红外谱图解析
红外图谱分析方法大全
红外光谱图解析一、分析红外谱图(1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。
公式:不饱和度=F+1+(T-O)/2其中:F:化合价为4价的原子个数(主要是C原子);T:化合价为3价的原子个数(主要是N原子);O:化合价为1价的原子个数(主要是H原子)。
F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。
(2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物吗,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。
(3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔—2200~2100 cm^-1烯—1680~1640 cm^-1芳环—1600、1580、1500、1450 cm^-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。
(4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。
(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820、2720和1750~1700cm^-1的三个峰,说明醛基的存在。
解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。
二、记住常见常用的健值1.烷烃3000-2850 cm-1C-H伸缩振动1465-1340 cm-1C-H弯曲振动一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。
2.烯烃3100~3010 cm-1烯烃C-H伸缩1675~1640 cm-1C=C伸缩烯烃C-H面外弯曲振动(1000~675cm^1)。
红外光谱图解析方法大全
红外光谱图解析大全一、预备知识(1)根据分子式计算不饱和度公式:不饱和度Ω=n4+1+(n3-n1)/2其中:n4:化合价为4价的原子个数(主要是C原子),n3:化合价为3价的原子个数(主要是N原子),n1:化合价为1价的原子个数(主要是H,X原子)(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔2200~2100 cm-1,烯1680~1640 cm-1 芳环1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);(4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。
二、熟记健值1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。
2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H面外弯曲振动(1000~675cm-1)。
3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。
4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H面外弯曲振动880~680cm-1。
红外光谱谱图解析完整版
X—Y伸缩, X—H变形振动区
2020/4/1
2、确定分子官能团和基团的吸收峰
(1) X—H伸缩振动区(4000 2500 cm-1 ) ① —O—H 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强吸收;
中红外区: 远红外区:纯转动能 级跃迁,变角、骨架 振动;异构体、金属 有机物、氢键
2020/4/1
一、认识红外光谱图
2020/4/1
1、红外光谱图
峰强:Vs(Very strong): 很强;s(strong):强; m(medium):中强; w(weak):弱。 峰形:表示形状的为宽峰、尖峰 、肩峰、双峰等类型
变形振动 亚甲基
2020/4/1
甲基的振动形式
伸缩振动 甲基:
对称 υs(CH3) 2870 ㎝-1
变形振动 甲基
2020/4/1
对称δs(CH3)1380㎝-1
不对称 υas(CH3) 2960㎝-1
不对称δas(CH3)1460㎝-1
二、解析红外光谱图
2020/4/1
一个未知化合物仅用红外光谱解析结构是十分困难的。一般在光谱解析
前,要做未知物的初步分析 红外光谱谱图的解析更带有经验性、灵活性。 解析主要是在掌握影响振动频率的因素及各类化合物的红外特征吸收谱
带的基础上,按峰区分析,指认某谱带的可能归属,结合其他峰区的相关 峰,确定其归属。
在此基础上,再仔细归属指纹区的有关谱带,综合分析,提出化合物的 可能结构。
必要时查阅标图谱或与其他谱(1H NMR,13C NMR,MS)配合, 确证其结构。
2020/4/1
如何分析红外谱图
如何分析红外谱图(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度(Ω)= 1+F+(T-O)/2其中,F:化合价为4价的原子个数(主要是C原子);T:化合价为3价的原子个数(主要是N原子);O:化合价为1价的原子个数(主要是H原子)。
例如:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度;(2)分析3300~2800 cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000 cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000 cm-1一般为饱和C-H伸缩振动吸收;3)若在稍高于3000 cm-1有吸收,则应在2250~1450 cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔2200~2100 cm-1;烯1680~1640 cm-1;芳环1600, 1580, 1500, 1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650 cm-1的频区,以确定取代基个数和位置(顺反,邻、间、对);(4)碳骨架类型确定后,再依据其他官能团,如C=O, O-H, C-N 等特征吸收来判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700 cm-1的三个峰,说明醛基的存在。
