圆锥曲线离心率和焦点三角形
圆锥曲线焦点三角形的三大问题(解析版)
圆锥曲线焦点三角形的三大问题一、焦点三角形定义:椭圆与双曲线有对称中心,称为有心圆锥曲线.有心圆锥曲线上一点与两焦点构成的三角形叫做有心圆锥曲线的焦点三角形.其中我们把椭圆短轴的一个端点与两个焦点构成的等腰三角形称之为椭圆的特征焦点三角形1.焦点三角形的角度与离心率问题离心率是椭圆的一个非常重要的定型的量,椭圆的离心率与焦点三角形中的某些量存在关系:图1图2图3图4结论1:如图1,设21,F F 是椭圆)0(12222>>=+b a by a x 的左右焦点,点P 是椭圆上不同于左右顶点的任意一点,21PF F ∠的角平分线交x 轴于点M ,则椭圆的离心率2211PF MF PF MF e ==证明:由角平分线定理及和比定理得==2211PF MF PF MF e ac PF PF MF MF ==++222121结论2:如图2,设21,F F 是椭圆)0(12222>>=+b a by a x 的左右焦点,点P 是椭圆上不同于左右顶点的任意一点,I 为21F PF ∆的内心,PI 的延长线交x 轴于点M ,则椭圆的离心率IPIM e =证明:在M PF 1∆和M PF 2∆中由角平分线定理的2211,PF MF IPIM PF MF IPIM ==所以e acPF PF MF MF PF MF PF MF IPIM ==++===2221212211结论3:如图3,设21,F F 是椭圆)0(12222>>=+b a by a x 的左右焦点,点P 是椭圆上不同于左右顶点的任意一点,α=∠21F PF ,β=∠12F PF ,则椭圆的离心率βαβαsin sin )sin(++=e 证明:由正弦定理可知βαβαsin sin )sin(222121++=+==PF PF F F a c e 结论4:如图4,设21,F F 是双曲线)0,0(12222>>=-b a by a x 的左右焦点,点P 是双曲线上不同于左右顶点的任意一点,α=∠21F PF ,β=∠12F PF ,则双曲线的离心率βαβαsin sin )sin(-+=e 证明:由正弦定理可知βαβαsin sin )sin(222121-+=-==PF PF F F a c e 结论5:如图5,设21,F F 是椭圆)0(12222>>=+b a by a x 的左右焦点,点P 是椭圆上不同于左右顶点的任意一点,21PF F ∠的外角平分线交x 轴于点M ,α=∠2MPF ,β=∠2PMF ,则椭圆的离心率βαcos cos =e 证明:由正弦定理得βαβαααβαβααcos cos cos sin 2cos sin 2)sin()sin(2sin 222121==-++=+==PF PF F F a c e 结论6:圆锥曲线中,过焦点F 且不垂直于坐标轴的弦为AB ,其垂直平分线和焦点所在坐标轴交于点R ,则ABFR e 2=证明:设),(),,(2211y x B y x A ,AB 中点),(00y x M ,则02122)(2ex a x x e a AB +=++=由点差法(过程略)得02022200y a x b k a b x y k k k AB AB OMAB -=⇒-=⋅=所以AB 的中垂线:)(002020x x x b y a y y -=-,令0=y 得022020x e ax b x x R =-=,所以c x e c x FR R +=+=02,所以222002eex a c x e AB FR=++=,所以ABFR e 2=典例分析例1.设椭圆的两个焦点分别为21,F F ,以21F F 为直径的圆与椭圆交于点P ,且=∠12F PF 215F PF ∠,则椭圆的离心率为()A.22B.23 C.32 D.36解析:由题意01202102175,15,90=∠=∠=∠F PF F PF PF F 所以3662426426175sin 15sin 90sin 000==++-=+=e ,故选D 例2.已知21,F F 是椭圆)0(12222>>=+b a by a x 的左右焦点,若椭圆上存在点P 使21PF PF ⊥,则该椭圆的离心率的取值范围为()A.)1,55[B.)1,22[C.]55,0( D.]22,0(解析:要使存在点P 使得21PF PF ⊥,只需当点P 在短轴端点时021902≥=∠θPF F 所以22sin ≥=θe ,所以122<≤e ,故选B 例3.已知椭圆192522=+y x 和双曲线)0,0(12222>>=-b a by a x 有共同焦点21,F F ,P 是它们的一个交点,且321π=∠PF F ,则双曲线的离心率为解法1:由题意知椭圆的离心率541=e ,又1434116cos 6sin 2221222212=+⇒=+e e e e ππ所以131341436425222=⇒=+e e 解法2:由题意知4=c ,由330cot 30tan 92221=⇒==b b S F PF ,所以13222=-=b c a所以13134134===a c e 例4.(2022·广西柳州·模拟预测(理))如图1所示,双曲线具有光学性质;从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E :)0,0(12222>>=-b a b y a x 的左、右焦点分别为21,F F ,从2F 发出的光线经过图2中的B A ,两点反射后,分别经过点C 和D ,且53cos -=∠BAC ,BD AB ⊥,则E 的离心率为()A.25 B.317 C.210 D.5解析:由题意知53cos 1=∠BAF ,AB B F ⊥1,可设4,3,511===BF AB AF ,由双曲线定义知3264434511=⇒=⇒=-+=-+a a a AB BF AF 所以1,222==BF AF ,由勾股定理得172=c ,所以==a c e 22317,故选B 例5.已知双曲线)0,0(12222>>=-b a by a x 左、右焦点分别为)0,(),0,(21c F c F -,若双曲线右支上存在点P 使得1221sin sin F PF cF PF a ∠=∠,则离心率的取值范围为()A.)12,0(-B.)1,12(- C.)12,1(+ D.),12(+∞+解析:由正弦定理及1221sin sin F PF cF PF a ∠=∠得a c a PF a a c PF c PF a -=⇒-==221222又a c PF ->2,所以a c ac a ->-221221+<<-⇒e ,又1>e ,所以121+<<r 故选C例6.(2022·河南开封·高二期末)已知21,F F 是椭圆C :)0(12222>>=+b a by a x 的左、右焦点,O 为坐标原点,点M 是C 上点(不在坐标轴上),点N 是2OF 的中点,若MN 平分21MF F ∠,则椭圆C 的离心率的取值范围是()A.)1,21( B.)21,0( C.)1,31( D.)31,0(解析:由角平分线定理得321232121===c c MF MF PF PF ,又a PF PF 221=+,所以a PF 212=又c a PF c a +<<-2,所以2121>⇒+<<-e c a a c a ,又1<e ,所以121<<e ,选A二、焦点三角形面积公式及其应用有心圆锥曲线(椭圆、双曲线)上一点与有心圆锥曲线的两个焦点构成的三角形,称为有心圆锥曲线的焦点三角形.接下来利用圆锥曲线的定义,结合正弦定理、余弦定理等知识推导焦点三角形的面积公式,并举例说明其应用结论7:椭圆的焦点三角形面积公式:设椭圆)0(12222>>=+b a b y a x 的左右焦点为21,F F ,点),(00y x P 为椭圆上不同于左右顶点的任意一点,θ=∠21PF F ,则21F PF ∆的面积为r c a b y c PF PF S F PF )(2tan sin 21202121+====∆θθ(其中r 为21F PF ∆的内切圆半径)证明:略结论8:双曲线焦点三角形面积公式:设双曲线)0,0(12222>>=-b a by a x 的左右焦点为21,F F ,点),(00y x P 为双曲线上不同于左右顶点的任意一点,θ=∠21PF F ,则21F PF ∆的面积为2cot sin 21202121θθb y c PF PF S F PF ===∆证明:略典型例题例1.设P 为椭圆16410022=+y x 上一点,21,F F 是其左右焦点,若321π=∠PF F ,则21F PF ∆的面积为解析:33646tan6421==∆πF PF S 例2.已知双曲线116922=-y x 的左、右集点分别为21,F F ,若双曲线上点P 使02190=∠PF F ,则21F PF ∆的面积是()A.12B.16C.24D.32解析:1645cot 16021==∆F PF S ,故选B例3.(2020新课标Ⅰ)设21,F F 是双曲线C :1322=-y x 的两个焦点,O 坐标原点,点P在C 上且2=OP ,则21F PF ∆的面积为()A.27 B.3C.25 D.2解析:由题意知221===OP OF OF ,所以02190=∠PF F ,所以345cot 3021==∆F PF S 故选B例4.(2022城厢区校级期中)已知21,F F 是椭圆C :)0(12222>>=+b a by a x 的两个焦点,P是椭圆C 上的一点,若321π=∠PF F ,且21F PF ∆的面积为33,则=b ()A.2B.3C.6D.9解析:9336tan2221=⇒==∆b b S F PF π3=⇒b ,故选B 例5.(2022连城县校级期中)已知21,F F 是椭圆C :)0(12222>>=+b a by a x 的两个焦点,P是椭圆C 上的一点,3221π=∠PF F ,若21F PF ∆的面积为39,则=b ()A.9B.3C.4D.8解析:9393tan2221=⇒==∆b b S F PF π3=⇒b ,故选B 例6.(2020·新课标Ⅲ)设双曲线C :)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,离心率为5,P 是C 上的一点,且21PF PF ⊥,若21F PF ∆的面积为4,则=a ()A.1B.2C.4D.8解析:由2445cot 0221=⇒==∆b b S F PF ,又1541)(122=⇒=+=+=a a ab e ,故选A 例7.(2022·安徽省亳州市第一中学高月考)已知双曲线)0,0(12222>>=-b a by a x ,过原点的直线与双曲线交于B A ,两点,以线段AB 为直径的圆恰好过双曲线的右焦点F ,若ABF ∆的面积为22a ,则双曲线的离心率为()A.2B.3C.2D.5解析:连接11,BF AF ,易知BF AF 1为平行四边形,又090=∠AFB ,所以0190=∠AF F 所以2245cot 22221=⇒==∆ab a b S FAF ,所以5)(12=+=a b e ,故选D例8.(2022·吉林吉林·高三期末)已知P 是椭圆)0(12222>>=+b a by a x 上一动点,21,F F 是椭圆的左、右焦点,当321π=∠PF F 时,3421=∆F PF S ,当线段1PF 的中点落到y 轴上时,34tan 21=∠PF F ,则点P 运动过程中,2111PF PF +的取值范围是()A.]32,21[ B.]32,158(C.158,21[ D.)32,21[解析:由12346tan2221=⇒==∆b b S F PF π,当线段1PF 的中点落到y 轴上时,x PF ⊥2轴,所以a b PF 22=,所以342tan 222121===∠b ac PF F F PF F 8=⇒ac ,又2212c a +=所以162=a ,所以21212121811PF PF PF PF PF PF PF PF =+=+,而]6,2[1∈PF ,所以]16,12[16)4()8(211121∈+--=-=PF PF PF PF PF ,所以∈=+2121811PF PF PF PF 32,21[,故选A例9.已知点F 是双曲线C :)0,0(12222>>=-b a by a x 的左焦点,P 为C 右支上一点.以C 的实轴为直径的圆与线段PF 交于B A ,两点,且B A ,是线段PF 的三等分点,则C 的渐近线方程为()A.x y 31±= B.x y 526±= C.x y 1225±= D.x y 597±=解析:设AB 的中点为M ,t BM AM ==,则t PB A F 21==,22t a OM -=所以2222t a PF -=,21PF PF ⊥,所以a t a t PF PF 2262221=--=-a t 53=⇒由勾股定理得2597257292222222212=⇒+=-+=+=e a a t a t OM M F c 又5262597)(122=⇒=+=a b abe ,故选B 三、焦点三角形内切圆的性质在圆锥曲线的考查中,焦点三角形是考查椭圆与双曲线第一定义的良好载体.焦点三角形结合圆,这样的试题难度一定不会小,往往还涉及中位线、角平分线、中垂线、相似等平面几何的知识.接下来归纳椭圆、双曲线焦点三角形内切圆的相关性质,并作进一步的引申和推广椭圆的焦点三角形指的是椭圆上一点与椭圆的两个焦点所连接成的三角形.椭圆的焦点三角形问题,可以将椭圆定义和性质、三角形的几何性质以及解三角形等进行有机结合.圆是平面几何中非常重要的研究对象,焦点三角形的内切圆问题对于问题转化能力、几何性质的应用能力、数形结合能力提出了更高维度的要求,是解析几何综合问题重点考察内容之一下面先看椭圆焦点三角形内切圆的三个性质:如图1,设21,F F 是椭圆C :)0(12222>>=+b a by a x 的左右焦点,点P 是椭圆上不同于左右顶点的任意一点,21F PF ∆的内切圆圆心为),(I I y x I ,且圆I 与21F PF ∆三边相切于点H E D ,,,设),(00y x P ,则有如下性质:性质1:ca PE PD -==证明:由切线长定理得PE PD =,H F D F 11=,EF PE 2=ca H F H F E F PE D F PD c a F F PF PF 222221212121-=--+++⇒-=-+所以ca PE PD -==性质2:0ex x I =,eey y I +=10,其中e 的椭圆的离心率证法1:⇒-=+-+⇒-==-c a c x ex a c a PD H F PF I )(0110ex x I =eeyc a cy y y c a y c S I I F PF +=+=⇒+==∆1)(00021证法2:设),(00y x P ,则0101,ex a PF ex a PF -=+=由内心的坐标公式得000022)()()(2ex c a c ex a c ex a cx x I =+-⨯-+⨯++=,eeyc a cy y I +=+=122200性质3:椭圆焦点三角形21F PF ∆的旁切圆与x 轴相切于顶点(当点P 点位于y 轴左侧时,切于左顶点,当点P 点位于y 轴右侧时,切于右顶点)证明:设旁切圆与x 轴切于点T ,则由切线长定理得PN PM =,T F N F 22=,TF M F 11=所以TF F F PM PF T F M F 221111+=+⇒=TF c PN PF a 2222+=+-⇒=-⇒N F a 22T F c 22+c a N F T F -==⇒22,所以点T 的横坐标为a ,所以T 为右顶点,即21F PF ∆的旁切圆与x 轴相切于顶点双曲线焦点三角形内切圆的重要性质性质1:已知21,F F 是双曲线C :)0,0(12222>>=-b a by a x 的左右焦点,点P 是双曲线上不同于左右顶点的任何一点,则21F PF ∆的内切圆与x 轴切于双曲线的顶点(当点P 在双曲线的右支上时,切点为右顶点,当点P 在双曲线的左支上时,切点为左顶点)证明:由切线长定理得C F A F B F A F PC PB 2211,,===所以a A F A F B F PB C F PC PF PF 2211221=-=--+=-又cA F A F 221=+两式相加得c a A F +=2,所以c a OA O F +=+2,所以a OA =,所以点A 是双曲线的右顶点性质2:已知21,F F 是双曲线C :)0,0(12222>>=-b a by a x 的左右焦点,点),(00y x P 是双曲线上不同于左右顶点的任何一点,),(I I y x I 是21F PF ∆的内切圆圆心为,且圆I 与21F PF ∆的三边切于点H E D ,,,则c a H F D F +==11,a x I =证明:由性质1可知内切圆与x 轴切于右顶点,所以a x I =由切线长定理得ca H F D F +==11性质3:已知21,F F 是双曲线C :)0,0(12222>>=-b a by a x 的左右焦点,过右焦点2F 作倾斜角为θ的直线l 交双曲线于B A ,两点,若2121,F BF F AF ∆∆的内切圆圆心为21,I I ,半径分别为21,r r ,则(1)21,I I 在直线a x =上;(2)221)(a c r r -=;(3)2cot 221θ=r r 证明:由性质1可知21,I I 在直线a x =上因为21,I I 分别为2121,F BF F AF ∆∆的内心,所以2212,I F I F 分别平分1212,F BF F AF ∠∠,所以022190=∠I F I 所以2122θ=∠F F I ,221θ=∠F HI ,又a c H F -=2所以⎪⎩⎪⎨⎧=-=⇒⎪⎪⎩⎪⎪⎨⎧-=-=2cot )(2tan )(2cot )(22122121θθθr r a c r r a c r a c r 从以上性质的证明过程中可以看出,这些性质的背后隐含着椭圆的定义、双曲线的定义、内切圆的定义、三角形全等、切线长定理、中位线定理等基础知识;性质的证明需要具有一定的数学抽象、逻辑推理与数学运算能力,可以考查学生对应核心素养维度的发展水平.