板材折弯计算公式

合集下载

6061折弯系数

6061折弯系数

6061折弯系数
折弯系数是指在金属板材折弯加工中,用来描述材料在折弯过程中的变形程度的一个参数。

折弯系数(K值)是由折弯长L 和折弯角度θ计算得出的,公式为K = L / (T × R),其中L 为折弯长度,T为板材厚度,R为折弯半径。

对于6061铝合金,其折弯系数与材料的机械性能有关,具体数值需要根据材料的具体性质来确定。

一般来说,6061铝合金具有较好的可塑性和可加工性,所以其折弯系数应该是较高的。

如果需要计算具体的折弯系数,可以根据上述公式以及材料的具体尺寸和折弯参数进行计算。

根据折弯系数计算板材尺寸

根据折弯系数计算板材尺寸

根据折弯系数计算板材尺寸
折弯模具按折弯工艺分为标准模具和特殊折弯模具。

在标准的折弯情况下(直角和非直折弯)折弯时一般都是用标准模具,折弯一些特殊的结构件(如:段差折弯、压死边等)时采用特殊模具。

另外折弯不同厚度板料时,对折弯下模具的开口尺寸“V”形槽尺寸选择有所不同。

一般所选用“V”形槽开口尺寸为板材厚度的6-10倍
(0.5~2.6mm为6t、3~8mm为8t、9~10mm为10t、12mm以上为
12t)。

当板材较薄时选择取向于小数,板材较厚时取向于大数。

如:折弯2mm板时可选用12mmV槽即可。

折弯尺寸计算方式:
1、折弯系数=板材厚度*0.35,小于45度折弯由于变形量大。

2、折弯系数=板材厚度*0.35,小于45度折弯由于变形量大。

3、折弯系数=板材厚度*0.18,折弯90度所以折弯系数就是0.35*2=0.7,展开L=98+98+0.7=196.7。

常用板材折弯计算公式

常用板材折弯计算公式

常用板材折弯计算公式折弯是一种常见的板材加工方式,通过在板材上施加力量使其沿一定角度弯曲。

在进行板材折弯计算时,需要考虑材料的弯曲性质、板材厚度、弯曲角度、材料强度等因素。

下面是一些常用板材折弯计算公式。

1.板材受到弯曲力矩时,板材上任意一点的应力可以通过以下公式计算:σ=My/I其中,σ是应力,M是弯曲力矩,y是板材上被测点到中性轴的距离,I是横截面惯性矩。

2.板材在折弯过程中,弯曲角度与板材长度之间的关系可以通过以下公式计算:θ=(L×180)/(π×R)其中,θ是弯曲角度,L是板材的长度,R是弯曲的半径。

3.半径为R的圆弧内弯曲的板材的位移长度可以通过以下公式计算:S=(π×R×θ)/180其中,S是位移长度。

4.板材的弯曲弹性模量E可以通过以下公式计算:E=(F×L^3)/(4×W×y)其中,E是弯曲弹性模量,F是应用的力,L是板材的长度,W是板材的宽度,y是测点到中性轴的距离。

5.当板材受到以R为半径的圆弧内弯曲时,圆心角可以通过以下公式计算:α=(S×180)/(π×R)其中,α是圆心角,S是位移长度。

6.板材的弯曲半径可以通过以下公式计算:R=(E×t^2)/(6×σ)其中,R是弯曲半径,E是弯曲弹性模量,t是板材的厚度,σ是应力。

以上是一些常用的板材折弯计算公式,这些公式可以帮助工程师和设计师在实际应用中对板材的折弯进行计算和设计。

需要注意的是,不同材料的弯曲性质略有差异,因此在具体计算时需要使用相应材料的参数。

此外,实际应用中还需要考虑材料的变形、伸长、压缩等因素,以及板材之间的接缝和连接方式等因素,以确保设计的准确性和可行性。

折弯压力计算公式

折弯压力计算公式

折弯压力计算公式折弯压力是指在金属板材折弯过程中所施加的力,用于模拟和分析金属板材的折弯行为和性能。

折弯压力的计算公式可以通过以下几个方面来推导和确定。

首先,需要明确折弯的基本原理。

在金属板材的折弯过程中,受到的内力主要有剪切力和弯曲力。

剪切力是指板材上存在的剪应力,而弯曲力则是由于板材弯曲引起的弯曲应力。

根据弹性力学的基本原理,可以得到以下公式:F=(E×I×y)/(R×h)其中,F表示折弯压力,E表示材料的弹性模量,I表示截面惯性矩,y表示板材中心线与折弯轴线的距离,R表示板材的曲率半径,h表示板材的厚度。

接下来,需要确定材料的弹性模量和截面惯性矩。

材料的弹性模量是指材料在单位应力作用下所产生的应变,它是描述材料抵抗形变的能力的重要参数。

截面惯性矩是描述截面形状对于受力性能的影响程度的参数,它越大说明板材越容易抵抗弯曲变形。

这些参数可以通过实验测量或者查阅相关资料来获取。

此外,板材中心线与折弯轴线的距离和板材的曲率半径也需要确定。

板材中心线与折弯轴线的距离是指板材折弯过程中中心线位置的偏移情况,它直接影响到折弯压力的大小。

板材的曲率半径是指板材在特定折弯条件下呈现的曲率形状,它与折弯压力呈反比关系。

最后,结合上述参数,可以利用公式进行折弯压力的计算。

尤其需要注意的是,不同材料和板材的折弯过程中存在着不同的影响因素和计算方法,因此在具体应用中需要根据实际情况进行合理的选择和调整。

总之,折弯压力的计算公式是通过分析和研究折弯过程中所受力学原理推导得出的,其中涉及到材料的弹性模量、截面惯性矩、板材中心线与折弯轴线的距离和板材的曲率半径等参数。