常用健值:a. 烷烃:C-H伸缩振动(3000-2850 cm-1);C-H弯曲振动(1465-1340 cm-1);一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收;b. 烯烃:烯烃C-H伸缩(3100~3010 cm-1);C=C伸缩(1675~1640 cm-1);烯烃C-H面外弯曲振动(1000~675 cm-1);c. 炔烃:伸缩振动(2250~2100 cm-1);炔烃C-H伸缩振动(3300 cm-1附近);d.芳烃:3100~3000 cm-1 芳环上C-H伸缩振动;1600~1450 cm-1 C=C 骨架振动。
手把手教你红外光谱谱图解析
手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。
辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。
3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。
图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。
N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。
为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。
U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。
泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。
特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。
傅立叶红外图谱详细分析方法大全
傅立叶红外光谱图详细解析一、分析红外谱图(1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。
公式:不饱和度=F+1+(T-O)/2其中:F:化合价为4价的原子个数(主要是C原子);T:化合价为3价的原子个数(主要是N原子);O:化合价为1价的原子个数(主要是H原子)。
F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。
(2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物吗,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。
(3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔—2200~2100 cm^-1烯—1680~1640 cm^-1芳环—1600、1580、1500、1450 cm^-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。
(4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。
(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820、2720和1750~1700cm^-1的三个峰,说明醛基的存在。
解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。
二、记住常见常用的健值1.烷烃3000-2850 cm-1C-H伸缩振动1465-1340 cm-1C-H弯曲振动一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。
2.烯烃3100~3010 cm-1烯烃C-H伸缩1675~1640 cm-1C=C伸缩烯烃C-H面外弯曲振动(1000~675cm^1)。
红外(IR)谱图解析基础知识
红外谱图解析基础知识(一)、基团频率区和指纹区1、基团频率区中红外光谱区可分成4000 cm-1 ~1300(1800)cm-1和1800 (1300 )cm-1 ~ 600 cm-1两个区域。
最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。
区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。
在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。
这种振动基团频率和特征吸收峰与整个分子的结构有关。
当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。
这种情况就像人的指纹一样,因此称为指纹区。
指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。
基团频率区可分为三个区域:(1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。
O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。
当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1 处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。
当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。
胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。
C-H的伸缩振动可分为饱和和不饱和的两种。
饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。
如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1 和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1 附近,但强度很弱。
红外谱图的解析经验
红外谱图的解析经验首先应该对各官能团的特征吸收熟记于心,因为官能团特征吸收是解析谱图的基础。
对一张已经拿到手的红外谱图:(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 其中:F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),我以前本科上谱学导论时老师给过公式,但字母都被我改了:F、T、O分别是英文4,31的首字母,这样我记起来就不会忘了:)。
