中考数学公式定理总结归纳大全(共8页,很实用!!!)
中考数学公式大全
中考数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab +b2.③a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n =n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x24b b ac-±-b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距)当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n个数x1,x2,…,x n,那么:平均数为:12......nx x xxn;12、频率与概率:(1)频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。
中考数学常用公式定理8页
中考数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③-(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3-)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=242b b aca-±-,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k <0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x x n+++=;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差: 数据1x 、2x ……,nx 的方差为2s ,则2s =()()()222121.....n x x x x x x n 轾-+-++-犏臌标准差:方差的算术平方根. 数据1x 、2x ……,nx 的标准差s,则s =()()()222121.....nx x xx xx n 轾-+-++-犏臌一组数据的方差越大,这组数据的波动越大,越不稳定。
初中数学知识点中考必背公式
初中数学知识点中考必背公式一、代数部分:1.二次方程的求根公式:对于一元二次方程ax^2+bx+c=0其中a≠0,Δ=b^2-4ac≥0,则求根公式为:x1=[-b+√(b^2-4ac)]/2ax2=[-b-√(b^2-4ac)]/2a2.二次函数的顶点坐标:对于二次函数y=ax^2+bx+c(a≠0),其顶点坐标为:横坐标x=-b/2a,纵坐标y=-Δ/4a3.因式分解公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2(a+b)(a-b)=a^2-b^24.平方差公式:a^2-b^2=(a+b)(a-b)5.和差化积公式:sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=(tanA±tanB)/(1∓tanAtanB)6.一些特殊角的正弦、余弦、正切值:sin30°=1/2,cos30°=√3/2,tan30°=1/√3 sin45°=cos45°=1/√2,tan45°=1sin60°=√3/2,cos60°=1/2,tan60°=√37.等差数列前n项和公式:Sn=n(a1+an)/28.等差数列通项公式:an=a1+(n-1)d9.等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)10.等比数列通项公式:an=a1*q^(n-1)11.绝对值的性质:-a,=,aab,=,a,*,ba/b,=,a,/,b二、几何部分:1.直角三角形的勾股定理:直角三角形的两个直角边的平方和等于斜边的平方,即a^2+b^2=c^22.等边三角形的边长关系:等边三角形的三条边相等3.等腰三角形的性质:等腰三角形的两底角相等,两腰相等4.两条平行线与两条截线的关系:两条平行线与另外两条非平行线(截线)形成的内角、外角相等5.锐角三角函数的定义:sinA=对边/斜边cosA=邻边/斜边tanA=对边/邻边6.三角形内角和公式:三角形的内角和等于180°,即A+B+C=180°7.角平分线定理:角平分线将一个角分为两个大小相等的角8.两角的和差公式:sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=(tanA±tanB)/(1∓tanAtanB)9.三角形面积公式:对于任意三角形ABC,其面积S可以由三边长度a、b、c计算:S=√[s(s-a)(s-b)(s-c)]其中,s=(a+b+c)/2为半周长10.弦切弧定理:圆内一弦的两个弦心角相等,一弦上的切线与此弦所对的弧上任一弦心角相等11.正三角形的面积公式:对于边长为a的正三角形,其面积S=(√3*a^2)/4三、概率统计部分:1.事件的概率公式:对于随机试验的事件A,事件A发生的概率为P(A)=事件A发生的次数/试验次数2.互斥事件的概率公式:对于互斥事件A和B,两事件发生的概率之和为P(A∪B)=P(A)+P(B)3.相互独立事件的概率公式:对于相互独立事件A和B,两事件同时发生的概率为P(A∩B)=P(A)*P(B)4.条件概率公式:对于事件A和事件B,已知事件B发生的情况下事件A发生的概率为P(A,B)=P(A∩B)/P(B)这里列举的只是初中数学常见到的一部分公式,而实际中考中会用到的公式还有很多,建议同学们在备考过程中广泛积累、熟练掌握各类公式,提高解题能力。
中考数学必用公式整理归纳
中考数学必用公式整理归纳中考数学中常常使用的公式有很多,为了方便记忆和应用,可以对这些公式进行整理归纳。
