过标准重量记作“+”,低于标准重量记作“-”。
(5)储蓄中存入为正,取出为负。
(6)收入为正,支出为负。
(7)盈余为正,亏损为负。
(8)上升为正,下降为负。
(9)进为正,出为负。
(10)增加为正,减少为负。
(11)向东为正,向西为负。
……3、你了解以下各种数的定义和范围吗?并举例。
正数:大于0的数,叫做正数。
分为正整数和正分数。
(a>0)负数:小于0的数,叫做负数。
分为负整数和负分数。
(a<0)0:既不是正数,也不是负数。
整数:正整数、0、负整数统称整数。
分数:正分数、负分数统称分数。
有理数:整数和分数统称有理数。
有理数又分为正有理数、0、负有理数。
非负数:通常又把0和正数称为非负数。
(a≥0)非正数:0和负数称为非正数。
(a≤0)4、有理数的两种分类方法是什么1-2数轴、相反数和绝对值1-2-1 数轴1、什么是数轴你能画好一条数轴吗答:规定了原点、正方向、和单位长度的直线。
(所有的有理数都可以用数轴上的点表示。
但数轴上的点并不是都表示有理数)。
2、数轴的三要素是什么数轴的三要素有什么规定答:原点(任意、标0)、正方向(向右、箭头)和单位长度(合适)。
3、观察数轴,回答下列问题。
(1)有没有最大的正数(没有)。
有没有最小的正数(没有)。
有没有最小的正整数(有,是1)。
(2)有没有最小的负数(没有)。
有没有最大的负数(没有)。
有没有最大的负整数(有,是-1)。
1-2-2相反数1、什么是相反数?答:只有符号不同的两个数,我们说其中一个是另一个的相反数。
这两个数叫做互为相反数。
规定:0的相反数是0。
数a的相反数是 -a。
2、相反数的几何意义是什么?答:在数轴上表示互为相反数的两个点,位于原点的两旁,且到原点的距离相等。
3、什么数的相反数是它的本身?(是0)。
什么数和它的相反数相等?(是0)。
4、-a一定是负数吗为什么答:不一定,因为:当a是正数时,-a是负数;当a是负数时,-a是正数;当a是0时,-a也是0。
5、3-5的相反数是什么?答:是-(3-5)或5-3。
6、a-b的相反数是什么?答:是-(a-b)或b-a。
7、a+b的相反数是什么?答:是-(a+b)。
8、如果a、b是互为相反数,那么a+b= 。
1-2-3绝对值1、绝对值的定义是什么(即几何意义)答:一个数a的绝对值,就是数轴上表示数a的点与原点的距离,记作| a |。
根据绝对值的概念,可知绝对值是非负数(| a |≥0)。
互为相反数的两个数的绝对值相等。
(因为它们到原点的距离相等)2、绝对值的代数意义是什么?答:(1)一个正数的绝对值是它本身。
(2)一个负数的绝对值是它的相反数。
(3)0的绝对值是0。
3、一个数a的绝对值如何表示?(1)如果a > 0,那么| a | = a;(2)如果a < 0,那么|a| = -a;(3)如果a = 0,那么|a | = 0。
4、两个负数,绝对值大的反而小。
5、绝对值最小的数是什么(是0)。
什么数的绝对值是它的本身(正数和0)。
什么数的绝对值是它的相反数(负数)。
6、绝对值是0的数是,绝对值是4的数是。
绝对值是-2的数有没有(没有)。
绝对值不大于3的数有多少(无数个)。
绝对值不大于3的整数有,正整数有,负整数有。
根据上面的例子,我们可以看出:任意一个正数的绝对值,都有两个——它们是互为相反数;没有一个数的绝对值会等于负数。
7、如果|x|=3.4,那么x= 。
|y-5|=6,y= 。
如果|-x|=|-5|,那么x= 。
满足|x|≤3的负整数有。
8、如果|a-3|+|b-5|=0,那么a=,b=。
1-3 有理数的大小1、数轴上数的大小有什么位置关系?答:在数轴上表示的两个数,右边的数总比左边的数大。
根据这点,我们可以利用数轴比较数的大小。
正数都大于0,负数都小于0,正数大于一切负数。
2、两个负数比较大小,绝对值大的反而小。
1-4有理数的加减1-4-1 有理数的加法1、有理数加法法则的内容是什么?(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
2、加法交换律:两个数相加,交换加数的位置,和不变。
字母表达式是:a+b=b+a。
3、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
字母表达式是:(a+b)+c=a+(b+c)。
思考题:4、两个正数相加,和一定为(),两个负数相加,和一定为()。
而正数和负数相加,和可能是(正数、负数或0),为什么?5、如果a<0,b<0,那么a+b 0。
为什么?如果a>0,b<0, |a|<|b|,那么a+b 0。
如果a<0,b>0, |a|<|b|,那么a+b 0。
6、在有理数加法中,和一定比加数大吗?1-4-2 有理数的减法1、有理数减法的意义是什么?已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。
减法是加法的逆运算。
2、有理数减法法则的内容是什么?减去一个数,等于加上这个数的相反数。
有理数减法法则也可以表示成:a – b = a + (-b)3、大的数减去小的数,差一定是正数;小的数减去大的数,差一定是负数;两个相等的数相减,差一定是0。