举个例子:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度;(2)分析3300~2800cm^-1区域C-H伸缩振动吸收;以3000 cm^-1为界:高于3000cm^ -1为不饱和碳C-H伸缩振动吸收,有可能为烯, 炔, 芳香化合物,而低于3000cm^-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔2200~2100 cm^-1烯1680~1640 cm^-1芳环1600,1580,1500,1450 cm^-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对);(4)碳骨架类型确定后,再依据其他官能团,如C=O, O-H, C-N 等特征吸收来判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820 ,2720和1750~1700cm^-1的三个峰,说明醛基的存在。
解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的,这里就不唠叨了。
这是一个令人头疼的问题,有事没事就记一两个吧:1.烷烃:C-H伸缩振动(3000-2850cm^-1)C-H弯曲振动(1465-1340cm^-1)一般饱和烃C-H伸缩均在3000cm^-1以下,接近3000cm^-1的频率吸收。
红外谱图解析综述
砜
as13501290cm-1 s11651120cm-1 (强)
亚砜
10701030cm-1 (强)
(6)P=O:(图15A峰3,4) P=O 13001140cm-1 (接近单键区)
9
红外谱图解析综述
4. X-Y键伸缩振动和X-H键变形振动区(1650650cm-1) X,Y为除了H以外的其它原子,主要包括C-O,Si-O,C-C,C-N,
有机酸OH和CH伸缩振动偶合引起的一系列多重峰(32002500cm-1) (图8C峰1,图16C峰1)
O-H的伸缩振动可作为判断醇,酚,酸的重要依据。 (2)C-H的伸缩振动频率
饱和的 C-H在3000cm-1以下(30002700cm-1) 不饱和的 C-H在3000cm-1以上(33003000cm-1)
1C峰 CH CH3
CH3
3)。叔丁基 1D峰
C
CCC HHH 333
sCH3裂分成1395(m),1365(s)(图
3)。以此可判断化合物的支化情况。
D:-CH2-n的面外摇摆峰,n4时出现720cm-1吸收峰。可判断是 否是长链化合物。(图1A、B峰4,图7C峰6、D峰5,图9C峰4、D峰
5)
12
O R-C-OH
O R -C -H
1740 1730 1700缔合1760游离
O R-C-OM
O R -C-N H 2
1650(酰胺谱带I) 16001500和1400
O= =O
1667
8
红外谱图解析综述
如果C=O基与双键,苯环共轭。C=O基的伸缩振动频率比上述相应位置 要低,强度增加。在解析光谱时必须注意。(图8A峰2,B峰4,C峰2,D峰 1酮羰基,峰2羧酸盐羰基,图9A峰2,B峰3,C峰2,D峰3,图10A峰2,B峰1,C 峰2,D峰1,图11A峰3,B峰3,C峰2酰胺谱带Ⅰ,图16B峰3,C峰2)
红外谱图详细解析
红外谱图解析各官能团的特征吸收是解析谱图的基础(1)首先依据谱图推出化合物碳架类型33002800C H (2)分析3300 ~ 2800 cm 1区域C-H 伸缩振动吸收以3000 cm-1为界:高于3000 cm为不饱和碳C H 伸缩振动吸收3000cm-1C-H可能为烯, 炔, 芳香化合物低于3000 cm-1 一般为饱和C-H 伸缩振动吸收(3) 若在稍高于3000 cm-1有吸收,则应在频区2250 ~ 1450 cm-1分析不饱和碳碳键的伸缩振动吸收特征峰炔2200 ~ 2100 cm-1烯1680 ~ 1640 cm-1芳环1600,1580,1500,1450 cm-1烯或芳香化合物则应解析指纹区1000 ~ 650 cm-1频区以确定取代基个数和位置(4) 碳骨架类型确定后, 再依据其他官能团,如C O, O H, C N 等特征吸收来判定C=O,O-H,C-N化合物的官能团(5) 解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在如2820,2720 和1750~1700 cm 1的三个峰说明醛基的存在例3 C7H8O1) 不饱和度:(7⨯2+2-8)÷2=4 可能含有苯环2) 3000 cm-1 以上,以及1600,1500 cm-1 表明含有苯环(-C6H5)770,700 cm-1 表明苯环取代为单取代3) 分子式为C7H8O,除去苯环(-C6H5),取代基为CH3O,(?)苯甲醚(?) 苯甲醇(?)3300 cm-1(⨯),1250,1040 cm-1(∨) 芳香脂肪醚C-O的吸收表明此化合物为苯甲醚例4:1)不:12)3000,O H;酸930,O H,O-H O-H,CH3CH2COOH3) 1700, C=O4) 1230,C-O。
红外光谱谱图解析实例53385ppt课件
2960±5 2870±10 2930±5 2850±10
振动形式
伸缩 伸缩 伸缩 伸缩 伸缩
伸缩 伸缩 伸缩
反对称伸缩 对称伸缩 反对称伸缩 对称伸缩
吸 收 强 度
m, sh s,b m s,b
s s s
s s s s
说明
判断有无醇类、酚类和有机酸的重 要依据
3、 C=O (1850 1600 cm-1 )碳氧双键的特征峰,强度大, 峰尖锐。 4、单核芳烃 的C=C键伸缩振动(1626 1650 cm-1 )
.
各种官能团的吸收频率范围
从第一区域到第四区域,4000cm-1到400cm-1各种官能团的特征吸收频 率范围。
区 域
基团
—OH(游离)
—OH(缔合)
例: C9H8O2 = (2 +29 – 8 )/ 2 = 6
.
主要官能团的吸收频率范围
1、—O—H 3650 3200 cm-1 确定 醇,酚,酸
2、不饱和碳原子上的=C—H( C—H )
苯环上的C—H 3030 cm-1 =C—H 3010 2260 cm-1 C—H 3300 cm-1
—NH2,—NH(游离)
第
—NH2,—NH(缔合) —SH
C—H伸缩振动
不饱和C—H
一 ≡C—H(叁键)
═C—H(双键) 苯环中C—H
饱和C—H
区
—CH3
—CH3
域
—CH2 —CH2
吸收频 率
(cm-1 )
3650— 3580 3400— 3200 3500— 3300 3400— 3100 2600— 2500
.