以下是一些中考数学常用的公式:1.等差数列求和公式:若等差数列的首项为a₁,公差为d,共有n项,则它的和S为:S=(a₁+aₙ)×n/22.等比数列求和公式:若等比数列的首项为a₁,公比为q,且,q,<1,共有n项,则它的和S为:S=a₁×(1-qⁿ)/(1-q)3.平方差公式:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²4.立方差公式:(a + b)³ = a³ + 3a²b + 3ab² + b³(a - b)³ = a³ - 3a²b + 3ab² - b³5.二次方程求根公式:对于一元二次方程ax² + bx + c = 0,其中a ≠ 0,它的解为:x₁ = (-b + √(b² - 4ac)) / (2a)x₂ = (-b - √(b² - 4ac)) / (2a)6.围长公式:正方形的周长为4s,其中s为边长。
长方形的周长为2(l+w),其中l为长,w为宽。
三角形的周长为a+b+c,其中a、b、c为三条边的长度。
7.三角函数公式:sin(a ± b) = sin a cos b ± cos a sin bcos(a ± b) = cos a cos b ∓ sin a sin btan(a ± b) = (tan a ± tan b) / (1 ∓ tan a tan b)8.三角函数和勾股定理的关系:sin²θ + cos²θ = 1tanθ = sinθ / cosθcotθ = 1 / tanθsecθ = 1 / cosθcscθ = 1 / sinθsin²θ / cos²θ = tan²θ1 + tan²θ = sec²θ1 + cot²θ = csc²θ9.平方根公式:√(a±b)=√a±√b10.解直角三角形的三角函数值:对于已知直角三角形的两个直角边a和b,斜边为c,可得以下三角函数值:sinθ = a / ccosθ = b / ctanθ = a / b。
中考数学定理与公式整理
中考数学定理与公式整理中考数学的定理与公式是学生们备考中考数学时需要掌握的重要内容之一、下面整理了一些中考数学的定理与公式,希望可以对学生们备考有所帮助。
1.在线段上任意截取一点,两个线段之间的关系:若在线段AB上截取一点C,那么AC+CB=AB。
2.直角三角形的性质:(1)若ABC为一个直角三角形,那么AB²=AC²+BC²。
(2)若AB²=AC²+BC²,那么ABC为一个直角三角形。
3.三角形的性质:(1)三角形内角和为180度:∠A+∠B+∠C=180°。
(2)锐角三角形的边长关系:a²+b²>c²。
(3) 利用正弦定理求三角形的边长关系:a/sinA = b/sinB = c/sinC。
(4) 利用余弦定理求三角形的边长关系:a² = b² + c² - 2bc*cosA。
(5) 利用正弦定理求三角形的面积:S = (1/2)bc*sinA。
4.同位角的性质:(1)同位角的和、差、积、商仍为同位角。
(2)同位角对应的边平行。
5.锐角三角函数的性质:(1) 正弦函数:sinA = 对边/斜边。
(2) 余弦函数:cosA = 邻边/斜边。
(3) 正切函数:tanA = 对边/邻边。
(4) 两个三角函数之间的关系:tanA = sinA/cosA。
6.平行线与三角形的关系:(1)平行线分线段成比例:若AB//CD,那么AD/BC=AC/BD。
(2)平行线分线段成比例与重合相似三角形的关系:若AB//CD,那么△ABC∽△ACD。
7.全等三角形的判定条件:(1)SSS判定条件:若△ABC≌△DEF,那么AB/DE=BC/EF=AC/DF。
(2)SAS判定条件:若△ABC≌△DEF,且AB/DE=BC/EF,那么∠ABC=∠DEF。
(3)ASA判定条件:若△ABC≌△DEF,且∠BAC=∠EDF,那么BC/EF=AC/DF。
(完整版)初中数学定理、公式归纳汇总
初中数学定理、公式归纳汇总1、过两点有且只有一条直线。
2、两点之间线段最短。
3、同角或等角的补角相等;同角或等角的余角相等。
4、过一点有且只有一条直线和已知直线垂直。
5、直线外一点与直线上各点连接的所有线段中,垂线段最短。
6、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
7、如果两条直线都和第三条直线平行,这两条直线也互相平行。
8、同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
9、两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
10、定理:三角形两边的和大于第三边。
推论:三角形两边的差小于第三边。
11、三角形内角和定理三角形三个内角的和等于180°。
推论1:直角三角形的两个锐角互余。
推论2:三角形的一个外角等于和它不相邻的两个内角的和。
推论3:三角形的一个外角大于任何一个和它不相邻的内角。
12、全等三角形的对应边、对应角相等。
13、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等。
14、角边角公理(ASA):有两角和它们的夹边对应相等的两个三角形全等。
推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等。
15、边边边公理(SSS):有三边对应相等的两个三角形全等。
16、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等。
17、定理:在角的平分线上的点到这个角的两边的距离相等。
逆定理:到一个角的两边的距离相同的点,在这个角的平分线上。
角的平分线是到角的两边距离相等的所有点的集合。
18、等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边。
推论2:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。
推论3:等边三角形的各角都相等,并且每一个角都等于60°。
19、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)推论1:三个角都相等的三角形是等边三角形。