另外证明过程中用到了数形结合、转化与化归、类比等数学思想方法.这些都是学生应该掌握的基础知识、基本技能、基本思想与基本活动经验,说明该考点不超纲,可以作为命题的出发点典型例题(一)定值问题例1.已知椭圆1162522=+y x 的左右焦点分别为21,F F ,P 为椭圆上异于长轴端点的动点,21F PF ∆的内心为I =PF PI 解析:设21F PF ∆内切圆切2PF 于M ,则=PF PI 235=-=-=c a PM 例2.已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别为21,F F ,P 为椭圆上不同于左右顶点任意一点,点G I ,分别为21F PF ∆的内心、重心.当IG 恒与x 轴垂直时,椭圆的离心率是解析:设点),(00y x P ,则)3,3(00y x G ,)1,(00e ey ex I +,因为当IG 恒与x 轴垂直,所以300xex =解得31=e 注:若IG 恒与y 轴垂直,则3100y e ey =+,解得21=e 例3.已知椭圆1162522=+y x 左、右焦点分别为21,F F ,P 为椭圆上一点,21F PF ∆的内心为I ,若内切圆半径为1,则=PI 解析:由题知53=e ,设),(00y x P ,则381831000=⇒==+y y e ey ,代入椭圆方程得3550=x 即点)38,355(P ,所以50==ex x I ,即)1,5(I ,所以=PI 22)138()5355(-+-5=(二)轨迹问题例4.已知椭圆)0(12222>>=+b a by a x 左、右焦点分别为21,F F ,P 为椭圆上不同于左右顶点的动点,21F PF ∆的内心为I ,则点I 的轨迹方程为解析:设点),(),,(00y x P y x I ,则⎪⎪⎩⎪⎪⎨⎧+==⇒⎪⎩⎪⎨⎧+==y c c a y x ca x e ey y ex x 00001,因为点P 在椭圆上,所以1)(1)(22222222222222=++⇒=++bc y c a c x b c y c a a c x a ,所以点I 的轨迹方程为1)(222222=++b c y c a c x )0(≠y 例5.双曲线191622=-y x 的左、右焦点分别21,F F ,P 为双曲线右支上的点,21F PF ∆内切圆与x 轴相切于点C ,则圆心I 到y 轴的距离为()A.1B.2C.3D.4解析:因为4==a x I ,所以圆心I 到y 轴的距离为4,故选D例6.已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,e 为双曲线的离心率,P 是双曲线右支上的点,21F PF ∆的内切圆的圆心为I ,过2F 作直线PI 的垂线,垂足为B ,则点B 的轨迹是()A.椭圆B.圆C.抛物线D.双曲线解析:延长B F 2交1PF 于点M ,因为PI 平分21PF F ∠的角平分线,所以2PF PM =又a PF PF 221=-,所以a MF 21=,又B 为2MF 的中点,O 为21F F 的中点,所以a MF OB ==121,所以点B 的轨迹是以原点为圆心,a 为半径的圆,故选B 例7.已知)5,22(P 在双曲线14222=-by x 上,其左、右焦点分别为21,F F ,21F PF ∆的内切圆切x 轴于点M ,则2MF MP ⋅的值为()A.122- B.122+ C.222- D.222+解析:将)5,22(P 代入双曲线方程得5=b ,所以3=c ,)0,3(2F ,21F PF ∆的内切圆切x 轴于点M ,所以M 为双曲线的右顶点,所以)0,2(M ,所以)5,222(-=MP ,)0,1(2=MF ,所以=⋅2MF MP 222-,故选C例8.点P 是双曲线)0,0(12222>>=-b a by a x 右支上一点,21,F F 分别为左、右焦点,21F PF ∆的内切圆与x 轴相切于点N ,若点N 为线段2OF 中点,则双曲线离心率为()A.12+ B.2C.2D.3解析:易知点N 为右顶点,又点N 为线段2OF 中点,所以22=⇒=e a c ,故选B 提升训练1.已知21,F F 分别为椭圆)0(12222>>=+b a by a x 的左、右两个焦点,P 是以21F F 为直径的圆与该椭圆的一个交点,且12212F PF F PF ∠=∠,则这个椭圆的离心率为()A.13- B.13+ C.213- D.213+解析:易知02190=∠PF F ,又12212F PF F PF ∠=∠,所以01202130,60=∠=∠F PF F PF 所以1330sin 60sin 90sin 000-=+=e ,故选A2.(2022·重庆一中高一期末)已知B A ,为椭圆E 的左,右焦点,点M 在E 上,ABM ∆为等腰三角形,且顶角为0120,则E 的离心率为()A.23 B.36 C.23或36 D.23或313-解析:若0120=∠AMB ,则2360sin 0==e 若0120=∠ABM ,则c MA c MB 32,2==,所以213322222-=+==c c c a c e 故选D3.(2022·贵州遵义·高二期末)椭圆C :)0(12222>>=+b a by a x 左右焦点分别为21,F F ,P为C 上除左右端点外一点,若21cos 21=∠F PF ,31cos 12=∠F PF ,则椭圆C 的离心率为A.634- B.7325- C.5337- D.5627-解析:由21cos 21=∠F PF ,31cos 12=∠F PF 得23sin 21=∠F PF ,322sin 12=∠F PF 所以6223322213123)sin(sin 122121+=⨯+⨯=∠+∠=∠F PF F PF PF F 所以5627322236223sin sin sin 122121-=++=∠+∠∠=F PF F PF PF F e ,故选D4.(2022·天津市西青区杨柳青第一中学高二期末)已知21,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且321π=∠PF F ,则椭圆和双曲线离心率倒数之和的最大值为A.34 B.334 C.4D.364解析:因为130cos 30sin 22022102=+e e 即4312221=+e e ,所以由柯西不等式得31643431311()33111(11(2221221221=⨯=++≤⋅+⋅=+e e e e e e ⇒3341121≤+e e ,故选B 5.(2022·四川成都·模拟预测)椭圆)0(12222>>=+b a by a x 的左右焦点分别为21,F F ,右顶点为B ,点A 在椭圆上,满足022160=∠=∠ABF AF F ,则椭圆的离心率为()A.23 B.313- C.332- D.13-解析:因为221ABF AF F ∠=∠,所以21AF F ∆∽BA F 1∆,所以=⇒=2112111AF AF F F BF AF )(2121c a c BF F F +=⋅,所以)(21c a c AF +=,所以)(222c a c a AF +-=所以02030tan 60sin ))(22()(22121b c a c a c a c S F PF =⨯+-⨯+⨯=∆)1(4))1(2)1(22(3)(33))(2)(22(43222e e e e e c a c a c c a c a -=+-+⇒-=+-+⇒0410523=+-+⇒e e e 0)46)(1(2=-+-⇒e e e =⇒e 313-,故选B6.(2022·江西上饶·高二期末)已知21,F F 是椭圆C :)0(12222>>=+b a b y a x 的两个焦点,P 为C 上一点,且02160=∠PF F ,213PF PF =,则C 的离心率为()A.22 B.621 C.47 D.32解析:因为213PF PF =,又a PF PF 221=+,所以2,2321a PF a PF ==所以16930tan 60sin 223212202021=⇒=⨯⨯⨯=∆a b b a a S F PF ,所以47)(12=-=a b e ,故选C 7.(2022·甘肃·永昌县第一高级中学高二期末)已知椭圆C :)0(12222>>=+b a by a x 的左、右焦点分别为21,F F ,上顶点为B ,2BF 的延长线交C 于Q ,Q F BQ 1=,则C 的离心率=e ()A.21 B.32 C.22 D.33解析:不妨设221===a BF BF ,t QF =2,θ221=∠BF F ,则t QF -=41,又Q F BQ 1=,所以12242=⇒=-=t t BF ,所以31==QF BQ ,所以312cos =θ所以33sin 31sin 212=⇒=-θθ,所以==θsin e 33,故选D 8.已知椭圆1422=+y x 上一动点P 到两个焦点21,F F 的距离之积取最大值时,21F PF ∆的面积为()A.1B.3C.2D.32解析:4)2(22121=+≤⋅PF PF PF PF ,当且仅当21PF PF =即点P 为短轴端点时等号成立,此时321==∆bc S F PF ,故选B9.已知21,F F 为双曲线C :122=-y x 的左、右焦点,点P 在C 上,02160=∠PF F ,则=21PF PF ()A.2B.4C.6D.8解法1:434330cot 60sin 2121210202121=⋅⇒=⋅⇒=⋅=∆PF PF PF PF b PF PF S F PF ,选B 解法2:4211260cos 120221=-=-=b PF PF ,故选B 10.(2019·新课标Ⅲ)已知F 是双曲线C :15422=-y x 的一个焦点,点P 在C 上,O 为坐标原点,若OF OP =,则OPF ∆的面积为()A.23B.25 C.27 D.29解析:OF OP =,所以02190=∠PF F ,所以2545cot 52121021=⨯⨯==∆∆F PF OPF S S ,选B 11.设21,F F 为双曲线1422=-y x 的两个焦点,点P 在双曲线上,且满足02190=∠PF F ,则21F PF ∆的面积为()A.5B.2C.25 D.1解析:145cot 0221==∆b S F PF ,故选D12.已知21,F F 为双曲线C :122=-y x 的左、右焦点,点P 在C 上,02160=∠PF F ,则P 到x 轴的距离为()A.23 B.26 C.3 D.6解析:26230cot 100021=⇒⨯=⨯=∆y y S F PF ,故选B13.(2022攀枝花市第十五中学校高二期中(理))设21,F F 为椭圆1422=+y x 的两个焦点,点P 在此椭圆上,且221-=⋅PF PF ,则21F PF ∆的面积为()A.1B.2C.3D.2解析:设θ=∠21PF F ,则21cos 2cos cos 12cos 221-=⇒-=+==⋅θθθθb PF PF 0120=⇒θ,所以36tan 12tan0221=⨯==∆θb S F PF ,故选C 14.双曲线116922=-y x 的两个焦点为21,F F ,点P 在双曲线上,若21PF PF ⊥,则点P 到x轴的距离为解析:516545cot 0221=⇒⨯==∆P P F PF y y b S ,所以点P 到x 轴的距离为51615.如图,21,F F 分别为椭圆)0(12222>>=+b a by a x 的左、右焦点,点P 在椭圆上,2OPF ∆是面积为3的正三角形,则=2b 解析:由题意知02190=∠PF F 且3221=∆F PF S ,所以323245tan 22=⇒=b b 16.已知点P 是椭圆)0(12222>>=+b a b y a x 上的一点,21,F F 为椭圆的左、右焦点,若21PF F ∠060=,且21F PF ∆的面积为243a ,则椭圆的离心率是解析:434330tan 2220221=⇒==∆a b a b S F PF ,所以21)(12=-=a b e 17.已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,点O 为双曲线的中心,点P 在双曲线右支上,21F PF ∆内切圆的圆心为Q ,圆Q 与x 轴相切于点A ,过2F 作直线PQ 的垂线,垂足为B ,则下列结论成立的是()A.OBOA > B.OBOA < C.OBOA = D.OB OA ,大小关系不确定解析:延长B F 2交1PF 于点M ,因为PQ 平分21PF F ∠的角平分线,所以2PF PM =又a PF PF 221=-,所以a MF 21=,又B 为2MF 的中点,O 为21F F 的中点,所以a MF OB ==121,而A 为双曲线的顶点,所以a OA =,所以OB OA =,故选C 18.已知点P 是双曲线)0,0(12222>>=-b a by a x 左支上除顶点外的一点,21,F F 分别是双曲线的左、右焦点,,,1221βα=∠=∠F PF F PF ,双曲线离心率为e ,则=2tan2tanβα()A.11+-e e B.11-+e e C.1122-+e e D.1122+-e e 解法1:2cos 2sin 2cos 2sin 2cos2sin 2cos 2sin 2sin 2sin 2sin 2cos 22cos 2sin2sin sin )sin(βαβαβαβαβαβαβαβαβαβαβαβα+-=-+=-+++=-+=e 2tan 2tan 2tan 2tan βαβα+-=⇒=2tan2tanβα11-+e e ,故选B 解法2:易知21F PF ∆的内切圆切x 轴于点)0,(a A -,设内切圆半径为r ,则ac r-=2tan αa c r +=2tan β,所以=2tan 2tanβα11-+=-+e e a c a c ,故选B 18.已知点P 为椭圆)0(12222>>=+b a by a x 上异于左、右顶点的任意一点,21,F F 是左、右焦点,连接21,PF PF ,作21F PF ∆的旁切圆(与线段P F PF 12,延长线及21F F 延长线均相切),其圆心为'O ,则动圆圆心'O 的轨迹所在曲线是()A.直线B.圆C.椭圆D.双曲线解析:因为21F PF ∆的旁切圆与x 轴切于椭圆的右顶点,即圆心'O 在x 轴上射影为椭圆的右顶点,所以圆心'O 的轨迹为直线a x =,故选B19.(2022·陕西·西北工业大学附属中学模拟预测)已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别为21,F F ,经过1F 的直线交椭圆于B A ,,2ABF ∆的内切圆的圆心为I ,若05432=++IF IA IB ,则该椭圆的离心率是()A.55 B.32 C.43 D.21解析:由05432=++IF IA IB 及奔驰定理可知,不妨设5,4,322===AB BF AF ,则3125434=⇒=++=a a ,所以点A 为椭圆的短轴的端点,设θ221=∠AF F ,则=⇒=-⇒=θθθsin 53sin 21532cos 255,所以=e =θsin 55,故选A 20.