红外光谱谱图分析
1510(游离), 酰胺II带 n (C-N) +δ(NH)1335-1200. 酰胺III带 γ(NH) 700. 酰胺IV带
(7)卤酰类 -C(CO)X n (CO)1820
(X =Cl,Br和I), (图24)
11.有机磷 P-H,P=O,P-O-C, P-C,P=N
12.有机卤化物 F-C,Cl-C,Br-C,I-C
13.硅有机 参考王正熙书, 中科院成都有机硅研究中心
Si-H, Si-O-Si, Si-OH, Si-R(CH3, Ar, C2H5) 14.硼有机 B-O,B-N,B-H
B.X-H(OH,NH,CH)及多重键(X=Y, X≡Y,X=Y=Z)特征频率用于指认。
C.三个特征:频率、强度、形状。
(2)指纹频率 与整个分子或一部分相关,对结 构变化灵敏 。Fig. 4a, 定义有差别。
拉曼一般不提指纹频率
图4
红外光谱的基团频率
Wavenumber (cm-1)
4000
中红外 Mid-IR
10-3
远红外 微波 Far-IR Microwave
10-2
10-1
0.78 2.5
25
12,800 4000
400
1000 10
图2a Theory of IR spectroscopy
1.Cliassical Model of a molecule Fig.1-10 n=1/2( k/mm)1/2 E=1/2(KX2)
(图15)
图15 叠氮己醚的红外光谱
7.胺类和铵盐 胺类:(图16) C-N-H
红外谱图分析
3 炔烃
1-辛炔的红外光谱
一元取代炔烃的红外吸收光谱有三个特 征吸收带: (1)炔烃的σ≡CH在3300cm-1附近,峰形 尖锐,容易识别。 (2)炔烃的σC≡C在2140~2100cm-1,一 般强度较弱。炔烃的烷基二取代物中, σC≡C在2260~2190cm-1,由于分子的偶极 矩变化小,一般难以观察到。 (3)炔烃的面外C≡C在700~600cm-1, 吸收带强而较宽。
苯 670cm-1(s) 一元取代 770~730cm-1(s), 710 ~690cm-1(s) 二元取代(邻位) 770~735cm-1(s) 二元取代(间位) 900~860cm-1(m), 810 ~750cm-1(s) 725~680cm-1(m) 二元取代(对位) 860~800cm-1(s)
率
红外光谱的最大特点是具有特征性。复杂 分子中存在许多原子基团,各个原子基团(化 学键)在分子被激发后,都会产生特征的振动。
(1)X-H伸缩振动区:
4000-2500cm-1。 X可以是O,H,C和S原子。在这个区域内 主要包括O-H,N-H,C-H 和S-H键伸缩 振动,通常又称为“氢键区”。
(2)C=C的伸缩振动频率在1680~1620cm-1:
基团 R-CH=CH2 R2CH=CH2 (顺)RCH=CHR
伸缩振动频率 (cm-1) 1645
1655 1660
强度 中强
↓
↓ ↓ 弱
(反) RCH=CHR
三取代或四取代物
1675
1670
(3)烯烃不饱和碳原子上的C-H面外弯曲振 动在1000 ~650cm-1,对结构敏感: 一取代双键(RCH=CH2) 995 ~985cm-1(m), 915 ~905cm-1(s) 倍频 1860 ~1790cm-1 α,α-二取代(RR’C=CH2) 895 ~885cm-1(s), 倍频1860 ~1750cm-1 反式二取代(-CH=CH-) 980~960cm-1(s) 顺式二取代(-CH=CH-) 730~665cm-1(s) 三取代( RR’C=CHR”) 850~790cm-1(m)
红外光谱谱图分析
C H 3080 cm-1
H
C
3030 cm-1
3080-3030 cm-1
C H 变形
振动
H C CH 2
CH
3080 cm-1 3030 cm-1 3300 cm-1
3000 cm-1 2900-2800 cm-1
2023/10/15
bC=C 伸缩振动1680-1630 cm-1
反式烯
R1
H
CC
2023/10/15
第四节 有机化合物红外谱图解析
analysis of infrared spectrograph
1.烷烃
CH3,CH2,CHC—C,C—H 3000cm-1
CH3
CH2 CH2
δas1460 cm-1
重
δs1380 cm-1
叠
δs1465 cm-1
r 720 cm-1面内摇摆