中考数学重点公式定理全面总结汇总
中考数学重点公式全面定理总结1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理:经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理:三角形两边的和大于第三边16 推论:三角形两边的差小于第三边17 三角形内角和定理:三角形三个内角的和等于180°18 推论1:直角三角形的两个锐角互余19 推论2:三角形的一个外角等于和它不相邻的两个内角的和20 推论3:三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理:有两边和它们的夹角对应相等的两个三角形全等23 角边角公理:有两角和它们的夹边对应相等的两个三角形全等24 推论:有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理:有三边对应相等的两个三角形全等26、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27、定理1在角的平分线上的点到这个角的两边的距离相等28、定理2到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和高互相重合33、推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形36、推论2有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1关于某条直线对称的两个图形是全等形43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51 推论:任意多边的外角和等于360°52 平行四边形性质定理1:平行四边形的对角相等53 平行四边形性质定理2:平行四边形的对边相等54 推论:夹在两条平行线间的平行线段相等55 平行四边形性质定理3:平行四边形的对角线互相平分56 平行四边形判定定理1:两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2:两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3:对角线互相平分的四边形是平行四边形59 平行四边形判定定理4:一组对边平行相等的四边形是平行四边形60 矩形性质定理1:矩形的四个角都是直角61 矩形性质定理2:矩形的对角线相等62 矩形判定定理1:有三个角是直角的四边形是矩形63 矩形判定定理2:对角线相等的平行四边形是矩形64 菱形性质定理1:菱形的四条边都相等65 菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1:四边都相等的四边形是菱形68 菱形判定定理2:对角线互相垂直的平行四边形是菱形69 正方形性质定理1:正方形的四个角都是直角,四条边都相等70 正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1:关于中心对称的两个图形是全等的72 定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理:等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比96 性质定理:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理:不在同一直线上的三个点确定一条直线110 垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧111 推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112 推论2:圆的两条平行弦所夹的弧相等113 圆是以圆心为对称中心的中心对称图形114 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116 定理:一条弧所对的圆周角等于它所对的圆心角的一半117 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120 定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121 ①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r122 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线123 切线的性质定理:圆的切线垂直于经过切点的半径124 推论1:经过圆心且垂直于切线的直线必经过切点125 推论2:经过切点且垂直于切线的直线必经过圆心。
中考数学公式大全
初中数学常用公式定理(务必全部理解并记住)1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.-如:π,-…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a ≥0丨a 丨=a ;a ≤0丨a 丨=-a .如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 4、把一个数写成±a ×10n的形式(其中1≤a <10,n 是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a +b )(a -b )=a 2-b 2.②(a ±b )2=a 2±2ab +b 2.③a 2+b 2=(a +b )2-2ab ,(a -b )2=(a +b )2-4ab . 6、幂的运算性质:①a m ×a n =a m +n.②a m ÷a n =a m -n .③(a m )n =a mn .④(ab )n =a n b n.