(2022·江苏苏州·模拟预测)已知21,F F 是椭圆)1(1122>=-+m m y m x 的左、右焦点,点A 是椭圆上的一个动点,若21F AF ∆的内切圆半径的最大值是33,则椭圆的离心率为A.12- B.21 C.22 D.13-解析:设),(00y x A ,则ey e r +=10,可知当点A 在短轴端点时21F AF ∆的内切圆半径最大,此时433113311=⇒=+-⇒=+-⨯m m m e m e ,所以21=e ,故选B21.(2022·江西·景德镇一中高一期末)已知双曲线C :)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,P 是双曲线上一点,且0)(22=⋅+P F OF OP (O 为坐标原点),若21F PF ∆内切圆的半径为2a,则C 的离心率是()A.13+ B.213+ C.216+ D.16+解析:由0)(22=⋅+P F OF OP 可知21PF PF ⊥,又21F PF ∆内切圆的半径为2a,所以2321a c a a c PF +=++=,222ac a a c PF -=+-=,由勾股定理得=⇒=--⇒-++=e e e ac a c c 0544)2()23(42222216+,故选C 22.(2022·江西·上高二中模拟预测)已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,P 为双曲线上的一点,I 为21F PF ∆的内心,且PI IF IF 2221=+,则双曲线的离心率为()A.31B.52 C.33 D.2解析:022222121=++⇒=+IP IF IF PI IF IF ,结合奔驰定理不妨设12=PF ,21=PF ,221=F F ,所以212222=-==a c e ,故选D 23.(2022·湖北·高二月考)已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,过右焦点作平行于其中一条渐近线的直线交双曲线于点A ,若21F AF ∆的内切圆半径为4b,则双曲线的离心率为A.2B.3C.35 D.47解析:由题意知21F AF ∆的内切圆圆心)4,(b a I ,设渐近线的倾斜角为θ2,则ab =θ2tan 且)(4tan a c b -=θ,所以350583))(4(1)(4222=⇒=+-⇒=---e e e a b a c b a c b,故选C 24.椭圆1C :)0(1222>=+a y a x 与双曲线2C :)0(1222>=-m y mx 有公共焦点,左、右焦点分别为21,F F ,曲线1C ,2C 在第一象限交于点P ,I 是21F PF ∆内切圆圆心,O 为坐标原点,H F 2垂直射线PI 于H 点,2=OH ,则I 点坐标是解析:由题意知2==m OH ,所以3=c ,2=a ,点I 的横坐标为2,设θ=∠21PF F由0902cot 12tan121=⇒⨯=⨯=∆θθθF PF S ,所以3232(45tan 1021-=⇒+=⨯=∆r r S F PF 所以I 点坐标是)32,2(-25.已知21,F F 分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,点P 在双曲线上且不与顶点重合,满足2tan22tan1221F PF F PF ∠=∠,该双曲线的离心率为解析:设21F PF ∆内切圆半径为r ,易知内切圆与x 轴切于点)0,(a -,所以32tan 2tan 2tan 22tan12211221=⇒+⨯=-⇒∠=∠⇒∠=∠e ac ra c r F IF F IF F PF F PF 26.(2022·四川达州·高二期末)已知点)0,3(),0,3(21F F -分别是双曲线C :12222=-b y a x )0,0(>>b a 的左、右焦点,M 是C 右支上的一点,1MF 与y 轴交于点P ,2MPF ∆的内切圆在边2PF 上的切点为Q ,若2=PQ ,则C 的离心率为解析:设2MPF ∆的内切圆分别与21,MF MF 切于点B A ,,则由切线长定理得MBMA =Q F B F 22=,PQ P A =,所以P A MA MF PF MP MF MF a +=-+=-=2221224222=⇒==--++a PQ Q F MB Q F PQ ,又3=c ,所以23=e 27.已知21,F F 是双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,P 为曲线上一点,02160=∠PF F ,21F PF ∆的外接圆半径是内切圆半径的4倍.若该双曲线的离心率为e ,则=2e 解析:设21F PF ∆的外接圆半径为R ,内切圆半径为r ,则3260sin 220cR c R ===,所以32c r =,设βα=∠=∠1221,F IF F IF ,则0601806022=+⇒=++βαβα所以)(32)(321)(32)(32tan tan 1tan tan )tan(3a c c a c c a c ca c c -⋅+--++=-+=+=βαβαβα7122=⇒e 28.(2022·河南·开封市东信学校模拟预测)已知双曲线C :)0,0(18222>>=-b a y a x 的左、右焦点为21,F F ,若点P 在双曲线的右支上,且21F PF ∆的内切圆圆心的横坐标为1,则该双曲线的离心率为解析:易知1=a ,所以3=e 综合训练1.(2022·福建漳州·高二期末)已知椭圆1162522=+y x 的左、右焦点分别为21,F F ,点P 在椭圆上,若61=PF ,则21F PF ∆的面积为()A.8B.28 C.16D.216解析:由题知42=PF ,621=F F ,所以211F F PF =,所以2843642121=-⨯⨯=∆F PF S 故选B2.(2022·福建南平·高二期末)椭圆两焦点分别为)0,3(),0,3(21F F -,动点P 在椭圆上,若21F PF ∆的面积的最大值为12,则此椭圆上使得21PF F ∠为直角的点P 有()A.0个B.1个C.2个D.4个解析:由题意知3412=>=⇒=c b bc ,所以当点P 在短轴端点处时0245<∠OPF ,所以02190<∠PF F ,所以椭圆上使得21PF F ∠为直角的点P 有0个,故选A3.(2022·江西鹰潭·高二期末)椭圆C :1244922=+y x 的焦点为21,F F ,点P 在椭圆上,若81=PF ,则21F PF ∆的面积为()A.48B.40C.28D.24解析:由题知62=PF ,1021=F F ,所以21PF PF ⊥,所以24862121=⨯⨯=∆F PF S ,选D 4.(2022·安徽省亳州市第一中学高二期末)设21,F F 是椭圆1241222=+y x 的两个焦点,P 是椭圆上一点,且31cos 21=∠PF F ,则21F PF ∆的面积为()A.6B.26 C.8D.28解析:设θ221=∠PF F ,则22tan 36cos 311cos 2cos 221=⇒=⇒=-=∠θθθPF F 所以26tan 1221==∆θF PF S ,故选B5.(2022北京市第五十七中学高月考)已知椭圆C :192522=+y x 的左右焦点为21,F F ,BA ,分别为它的左右顶点,点P 是椭圆上的一个动点,下列结论中错误的是()A.离心率54=e B.若02190=∠PF F ,则21F PF ∆的面积为8C.21F PF ∆的周长为18D.直线P A 与直线PB 斜率乘积为定值259-解析:4,3,5===c b a ,离心率54=e ,A 正确;若02190=∠PF F ,则945tan 9021==∆F PF S B 错;21F PF ∆的周长为1822=+c a ,C 正确;由第三定义知259-=⋅PB P A k k ,D 正确,选B6.(2022黑龙江·大庆中学高二期末)已知21,F F 分别为椭圆C :)0(12222>>=+b a by a x 的左右焦点,O 为坐标原点,椭圆上存在一点P ,使得212F F OP =,设21F PF ∆的面积为S ,若221)(PF PF S -=,则该椭圆的离心率为()A.31 B.21 C.23 D.35解析:由212F F OP =知21PF PF ⊥,所以2121PF PF S =,所以221)(PF PF S -=9445tan 94844)(22022221221=⇒==⇒-=-+a b b a S S a PF PF PF PF 所以=-=2)(1abe 35,故选D 7.(2022·山西运城·高二期末)已知点21,F F 是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,以线段21F F 为直径的圆与双曲线在第一象限的交点为P ,若213PF PF =,则A.1PF 与双曲线的实轴长相等 B.21F PF ∆的面积为223a C.双曲线的离心率为23D.直线023=+y x 是双曲线的一条渐近线解析:由题意21PF PF ⊥,又213PF PF =,所以a PF a PF ==21,3,所以A 错;23321221a a a S F PF =⨯=∆,B 正确;由勾股定理得21094222=⇒+=e a a c ,所以C 错;2612=-=e a b ,所以渐近线方程为x y 26±=即026=±y x ,D 错;故选B 8.(2022·内蒙古赤峰·高三期末)已知双曲线116922=-y x 的两个焦点为21,F F ,P 为双曲线上一点,211F F PF ⊥,21F PF ∆的内切圆的圆心为I ,则=PI ()A.3342 B.334 C.3343 D.234解析:设内切圆切1PF 于点M ,则31621==a b PF ,334612=+=PF PF ,所以内切圆半径222211=-+=PF F F PF r ,所以3101=-=r PF PM ,所以在PMI ∆中由勾股定理得=+=+=4910022r PM PI 33429.(2022·广东·执信中学高三阶段练习)已知双曲线C 的离心率为3,21,F F 是C 的两个焦点,P 为C 上一点,213PF PF =,若21F PF ∆的面积为2,则双曲线C 的实轴长为A.1B.2C.3D.4解析:因为213PF PF =,所以a PF a PF ==21,3,又a c ace 33=⇒==所以3132129cos 22221-=⨯⨯-+=∠a a a a a PF F 322sin 21=∠⇒PF F ,所以1232232121=⇒=⨯⨯⨯=∆a a a S F PF ,所以双曲线C 的实轴长为2,故选B 10.(2022·广西玉林·模拟预测)已知双曲线C :1222=-y x 的左、右焦点为21,F F ,P为双曲线右支上的一点,02130=∠F PF ,I 是21F PF ∆的内心,则下列结论错误的是A.21F PF ∆是直角三角形B.点I 的横坐标为1C.232-=PI D.21F PF ∆的内切圆的面积为π解析:设t PF =2,则t PF +=21,由余弦定理得2)2(32212)2(30cos 220=⇒+⨯⨯-++=t t t t 所以22=PF ,41=PF ,3221=F F ,所以02290=∠F PF ,A 正确;P 在右支上,所以点I 的横坐标为1=a ,B 正确;内切圆半径1321212-=-+=PF F F PF r ,D 错;所以232)13())13(2(22-=-+--=PI ,C 正确;故选D11.(2022·全国·高三专题练习)P 是双曲线M :15422=-y x 右支上的一点,21,F F 是左、右焦点,42=PF ,则21F PF ∆的内切圆半径为()A.9154 B.3152 C.9152 D.315解析:42=PF ,81=PF ,621=F F ,所以1611842366416cos 21=⨯⨯-+=∠PF F ,所以16153sin 21=∠PF F ,所以=⇒⨯⨯⨯=++=∆r r S F PF 161538421)684(2121315,故选D 12.设P 是双曲线)0,0(12222>>=-b a by a x 上的点,21,F F 是焦点,双曲线的离心率是34,且02190=∠PF F ,21F PF ∆的面积是7,则=+b a ()A.73+ B.79+ C.10D.16解析:7745cot 0221=⇒==∆b b S F PF ,又33471)(122=⇒=+=+=a a a b e 所以=+b a 73+,故选A13.在直角坐标系xOy 中,)0,(),0,(21c F c F -分别是双曲线C :)0,0(12222>>=-b a by a x 的左、右焦点,位于第一象限上的点),(00y x P 是双曲线C 上的一点,21F PF ∆的外心M 的坐标为)33,0(c ,21F PF ∆的面积为232a ,则双曲线C 的渐近线方程为()A.xy ±= B.x y 22±= C.x y 21±= D.xy 2±=解析:21F PF ∆的外心M 的坐标为)33,0(c ,所以33tan tan 1221=∠=∠F MF F MF 0122130=∠=∠⇒F MF F MF ,所以021********1,120=∠=∠=∠MF F PF F MF F 所以23230cot 2221=⇒==∆aba b S F PF ,所以渐近线方程为x y 2±=,故选D 二、多选题14.已知P 为双曲线)0,0(12222>>=-b a by a x 右支上一点,21,F F 分别为双曲线的左、右焦点,I 是21F PF ∆的内心,双曲线的离心率为e ,2121,,F IF IPF IPF ∆∆∆的面积分别为,,21S S 3S ,且321kS S S +=,下列结论正确的为()A.ek = B.ek 1=C.I 在定直线a x =上D.若m PF =1,则a m PF 22-=或am PF 22+=解析:321kS S S +=ke kc a r c k r PF r PF 1221212121=⇒=⇒⋅⋅⋅+=⇒,A 错;B 正确;点P 在右支上,所以21F PF ∆的内切圆与x 轴切于点)0,(a A ,所以I 在定直线a x =上,C 正确;因为点P 在右支上,所以a m a PF PF 2212-=-=,D 错;故选BC15.(2022福建福州·高三)已知P 是双曲线E :15422=-y x 在第一象限上一点,21,F F 分别是E 的左、右焦点,21F PF ∆的面积为215.则以下结论正确的是()A.点P 的横坐标为25B.2321ππ<∠<PF F C.21F PF ∆的内切圆半径为1 D.21PF F ∠平分线所在的直线方程为0423=--y x 解析:设),(00y x P ,3,5,2===c b a ,2521530021=⇒=⨯=∆y y S F PF ,代入双曲线方程得30=x ,A 错;232tan 2152cot 5212121=∠⇒=∠=∆PF F PF F S F PF =∠⇒21tan PF F35122tan 12tan221221>=∠-∠=PF F PF F ,所以2321ππ<∠<PF F ,B 正确;13225200=+⨯=+=x a ay y I 所以21F PF ∆的内切圆半径为1,C 正确;内心)1,2(I ,)25,3(P ,所以21PF F ∠平分线所在的直线方程为)2(231-=-x y ,即0423=--y x ,D 正确;故选BCD16.(2022江苏省天一中学高三)已知点P 是双曲线E :191622=-y x 的右支上一点,21,F F 为双曲线E 的左、右焦点,21F PF ∆的面积为20,则下列说法正确的是()A.点P 的横坐标为320 B.21F PF ∆的周长为380C.21PF F ∠大于3πD.21F PF ∆的内切圆半径为23解析:42050021=⇒==∆y y S F PF ,代入双曲线方程得3200=x ,A 正确;21F PF ∆的周长为38052320452200=⨯+⨯⨯=+-++c a ex a ex ,B 正确;202cot 92121=∠=∆PF F S F PF 2092tan 21=∠⇒PF F 3319360)209(12092tan 221<=-⨯=∠⇒PF F ,所以321π<∠PF F ,C 错;23203802121=⇒=⨯⨯=∆r r S F PF ,D 正确;故选ABD三、填空题17.设21,F F 是椭圆C :)20(14222<<=+m m y x 的两个焦点,),(00y x P 是C 上一点,且满足21F PF ∆的面积为3,则0x 的取值范围是解析:由340221=-=∆y m S F PF 22043m y -=⇒,所以1)4(342220=-+m m x )4(1242220m m x --=⇒,又20<<m ,所以]4,0()4(22∈-m m ,所以]1,0[]1,0[020∈⇒∈⇒x x 18.设21,F F 为椭圆C :1422=+y x 的两个焦点.M 为C 上点,21F MF ∆的内心I 的纵坐标为32-,则21PF F ∠的余弦值为解析:02121902tan132)(32(21=∠⇒∠⨯=-+=∆PF F PF F S F PF ,所以0cos 21=∠PF F 19.双曲线C :1322=-y x 的左、右焦点分别为21,F F ,点P 在C 上且34tan 21=∠PF F ,O 为坐标原点,则=OP 解析:71cos 34tan 2121=∠⇒=∠PF F PF F ,所以771132cos 1221221=-⨯=∠-=PF F b PF PF 又2221==-a PF PF ,所以182221=+PF PF,由平行四边形的性质得536164)(2)2(222212212=⇒=+⇒+=+OP OP PF PF F F OP 20.已知椭圆C 的焦点为)0,(),0,(21c F c F -,过点2F 与x 轴垂直的直线交椭圆于第一象限的A 点,点A 关于坐标原点的对称点为B ,且01120=∠B AF ,3321=∆AB F S ,则此椭圆的标准方程为解析:由题意知四边形21BF AF 为平行四边形,且02130=∠F AF ,02160=∠AF F ,所以233230tan 202211=⇒===∆∆b b S S F AF AB F ,133232211=⇒=⨯==∆∆c c c S S F AF AB F 所以32=a ,所以椭圆的方程为12322=+y x。