这些公式和参数的选择和确定都需要根据具体的实际情况和需求进行调整和优化。

4mm板折弯系数计算公式

4mm板折弯系数计算公式

4mm板折弯系数计算公式在工程设计和制造过程中,折弯是一种常见的加工工艺,用于将金属板材或其他材料弯曲成所需的形状。

在进行折弯过程中,需要考虑材料的厚度、弯曲角度、弯曲半径等因素,以确保最终产品的质量和稳定性。

而折弯系数则是用来描述材料在折弯过程中的变形程度的重要参数之一。

本文将介绍4mm板折弯系数的计算公式及其应用。

1. 折弯系数的定义。

折弯系数是指材料在折弯过程中受到的应力和变形程度之间的关系。

它通常用来描述材料在折弯过程中的变形情况,是一个反映材料抗弯性能的重要参数。

折弯系数的大小直接影响到材料在折弯过程中的变形程度,因此在工程设计和制造中具有重要的意义。

2. 4mm板折弯系数的计算公式。

对于4mm厚度的金属板材,其折弯系数可以通过以下公式进行计算:K = t / (2r)。

其中,K为折弯系数,t为材料的厚度,r为折弯半径。

这个公式描述了材料在折弯过程中受到的应力和变形程度之间的关系,可以帮助工程师和制造商更好地理解和控制材料的折弯性能。

3. 折弯系数的应用。

折弯系数的大小直接影响到材料在折弯过程中的变形程度,因此在工程设计和制造中具有重要的意义。

通过计算折弯系数,工程师和制造商可以更好地了解材料在折弯过程中的变形情况,从而选择合适的折弯工艺和设备,确保最终产品的质量和稳定性。

此外,折弯系数还可以用于优化折弯工艺,提高生产效率和降低生产成本。

通过合理地调整材料的厚度、折弯角度和折弯半径等参数,可以有效地控制材料在折弯过程中的变形程度,从而实现更高效的生产和更低的成本。

4. 结语。

折弯系数是描述材料在折弯过程中的变形程度的重要参数,对于工程设计和制造具有重要的意义。

通过计算折弯系数,工程师和制造商可以更好地了解和控制材料的折弯性能,从而确保最终产品的质量和稳定性。

希望本文介绍的4mm板折弯系数计算公式及其应用能够对相关领域的专业人士有所帮助。

板材折弯的计算公式

板材折弯的计算公式

板材折弯的计算公式*********************************************************************1.展开计算原理板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示.*********************************************************************2.计算方法(七种类型)展开的基本公式:展开长度=料内+料内+补偿量*********************************************************************3.1 R=0,折弯角θ=90°(T<1.2,不含1.2mm)L=(A-T)+(B-T)+K=A+B-2T+0.4T上式中取:λ=T/4K=λ*π/2=T/4*π/2=0.4T图一*********************************************************************3.2 R=0, θ=90° (T≧1.2,含1.2mm)L=(A-T)+(B-T)+K=A+B-2T+0.5T上式中取:λ=T/3K=λ*π/2=T/3*π/2=0.5T图二*********************************************************************3.3 R≠0 θ=90°L=(A-T-R)+(B-T-R)+(R+λ)*π/2当R ≧5T时λ=T/21T≦R <5T λ=T/30 < R (实际展开时除使用尺寸计算方法外,也可在确定中性层位置后,通过偏移再实际测量长度的方法.以下相同)图3*********************************************************************3.4 R=0 θ≠90°λ=T/3L=[A-T*tan(a/2)]+[B-T*tan(a/2)]+T/3*a(a单位为rad,以下相同)图4*********************************************************************3.5 R≠0 θ≠90°L=[A-(T+R)* tan(a/2)]+[B-(T+R)*tan(a/2)]+(R+λ)*a当R ≧5T时λ=T/21T≦ R <5T λ=T/30 < R图5*********************************************************************3.6 “Z”型折1.(1)当C≧5时,一般分两次成型,按两个90°折弯计算.(考虑到折弯冲子的强度)L=A-T+C+B+2K(2)当3T<C<5时:L=A-T+C+B+K(3)当C≦3T时<一次成型>:L=A-T+C+B+K/2图6******************************************************************************************************************************************3.7 “Z”型折2.C≦3T时<一次成型>:L=A-T+C+B+D+K图七*********************************************************************。