⑤()n=n .⑥a -n =1na ,特别:()-n =()n .⑦a 0=1(a ≠0).如:a 3×a 2=a 5,a 6÷a 2=a 4,(a 3)2=a 6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)o=1,-(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=-(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=242b b aca-±-,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x -x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距)当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数. ③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n 个数x 1,x 2,…,x n ,那么:平均数为:12......nx x x x n+++=;12、频率与概率:(1)频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。
中考数学高频定理公式
中考数学高频定理公式中考数学中,有一些定理公式是非常重要且高频出现的,同学们在备考过程中要熟练运用这些定理公式。
一、几何常识与定理1.重心定理:三角形的三条中线交于一点,该点称为重心。
2.中线定理:三角形的中线上的那个点,将中线分为两段,其中一段的长度是另一段长度的2倍。
3.垂心定理:三角形的三条高交于一点,该点称为垂心。
4.相似三角形的性质:对应角相等,对应边成比例。
5.三角形的面积公式:三角形的面积等于底乘以高的一半。
6.直角三角形的勾股定理:直角三角形的斜边的平方等于两边的平方和。
7.常见勾股数:(3,4,5)、(5,12,13)、(8,15,17)。
二、代数运算1.分配律:a*(b+c)=a*b+a*c。
2.因式分解公式:差的平方可以分解为两个数的乘积,例如:a²-b²=(a+b)(a-b)。
3. 完全平方公式:两个含有平方的项相加可以化简为一个完全平方,例如:a²+2ab+b² = (a+b)²。
4. 二次方程两根之和与两根之积:对于二次方程ax²+bx+c=0,两根之和为-b/a,两根之积为c/a。
5.平方差公式:两个含有平方的项相减可以化简为一个平方差,例如:a²-b²=(a+b)(a-b)。
6. 二次函数顶点坐标:对于二次函数y=ax²+bx+c,顶点坐标为(-b/2a, f(-b/2a))。
三、概率与统计1.事件概率:事件A发生的概率P(A)等于事件A的可能性总数除以总的样本空间的可能性总数。
2.相反事件的概率:事件A的对立事件A'发生的概率为1减去事件A发生的概率,即P(A')=1-P(A)。
3.和事件的概率:P(AUB)=P(A)+P(B)-P(AB)。
4.互斥事件的概率:互斥事件A和B之间没有共同的样本点,即P(AB)=0,P(AUB)=P(A)+P(B)。
5.条件概率:事件A在事件B已经发生的条件下发生的概率定义为P(A,B)=P(AB)/P(B)。
初三初中数学常用公式与定理
初三初中数学常用公式与定理1. 数学常用公式在初三初中数学学习中,常用公式对于解题和计算非常重要。
下面列举了一些常用的数学公式:1.1 代数公式- 两个数的乘积等于它们的最大公约数与最小公倍数的积:a × b = [a, b] × (a,b)- 平方差公式:(a + b)(a - b) = a^2 - b^2- 一元二次方程求根公式:x = (-b ± √(b^2 - 4ac)) / 2a1.2 几何公式- 三角形周长公式:P = a + b + c(a、b、c为三角形的三边)- 三角形面积公式:S = 1/2 ×底边 ×高- 圆的周长公式:C = 2πr(r为圆的半径)- 圆的面积公式:S = πr^21.3 概率公式- 事件的概率:P(A) = n(A) / n(S)(n(A)为事件A发生的次数,n(S)为样本空间的元素个数)- 互斥事件的概率:P(A ∪ B) = P(A) + P(B)2. 数学常用定理2.1 代数定理- 乘法交换律:a × b = b × a- 加法结合律:(a + b) + c = a + (b + c)- 分配律:a × (b + c) = a × b + a × c2.2 几何定理- 直角三角形勾股定理:c^2 = a^2 + b^2(c为斜边,a和b为两直角边)- 三角形内角和定理:三角形的三个内角的和为180°- 对角线定理:平行四边形的对角线互相平分2.3 梅钦定理- 若一个集合A是集合B的子集,且集合B是集合C的子集,则集合A一定是集合C的子集3. 数学常用定律3.1 代数定律- 同号相乘,异号相乘:正 ×正 = 正、负 ×负 = 正、正 ×负 = 负- 零乘任何数等于零:0 × a = 03.2 几何定律- 同位角定理:同位角互等,即对应角、内错角、同旁内角相等- 对顶角定理:对顶角互等,即顶角和底角互补以上列举的公式、定理和定律只是初三初中数学学习中的一部分常用内容,希望能够对你的学习有所帮助。
中考数学公式大全
初中数学常用公式定理(务必全部理解并记住)1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=am+n.②a m÷a n=a m-n.③(am)n=amn.④(ab)n=a n b n.⑤()n=-n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x24b b ac-±-=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距)当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n个数x1,x2,…,x n,那么:平均数为:12......nx x xxn;12、频率与概率:(1)频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。