圆锥曲线离心率问题解题技巧梳理
圆锥曲线离心率问题解题技巧梳理一.焦点三角形中的离心率 1.椭圆(1)椭圆:设椭圆焦点三角形两底角分别为α、β,则sin()sin sine(正弦定理)。
12122sin sin()2sin sin sin sin F F c c e a a PF PF θαβαβαβ+=====+++222121212212121221212221212212212(2)2cos =()22cos =()2(1cos ) ()2()(1cos )21=()[1(1cos )]21=()(F F PF PF PF PF PF PF PF PF PF PF PF PF PF PF PF PF PF PF PF PF PF PF θθθθθ=+-+--+-++≥+-++-++12222222cos )==2111144(cos )cos (12sin )sin 222222sin2PF PF P c c a a e θθθθθθ-∴≥-≥-=--=∴≥(当且仅当取,即在短轴端点处)即2.双曲线:利用焦点三角形两底角,αβ来表示:sin()sin sine。
12122sin sin()2sin sin sin sin +=====---F F c c e a a PF PF θαβαβαβ二.双曲线的渐进线与离心率关系 直线与双曲线相交时,两个交点的位置(1)两个交点在双曲线的两支:b k e a >⇔=(2)两个交点在双曲线的同一支:b k e a <⇔=(3)两个交点在双曲线的左支:12120x x 0x x 0>⎧⎪⎪+<⎨⎪>⎪⎩(4)两个交点在双曲线的右支:12120x x 0x x 0>⎧⎪⎪+>⎨⎪>⎪⎩三.焦点弦与离心率关系BF AF λ=,则有11cos +-=λλθe (θ为直线与焦点所在轴的夹角)。
技巧1 焦点三角形中的离心率【例1】(1).已知1F ,2F 是双曲线E :22221x y a b-=的左、右焦点,点M 在E 上,1MF 与x轴垂直,12tan FMF ∠=E 的离心率为( ) A .B .2CD(2)已知椭圆E :()222210x y a b a b +=>>的左右焦点分别为1F ,2F ,若在椭圆E 上存在点P ,使得12PF PF ⊥,则椭圆E 的离心率的取值范围为( )A.⎫⎪⎪⎣⎭B.⎛ ⎝⎭C.⎫⎪⎪⎣⎭D .1,12⎛⎫⎪⎝⎭【举一反三】1.已知点P 在以12,F F 为左,右焦点的椭圆()2222:102x y C b b b +=>上,在12PF F △中,若12PF F α∠=,21PF F β∠=,则()sin sin sin αβαβ+=+( )A .12B .2C .2D2.已知点P 是以1F 、2F 为焦点的椭圆()222210x y a b a b+=>>上一点,若12PF PF ⊥,21tan 2PF F ∠=,则椭圆的离心率e =( )A B .13C .23D .123.椭圆22221(0)x y a b a b +=>>,1F 、2F 是椭圆的两个焦点,P 是圆上一动点,则12cos F PF ∠的最小值是( )A .13-B .3-C .1-D .0技巧2 点差法中的离心率【例2】(1)过点()1,2M 作直线16y x m =-+与椭圆()222210x y a b a b+=>>相交于,A B 两点,若M 是线段AB 的中点,则该椭圆的离心率是( )A .23B C .1112D (2)已知A ,B 是椭圆E :22221(0)x y a b a b+=>>的左、右顶点,M 是E 上不同于A ,B 的任意一点,若直线AM ,BM 的斜率之积为49-,则E 的离心率为()A .3B .3C .23D .3【举一反三】1.已知双曲线C :()222210,0x y a b a b-=>>,斜率为2的直线与双曲线C 相交于点A 、B ,且弦AB 中点坐标为()1,1,则双曲线C 的离心率为( )A .2BCD .32.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是( ).A .1(0)2, B .(0)2, C .1(22,D .1)23.若1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,当12PF PF ⊥,且1230PF F ∠=︒,则椭圆的离心率为( )A 1B .3C 1D .2技巧3 渐近线与离心率【例3】已知圆223(1)4x y -+=的一条切线y kx =与双曲线2222:1(0,0)x y C a b a b -=>>有两个交点,则双曲线C 的离心率的取值范围是( )A .B .(1,2)C .)+∞D .(2,)+∞ 【举一反三】1.若双曲线22221x y a b-=(0a >,0b >)与直线y x =无公共点,则离心率e 的取值范围是( )A .(B .(C .(]1,2D .()1,22.已知双曲线22221x y a b-= (a>0,b>0)的右焦点为F ,若过点F 且倾斜角为60°的直线l 与双曲线的右支有且只有一个交点,则此双曲线的离心率e 的取值范围是( ) A .[2,)+∞B .(1,2),C .(2,)+∞D .(1,2]3.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,过原点O C 的右支于点A ,若1223F AF π∠=,则双曲线的离心率为( )A 1 C .2D .2技巧4 焦点弦与离心率【例4】已知椭圆22221x y a b+=的左右焦点分别为12,F F ,过1F 作倾斜角为45的直线与椭圆交于,A B 两点,且112F B AF =,则椭圆的离心率=( )A .3B .2C .2D .3【举一反三】1.倾斜角为4π的直线经过椭圆22221(0)x y a b a b+=>>右焦点F ,与椭圆交于A 、B 两点,且2AF FB =,则该椭圆的离心率为( )A B C D 2.已知1F 、2F 是双曲线22221x y a b-=(0a >,0b >)的左、右焦点,过2F 作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且2213AF F B =,则该双曲线的离心率为( )A 2B .2C 或.2或3.已知过双曲线()222210,0x y a b a b-=>>的右焦点F ,且与双曲线的渐近线平行的直线l 交双曲线于点A ,交双曲线的另一条渐近线于点B (A ,B 在同一象限内),满足2FB FA =,则该双曲线的离心率为( )A .43BC D .2巩固练习1.已知倾斜角为π4的直线与双曲线C :22221x y a b-=(0a >,0b >)相交于A ,B 两点,(4,2)M 是弦AB的中点,则双曲线的离心率为( )ABC .32D 2.设F 是双曲线22221(0,0)x y a b a b-=>>的右焦点.过点F 作斜率为-3的直线l 与双曲线左、右支均相交.则双曲线离心率的取值范围为( )A .B .C .)+∞D .)+∞3.已知1F ,2F 分别是椭圆22142x y +=的左、右焦点,P 是此椭圆上一点,若为12F PF △直角三角形,则这样的点P 有( ). A .2个B .4个C .6个D .8个4.已知1F ,2F 分别是椭圆C ()2222:10x y a b a b+=>>的左, 右焦点, 椭圆C 上存在点P 使12F PF ∠为钝角, 则椭圆C 的离心率的取值范围是A .2⎛⎫⎪⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .2⎛⎫ ⎪⎝⎭D .10,2⎛⎫ ⎪⎝⎭5.已知椭圆 22221(0)x y a b a b +=>> ,点M,N 为长轴的两个端点,若在椭圆上存在点H ,使1(,0)2MH NH k k ∈- ,则离心率e 的取值范围为A .B .(0,2C .D .6.椭圆C :()222210x y a b a b+=>>的左焦点为F ,若F +y =0的对称点A 是椭圆C 上的点,则椭圆C 的离心率为( )A .12 B C -1 7.已知椭圆(a>b>0)的左右焦点分别为F 1,F 2.P 是椭圆上一点.PF 1F 2为以F 2P 为底边的等腰三角形,当60°<PF 1F 2<120°,则该椭圆的离心率的取值范围是( )A .()B .()C .()D .(0)8.已知椭圆2222:1(0)x y C a b a b+=>>的左右顶点分别为,A B ,P 是椭圆上异于,A B 的一点,若直线PA的斜率PA k 与直线PB 的斜率PB k 乘积14PA PB k k =-,则椭圆C 的离心率为( )A .14B .12C .34D .29.)已知双曲线:22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,焦距为2c ,直线)y x c =+与双曲线的一个交点M 满足12212MF F MF F ∠=∠,则双曲线的离心率为( )ABC .2D 111.若A 、B 为椭圆C :22221x y a b+=(0a b >>)长轴的两个端点,垂直于x 轴的直线与椭圆交于点M 、N ,且14AM BN k k ⋅=,则椭圆C 的离心率为______ 12.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,过右焦点F 作倾斜角60°的直线l 交C 于A ,B 两点(A 在第一象限),则AF BF=________.13.设双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,若在双曲线的右支上存在一点P ,使得122PF PF =,则双曲线C 的离心率e 的取值范围是____.14.已知椭圆22221(0)x y a b a b+=>>,1F ,2F 分别是椭圆的左、右焦点,A 是椭圆的下顶点,直线2AF 交椭圆于另一点P ,若1PF PA =,则椭圆的离心率为15.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 是椭圆上一点,12PF F ∆是以1PF 为底边的等腰三角形,若12(0,)3PF F π∠∈,则该椭圆的离心率的取值范围是16.设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅=,222AF F B =,则椭圆E 的离心率为17.已知椭圆()222210x y a b a b+=>>,()0,2P ,()0,2Q -,过点P 的直线1l 与椭圆交于A ,B ,过点Q的直线2l 与椭圆交于C ,D ,且满足12//l l ,设AB 和CD 的中点分别为M ,N ,若四边形PMQN 为矩形,且面积为,则该椭圆的离心率为18.已知F 是椭圆E :()222210x y a b a b+=>>的左焦点,经过原点O 的直线l 与椭圆E 交于P ,Q 两点,若3PF QF =,且120PFQ ∠=︒,则椭圆E 的离心率为。
高中数学圆锥曲线有好用的公式
高中数学圆锥曲线有什么好用的公式吗那些考试拿高分的,一定是简单的题目做得又快又对,这样他们才有时间去思考难题。
因此,适当地掌握一些教材中没有提到,但是可以加速解题过程的公式和定理,对提高解题速度,尤其是选择和填空题的解题速度极为有效。
下面就来简单总结一下与圆锥曲线有关的好用公式:1.利用椭圆的焦点三角形快速求离心率通过这一简单的结论,我们可以把一些出现在选择和填空题中的求离心率类的题目迅速解决,只需要画出图,找出角度,代入公式,避免了a,b,c换来换去的繁琐运算,为我们后面的大题节约时间。
我们先证明一下这个公式:通过这一简单的结论,我们可以把一些出现在选择和填空题中的求离心率类的题目迅速解决,只需要画出图,找出角度,代入公式,避免了a,b,c换来换去的繁琐运算,为我们后面的大题节约时间。
【我们先不使用这个定理来解决这个问题】:【在知道公式的情况下】翻译的图像和条件不变:那我们比较这两种做法,显然第一种需要用数学三招去思考,去动点脑筋去想,但如果利用好这个公式,我们几乎不需要思考,只需要熟练的计算即可迅速解出答案!2.利用椭圆的切线方程快速解题只需记下这个简单的结论,在圆锥曲线中椭圆这一章中,遇到切线问题就可以思路更清晰,解题更迅速噢。
【直接记住结论解题】再盯住已经转化过的目标,要求上述式子的最小值,联想有关的定理和定义,我们想到了利用函数的性质或者不等式的方法求最值,所以要把x1•x2,y1•y2,x1+x2换成与m有关的代数式。
利用这个定理,有效的缩短了解题时间,让我们对这一类型的题目处理起来更得心应手。
不仅是椭圆,在圆上这个定理也是成立的:大家记住了吗?3.利用双曲线的焦点三角形快速求离心率通过这一简单的结论,我们可以把一些出现在选择和填空题中的求离心率类的题目迅速解决,只需要画出图,找出角度,代入公式,避免了a,b,c换来换去的繁琐运算,为我们后面的大题节约时间。
我们先证明一下这个公式:因为上次椭圆的已经进行简便性验证了,那么同学们多记这4个字——椭加双减,再加上本身这个公式就很好记,结合三角形对比一下,多记4个字又可以解决一类题,投资回报比是很高的!利用本质教育的第一招翻译,翻译出图形:再利用本质教育的第三招盯住目标立马联想我们背过的公式:椭加双减3.二次曲线弦长万能公式(另外一个类似,可以证明)这就是泽宇老师在录播课中提到的“韦达定理模式”,解大题的时候,把以上证明过程写出来即可。
有关圆锥曲线的焦点三角形面积公式的证明及其应用