板材折弯

板材折弯

板材在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关, 当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小, 折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示.展开的基本公式:展开长度=料内+料内+补偿量以下是各种不同弯曲状况下的钣金展开计算公式:一般折弯:(R=0, θ=90°)L=A+B+K0.3时, K=0≤T'1. 当02. 对于铁材:(如GI,SGCC,SECC,CRS,SPTE, SUS等)1.5时, K=0.4T'T'a. 当0.32.5时, K=0.35T'T≤b. 当1.52.5时,/c. 当T K=0.3T3. 对于其它有色金属材料如AL,CU:0.3时, K=0.5T∃当T2.0时, 按R=0处理.≤注: R一般折弯(R≠0 θ=90°)L=A+B+KK值取中性层弧长1.5 时λ=0.5T'1. 当T1.5时λ=0.4T/2. 当T一般折弯(R=0 θ≠90°)L=A+B+K’0.3 时K’=0≤1. 当T/90)*Kυ0.3时K’=(∃2. 当T注: K为90∘时的补偿量一般折弯(R≠0 θ≠90°)L=A+B+K1.5 时λ=0.5T'1. 当T1.5时λ=0.4T/2. 当TK值取中性层弧长注: 2.0, 且用折刀加工时, 则按R=0来计算, A﹑B依倒零角后的直边长度取值'当RZ折1(直边段差).1. 5T时, 分两次成型时,按两个90°折弯计算/当H5T时, 一次成型, L=A+B+K'2. 当HK值依附件中参数取值Z折2(非平行直边段差).展开方法与平行直边Z折方法相同(如上栏),高度H取值见图示Z折3(斜边段差).1. 2T时'当H当θ≦70∘时,按Z折1(直边段差)的方式计算, 即: 展开长度=展开前总长度+Kϕ (此时K=0.2) 当θκ>70∘时完全按Z折1(直边段差)的方式计算2T时, 按两段折弯展开(R=0 θ≠90°)./2. 当HZ折4(过渡段为两圆弧相切):1. H≦2T 段差过渡处为非直线段为两圆弧相切展开时,则取两圆弧相切点处作垂线,以保证固定边尺寸偏移以一个料厚处理,然后按Z折1(直边段差)方式展开2. H>2T,请示后再行处理抽孔抽孔尺寸计算原理为体积不变原理,即抽孔前后材料体积不变;一般抽孔,按下列公式计算, 式中参数见右图(设预冲孔为X, 并加上修正系数–0.1):1. 若抽孔为抽牙孔(抽孔后攻牙), 则S按下列原则取值:T≦0.5时取S=100%T0.5<TT≧0.8时取S=65%T一般常见抽牙预冲孔按附件一取值2. 若抽孔用来铆合, 则取S=50%T, H=T+T’+0.4 (注: T’是与之相铆合的板厚, 抽孔与色拉孔之间隙为单边0.10~0.15)3. 若原图中抽孔未作任何标识与标注, 则保证抽孔后内外径尺寸;4. 当预冲孔径计算值小于1.0时, 一律取1.0反折压平L= A+B-0.4T1. 压平的时候,可视实际的情况考虑是否在折弯前压线,压线位置为折弯变形区中部;2. 反折压平一般分两步进行V折30°反折压平故在作展开图折弯线时, 须按30°折弯线画, 如图所示:N折1. 当N折加工方式为垫片反折压平, 则按L=A+B+K 计算, K值依附件中参数取值.2. 当N折以其它方式加工时, 展开算法参见“一般折弯(R≠0 θ≠90°)”3. 如果折弯处为直边(H段),则按两次折弯成形计算:L=A+B+H+2K (K=90∘展开系数)备注:a.标注公差的尺寸设计值:取上下极限尺寸的中间值作设计标准值.b.对于方形抽孔和外部包角的展开,其角部的处理方附件:常见展开标准数据1. 直边段差展开系数2. N折展开系数。

折弯扣除公式

折弯扣除公式

折弯扣除公式折弯扣除公式是机械加工中常用的计算公式之一,用于计算金属板材在折弯过程中所需扣除的长度。

在进行金属板材折弯加工时,由于材料的弹性变形和折弯过程中的拉伸,会导致折弯后的长度略大于预期的长度。

为了保证折弯件的尺寸和形状准确,就需要根据折弯材料的性质和角度来计算扣除的长度。

折弯扣除公式的基本形式为:L = πD × α / 180 × (K + R - t)其中,L表示扣除的长度,D表示折弯线上的弯曲直径,α表示折弯角度,K表示材料的K因子,R表示内弧半径,t表示板材的厚度。