中考数学公式大全
中考数学公式大全1.代数公式:- 二次方程求根公式:对于一元二次方程ax²+bx+c=0,求根公式为x=(-b±√(b²-4ac))/(2a)。
- 四平方恒等式:(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²,(a+b)(a-b)=a²-b²。
-同底数幂相乘:a^m*a^n=a^(m+n)。
-同底数幂相除:(a^m)/(a^n)=a^(m-n)。
-同底数幂相乘的幂:(a^m)^n=a^(m*n)。
-平方差公式:(a+b)(a-b)=a²-b²。
- 绝对值符号:,a-b,=,b-a,ab,=,a,*,b。
-分数的加减:(a/b)+(c/d)=((a*d)+(b*c))/(b*d),(a/b)-(c/d)=((a*d)-(b*c))/(b*d)。
- 乘法公式:(a+b)(c+d)=ac+ad+bc+bd。
- 倍角公式:sin2θ = 2sinθ*cosθ,cos2θ = cos²θ - sin²θ。
- 三角恒等式:sin(α±β) = sinα*cosβ±cosα*sinβ,cos(α±β) = cosα*cosβ∓sinα*sinβ。
- 三角函数平方和差化积:sin²θ = (1-cos2θ)/2,cos²θ =(1+cos2θ)/22.几何公式:-长方形的周长和面积:周长=2*(长+宽),面积=长*宽。
-正方形的周长和面积:周长=4a,面积=a²,其中a为边长。
- 三角形的周长和面积:周长=a+b+c,其中a、b、c为三角形的三条边长;海伦公式:面积=sqrt[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2为半周长。
-直角三角形的勾股定理:a²+b²=c²,其中a和b为两个直角边的长度,c为斜边的长度。
中考数学--复习公式定理大全
中考数学--复习公式定理大全一、数学性质1、一元二次方程根的情况△=b2-4ac(前提必须化成一般形式ax2+bx+c=0)当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相等的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫它的对角线。
③平行四边形的对边相等并且平行,对角相等,邻角互补。
④平行四边形的对角线互相平分。
3、菱形:①一组邻边相等的平行四边形是菱形②领形的四条边相等,对边平行,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义、对角线互相垂直的平行四边形、四条边都相等的四边形。
4、矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等且平分,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的所有性质。
⑤一组邻边相等的矩形是正方形,有一个角是直角的菱形是正方形。
5、多边形:①n边形的内角和等于(n-2)180°②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的外角和多边形的外角和都等于360度。
6、平均数:7、加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
8、方差公式:二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线与已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,那么这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等全等三角形的判定方法:22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等角平分线的性质:27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相等的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合等腰(边)三角形的性质:30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°等腰(边)三角形的判定:34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半。
(完整版)中考数学常用公式和定理大全.docx
11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做 个体.从总体中抽取的一部份个体叫做总体的一个 样本,样本中个体的数目叫做样本容量.② 在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的 众数.③将一组数据按大小顺序排列,把处在最中间的一 个数(或两个数的平均数)叫做这组数据的 中位数.(2 )公式:设有n 个数X1 , X2 , ■■- , Xn ,那么:-X1 + X2 + ……+ XnX = ----------- n②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差, 即:极差=最大值-最小值; ③方差:2 n| 2 1- 2- 2- 2数据Xi 、X 2……,Xn 的方差为S ,则S = _ Xi X X 2 X ..... X n Xn标准差:方差的算术平方根 数据 Xi 、X2……,Xn 的标准差 s,则 S= /- X1 X X 2 X ..... X n X —组数据的方差越大,这组数据的波动越大,越不稳定。