圆锥曲线的焦点三角形面积问题比较常见,这类题目常以选择题、填空题、解答题的形式出现.圆锥曲线主要包括抛物线、椭圆、双曲线,每一种曲线的焦点三角形面积公式也有所不同,其适用情形和应用方法均不相同.在本文中,笔者对圆锥曲线的焦点三角形面积公式及其应用技巧进行了归纳总结,希望对读者有所帮助.1.椭圆的焦点三角形面积公式:S ΔPF 1F 2=b 2tan θ2若椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∠F 1PF 2=θ,则三角形ΔF 1PF 2的面积为:S ΔPF 1F 2=b 2tan θ2.对该公式进行证明的过程如下:如图1,由椭圆的定义知||F 1F 2=2c ,||PF 1+||PF 2=2a ,图1可得||PF 12+2||PF 1||PF 2+||PF 22=4a 2,①由余弦定理可得||PF 12+||PF 22-2||PF 1||PF 2cos θ=4c 2,②①-②可得:2||PF 1||PF 2(1+cos θ)=4b 2,所以||PF 1||PF 2=2b 21+cos θ,则S ΔPF 1F2=12|PF 1||PF 2|sin θ=12×2b 21+cos θsin θ,=b 22sin θ2cos 2θ22cos 2θ2=b 2tan θ2.若已知椭圆的标准方程、短轴长、两焦点弦的夹角,则可运用椭圆的焦点三角形面积公式S ΔPF 1F 2=b 2tan θ2来求椭圆的焦点三角形面积.例1.(2021年数学高考全国甲卷理科)已知F 1,F 2是椭圆C :x 216+y 24=1的两个焦点,P ,Q 为椭圆C 上关于坐标原点对称的两点,且||PQ =||F 1F 2,则四边形PF 1QF 2的面积为________.解析:若采用常规方法解答本题,需根据椭圆的对称性、定义以及矩形的性质来建立关于||PF 1、||PF 2的方程,通过解方程求得四边形PF 1QF 2的面积.而仔细分析题意可发现四边形PF 1QF 2是一个矩形,且该矩形由两个焦点三角形构成,可利用椭圆的焦点三角形面积公式求解.解:S 四边形PF 1QF 2=2S ΔPF 1F 2=b 2tan θ2=2×4×tan π2=8.利用椭圆的焦点三角形面积公式,能有效地简化解题的过程,有助于我们快速求得问题的答案.例2.已知F 1,F 2是椭圆C:x 2a 2+y 2b2=1()a >b >0的两个焦点,P 为曲线C 上一点,O 为平面直角坐标系的原点.若PF 1⊥PF 2,且ΔF 1PF 2的面积等于16,求b的值.解:由PF 1⊥PF 2可得∠F 1PF 2=π2,因为ΔF 1PF 2的面积等于16,所以S ΔPF 1F 2=b 2tan θ2=b 2tan π2=16,解得b =4.有关圆锥曲线的焦点三角形面积公式的思路探寻48的面积,2.则ΔF 1PF 如|||PF 1-|得:|||PF 2cos θ即|由②所以则S Δ夹角、例3.双曲线C 是().A.72且)设双曲F 1,F 2,离△PF 1F 2=1.本题.运用该=p 22sin θ,且与抛S ΔAOB =图3下转76页)思路探寻49考点剖析abroad.解析:本句用了“S+Vt+动名词”结构,能用于此结构的及物动词或词组有mind ,enjoy ,finish ,advise ,consider ,practice ,admit ,imagine ,permit ,insist on ,get down to ,look forward to ,put off ,give up 等。
重难点专题 圆锥曲线离心率压轴题(含二级结论)十九大题型汇总(学生版)
重难点专题 圆锥曲线离心率压轴题(含二级结论)十九大题型汇总题型1直接型题型2二级结论之通径型题型3双曲线渐近线相关题型4坐标法题型5二级结论之焦点弦定比分点题型6二级结论之焦点已知底角题型7焦点三角形已知顶角型题型8焦点三角形双余弦定理题型9利用图形求离心率题型10利用椭圆双曲线的对称性求离心率题型11点差法题型12二级结论之中点弦问题题型13角平分线相关题型14圆锥曲线与圆相关题型15内切圆相关题型16与立体几何相关题型17二级结论之切线方程题型18正切公式的运用题型19圆锥曲与内心结合题型1直接型椭圆与双曲线的离心率公式为:e =ca,注意椭圆的离心率范围(0,1),双曲线的离心率范围(1,+♾)1(2021·江西南昌·统考模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2的直线l 交C 的右支于A ,B 两点,且AB ⋅AF 1 =0,12|AB |=5|AF 1|,则C 的离心率为1(2021·全国·高三开学考试)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|BF 1|,若cos ∠AF 2B =35,则椭圆E 的离心率为.2(2021·河北秦皇岛·统考二模)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,过点F 1的直线l 交椭圆C 于A ,B 两点,已知AF 2 +F 1F 2 ⋅AF 1 =0,AF 1 =43F 1B,则椭圆C 的离心率为()A.57B.22C.53D.133(2023·江西九江·二模)青花瓷又称白地青花瓷,常简称青花,中华陶瓷烧制工艺的珍品,是中国瓷器的主流品种之一,属釉下彩瓷.如图为青花瓷大盘,盘子的边缘有一定的宽度且与桌面水平,可以近似看成由大小两个椭圆围成.经测量发现两椭圆的长轴长之比与短轴长之比相等.现不慎掉落一根质地均匀的长筷子在盘面上,恰巧与小椭圆相切,设切点为P ,盘子的中心为O ,筷子与大椭圆的两交点为A 、B ,点A 关于O 的对称点为C .给出下列四个命题:①两椭圆的焦距长相等;②两椭圆的离心率相等;③PA =PB ;④BC 与小椭圆相切.其中正确的个数是()A.1B.2C.3D.44(22·23下·恩施·模拟预测)已知F 1,F 2分别为双曲线C :x 24-y 2b2=1b >0 的左右焦点,且F 1到渐近线的距离为1,过F 2的直线l 与C 的左、右两支曲线分别交于A ,B 两点,且l ⊥AF 1,则下列说法正确的为()A.△AF 1F 2的面积为2B.双曲线C 的离心率为2C.AF 1 ⋅BF 1=10+46D.1AF 2 +1BF 2=6+2题型2二级结论之通径型椭圆与双曲线的半通径是b 2a , 通径是2b 2a1(2023·重庆·模拟预测)如图,椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F 1,右顶点为A ,点Q 在y 轴上,点P 在椭圆上,且满足PQ ⊥y 轴,四边形F 1APQ 是等腰梯形,直线F 1P 与y 轴交于点N 0,34b,则椭圆的离心率为( ).A.14B.32C.22D.121(23·24高三上·湖北·阶段练习)已知A ,B 是椭圆x 2a 2+y 2b2=1(a >b >0)的左右顶点,P 是双曲线x 2a 2-y 2b 2=1在第一象限上的一点,直线PA ,PB 分别交椭圆于另外的点M ,N .若直线MN 过椭圆的右焦点F ,且tan ∠AMN =3,则椭圆的离心率为.2(2023·湖北武汉·三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,点A ,B 分别为椭圆C 的左右顶点,点F 为椭圆C 的右焦点,Р为椭圆上一点,且PF 垂直于x 轴.过原点О作直线PA 的垂线,垂足为M ,过原点О作直线PB 的垂线,垂足为N ,记S 1,S 2分别为△MON ,△PAB 的面积.若S 2S 1=409,则椭圆C 的离心率为.3(22·23·赣州·二模)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,点P 在E 上,满足△F 1PF 2为直角三角形,作OM ⊥PF 1于点M (其中O 为坐标原点),且有PM =2MF1,则E 的离心率为.4(2023·河北保定·统考二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,B 为虚轴上端点,M 是BF 中点,O 为坐标原点,OM 交双曲线右支于N ,若FN 垂直于x 轴,则双曲线C 的离心率为() A.2B.2C.3D.233题型3双曲线渐近线相关双曲线的渐近线求离心率可以直接使用公式:e =1+b 2a2,1(2023·山东潍坊·二模)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,O 为坐标原点,过F 1作C 的一条浙近线的垂线,垂足为D ,且DF 2 =22OD ,则C 的离心率为()A.2B.2C.5D.31(2022·贵州毕节·统考模拟预测)已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,点A 是C 的左顶点,过点F 2作C 的一条渐近线的垂线,垂足为P ,过点P 作x 轴的垂线,垂足为M ,O 为坐标原点,且PO 平分∠APM ,则C 的离心率为()A.2B.2C.3D.32(多选)(2023·山东潍坊·三模)函数y =ax +bx(ab >0)的图象是双曲线,且直线x =0和y =ax 是它的渐近线.已知函数y =33x +1x,则下列说法正确的是()A.x ≠0,y ≥243B.对称轴方程是y =3x ,y =-33x C.实轴长为23D.离心率为2333(2020上·广西桂林·高三广西师范大学附属中学校考阶段练习)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,左顶点为A ,过F 作C 的一条渐近线的垂线,垂足为M ,若tan ∠MAF =12,则C 的离心率为.4(2022·陕西咸阳·统考二模)已知双曲线C :(a >0,b >0)的左焦点为F ,过F 且与双曲线C 的一条渐近线垂直的直线l 与另一条渐近线交于点P ,交y 轴于点A ,若A 为PF 的中点,则双曲线C 的离心率为 .5(多选)(2023·河北唐山·模拟预测)已知双曲线C :x 2a2-y 24=1(a >0)的左、右焦点分别为F 1,F 2,过F 2作直线y =2a x 的垂线,垂足为P ,O 为坐标原点,且∠F 1PO =π6,过P 作C 的切线交直线y =-2ax 于点Q ,则()A.C 的离心率为213B.C 的离心率为133C.△OPQ 的面积为23D.△OPQ 的面积为43题型4坐标法相对运算较麻烦的一种方法,可以通过联立方程,求出点的坐标,构造等式求出离心率1(2023·河南·模拟预测)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左顶点为A ,P 为C 的一条渐近线上一点,AP 与C 的另一条渐近线交于点Q ,若直线AP 的斜率为1,且A 为PQ 的三等分点,则C 的离心率为.1(2023·山东潍坊·模拟预测)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,过F 的直线交E 的左支于点P ,交E 的渐近线于点M ,N ,且P ,M 恰为线段FN 的三等分点,则双曲线E 的离心率为()A.2B.52C.5D.32(24·25高三上·浙江·开学考试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过点F 作倾斜角为π4的直线交椭圆C 于A 、B 两点,弦AB 的垂直平分线交x 轴于点P ,若PF AB=14,则椭圆C 的离心率e =.3(2023·湖北襄阳·模拟预测)如图,已知有公共焦点P 1(-c ,0)、P 2(c ,0)的椭圆C 1和双曲线C 2相交于A 、B 、C 、D 四个点,且满足OA =OB =OC =OD =c ,直线AB 与x 轴交于点P ,直线CP 与双曲线C 2交于点Q ,记直线AC 、AQ 的斜率分别为k 1、k 2,若k 1⋅k 2=2,则椭圆C 1的离心率为.4(22·23高三上·河南洛阳·阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1-c ,0 ,F 2c ,0 ,过点F 1的直线l 与双曲线C 的左支交于点A ,与双曲线C 的一条渐近线在第一象限交于点B ,且F 1F 2 =2OB (O 为坐标原点).下列四个结论正确的是()①BF 1 =4c 2-BF 2 2;②若AB =2F 1A ,则双曲线C 的离心率1+102;③BF 1 -BF 2 >2a ;④c -a <AF 1 <2c -a .A.①②B.①③C.①②④D.①③④5(22·23高三上·河北石家庄·期中)椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,过F 1的直线交C 于A ,B 两点,若3OF 1 =OA +2OB ,AB =BF 2,其中O 为坐标原点,则椭圆的离心率为题型5二级结论之焦点弦定比分点1.点F 是椭圆的焦点,过F 的弦AB 与椭圆焦点所在轴的夹角为θ,θϵ0,π2,k 为直线AB 的斜率,且AF =λFB (λ>0),则e =1+k 2λ-1λ+1当曲线焦点在y 轴上时,e =1+1k 2λ-1λ+1注:λ=AF BF 或者λ=BF AF ,而不是AF AB 或者BFAB点F 是双曲线焦点,2.过F 弦AB 与双曲线焦点所在轴夹角为θ,θϵ0,π2,k 为直线AB 斜率,且AF =λFB (λ>0),则e =1+k 2λ-1λ+1当曲线焦点在y 轴上时,e =1+1k 2λ-1λ+1 1(23·24高三上·云南·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2且倾斜角为60°的直线l 与C 交于A ,B 两点.若△AF 1F 2的面积是△BF 1F 2面积的2倍,则C 的离心率为.1(2022上·辽宁鞍山·高三鞍山一中校考期中)已知椭圆C :x 2a 2+y 2b2=1的左焦点为F ,过F 斜率为3的直线l 与椭圆C 相交于A 、B 两点,若AF BF =32,则椭圆C 的离心率e =.2(2022·全国·高三专题练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点为F ,过F 且斜率为3的直线交C 于A 、B 两点,若AF =4FB,则C 的离心率为()A.58B.65C.75D.953(2023·浙江温州·乐清市知临中学校考二模)已知椭圆x 2a 2+y 2b2=1的右焦点为F 2,过右焦点作倾斜角为π3的直线交椭圆于G ,H 两点,且GF 2 =2F 2H ,则椭圆的离心率为()A.12B.22C.23D.324(2023·贵州·统考模拟预测)椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点为A ,F 是C 的一个焦点,点B 在C 上,若3AF +5BF =0,则C 的离心率为()A.12B.35C.22D.32题型6二级结论之焦点已知底角1. 已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则椭圆的离心率e =c a =sin (α+β)sin α+sin β2. 已知双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0)两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则e =ca =sin α+sin β|sin α-sin β|,1(2008·全国·高考真题)设△ABC 是等腰三角形,∠ABC =120°,则以A ,B 为焦点,且过点C 的双曲线的离心率为()A.1+22 B.1+32C.1+2D.1+31(2022秋·山东青岛·高二山东省青岛第五十八中学校考期中)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c ,若直线y =3(x +c )与椭圆C 的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于()A.3-1B.2-1C.32D.222(2020秋·贵州贵阳·高二统考期末)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,焦距为2c .若直线y =33x +c 与椭圆的一个交点M 满足∠MF 2F 1=2∠MF 1F 2,则该椭圆的离心率等于()A.3-5B.5-3C.3+1D.3-13(2023·全国·高二专题练习)已知椭圆E 的两个焦点分别为F 1,F 2,点Р为椭圆上一点,且tan ∠PF 1F 2=23,tan ∠PF 2F 1=2,则椭圆E 的离心率为 .4(2023秋·江西吉安·高三吉安一中校考开学考试)点P 是双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)和圆C 2:x 2+y 2=a 2+b 2的一个交点,且2∠PF 1F 2=∠PF 2F 1,其中F 1,F 2是双曲线C 1的两个焦点,则双曲线C 1的离心率为.5(2023秋·湖南衡阳·高三衡阳市八中校考阶段练习)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点A 是双曲线C 的右顶点,点P 在过点A 且斜率为334的直线上,△PF 1F 2为等腰三角形,∠PF 2F 1=120°,则双曲线的离心率为.