我们来了解一下折弯材料的K因子。

K因子是用来衡量材料的可塑性或弹性的系数,它的值越大,材料的可塑性越好,折弯时所需的扣除长度就越小。

不同类型的材料有不同的K因子,一般通过实验或查阅相关资料来确定。

在实际应用中,常见的K因子为0.33。

接下来,我们来看一下公式中的其他参数。

折弯线上的弯曲直径D 是指折弯线距离两边平行线之间的最大距离。

折弯角度α是指两条平行线之间的夹角,一般以角度制表示。

内弧半径R是指材料在折弯处的内曲率半径,一般随着折弯角度的增大而减小。

板材的厚度t是指材料的实际厚度。

根据公式,我们可以看出折弯扣除的长度与折弯角度、材料的K因子、内弧半径和板材厚度等因素密切相关。

当折弯角度增大或材料的可塑性较差时,扣除的长度也会增大;而当内弧半径增大或板材厚度增加时,扣除的长度则会减小。

在实际应用中,我们可以根据折弯件的设计要求和材料的特性来选择合适的折弯角度和材料的K因子,然后根据公式计算出具体的扣除长度。

通过合理地进行折弯扣除,可以确保折弯件的尺寸和形状准确,提高加工的精度和效率。

需要注意的是,折弯扣除公式是一种理论计算方法,实际操作中还需考虑到机床的精度、操作人员的经验和折弯工艺等因素。

在使用折弯扣除公式时,应结合实际情况进行调整和修正,以确保折弯件符合设计要求。

折弯扣除公式是一种重要的机械加工计算方法,通过合理地计算折弯扣除长度,可以确保折弯件的尺寸和形状准确。

钣金加工计算公式

钣金加工计算公式

钣金加工计算公式钣金加工是一种常见的金属加工技术,用于将金属板材加工成所需形状的工艺。

在进行钣金加工时,我们需要考虑一些基本的计算公式,以确保加工质量和精度。

下面是钣金加工中常用的一些计算公式:1.板材展开长度计算公式:展开长度=(外周长+冗余值)/压延系数其中,外周长指的是材料未加工前的周长,冗余值一般选取材料厚度的1-2倍,压延系数是指未加工前材料与加工后展开形状之间的长度比例。

2.弯曲件折弯长度计算公式:折弯长度=弯曲半径*弯曲角度*(π/180)弯曲半径是指折弯件曲面的半径,弯曲角度是指折弯件的弯曲角度。

3.压铆螺栓强度计算公式:F=P*n其中,F代表螺栓预紧力,P代表螺栓所受的拉力,n代表螺栓数量。

4.膨胀螺栓强度计算公式:F=A*σ其中,F代表螺栓所受的拉力,A代表螺栓横截面积,σ代表应力。

5.拉伸区域面积计算公式:A=b*t其中,A代表拉伸区域的面积,b代表宽度,t代表厚度。

6.承载能力计算公式:P=(0.6*σ*A)/γ其中,P代表承载能力,σ代表应力,A代表横截面积,γ代表安全系数。

7.拉伸量计算公式:δ=(F*L)/(E*A)其中,δ代表拉伸量,F代表受力,L代表长度,E代表弹性模量,A 代表横截面积。

8.扭矩计算公式:T=k*F*r其中,T代表扭矩,k代表比例系数,F代表力,r代表力臂。

以上仅为钣金加工中一些常见的计算公式,具体的计算公式还会受到材料性质、工艺要求和实际应用等因素的影响。

在实际应用中,我们需要根据具体情况进行选择和调整,以确保加工质量和安全性。

折弯圆弧段计算方法

折弯圆弧段计算方法

折弯圆弧段计算方法
首先,我们需要确定以下参数:
1.弯曲半径:即所需的折弯圆弧段的半径。

2.板料厚度:即所使用的金属板材的厚度。

3.弯曲角度:即所需折弯圆弧段的角度。

以下是具体的计算步骤:
步骤1:确定金属板材的发育长度。

发育长度是指在底面铺开时,圆弧段所占有的长度。

用以下公式计算发育长度:发育长度=弯曲角度/360×圆周长
其中,圆周长=2×π×弯曲半径
步骤2:计算折弯圆弧段的开料长度。

开料长度是指在折弯过程中,金属板材两端之间的顶面距离。

用以下公式计算开料长度:开料长度=发育长度-π×弯曲半径
步骤3:计算折弯圆弧段的预弯线长度。

预弯线长度是指在折弯过程中,金属板材在预弯状态下的顶面距离。

用以下公式计算预弯线长度:预弯线长度=开料长度-板料厚度×π/2步骤4:计算折弯圆弧段的折弯角度。

折弯角度可以通过预弯线长度和发育长度之差来计算。

用以下公式计算折弯角度:折弯角度=(发育长度-预弯线长度)/发育长度×360
以上是一种基本的折弯圆弧段计算方法,通过这种方法可以比较准确地确定折弯圆弧段的开料长度和折弯角度。