CH2 对称伸缩2853cm-1±10 CH3 对称伸缩2872cm-1±10 CH2不对称伸缩2926cm-1±10 CH3不对称伸缩2962cm-1±10
H 990 cm-1
H 910 cm-1 (强) H 2:1850-1780 cm-1
H 890 cm-1(强)
2:1800-1780 cm-1
R2
2023/10/15
1-己烯谱图
2023/10/15
对比
烯烃顺反异构体
2023/10/15
壬烯
2023/10/15
3.醇—OH
a-OH 伸缩振动 b碳氧伸缩振动
55
50
45
2928
40
35
30
纤维素
25
3406
红外光谱谱图解析
C H3 C C H3 CH
3
08:31:12
CH3 δ s C—C骨架振动
1385-1380cm-1
1155cm-1
1:1
1372-1368cm-1
1170cm-1
1391-1381cm-1 1368-1366cm-1
1405-1385cm-1 1372-1365cm-1
4:5 1195 cm-1
正庚烷
正十二 烷
正二十八 烷
1500 1400 1300cm-1 1500 1400 1300 cm-1 1500 1400 1300cm-1
08:31:12
08:31:12
2、 烯烃,炔烃
CH
CH 伸
CC 缩
CC 振
a)C-H 伸缩振动(> 3000 cm-1)
动
CH 变
形
振 动
H CH H C H C CH2
当浓度较大时,发生缔合作用,峰形较宽。
注意区分 —NH伸缩振动: 3500 3100 cm-1
08:31:12
3515cm-1
2895 cm-1
3640cm-1
3350cm-1
2950cm-1
08:31:12
乙醇在四氯化碳中不同浓度的IR图
0.01M
0.1M 0.25M 1.0M
②饱和碳原子上的—C—H
在判断存在某基团时,要尽可能地找出其各种相关吸收带,切不可仅 根据某一谱带即下该基团存在的结论。
同理,在判断某种基团不存在时也要特别小心,因为某种基团的特征 振动可能是非红外活性的,也可能因为分子结构的原因,其特征吸收变 得极弱。 (五)提出结构式 如果分子中的所有结构碎片都成为已知(分子中的所有原子和不饱和 度均已用完),那么就可以推导出分子的结构式。在推导结构式时,应 把各种可能的结构式都推导出来,然后根据样品的各种物理的、化学的 性质以及红外光谱排除不合理的结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/9/23
4. 醚(C—O—C)
脂族和环的C-O-C
υas 1150-1070cm-1
芳族和乙烯基的=C-O-C
脂族 R-OCH3 υs (CH3) 芳族 Ar-OCH3 υs (CH3)
υas 1275-1200cm-1 (1250cm-1 ) υs 1075-1020cm-1
2830-2815cm-1
1170cm-1
1195 cm-1
C H3 C C H3 C H3
1405-1385cm-1 1372-1365cm-1
1:2 1250 cm-1
2020/9/23
c) CH2面外变形振动—(CH2)n—,证明长碳链的存在。 n=1 770~785 cm-1 (中 ) n=2 740 ~ 750 cm-1 (中 )
2020/9/23
c)C-H 变形振动(1000-700 cm-1 )
面内变形(=C-H)1400-1420 cm-1 (弱)
面外变形(=C-H) 1000-700 cm-1 (有价值)
(=C-H)
R1
H
CC
970 cm-1(强)
H
R2
R1 CC
R2
R 3 790-840 cm-1 H (820 cm-1)
R1
H
CC
H
H
Байду номын сангаасR1
H
CC
R2
H
1660-1630cm-1
中强,尖
2020/9/23
总结
ⅰ 分界线1660cm-1 ⅱ 顺强,反弱 ⅲ 四取代(不与O,N等相连)无υ(C=C)峰 ⅳ 端烯的强度强 ⅴ共轭使υ(C=C)下降20-30 cm-1
υ HCCR CC 2140-2100cm-1 (弱) υ R1 CCR2 C C 2260-2190 cm-1 (弱)
~2850cm-1
2020/9/23
5.醛、酮
分子间氢键随浓度而变, 而分子内氢键不随浓度而变。
结晶水 3600-3450 cm-1
2020/9/23
3515cm-1
2895 cm-1
3640cm-1