题型7焦点三角形已知顶角型可以通过焦点三角形的特征进行解决1(20·21高二上·吉林白城·阶段练习)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,椭圆的离心率为e 1,双曲线的离心率e 2,则1e 21+3e 22=.1(2021·重庆·校联考三模)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左右焦点分别为F 1,F 2,过F 1的直线交双曲线C 的左支于P ,Q 两点,若PF 2 2=PF 2 ⋅QF 2,且△PQF 2的周长为12a ,则双曲线C 的离心率为() A.102B.3C.5D.222(2021·山东烟台·统考二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若F 2A ⋅F 2B =0,且|F 2A |=|F 2B|,则C 的离心率为()A.2B.3C.6D.73(2021·浙江·模拟预测)已知F 1,F 2分别是双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,直线y =kx 与E 交于A ,B 两点,且∠F 1AF 2=60°,四边形F 1AF 2B 的周长C 与面积S 满足163S =C 2,则E 的离心率为()A.62B.52C.32D.34(2023·上海崇明·一模)已知椭圆Γ1与双曲线Γ2的离心率互为倒数,且它们有共同的焦点F 1、F 2,P是Γ1与Γ2在第一象限的交点,当∠F 1PF 2=π6时,双曲线Γ2的离心率等于 .5(2022上·江苏南京·高三南京师大附中校考期中)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点,过点F 2且斜率为1的直线l 与双曲线C 的右支交于P ,Q 两点,若△F 1PQ 是等腰三角形,则双曲线C 的离心率为.题型8焦点三角形双余弦定理1(22·23高二下·河南安阳·开学考试)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,过F 1的直线与椭圆C 交于M ,N 两点,MF 2 -MF 1 =a ,MF 1 +NF 1 =NF 2 ,则椭圆C 的离心率为()A.25B.105C.155D.641(22·23上·河南·模拟预测)双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,过F 2的直线与C 交于A ,B 两点,且AF 2 =2F 2B,∠ABF 1=60°,则双曲线C 的离心率为()A.73B.2C.53D.432(2023·浙江·一模)已知双曲线C :x 2a 2-y 2b2=1的左右焦点分别为F 1,F 2,O 为坐标原点,A ,B 为C 上位于x 轴上方的两点,且AF 1⎳BF 2,∠AF 1F 2=60°.记AF 2,BF 1交点为P ,过点P 作PQ ⎳AF 1,交x 轴于点Q .若OQ =2PQ ,则双曲线C 的离心率是.3(23·24高三上·江苏淮安·开学考试)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为A ,直线AF 1与椭圆C 交于另一点B ,若∠AF 2B =120°,则椭圆C 的离心率为.4(22·23高三下·山东菏泽·开学考试)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左右焦点分别为F 1,F 2,点A 在C 上,点B 在y 轴上,F 1A ⋅F 1B =0,BF 2 =35BA,则C 的离心率为.5(2023·湖南株洲·一模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左右焦点为F 1,F 2,过F 1的直线交椭圆C 于P ,Q 两点,若PF 1 =43F 1Q ,且PF 2 =F 1F 2,则椭圆C 的离心率为.题型9利用图形求离心率1(2023·安徽安庆·二模)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与双曲线C 的右支相交于点P ,过点O ,F 2作ON ⊥PF 1,F 2M ⊥PF 1,垂足分别为N ,M ,且M 为线段PN 的中点,ON =a ,则双曲线C 的离心率为()A.2B.5+12C.3+12D.1321(22·23·包头·二模)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点为F 1-c ,0 ,F 2c ,0 ,以C 的虚轴为直径的圆记为D ,过F 1作D 的切线与C 的渐近线y =-b a x 交于点H ,若△F 1HO 的面积为24ac ,则C 的离心率为.2(2023秋·江西宜春·高三江西省宜丰中学校考阶段练习)双曲线C :x 2a 2-y 2b2=1a ,b >0 的左焦点为F ,直线FD 与双曲线C 的右支交于点D ,A ,B 为线段FD 的两个三等分点,且OA =OB =22a (O为坐标原点),则双曲线C 的离心率为.3(2023·湖南邵阳·邵阳市第二中学校考模拟预测)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点,A 是C 的上顶点,点P 在过A 且斜率为23的直线上,△PF 1F 2为等腰三角形,∠PF 1F 2=120°,则C 的离心率为()A.1010B.714C.39D.144(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知椭圆T :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,左顶点为A ,上顶点为B ,点P 是椭圆上位于第一象限内的点,且△ABO ∼△F 1PF 2,O 为坐标原点,则椭圆的离心率为.题型10利用椭圆双曲线的对称性求离心率1(22·23高二下·湖南·期末)如图,已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1的左、右焦点,P ,Q 为双曲线C 上两点,满足F 1P ∥F 2Q ,且F 2Q =F 2P =3F 1P ,则双曲线C 的离心率为()A.105B.52C.153D.1021(2023·河南商丘·模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M ,N 是C 的一条渐近线上的两点,且MN =2MO(O 为坐标原点),MN =F 1F 2 .若P 为C 的左顶点,且∠MPN =135°,则双曲线C 的离心率为()A.3B.2C.5D.72(2023·福建宁德·模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点是F ,直线y =kx 交椭圆于A ,B 两点﹐直线AF 与椭圆的另一个交点为C ,若OA OF=AF2CF =1,则椭圆的离心率为.3(23·24高三上·山西大同·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点P (3c ,0)作直线l 交椭圆C 于M ,N 两点,若PM =2NM ,F 2M =4F 2N则椭圆C 的离心率为4(2022·全国·校联考模拟预测)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点分别是F 1,F 2,过F 2的直线l 交双曲线C 于P ,Q 两点且使得PF 2 =λF 2Q 0<λ<1 .A 为左支上一点且满足F 1A +F 2P=0 ,F 1F 2 =23AF 2 +13AQ ,△AF 2P 的面积为b 2,则双曲线C 的离心率为()A.33B.2C.102D.35(2021下·山西·高三校联考阶段练习)如图,O 是坐标原点,P 是双曲线E :x 2a 2-y 2b2=1(a >0,b >0)右支上的一点,F 是E 的右焦点,延长PO ,PF 分别交E 于Q ,R 两点,已知QF ⊥FR ,且|QF |=2|FR |,则E 的离心率为()A.174B.173C.214D.213题型11点差法1.根与系数关系法:联立直线方程和椭圆(或双曲线)方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决;2.点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆(或双曲线)方程,然后作差,构造出中点坐标和斜率的关系,具体如下:已知A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b2=1(a >b >0)上的两个不同的点M (x 0,y 0)是线段AB 的中点,x 21a 2+y 21b 2=1,=1\*GB 3\*MERGEFORMAT ①x 22a 2+y 22b 2=1,=2\*GB 3\*MERGEFORMAT ② 由①-②,得1a 2(x 21-x 22)+1b 2(y 21-y 22)=0,变形得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·x 0y 0,(x 1-x 2≠0,x 1+x 2≠0)1(22·23·吉安·一模)椭圆E :x 2a 2+y 2b2=1a >b >0 的内接四边形ABCD 的对角线AC ,BD 交于点P 1,1 ,满足AP =2PC ,BP =2PD ,若直线AB 的斜率为-14,则椭圆的离心率等于()A.14B.32C.12D.131(2023·湖北·模拟预测)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e ≠22,C 的左右焦点分别为F 1,F 2,点A 在椭圆C 上满足∠F 1AF 2=π2.∠F 1AF 2的角平分线交椭圆于另一点B ,交y 轴于点D .已知AB =2BD ,则e =.2(2022下·云南昭通·高二校联考期末)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)斜率为-18的直线与E 的左右两支分别交于A ,B 两点,P 点的坐标为(-1,2),直线AP 交E 于另一点C ,直线BP 交E 于另一点D ,如图1.若直线CD 的斜率为-18,则E 的离心率为()A.2B.72C.62D.523(22·23·河北·模拟预测)已知斜率为-2的直线l 1与双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右两支分别交于点A ,B ,l 2⎳l 1,直线l 2与E 的左、右两支分别交于点D ,C ,AC 交BD 于点P ,若点P 恒在直线l :y =-3x 上,则E 的离心率为.4(2023·云南·统考模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F (c ,0)(b >c )和上顶点B ,若斜率为65的直线l 交椭圆C 于P ,Q 两点,且满足FB +FP +FQ =0 ,则椭圆的离心率为.5(2020上·重庆沙坪坝·高三重庆八中校考阶段练习)如图,过原点O 的直线AB 交椭圆C :x 2a 2+y 2b2=1(a >b >0)于A ,B 两点,过点A 分别作x 轴、AB 的垂线AP ,AQ 分别交椭圆C 于点P ,Q ,连接BQ 交AP 于一点M ,若AM =34AP,则椭圆C 的离心率是.题型12二级结论之中点弦问题1.椭圆或者双曲线,已知中点时,当椭圆或双曲线的焦点在x 轴,K AB ∙K OM =e 2-12.P 为椭圆上一点,e 为离心率,①A 1,A 2为两个顶点,则k PA 1⋅k PA 2=e 2-1;②A 1,A 2为关于原点对称的两点,则k PA 1⋅k PA 2=e 2-1;以上结论也适用于双曲线.1(22·23上·徐州·期末)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,经过原点O 的直线交C 于A ,B 两点.P 是C 上一点(异于点A ,B ),直线BP 交x 轴于点D .若直线AP ,BP 的斜率之积为49,且∠BDO =∠BOD ,则椭圆C 的离心率为.1(22·23下·安徽·一模)已知直线l 与椭圆E :x 2a 2+y 2b2=1(a >b >0)交于M ,N 两点,线段MN 中点P 在直线x =-1上,且线段MN 的垂直平分线交x 轴于点Q -34,0 ,则椭圆E 的离心率是 .2(2023·贵州·模拟预测)设О为坐标原点,A 为椭圆C :x 2a 2+y 2b2=1a >b >0 上一个动点,过点A 作椭圆C 内部的圆E :x 2-2mx +y 2=0m >0 的一条切线,切点为D ,与椭圆C 的另一个交点为B ,D 为AB 的中点,若OD 的斜率与DE 的斜率之积为2,则C 的离心率为.3(2021·全国·模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长为4,上顶点为B ,O 为坐标原点,点D 为OB 的中点,双曲线E :x 2m 2-y 2n2=1(m >0,n >0)的左、右焦点分别与椭圆C 的左、右顶点A 1,A 2重合,点P 是双曲线E 与椭圆C 在第一象限的交点,且A 1,P ,D 三点共线,直线PA 2的斜率k PA 2=-43,则双曲线E 的离心率为()A.355B.32C.810-105D.5+41094(22·23下·南通·阶段练习)已知两点A ,M 在双曲C :x 2a 2-y 2b2=1(a >0,b >0)的右支上,点A 与点B 关于原点对称,BM 交y 轴于点N ,若AB ⊥AM ,且ON 2+8OA ⋅ON=0,则双曲线C 的离心率为()A.5B.6C.7D.22题型13角平分线相关1.角平分线“拆”面积:S △ABC =S △ACD +S △ABD2.角平分线定理性质:AB BD =ACCD1(22·23下·山西·模拟预测)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,P 是双曲线E 上一点,PF 2⊥F 1F 2,∠F 1PF 2的平分线与x 轴交于点Q ,S △PF 1Q S △PF 2Q=53,则双曲线E 的离心率为()A.2B.2C.52D.31(22·23下·湖北·模拟预测)已知F 1,F 2分别是双曲线Γ:x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点,过F 1的直线分别交双曲线左、右两支于A ,B 两点,点C 在x 轴上,CB =3F 2A,BF 2平分∠F 1BC ,则双曲线Γ的离心率为()A.7B.5C.3D.22(22·23高三·云南·阶段练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右顶点分别为A ,B ,右焦点为F ,P 为椭圆上一点,直线AP 与直线x =a 交于点M ,∠PFB 的角平分线与直线x =a 交于点N ,若PF ⊥AB ,△MAB 的面积是△NFB 面积的6倍,则椭圆C 的离心率是.3(2023·山东烟台·校考模拟预测)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦点为F 1-c ,0 ,F 2c ,0 ,点P 是C 与圆x 2+y 2=c 2的交点,∠PF 1F 2的平分线交PF 2于Q ,若PQ =12QF 2 ,则椭圆C 的离心率为()A.33B.2-1C.22D.3-14(2023春·江西赣州·高三统考阶段练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2.椭圆C 在第一象限存在点M ,使得MF 1 =F 1F 2 ,直线F 1M 与y 轴交于点A ,且F 2A 是∠MF 2F 1的角平分线,则椭圆C 的离心率为()A.6-12B.5-12C.12D.3-12题型14圆锥曲线与圆相关1(2023·福建漳州·模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1、F 2,以F 2为圆心的圆与x 轴交于F 1,B 两点,与y 轴正半轴交于点A ,线段AF 1与C 交于点M .