但需要注意的是,实际折弯过程中可能还会受到一些其他因素的影响,比如材料弹性等,因此在实际应用中还需要考虑这些因素,进行相应的修正和调整。

折弯工件直径计算公式

折弯工件直径计算公式

折弯工件直径计算公式在金属加工中,折弯是一种常见的工艺,用于将金属板材弯曲成所需的形状。

在进行折弯工艺时,计算工件的直径是非常重要的,因为直径的大小直接影响到折弯的精度和质量。

本文将介绍折弯工件直径的计算公式,帮助读者更好地理解折弯工艺。

折弯工件直径的计算公式如下:直径 = 2 (R + T) tan(α/2)。

其中,R为弯曲半径,T为板材厚度,α为折弯角度。

在实际应用中,这个公式可以帮助我们快速准确地计算出折弯工件的直径,从而确定所需的加工尺寸和工艺参数。

首先,我们需要了解弯曲半径的概念。

弯曲半径是指金属板材在折弯时所形成的曲线的半径,通常由设备或工艺要求确定。

在实际操作中,我们通常会根据设备的要求或者工件的设计要求来确定弯曲半径。

其次,板材厚度也是影响折弯工件直径的重要因素。

板材厚度越大,折弯工件的直径也会相应增加,因此在计算工件直径时,需要考虑板材的厚度。

最后,折弯角度也是影响工件直径的重要参数。

折弯角度越大,工件的直径也会相应增加,因此在进行折弯工艺时,需要根据设计要求来确定折弯角度,并结合公式来计算工件的直径。

在实际应用中,我们可以通过这个公式来快速准确地计算出折弯工件的直径,从而确定所需的加工尺寸和工艺参数。

这对于提高折弯工艺的精度和质量非常重要。

除了上述公式外,还有一些其他因素也会影响折弯工件的直径,比如板材的弹性变形、材料的强度等。

因此,在实际应用中,我们还需要结合这些因素来综合考虑,从而确定最终的工件直径。

总之,折弯工件直径的计算公式是折弯工艺中的重要工具,能够帮助我们快速准确地计算出工件的直径,从而确定所需的加工尺寸和工艺参数。

在实际应用中,我们需要结合实际情况综合考虑各种因素,从而确保折弯工艺的精度和质量。

希望本文能够帮助读者更好地理解折弯工件直径的计算方法,从而提高折弯工艺的效率和质量。

板材折弯计算公式

板材折弯计算公式

一、展开计算原理板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示.二、计算方法展开的基本公式:展开长度=料内+料内+补偿量1、 R=0,折弯角θ=90°(T<1.2,不含1.2mm);图一L=A+B-2T+0.4T2、R=0, θ=90° (T≧1.2,含1.2mm);图二L=A+B-2T+0.5T图一图二3、R≠0 θ=90°;图三L=(A-T-R)+(B-T-R)+(R+λ)*π/2当R ≧5T时λ=T/21T≦R <5T λ=T/30 < R (实际展开时除使用尺寸计算方法外,也可在确定中性层位置后,通过偏移再实际测量长度的方法.以下相同)4、R=0 θ≠90°;图四λ=T/3L=[A-T*tan(a/2)]+[B-T*tan(a/2)]+T/3*a(a单位为rad,以下相同)图三图四5、R≠0 θ≠90°;图五L=[A-(T+R)* tan(a/2)]+[B-(T+R)*tan(a/2)]+(R+λ)*a当R ≧5T时λ=T/21T≦R <5T λ=T/30 < R6、 Z折1;图六计算方法请示上级,实际计算时可参考以下几点原则:(1)当C≧5时,一般分两次成型,按两个90°折弯计算.(要考虑到折弯冲子的强度) L=A-T+C+B+2K(2)当3T<C<5时:L=A-T+C+B+K(3)当C≦3T时<一次成型>;L=A-T+C+B+K/2图五图六7、 Z折2;图七C≦3T时<一次成型>:L=A-T+C+B+D+K图七。

板材折弯计算公式

板材折弯计算公式

板材折弯计算公式
1.弹性计算公式:
在板材弯曲过程中,当受力初步产生变形时,如果受力不超过板材的
弹性极限,板材会产生弹性变形。

弹性计算公式用来计算板材在弯曲过程
中的弹性变形。

根据材料的弹性模量(E)和截面惯量(I),计算板材的最大
应力(σ)和变形(δ)。

弹性计算公式为:
σ=E*y/r
δ=(E*y*t^2)/(6*r^2)
其中,σ是板材的最大应力;E是材料的弹性模量;y是中性面的距离;r是板材的曲率半径;δ是板材的变形;t是板材的厚度。

2.极限弯曲计算公式:
在板材弯曲过程中,当受力超过板材的弹性极限时,板材会产生塑性
变形。

极限弯曲计算公式用来计算板材在弯曲过程中的塑性变形。

根据计
算公式,可以计算出板材的截面模量(W)、弯曲应力(σ)和塑性变形(δ)。

极限弯曲计算公式为:
W=(b*h^2)/6
σ=(M*y)/W
δ=(4*M*y^2)/(E*W*h^2)
其中,W是板材的截面模量;b和h是板材的宽度和高度;M是弯矩;y是中性面的距离。

3.弯曲半径计算公式:
在实际工程中,板材的设计往往需要确定弯曲半径。

弯曲半径计算公式用来计算板材在弯曲过程中所需的最小弯曲半径。

根据计算公式,可以计算出最小弯曲半径(Rmin)。

弯曲半径计算公式为:
Rmin = K * t^2
其中,Rmin是最小弯曲半径;K是与材料特性相关的常数;t是板材的厚度。

以上是板材折弯计算的三种常用公式。

在实际应用中,可以根据具体的材料和板材尺寸,选择适合的计算公式来计算板材的应力和变形,从而进行合理的设计和生产。

钣金最大折弯半径

钣金最大折弯半径

钣金最大折弯半径
摘要:
一、折弯半径的定义和作用
二、钣金折弯半径的计算方法
三、影响折弯半径的因素
四、折弯半径的选择和应用
正文:
钣金最大折弯半径是指在钣金加工过程中,板材能够被弯曲的最大半径。