2950cm-1 3350cm-1
乙醇在四氯化碳中不同浓度的IR图
2020/9/23
0.01M
0.1M 0.25M 1.0M
2020/9/23
C C
C C
H R2
890 cm-1(强)
2:1800-1780 cm-1
2020/9/23
谱图
2020/9/23
2020/9/23
对比
烯烃顺反异构体
2020/9/23
3.醇(—OH)
O—H,C—O
a)-OH 伸缩振动(>3600 cm-1) b)碳氧伸缩振动(1100 cm-1)
C Cα C Cα′ C
-(CH2)nn
2020/9/23
a)由于支链的引入,使CH3的对称变形振动发生变化。
b)C—C骨架振动明显
H C C H3 C H3
C H3 C C H3
1385-1380cm-1
1372-1368cm-1 1391-1381cm-1 1368-1366cm-1
CH3 δs 1:1
4:5
C—C骨架振动 1155cm-1
R1
R 2 (=C-H)
H
CC H
800-650 cm-1 (690 cm-1)
R1 CC
H
H 990 cm-1 H 910 cm-1 (强)
R1
R3
R1
H 2:1850-1780 cm-1
R2 H
CC
R 4 610-700 cm-1(强)
CCR
2:1375-1225 cm-1 (弱)
R2 R1
—OH基团特性
分子间氢键:
双分子缔合(二聚体)3550-3450 cm-1 多分子缔合(多聚体)3400-3200 cm-1
分子内氢键:
多元醇(如1,2-二醇 ) 3600-3500 cm-1
螯合键(和C=O,NO2等)3200-3500 cm-1
多分子缔合(多聚体)3400-3200 cm-1
水(溶液)3710 cm-1 水(固体)3300cm-1
n=3 730 ~740 cm-1 (中 ) n≥ 722 cm-1 (中强 )
d) CH2和CH3的相对含量也可以由1460 cm-1和1380 cm-1的峰 强度估算强度
正庚烷
正十二 烷
正二十八 烷
1500 1400 1300cm-1 1500 1400 1300 cm-1 1500 1400 1300cm-1
2020/9/23
2020/9/23
2. 烯烃,炔烃
CH
C H 伸缩
CC
振动
CC
a)C-H 伸缩振动(> 3000 cm-1)
H
υ(C-H)
C H 3080 cm-1
H
C
3030 cm-1
3080-3030 cm-1
C H 变形
振动
H C CH 2
CH
3080 cm-1 3030 cm-1 3300 cm-1
Cβ Cα″
OH
υ(—OH)
游 伯-OH 离 仲-OH 醇, 酚 叔-OH
酚-OH
3640cm-1 3630cm-1 3620cm-1 3610cm-1
υ(C-O)
1050 cm-1
1100 cm-1 α支化:-15 cm-1 1150 cm-1 α不饱和:-30 cm-1
1200 cm-1
2020/9/23
2020/9/23
一、红外谱图解析
analysis of infrared spectrograph
1.烷烃
(CH3,CH2,CH)(C—C,C—H
3000cm-1
CH3
)
δas1460
cm-1
重
δs1380 cm-1
叠
CH2 δs1465 cm-1
CH2 r 720 cm-1(水平摇摆)
CH2 对称伸缩2853cm-1±10 CH3 对称伸缩2872cm-1±10 CH2不对称伸缩2926cm-1±10 CH3不对称伸缩2962cm-1±10
3000 cm-1 2900-2800 cm-1
2020/9/23
b)C=C 伸缩振动(1680-1630 cm-1 )
反式烯
R1
H
CC
υ(C=C)
H
R2
三取代烯
R1
R3
CC
R2
H
1680-1665 cm-1
四取代烯 顺式烯
R1
R3
CC
R2
R4
R1
R2
CC
H
H
弱,尖 分界线
1660cm-1
乙烯基烯 亚乙烯基烯
第二章
红外吸收光谱分
析法
infrared absorption spec-troscopy,IR
一、红外谱图解析
analysis of infrared spectrograph
二、未知物结构确定
structure determination of compounds
第四节 红外谱图解析
analysis of infrared spectrograph