若BM 与C 的焦距的比值为313,则C 的离心率为()A.3-12B.12C.3+14D.7-121(23·24高三上·福建福州·开学考试)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1、F 2,以F 2为圆心的圆与x 轴交于F 1,B 两点,与y 轴正半轴交于点A ,线段AF 1与C 交于点M .若BM与C 的焦距的比值为313,则C 的离心率为()A.3+12B.32C.5+12D.7+122(2023·全国·二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左,右顶点分别是A 1,A 2,圆x 2+y 2=a 2与C 的渐近线在第一象限的交点为M ,直线A 1M 交C 的右支于点P .设△MPA 2的内切圆圆心为I ,A 2I ⊥x 轴,则C 的离心率为()A.2B.2C.3D.53(22·23·马鞍山·三模)已知F 1 , F 2分别是双曲线C :x 2a 2-y 2b2=1 (a >0 , b >0)的左,右焦点,点M 在双曲线上,MF 1⊥MF 2,圆O :x 2+y 2=32(a 2+b 2),直线MF 1与圆O 相交于A ,B 两点,直线MF 2与圆O 相交于P ,Q 两点,若四边形APBQ 的面积为27b 2,则C 的离心率为()A.62B.324C.32D.984(22·23上·全国·阶段练习)已知圆C 1:x 2+y -2332=163过双曲线C 2:x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点F 1,F 2,曲线C 1与曲线C 2在第一象限的交点为M ,若MF 1 ⋅MF 2 =12,则双曲线C 2的离心率为()A.2B.3C.2D.3题型15内切圆相关1(22·23高三下·江西·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.点P 在C 上且位于第一象限,圆O 1与线段F 1P 的延长线,线段PF 2以及x 轴均相切,△PF 1F 2的内切圆为圆O 2.若圆O 1与圆O 2外切,且圆O 1与圆O 2的面积之比为9,则C 的离心率为()A.12B.35C.22D.321(2023·山东潍坊·模拟预测)已知双曲线C 1:x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,点F 2与抛物线C 2:y 2=2px p >0 的焦点重合,点P 为C 1与C 2的一个交点,若△PF 1F 2的内切圆圆心的横坐标为4,C 2的准线与C 1交于A ,B 两点,且AB =92,则C 1的离心率为()A.94B.54C.95D.742(22·23下·宁波·阶段练习)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上不与顶点重合的任意一点,I 为△PF 1F 2的内心,记直线OP ,OI 的斜率分别为k 1,k 2,若k 1=32k 2,则椭圆E 的离心率为() A.13B.12C.33D.223(23·24高三上·云南昆明·期中)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1-c ,0 ,F 2c ,0(c >0),过F 1作倾斜角为π4的直线交椭圆于A ,B 两点,若△ABF 2的内切圆半径r =26c ,则该椭圆的离心率为.4(2023·山西·二模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),点M x 0,y 0 x 0>c 是C 上一点,点A 是直线MF 2与y 轴的交点,△AMF 1的内切圆与MF 1相切于点N ,若|MN |=2F 1F 2 ,则椭圆C 的离心率e =.5(22·23·红河·一模)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1、F 2,若E 上存在点P ,满足OP =12F 1F 2 ,(O 为坐标原点),且△PF 1F 2的内切圆的半径等于a ,则E 的离心率为.题型16与立体几何相关1(2023·安徽安庆·一模).如图是数学家Ger min al Dandelin 用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin 双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球O 1,球O 2的半径分别为4和1,球心距O 1O 2 =6,截面分别与球O 1,球O 2切于点E ,F ,(E ,F 是截口椭圆的焦点),则此椭圆的离心率等于()A.339B.63C.22D.161(22·23高三下·河北衡水·阶段练习)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过点F 2作直线AB ⊥F 1F 2交C 于A ,B 两点. 现将C 所在平面沿直线F 1F 2折成平面角为锐角α的二面角,如图,翻折后A ,B 两点的对应点分别为A ,B ,且∠A F 1B =β⋅若1-cos α1-cos β=2516,则C 的离心率为()A.3B.22C.3D.322(2023·云南大理·模拟预测)某同学所在的课外兴趣小组计划用纸板制作一个简易潜望镜模型(图甲),该模型由两个相同的部件拼接粘连制成,每个部件由长方形纸板NCEM (图乙)沿虚线裁剪后卷一周形成,其中长方形OCEF 卷后为圆柱O 1O 2的侧面.为准确画出裁剪曲线,建立如图所示的以O 为坐标原点的平面直角坐标系,设P x ,y 为裁剪曲线上的点,作PH ⊥x 轴,垂足为H .图乙中线段OH 卷后形成的圆弧OH (图甲),通过同学们的计算发现y 与x 之间满足关系式y =3-3cos x3(0≤x <6π),现在另外一个纸板上画出曲线y =1-cos x2(0≤x <4π),如图丙所示,把沿虚线裁剪后的长方形纸板卷一周,求该裁剪曲线围成的椭圆的离心率为()A.255B.55C.12D.533(2022·辽宁沈阳·一模)如图,在底面半径为1,高为6的圆柱内放置两个球,使得两个球与圆柱侧面相切,且分别与圆柱的上下底面相切.一个与两球均相切的平面斜截圆柱侧面,得到的截线是一个椭圆.则该椭圆的离心率为.4(22·23下·辽宁·阶段练习)如图所示圆锥,C 为母线SB 的中点,点O 为底面圆心,AB 为底面圆的直径,且SC ,OB ,SB 的长度成等比数列,一个平面过A ,C ,与圆锥面相交的曲线为椭圆,若该椭圆的短轴与圆锥底面平行,则该椭圆的离心率为.5(多选)(2023·江苏南通·模拟预测)如图,已知圆锥PO 的轴PO 与母线所成的角为α,过A 1的平面与圆锥的轴所成的角为ββ>α ,该平面截这个圆锥所得的截面为椭圆,椭圆的长轴为A 1A 2,短轴为B 1B 2,长半轴长为a ,短半轴长为b ,椭圆的中心为N ,再以B 1B 2为弦且垂直于PO 的圆截面,记该圆与直线PA 1交于C 1,与直线PA 2交于C 2,则下列说法正确的是()A.当β<α时,平面截这个圆锥所得的截面也为椭圆B.|NC 1|⋅|NC 2|=a 2sin β+α sin β-αcos 2αC.平面截这个圆锥所得椭圆的离心率e =cos βcos αD.平面截这个圆锥所得椭圆的离心率e =sin αsin β题型17二级结论之切线方程圆锥曲线切线方程的常用结论【结论1】(1)经过圆x 2+y 2=r 2上一点M x 0,y 0 的切线方程为x 0x +y 0y =r 2.(2)当M x 0,y 0 在圆外时,过M 点引切线有且只有两条,过两切点的弦所在直线方程为x 0x +y 0y =r 2.【结论2】(1)若圆心不在原点,圆的方程:x -a 2+y -b 2=r 2,若M x 0,y 0 为圆上一点,则过M x 0,y 0 切线方程:x 0-a x -a +y 0-b y -b =r2(2)若M x 0,y 0 在圆外,过M 点切线有两条:切点弦所在直线方程:x 0-a x -a +y 0-b y -b =r2方便记忆,求切线和切点弦的方法,统一称为“代一留一”.【结论3】(1)过圆x 2a 2+y 2b 2=1a >b >0 上一点M x 0,y 0 切线方程为x 0x a 2+y 0y b2=1;(2)当M x 0,y 0 在椭圆x 2a 2+y 2b 2=1的外部时,过M 引切线有两条,过两切点的弦所在直线方程为x 0x a2+y 0yb 2=1.(3)设过椭圆x 2a 2+y 2b2=1a >b >0 外一点M x 0 , y 0 引两条切线,切点分别为A x 1,y 1 ,B x 2,y 2 .由(1)可知过A , B 两点的切线方程分别为:x 1xa 2+y 1yb 2=1,x 2x a 2+y 2y b2=1.又因M x 0,y 0 是两条切线的交点,∴有x 1x 0a 2+y 1y 0b 2=1,x 2x 0a 2+y 2y 0b 2=1.观察以上两个等式,发现A x 1,y 1 ,B x 2,y 2 满足直线x 0xa2+y 0y b 2=1,∴过两切点A , B 两点的直线方程为x 0xa 2+y 0yb 2=1.同理可得焦点在y 轴上的情形.【结论4】(1)过圆y 2a 2+x 2b 2=1a >b >0 上一点M x 0,y 0 切线方程为y 0y a 2+x 0x b2=1;(2)当M x 0,y 0 在椭圆y 2a 2+x 2b2=1a >b >0 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为y 0y a 2+x 0xb2=1.【结论5】(1)过双曲线x 2a 2-y 2b 2=1a >0,b >0 上一点M x 0,y 0 处的切线方程为x 0x a 2-y 0y b2=1;(2)当M x 0,y 0 在双曲线x 2a 2-y 2b 2=1的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:x 0x a2-y 0yb2=1.(3)设过双曲线x 2a 2-y 2b2=1a >0,b >0 外一点M x 0,y 0 引两条切线,切点分别为A x 1,y 1 、B x 2,y 2 .由(1)可知过A , B 两点的切线方程分别为:x 1xa 2-y 1yb 2=1 , x 2x a 2-y 2y b2=1.又因M x 0,y 0 是两条切线的交点,∴有x 1x 0a 2-y 1y 0b 2=1 , x 2x 0a 2-y 2y 0b 2=1.观察以上两个等式,发现A x 1,y 1 ,B x 2,y 2 满足直线x 0xa2-y 0y b 2=1,∴过两切点A , B 两点的直线方程为x 0x a 2-y 0y b 2=1.同理可得焦点在y 轴上的情形.【结论6】(1)过双曲线y 2a 2-x 2b 2=1a >0,b >0 上一点M x 0,y 0 处的切线方程为y 0y a 2-x 0x b2=1;(2)当M x 0,y 0 在双曲线y 2a 2-x 2b2=1a >0,b >0 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:y 0y a 2-x 0xb2=1.1(2023·重庆·模拟预测)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,点A x 1,y 1 为双曲线C 在第一象限的右支上一点,以A 为切点作双曲线C 的切线交x 轴于点B ,若cos ∠F 1AF 2=12,且F 1B =2BF 2 ,则双曲线C 的离心率为()A.22B.5C.2D.31(22·23高三上·全国·阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 上的一点M (异于顶点),过点M 作双曲线C 的一条切线l .若双曲线C 的离心率e =233,O 为坐标原点,则直线OM 与l 的斜率之积为()A.13B.23C.32D.32(2022·全国·统考二模)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 与椭圆x 24+y 23=1.过椭圆上一点P -1,32作椭圆的切线l ,l 与x 轴交于M 点,l 与双曲线C 的两条渐近线分别交于N 、Q ,且N 为MQ的中点,则双曲线C 的离心率为()。
曲线的离心率求法
圆锥曲线的离心率问题离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也体现了参数,a c 之间的联系。
一、基础知识: 1、离心率公式:ce a=(其中c 为圆锥曲线的半焦距) (1)椭圆:()0,1e ∈ (2)双曲线:()1,+e ∈∞ 2、圆锥曲线中,,a b c 的几何性质及联系 (1)椭圆:222a b c =+, (2)双曲线:222c b a =+3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,,a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向:(1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a 有关,另一条边为焦距。
从而可求解(2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解,或者带入曲线求解 (3)利用三角形的相似关系 (4)利用点线距离关系4、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的坐标是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。
如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口 (2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可 (3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞ 二、考点一:求离心率 方法一:焦点三角形问题例1(1):设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为( )A .3 B .6 C .13 D .16答案:A小炼有话说:在圆锥曲线中,要注意O 为12F F 中点是一个隐含条件,如果图中存在其它中点,则有可能与O 搭配形成三角形的中位线。
圆锥曲线系统班11、 椭圆、双曲线焦点三角形下的离心率公式