折弯半径的大小对于钣金件的加工质量和加工效率有着重要的影响,因此,在进行钣金加工时,需要合理地选择折弯半径。

钣金折弯半径的计算方法是根据板材的厚度、材质以及折弯机的压力等因素来确定的。

一般来说,折弯半径的计算公式为:R = t × √2,其中R 为折弯半径,t 为板材厚度。

根据这个公式,可以计算出钣金件的折弯半径。

影响折弯半径的因素主要有板材的厚度、材质、折弯机的压力和折弯模具的形状等。

在实际加工过程中,需要根据这些因素来调整折弯半径的大小,以确保钣金件的加工质量。

折弯半径的选择和应用是钣金加工中的重要环节。

选择合适的折弯半径可以提高钣金件的加工质量和加工效率,同时也可以减少钣金件的变形和损坏。

在实际应用中,需要根据钣金件的具体形状和加工要求来选择合适的折弯半径,以确保钣金件的加工质量。

总之,钣金最大折弯半径是一个重要的参数,它对于钣金件的加工质量和
加工效率有着重要的影响。

折弯系数就是板材在折弯以后被拉伸的长度

折弯系数就是板材在折弯以后被拉伸的长度

折弯系数就是板材在折弯以后被拉伸的长度.材料不同,板厚不同,采用的折弯模具不同,折弯系数也不同。

系数:钢板的产地不同及不同的折弯机,系数有差异,要根据实际情况确定系数先说明一下:1.折弯系数的算法通常以90度折弯来计算的,详细数据取决于折弯机刀槽和所应用钣金材质2.折弯系数包括两个定义(折弯扣除ΔΚ、折弯系数ΔΤ)即两种算法,但无论用哪种算法最后展开值是一致的3.具体算法是:折弯扣除ΔΚ等于外档尺寸相加减去展开长度L;折弯系数ΔΤ等于展开长度L减去内档尺寸之和即设折弯外形为L形,两外档尺寸分别为A、B内档尺寸为a、b展开长度为L 料厚为T则:ΔΚ=A+B-L;ΔΤ=L-(a+b) 推出ΔΚ=2T-ΔΤ4.本人上传一个折弯系数表供大家参考(实际是扣除表)具体值可参考实际更改,此格式不是太成熟,由于工作忙等抽空再做个更人性化的给大家,5.只要将表放到其他系统系数表文件夹里就可看到了,也可放一个固定位置浏览一下就行了6.再声明一下,具体的值要根据自己的折弯机和材料进行试验来确定的,不同厚度的材料扣除值是不同的,同厚度不同刀槽折的值也是不同的,不同材料的值也是不同的上模R角大小:未知V槽口尺寸:一般折弯用的V槽口尺寸为板恒つ 8倍计算折弯系数跟材料;折弯半径/板材厚度V口宽度及上模半径有关4m以下算内层的长度,4m到10m之间算中间层的长度,再以上,应该是中间偏上,就有系数了。

两个办法:1、根据实际结果和计算值,得出这种材料的中间层位置系数。

2、根据截面密度计算理论值,再修正。

1折弯系数确定的重要性在钣金加工中对零件展开料计算时工艺人员是凭经验确定折弯系数(即消耗量) 的不同工艺人员编制的工艺文件其确定的折弯系数也不相同。

通过查阅大部分的有关钣金加工手册也没有查到明确的公式来计算折弯系数只能查到不同折弯内圆弧的折弯系数而内圆弧与加工工艺芳案有关使用不同的折弯下模槽宽内圆弧也不相同从而导致工艺文件上无法确定折弯系数的正确值。

creo折弯系数的解读

creo折弯系数的解读

Creo折弯系数的解读引言C r eo是一款强大的计算机辅助设计软件,广泛应用于工程设计中。

其中,折弯系数是一个重要的概念,它在模具设计、产品工艺确定等方面具有重要意义。

本文将对C re o折弯系数进行解读,帮助读者更好地理解和应用该概念。

什么是折弯系数?折弯系数是描述材料在弯曲时产生弹性变形的一个参数。

它被广泛应用于板材折弯、金属加工等行业。

折弯系数通常用字母"K"表示,它的数值等于折弯力矩与折弯线矩形截面惯性矩的比值。

折弯系数的计算公式折弯系数的计算公式如下:K=M/(b*h^2/6)其中,K为折弯系数,M为折弯力矩,b为板材宽度,h为板材厚度。

折弯系数的作用折弯系数可以用来评估材料在折弯过程中的弯曲能力和变形程度。

通过合理选择折弯系数,可以使折弯过程更稳定,减少变形,提高产品质量。

在C re o中,折弯系数的合理选择对于产品工艺的确定至关重要。

如何选择合适的折弯系数?选择合适的折弯系数需要考虑以下几个因素:1.材料的弯曲性能不同材料具有不同的折弯性能,因此选择合适的折弯系数需要根据材料的特性进行判断。

一般来说,强度高、韧性好的材料适合选用较大的折弯系数,以减轻变形;而脆性材料则适合选用较小的折弯系数。

2.板材的尺寸板材的宽度和厚度对于折弯系数的选择也有一定影响。

一般来说,板材越宽、越厚,所选取的折弯系数就应该越大,以保证折弯过程的稳定性。

3.折弯工艺要求不同的产品折弯工艺要求也会对折弯系数的选择产生影响。

对于要求折弯变形小、几何形状精确的产品,则应选择较小的折弯系数;而对于要求弯曲角度大、变形不是主要考量的产品,则可以选用较大的折弯系数。

Cre o中的折弯系数应用在C re o中,选择合适的折弯系数是进行产品工艺确定的关键一环。

C r eo提供了丰富的工具和功能来帮助用户进行折弯系数的选择和应用。

首先,用户可以通过C re o的材料库来查询不同材料的折弯系数,并进行比较。

折弯展开系数表

折弯展开系数表

折弯展开系数表折弯展开系数表是在机械设计和制造过程中常见的一种工具,它可以帮助工程师计算金属薄板在折弯过程中的变形量和展开长度,从而确保制造出的零部件符合设计要求和精度要求。