1-4-3 加、减混合运算1、由于减法可以转化为加法,因此有理数的加减混合运算便可统一成加法运算。
2、在“简化代数和”中,要特别注意符号“+”、“-”的理解和使用:例如,-5+2+3-12我们可以把它们看成是性质符号,将式子看成是省略了加号的代数和,也可将式中的符号看成是运算符号,把式子看成是数的加减混合运算。
不过对于一个符号来说,只能一号一用,一号一读。
3、在使用加法交换律交换加数的位置时,一定要连同前面的符号一起交换,千万不能只交换数字。
这是最容易出错的地方。
4、几个数相加,可以采用两种方法去做:(1)按照顺序进行计算;(2)可以把几个正数和负数分别结合在一起计算,然后再把正负数相加。
(3)利用加法的的运算律进行简便运算。
1-5 有理数的乘除1-5-1有理数的乘法1、 有理数乘法法则的内容是什么?两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2、几个有理数相乘,积的符号是如何确定的?几个不等于0的数相乘,积的符号由负因数的个数决定。
当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
几个数相乘,有一个因数为0,积就为0。
3、几个不等于0的数相乘,首先确定积的符号,然后把绝对值相乘。
4、乘法交换律:两个数相乘,交换因数的位置,积不变。
ab=ba 。
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
(ab )c=a (bc )。
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
a (b+c )=ab+ac 。
5、如果a <0,b <0,那么ab 0;a >0,b <0,那么ab 0。
1-5-2有理数的除法1、什么是互为倒数?如果两个有理数的乘积是1,那么称这两个有理数互为倒数。
aa 1•=1(a ≠0)。
2、有理数除法的法则1:两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
0不能作除数b a ÷=ba 1• (b ≠0)3、有理数除法的法则2:除以一个不为0的数,等于乘上这个数的倒数。
4、除了0以外,所有的数都有倒数,并且正数的倒数是正数,负数的倒数是负数。
5、倒数是它本身的数是 ,倒数和它的绝对值相等的数是 ,倒数和它的相反数相等的数是 。
-a 的倒数是 (a O )。
6、如果a <0,b <0,那么b a 0;如果a >0,b <0,那么 b a 0;如果a =0,b <0,那么b a 0。
7、如果两个数a 、b 是互为倒数,你知道ab=?1-6有理数的乘方1、n 个相同的因数a 相乘,,记作n a 。
求n 个相同因数的积的运算,叫做乘方。
2、乘方的结果叫幂。
相同的因数叫底数,相同因数的个数叫指数。
n a 读作a 的n 次方。
n a 看作a 的n 次方的结果时,也可以读作a 的n 次幂。
3、一个数可以看作这个数本身的一次方,指数1通常省略不写。
4、正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数。
任何数的偶次幂都是一个非负数(a n 2≥0)5、0的任何次幂都得 ,1的任何次幂都得 ,-1的偶次幂是 ,-1的奇次幂是 。
(偶数和奇数是如何表示的)6、把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫做科学记数法。
(1≤a <10)7、一个数的科学记数法中,10的指数(n )比原数的整数位数少1,如原数有8位,指数就是7。
8、10的几次方,结果就是1后面带几个0。
(你可以举例验证)9、一个数的平方等于0,这个数是 ;平方等于9的数是 ;等于16呢有没有平方等于-4的数(没有)。
平方等于它本身的数有那些(只有2个,是1、0、)。
平方等于它的相反数的数有那些10、一个数的立方等于0,这个数是;立方等于27的数是;等于64呢有没有立方等于-8的数(有,是-2)。
立方等于它本身的数有那些(只有3个,是1、0、-1。
)。
立方等于它的相反数的数有那些(只有1个,是0。
)。
11、有理数的混合运算运算顺序:先算乘方,再算乘除,最后算加减。
如果有括号,就先算括号里面的。
1-7近似数1、一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
2、什么叫有效数字(补充的内容)从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫这个数的有效数字。
3、两个近似数1.6和1.60,它们相同吗为什么(答:这两个数大小是相同的,但是它们表示的精确程度是不同的,1.6表示精确到十分位(即0.1),它有两个有效数字,分别是1和6;而1.60表示精确到百分位(即0.01),它有三个有效数字,分别是1、6和0。
因此,从这个意义上说,1.6和1.60是不相同的,应特别注意。
)。