12、 频率与概率:(1 )频率=频数,各小组的频数之和等于总数,各小组的频率之和等于1 ,频率分布直方图中各个小长总数方形的面积为各组频率。
(2 )概率①如果用P 表示一个事件 A 发生的概率,则P (必然事件)=1 ; P (不可能事件)=0 ;② 在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。
③大量的重复实验时频率可视为事件发生概率的估计值;13、 锐角三角函数 :①设/ A 是RSABC 的任一锐角,则/ A 的正弦:sinA-辎吁边,/ A 的余弦:cosA -三摆■拦 ,/ A< sinA< 1 , 0< cosA< 1 , tanA> 0 . z A 越大,z A 的正弦和正切值越大,余弦值反而越小.② 余角公式:sin( 90o - A) = cosA , cos( 90o - A) = sinA .③特殊角的三角函数值: sin30o = cos60o = \ , sin45o = cos45o =牛,sin60o = cos30o =卓,tan30o=卓,tan45o = 1 , tan60o =/ 铅垂高度 hhh④斜坡的坡度:i= == .设坡角为a ,则i=tana==.水平宽度 ,1__________I①平均数为: 的正切:A SO 对边 tanA = 2S5W.并且sin 2A +中考数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3 ,可,0.231 , 0.737373■•- , y歹,炉节.无限不环循小数叫做无理数.如:TT ,- , 0.1010010001 ■•-(两个1之间依次多1个0) .有理数和无理数统称为实数.2、绝对值:a>(» I a I = a ; a<0« lai = - a .如:I - ^2 \ = \ \ 3.14 - TT I =TT -3.14 .3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060 ,结果有两个有效数字6,0.4、把一个数写成土ax1()n的形式(其中lMa< 10 , n是整数),这种记数法叫做科学记数法.如:-40700=-4.07x 105, 0.000043 = 4.3 X0-5.5、乘法公式(反过来就是因式分解的公式):①(a + b)( a - b) = a2 - b2 .②(a±b)2= a2±2ab+ b? .③(a + b)( a2 - ab + b2) = a3+ b3 .(4)(a - b)( a2 + ab + b2) = a3 - b3; a2 + b2 = (a + b)2 - 2ab , (a-b)2=(a + b)2 -4ab .t.6、皋的运算性质:① a mx a n= am+n .②a n = am-n •③(am)n= a mn . (4) (ab)n = a n b n•⑤(-)n=n .⑥a n=—,特别:($ -「= (§n ⑦a』1(a*0).如:a3xa2 = a5 , a6-e-a2 = a4 , (a3)2 = a6 , (3a3)3 = 27a9 ,a nI i 1 n □(-3)'1= - T)5'2= 37 = ^, (3) '2 = ( 2)2= 4 - 3.14)。
中考数学公式大全
中考数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab +b2.③a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤(-)n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=242b b aca-±-,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a 和b 为根的一元二次方程是x 2-(a +b )x +ab =0.9、一次函数y =kx +b (k ≠0)的图象是一条直线(b 是直线与y 轴的交点的纵坐标即一次函数在y 轴上的截距)当k >0时,y 随x 的增大而增大(直线从左向右上升); 当k <0时,y 随x 的增大而减小(直线从左向右下降).特别:当b =0时,y =kx (k ≠0)又叫做正比例函数(y 与x 成正比例),图象必过原点. 10、反比例函数y =(k ≠0)的图象叫做双曲线.当k >0时,双曲线在一、三象限(在每一象限内,从左向右降); 当k <0时,双曲线在二、四象限(在每一象限内,从左向右上升). 因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数. ③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n 个数x 1,x 2,…,x n ,那么:平均数为:12......nx x x x n+++=;12、频率与概率:(1)频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。
中考数学公式定理总结
中考数学公式定理总结中考数学公式定理总结1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理:经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理:三角形两边的和大于第三边16 推论:三角形两边的差小于第三边17 三角形内角和定理:三角形三个内角的和等于180°18 推论1:直角三角形的两个锐角互余19 推论2:三角形的一个外角等于和它不相邻的两个内角的和20 推论3:三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理:有两边和它们的夹角对应相等的两个三角形全等23 角边角公理:有两角和它们的夹边对应相等的两个三角形全等24 