接下来我们将从几个方面逐步介绍折弯展开系数表的使用方法和注意事项。

一、折弯展开系数的计算方法折弯展开系数是指在将金属薄板沿着折弯线轴线旋转一定角度后,其展开长度与原始长度的比值。

通俗地讲,它是一种与材料性质、板厚、折弯角度和半径等相关的系数。

计算方法如下:展开长度Lo = 折弯角度/π × 板厚× (2R + k × T)系数k的取值根据折弯角度和板材的弹性模量而定,通常在金属薄板折弯过程中取值为0.33。

R为凸模半径,T为金属板材厚度。

二、使用折弯展开系数表的步骤1、根据需要制作的零部件,确定所用的金属材料,板厚和折弯角度等参数。

2、准备一份折弯展开系数表,根据所用的金属材料和板厚,查找对应的折弯展开系数。

3、根据计算公式,计算出折弯线轴线旋转后的展开长度。

4、制作出相应的展开图并标注尺寸,检查符合设计要求和精度要求。

5、将薄板沿着折弯线加工成所需的零部件形状。

三、折弯展开系数表的注意事项1、不同金属材料和板厚的折弯展开系数不同,需按照实际情况查询和取用。

2、在进行折弯展开系数计算时,应准确测量金属板材厚度和凸模半径等参数。

3、在制作展开图和加工薄板时,应尽可能地减小误差,避免出现板材变形或尺寸偏差等问题。

4、在使用折弯展开系数表时,应注意保持工作环境的整洁和安全,避免发生意外伤害。

总之,折弯展开系数表是一种十分有用的工具,可以帮助机械设计师和制造工程师更好地控制金属薄板在折弯过程中的变形和尺寸精度,从而提高工作效率和工作质量。

但同时也需要注意各种参数的准确度和使用规范,确保制造出的零部件符合设计要求和实际应用要求。

钢板折弯计算公式

钢板折弯计算公式

1目的统一展开计算方法,做到展开的快速准确.2适用范围五金模厂3展开计算原理板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示.4计算方法展开的基本公式:展开长度=料内+料内+补偿量*****************************************4.1R=0,折弯角θ=90°(T<1.2,不含1.2mm)L=(A-T)+(B-T)+K=A+B-2T+0.4T上式中取:λ=T/4K=λ*π/2=T/4*π/2=0.4T图一*****************************************4.2R=0,θ=90°(T≧1.2,含1.2mm)L=(A-T)+(B-T)+K=A+B-2T+0.5T上式中取:λ=T/3K=λ*π/2=T/3*π/2=0.5T图二*****************************************L=(A-T-R)+(B-T-R)+(R+λ)*π/2(=A+B-2T-2R+(R+T/3)*π/2)当R≧5T时λ=T/21T≦R<5Tλ=T/30<R<Tλ=T/4(实际展开时除使用尺寸计算方法外,也可在确定中性层位置后,通过偏移再实际测量长度的方法.以下相同)图3*****************************************λ=T/3L=[A-T*tan(a/2)]+[B-T*tan(a/2)]+T/3*a(a单位为rad,以下相同)图4*****************************************L=[A-(T+R)*tan(a/2)]+[B-(T+R)*tan(a/2)]+(R+λ)*a当R≧5T时λ=T/21T≦R<5Tλ=T/30<R<Tλ=T/4图5*****************************************计算方法请示上级,实际计算时可参考以下几点原则:(1)当C≧5时,一般分两次成型,按两个90°折弯计算.(要考虑到折弯冲子的强度)L=A-T+C+B+2K【K=λ*α(α=90度时,α=π/2、λ=T/3如上)】(2)当3T<C<5时<一次成型>:L=A-T+C+B+K(3)当C≦3T时<一次成型>:L=A-T+C+B+K/2图6*****************************************C≦3T时<一次成型>:L=A-T+C+B+D+K图7*****************************************冲压展开原理(续上)4.8抽芽抽芽孔尺寸计算原理为体积不变原理,即抽孔前后材料体积不变;ABCD四边形面积=GFEA所围成的面积.一般抽孔高度不深取H=3P(P为螺纹距离),R=EF见图∵T*AB=(H-EF)*EF+π*(EF)2/4∴AB={H*EF+(π/4-1)*EF2}/T∴预冲孔孔径=D–2ABT≧0.8时,取EF=60%T.在料厚T<0.8时,EF的取值请示上级.图8*****************************************4.9方形抽孔方形抽孔,当抽孔高度较高时(H>Hmax),直边部展开与弯曲一致,圆角处展开按保留抽高为H=Hmax的大小套弯曲公式展开,连接处用45度线及圆角均匀过渡,当抽孔高度不高时(H≦Hmax)直边部展开与弯曲一致,圆角处展开保留与直边一样的偏移值.当R≧4MM时:材料厚度T=1.2~1.4取Hmax=4T材料厚度T=0.8~1.0取Hmax=5T材料厚度T=0.7~0.8取Hmax=6T材料厚度T≦0.6取Hmax=8T当R<4MM时,请示上级.图9*****************************************4.10压缩抽形1(Rd≦1.5T)原则:直边部分按弯曲展开,圆角部分按拉伸展开,然后用三点切圆(PA-P-PB)的方式作一段与两直边和直径为D的圆相切的圆弧.当Rd≦1.5T时,求D值计算公式如下:D/2=[(r+T/3)2+2(r+T/3)*(h+T/3)]1/2图10*****************************************4.11压缩抽形2(Rd>1.5T)原则:直边部分按弯曲展开,圆角部分按拉伸展开,然后用三点切圆(PA-P-PB)的方式作一段与两直边和直径为D的圆相切的圆弧.当Rd>1.5T时:l按相应折弯公式计算.D/2={(r+T/3)2+2(r+T/3)*(h+T/3)-0.86*(Rd-2T/3)*[(r+T/3)+0.16*(Rd-2T/3)]}1/2图11*****************************************4.12卷圆压平图(a):展开长度L=A+B-0.4T图(b):压线位置尺寸A-0.2T图(c):90°折弯处尺寸为A+0.2T图(d):卷圆压平后的产品形状图12*****************************************4.13侧冲压平图(a):展开长度L=A+B-0.4T图(b):压线位置尺寸A-0.2T图(c):90°折弯处尺寸为A+0.8T 图(d):卷圆压平后的产品形状*****************************************4.14综合计算如图:L=料内+料内+补偿量=A+B+C+D+中性层弧长(AA+BB+CC)(中性层弧长均按“中性层到板料内侧距离λ=T/3”来计算)图14*****************************************a标注公差的尺寸设计值:取上下极限尺寸的中间值作为设计标准值.b孔径设计值:一般圆孔直径小数点取一位(以配合冲头加工方便性),例:3.81取3.9.有特殊公差时除外,例:Φ3.80+0.050取Φ3.84.c产品图中未作特别标注的圆角,一般按R=0展开.附件一:常见抽牙孔孔径一览表图15*****************************************说明:1以上攻牙形式均为无屑式.2抽牙高度:一般均取H=3P,P为螺纹距离(牙距).3.内径:M3Φ2.75M3.50Φ3.20M4Φ3.65#6-32Φ3.10.4.以上抽牙和预冲孔孔径供参考,实际运用时要考察具体情况.5.以下3页附件为折弯计算的简易公式和折弯系数表。

2.0板材折弯因子

2.0板材折弯因子

2.0板材折弯因子是指在钣金加工中,对不同厚度的板材进行折弯时,需要考虑到材料的弹性回弹现象。

为了确保折弯后的形状和尺寸符合设计要求,需要引入一个折弯因子来修正折弯过程中产生的误差。

折弯因子的计算方法如下:
1. 首先,确定板材的厚度(t)和折弯角度(θ)。

2. 然后,根据材料的性质和折弯条件,查找或计算出相应的折弯系数(K)。

折弯系数通常可以在材料手册或相关技术资料中找到。

对于常见的冷轧钢板,其折弯系数一般在0.4-0.5之间。

3. 接下来,将折弯系数乘以板材的厚度,得到折弯因子(F):
F = K * t
4. 最后,在设计折弯模具时,将折弯因子应用于模具的尺寸计算中,以确保折弯后的形状和尺寸符合设计要求。

需要注意的是,折弯因子的取值会受到多种因素的影响,如材料的种类、折弯条件(如折弯速度、折弯半径等)、模具的设计等。

因此,在实际生产中,可能需要根据具体情况进行调整和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、展开计算原理
板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受
压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小,折弯角度增大时,变形
程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示.
二、计算方法
展开的基本公式:
展开长度=料内+料内+补偿量
1、 R=0,折弯角θ=90°(T<,不含;图一
L=A+B-2T+
2、R=0, θ=90° (T≧,含;图二
L=A+B-2T+
图一图二
3、R≠0 θ=90°;图三
L=(A-T-R)+(B-T-R)+(R+λ)*π/2
当R ≧5T时λ=T/2
1T≦R <5T λ=T/3
0 < R (实际展开时除使用尺寸计算方法外,也可在确定中性层位置后,通过偏移再实际测量
长度的方法.以下相同)
4、R=0 θ≠90°;图四
λ=T/3
L=[A-T*tan(a/2)]+[B-T*tan(a/2)]+T/3*a
(a单位为rad,以下相同)
图三图四
5、R≠0 θ≠90°;图五
L=[A-(T+R)* tan(a/2)]+[B-(T+R)*tan(a/2)]+(R+λ)*a
当R ≧5T时λ=T/2
1T≦R <5T λ=T/3
0 < R
6、 Z折1;图六
计算方法请示上级,实际计算时可参考以下几点原则:
(1)当C≧5时,一般分两次成型,按两个90°折弯计算.(要考虑到折弯冲子的强度) L=A-T+C+B+2K
(2)当3T<C<5时:
L=A-T+C+B+K
(3)当C≦3T时<一次成型>;
L=A-T+C+B+K/2
图五图六
7、 Z折2;图七
C≦3T时<一次成型>:
L=A-T+C+B+D+K
图七。

相关文档
最新文档