推论:有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理:有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1:在角的平分线上的点到这个角的两边的距离相等28 定理2:到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理:等腰三角形的两个底角相等31 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3:等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1:三个角都相等的三角形是等边三角形36 推论2:有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理:线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1:关于某条直线对称的两个图形是全等形43 定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47 勾股定理的逆定理:如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n边形的内角的和等于(n-2)×180°51 推论:任意多边的外角和等于360°52 平行四边形性质定理1:平行四边形的对角相等53 平行四边形性质定理2:平行四边形的对边相等54 推论:夹在两条平行线间的平行线段相等55 平行四边形性质定理3:平行四边形的对角线互相平分56 平行四边形判定定理1:两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2:两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3:对角线互相平分的四边形是平行四边形59 平行四边形判定定理4:一组对边平行相等的四边形是平行四边形60 矩形性质定理1:矩形的四个角都是直角61 矩形性质定理2:矩形的对角线相等62 矩形判定定理1:有三个角是直角的四边形是矩形63 矩形判定定理2:对角线相等的平行四边形是矩形64 菱形性质定理1:菱形的四条边都相等65 菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1:四边都相等的四边形是菱形68 菱形判定定理2:对角线互相垂直的平行四边形是菱形69 正方形性质定理1:正方形的四个角都是直角,四条边都相等70 正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1:关于中心对称的两个图形是全等的72 定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理:等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理:不在同一直线上的三个点确定一条直线110 垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧111 推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112 推论2:圆的两条平行弦所夹的弧相等113 圆是以圆心为对称中心的中心对称图形114 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116 定理:一条弧所对的圆周角等于它所对的圆心角的一半117 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120 定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121 ①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r122 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线123 切线的性质定理:圆的切线垂直于经过切点的半径124 推论1:经过圆心且垂直于切线的直线必经过切点125 推论2:经过切点且垂直于切线的直线必经过圆心126 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127 圆的外切四边形的两组对边的和相等128 弦切角定理:弦切角等于它所夹的弧对的圆周角129 推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等131 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133 推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134 如果两个圆相切,那么切点一定在连心线上135 ①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)136 定理:相交两圆的连心线垂直平分两圆的公共弦137 定理:把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138 定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139 正n边形的每个内角都等于(n-2)×180°/n140 定理:正n边形的半径和边心距把正n边形分成2n 个全等的直角三角形141 正n边形的面积Sn=pnrn/2p表示正n边形的周长142 正三角形面积√3a/4a表示边长143 如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144 弧长计算公式:L=n∏R/180145 扇形面积公式:S扇形=n∏R/360=LR/2146 内公切线长=d-(R-r)外公切线长=d-(R+r)。