第11讲椭圆、双曲线焦点三角形下的离心率公式知识与方法1.如图1所示,在焦点三角形背景下求椭圆的离心率,一般结合椭圆的定义,关键是运用已知条件研究出12PF F 的三边长之比或内角正弦值之比.公式:1212121221sin 22sin sin F F F PF c ce a a PF PF PF F PF F ∠====+∠+∠2.如图2所示,在焦点三角形背景下求双曲线的离心率,一般结合双曲线的定义,关键是运用已知条件研究出12PF F 的三边长之比或内角正弦值之比.公式:1212122112sin 22sin sin F F F PF c ce a a PF F PF F PF PF ∠====∠-∠-.典型例题【例1】(2018·新课标Ⅱ卷)已知1F 、2F 是椭圆C 的两个焦点,P 是椭圆C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为()A.1B.21【解析】解法1:如图,12PF PF ⊥,2160PF F ∠=︒,故可设122F F =,则1PF =,21PF =,所以C的离心率12121F F e PF PF ==+.解法2:如图,2112126030PF F PF F PF PF ∠=︒⎧⇒∠=︒⎨⊥⎩121221sin sin 901sin sin sin 30sin 60F PF e PF F PF F ∠︒⇒===∠+∠︒+︒.【答案】D 变式1设1F 、2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点,P 在C 上且1PF x ⊥轴,若1230F PF ∠=︒,则椭圆C 的离心率为_______.【解析】如图,1230F PF ∠=︒且1PF x ⊥,故可设22PF =,则13PF =,121F F =,所以椭圆C 的离心率121212323F F e PF PF ===-++.解法2:如图,12211123060F PF PF F PF F F ∠=︒⎧⇒∠=︒⎨⊥⎩121221sin sin 3023sin sin sin 90sin 60F PF e PF F PF F ∠︒⇒===-∠+∠︒+︒【答案】23变式2在ABC 中,AB AC ⊥,1tan 3ABC ∠=,则以B 、C 为焦点,且经过点A 的椭圆的离心率为_______.【解析】如图,不妨设3AB =,1AC =,则10BC =104BC e AB AC ==+.解法2:如图,110310tan sin sin 31010ABC ABC ACB ∠=⇒∠=∠=sin 10sin sin 4BAC e ABC ACB ∠⇒==∠+∠.【答案】变式3过椭圆()222210x y a b a b+=>>的左焦点1F 作x 轴的垂线交椭圆于A 、B 两点,椭圆的右焦点为2F ,若2ABF 是等腰直角三角形,则椭圆的离心率为_______.【解析】解法1:如图,2ABF 是等腰直角三角形12AF F ⇒ 也是等腰直角三角形,不妨设1121AF F F ==,则2AF =所以椭圆的离心率12121F F e AF AF ==+.解法2:如图,由题意,121245F AF F F A ∠=∠=︒,所以椭圆的离心率121221sin 1sin sin F AF e AF F AF F ∠==∠+∠.【答案】1-变式4过椭圆()222210x y a b a b+=>>的左焦点1F 作x 轴的垂线交椭圆于A 、B 两点,椭圆的右焦点为2F ,若21cos 8AF B ∠=,则椭圆的离心率为_______.【解析】解法1:如图,122212121211cos cos 212sin sin 88AF AF B AF F AF F AF F AF ∠=∠=⇒-∠=⇒∠∠==不妨设1AF =24AF =,则123F F =,所以1212F F e AF AF ==+.解法2:如图,2211cos cos 28AF B AF F ∠=∠=221211712sin sin 84AF F AF F ⇒-∠=⇒∠=12213sin cos 4F AF AF F ⇒∠=∠=1212213sin 474sin sin 3F AF e AF F AF F ∠∠==∠+∠.变式5在ABC 中,2AB =,1BC =,且6090ABC ︒≤∠≤︒,若以B 、C 为焦点的椭圆经过点A ,则该椭圆的离心率的取值范围为_______.【解析】解析:如图,设()6090ABC θθ∠=︒≤≤︒则2222cos 54cos AC AB BC AB BC ABC θ=+-⋅⋅∠=-,160900cos 2AC θθ︒≤≤︒⇒≤≤⇒≤而12BC e AB AC AC==++22e ≤≤-.【答案】2,2-【反思】从上面几道题可以看出,焦点三角形下求椭圆的离心率,要么研究焦点三角形的三边长之比,要么研究焦点三角形的内角正弦值之比.【例2】已知1F 、2F 是双曲线2222:1x y C a b -=的左、右焦点,点P 在C 上,12PF PF ⊥,且1230PF F ∠=︒,则双曲线C 的离心率为_______.【解析】解法1:如图,由题意,不妨设21PF =,则1PF =,122F F =,所以12121F FePF PF==-.解法2:如图,由题意,2160PF F∠=︒,1290F PF∠=︒,所以121221sin1sin sinF PFePF F PF F∠==∠-∠.【答案】1+变式1(2016·新课标Ⅱ卷)已知1F、2F是双曲线2222:1x yEa b-=的左、右焦点,点M在E上,1MF与x轴垂直,211sin3MF F∠=,则E的离心率为()B.32D.2【解析】解法1:如图,不妨设11MF=,23MF=,则12F F=,所以1212222F FePF PF===-.解法2:21121sin sin33MF F F MF∠=⇒∠=12122122sin31sin sin13F MFeMF F MF F∠⇒===∠-∠-.【答案】A变式2已知1F、2F是双曲线2222:1x yCa b-=的左、右焦点,过1F且与x轴垂直的直线与双曲线C交于A、B两点,若2ABF是等腰直角三角形,则双曲线C的离心率为_______.【解析】解法1:2ABF 是等腰直角三角形12AF F ⇒ 也是等腰直角三角形,不妨设1121AF F F ==,则2AF =双曲线C的离心率12211F F e AF AF ==-.解法2:2ABF 是等腰直角三角形12AF F ⇒ 也是等腰直角三角形,所以121221sin sin 451sin sin sin 90sin 45F AF e AF F AF F ∠︒===∠-∠︒-︒.【答案】1+变式3在ABC 中,AB AC ⊥,1tan 3ABC ∠=,则以B 、C 为焦点,且经过点A 的双曲线的离心率为_______.【解析】如图,不妨设1AC =,则3AB =,BC =所以双曲线的离心率1010312BC e AB AC ===--.【答案】变式4已知1F 、2F 是双曲线2222:1x y C a b-=的左、右焦点,点P 在C 上,1230PF F ∠=︒,212PF F F =,则双曲线C 的离心率为_______.【解析】如图,由题意,121230PF F F PF ∠=∠=︒,12120F PF ∠=︒,所以121221sin sin sin F PF e PF F PF F ∠==∠-∠.【答案】12+强化训练1.(★★★)在PAB 中,PA AB ⊥,12tan PBA ∠=,则以A 、B 为焦点,且经过点P 的椭圆的离心率为_______.【解析】如图,由题意,不妨设1PA =,则2AB =,PB =512AB e PA PB-===+.2.(★★★)设1F 、2F 是椭圆()2222:10x y C a b a b +=>>的左、右焦点,点P 在C 上,且1245PF F ∠=︒,214cos 5PF F ∠=,则椭圆C 的离心率为_______.【解析】如图,212143cos sin 55PF F PF F ∠=⇒∠=,12122121180135F PF PF F PF F PF F ∠=︒-∠-∠=︒-∠,所以()1221212172sin sin 135sin135cos cos135sin 10F PF PF F PF F PF F ∠=︒-∠=︒∠-︒∠=,故121221sin 5sin sin F PF e PF F PF F ∠==-∠+∠【答案】5-3.(★★★)已知1F 、2F 是双曲线2222:1x y C a b-=的左、右焦点,点P 在C 上,1PF x ⊥轴,且211tan 2PF F ∠=,则双曲线C 的离心率为_______.【解析】如图,不妨设11PF =,122F F =,则2PF =双曲线C的离心率122112F F e PF PF +==-.4.(★★★)在ABC 中,30ABC ∠=︒,AB =,1BC =,若以B 、C 为焦点的椭圆经过点A ,则该椭圆的离心率为_______.【解析】2222cos 1AC AB BC AB BC ABC =+-⋅⋅∠=1AC ⇒=⇒椭圆的离心率12BC e AB AC ==+.【答案】312-5.(★★★)过椭圆()2222:10x y C a b a b+=>>的左焦点F 作x 轴的垂线交椭圆C 于A 、B 两点,若ABO 是等腰直角三角形,则椭圆C 的离心率为_______.【解析】如图,设椭圆C 的右焦点为1F ,ABO 是等腰直角三角形AFO ⇒ 也是等腰直角三角形,不妨设1AF OF ==,则12FF =,1AF =,所以椭圆C的离心率121F F e AF AF ==+.解法2:ABO 是等腰直角三角形AFO ⇒ 也是等腰直角三角形,⇒22b AF OF c b ac a=⇒=⇒=2222210102a c ac c ac a e e e ⇒-=⇒+-=⇒+-=⇒=.6.(★★★)已知1F 、2F 是双曲线2222:1x y C a b-=的左、右焦点,过1F 且与x 轴垂直的直线与双曲线C 交于A 、B 两点,若2ABF 是正三角形,则双曲线C 的离心率为_______.【解析】解法1:如图,2ABF 是正三角形,不妨设11AF =,则22AF =,12F F =离心率1221F F e AF AF ==-.解法2:如图,2ABF 是正三角形1260F AF ⇒∠=︒,2130AF F ∠=︒,1290AF F ∠=︒,所以双曲线C的离心率121221sin sin sin F AF e AF F AF F ∠==∠-∠.7.(★★★)过双曲线2222:1x y C a b-=的左焦点1F 作x 轴的垂线交C 于A 、B 两点,C 的右焦点为2F ,若21cos 8AF B ∠=,则双曲线C 的离心率为_______.【解析】如图,2221211cos cos 22cos 18AF B AF F AF F ∠=∠=∠-=1221233cos 44F F AF F AF ⇒∠=⇒=,不妨设123F F =,24AF =,则1AF ==所以离心率1221F F e AF AF ==-.8.(★★★)过双曲线2222:1x y C a b-=的左焦点F 作x 轴的垂线交C 于A 、B 两点,若ABO是等腰直角三角形,则双曲线C 的离心率为_______.【解析】如图,设双曲线C 的右焦点为1F ,ABO 是等腰直角三角形AFO ⇒ 也是等腰直角三角形,不妨设1AF FO ==,则12FF =,1AF =,所以C的离心率1112FF e AF AF+==-.【答案】5129.(★★★)设1F 、2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点,过1F且斜率为的直线l 与椭圆C 交于A 、B 两点,212AF F F ⊥,则椭圆C 的离心率为_______.【解析】解法l :如图,直线AB的斜率为1260AF F ⇒∠=︒,又212AF F F ⊥,所以2190AF F ∠=︒,1230F AF ∠=︒,不妨设121F F =,则12AF =,2AF =,所以椭圆C的离心率12122F F e AF AF ==-+解法2:如图,直线AB1260AF F ⇒∠=︒,又212AF F F ⊥,所以2190AF F ∠=︒,1230F AF ∠=︒,故椭圆C的离心率121221sin 2sin sin F AF e AF F AF F ∠==-∠+∠【答案】210.(★★★)设1F 、2F 是椭圆()2222:10x y E a b a b+=>>的左、右焦点,以12F F 为直径的圆与椭圆的4个交点和1F 、2F 恰好构成一个正六边形,则椭圆E 的离心率为_______.【解析】如图,由题意,21ABF CDF 是正六边形,所以1260AF F ∠=︒,2130AF F ∠=︒,1290F AF ∠=︒,故椭圆E的离心率121221sin 1sin sin F AF e AF F AF F ∠==∠+∠.【答案】1-11.(★★★★)已知P 、Q 为椭圆()2222:10x y C a b a b+=>>上关于原点对称的两点,点P 在第一象限,1F 、2F 是椭圆C 的左、右焦点,2OP OF =,若1133QF PF ≥,则椭圆C 的离心率的取值范围为_______.【解析】如图,2121212OP OF OP F F PF PF =⇒=⇒⊥显然四边形12PF QF 是矩形,所以12QF PF =,由题意,1133QF PF ≥,所以2133PF PF ≥,设12PF F α∠=,则21tan PF PF α=≥30α≥︒,又点P 在第一象限,所以21PF PF <,故tan 1α<,即45α<︒,所以3045α︒≤<︒,椭圆C 的离心率()121221sin 11sin sin sin sin 90sin cos F PF e PF F PF F αααα∠====∠+∠+︒-+,由3045α︒≤<︒可得754590α︒≤+︒<︒,所以()62sin 4514α≤+︒<,故212e <≤-.【答案】212⎤-⎥⎝⎦。
高二数学圆锥曲线中离心率的求法
圆锥曲线中离心率的求法在解析几何中,求离心率在高考中经常出现,解法较灵活,下面就介绍些常用的方法。
1、公式法:即利用ace =这一公式求离心率。
[例1]已知椭圆m y mx5522=+的离心率510=e ,求m 的值。
解:将椭圆方程化为标准方程得:1522=+my x (1)当50<<m 时,51055,5,,5222=-==-=∴==m ac e m c m b a ,可得3=m ;(2)当5>m 时,5105,5,5,222=-==-=∴==m m a c e m c b m a ,可得325=m ;3253==∴m m 或。
[例2]已知双曲线的渐近线为x y 43±=,求双曲线的离心率。
解:(1)当双曲线的焦点在X 轴上时,可得:43=a b ,从而451222=⎪⎭⎫⎝⎛+=+==a b a b a ac e ; (2)当双曲线的焦点在Y 轴上时,可得:43=b a ,同理可得35=e ; ∴双曲线的离心率为4535或。
2、几何法:求与焦点三角形有关的离心率,可根据三角形的特征设一条边,再想办法求出2a,2c ,从而可得离心率。
[例3]以椭圆的右焦点2F 为圆心作圆,使这圆过椭圆的中心,且交椭圆于点M ,若直线)(11为左焦点F MF 是圆2F 的切线,M 是切点,则椭圆的离心率是( )(A )13- (B )32- (C )22(D )23 解:如图,由题意得21F MF ∆为直角三角形,设12=MF ,则221=F F ,从而31=MF ,131322121-=+=+=∴MF MF F F e ,故选A 。
[例4]F 1,F 2为椭圆的左右两个焦点,过F 2的直线交椭圆于P 、Q 两点,PQ PF ⊥1,且||||1PQ PF =,求椭圆的离心率。
解:设2,1,111===Q F PQ PF 则,a QF PQ PF 411=++ ,()261212,2212222222221=-+=+=+=+=∴a PF PF c a ,3622-==∴ace 。
【圆锥曲线】02椭圆离心率与几何性质(含经典题型+答案)
椭圆的离心率与几何性质角,则该椭圆的离心率为 .2.若椭圆的一个焦点与短轴的两个顶点可构成一个等边三角形,则椭圆的离心率为( )1123. . . .4222A B C D 3.在一椭圆中以焦点F 1、F 2为直径两端点的圆,恰好过短轴的两顶点,则此椭圆的离心率e 等于( ).秒杀秘籍:椭圆离心率的计算定义:如图所示,P 为椭圆的上顶点,令122,PF F OPF αθ∠=∠=,离心率就是sin cos ce aθα=== 例1:已知直线220x y -+=经过椭圆22221(0)x y a b a b+=>>的一个顶点和一个焦点,那么这个椭圆的方程为____________________,离心率为_______. 解:()()220;2,00,1x y -+=∴-直线过点;,故过椭圆的上顶点和左焦点,根据图形可得2,1,5c b a ===;故椭圆方程为2215x y +=,255c e a ==椭圆顶点三角形与离心率:如右图,2tan 1be aα==-, 例2:椭圆)0(12222>>=+b a by ax 的四个顶点为A 、B 、C 、D ,若菱形ABCD 的内切圆恰好过焦点,则椭圆的离心率是( ) A.253- B.853+ C. 215- D.815+解:根据图形可得22222tan b c c b ac a c ac a ba c α===⇒=⇒-=-; 即22251110,2c c e e e a a --=⇒+-==(黄金椭圆2b ac =)半通径的焦点三角形与离心率:如右图,过椭圆右焦点作垂直于x 轴的直线交椭圆于点P ,则22b PF a =,12,F PF α∠=222222221cos 12bab a ac e a c ea α--===++- 例3:设椭圆的两个焦点分别为1F ,2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若△12F PF 为等腰直角三角形,则椭圆的离心率为__________ .解:根据图形可得()22222212cos 21122e e e e α--==⇒=⇒=-+ 例4:椭圆221123x y +=的两个焦点为F 1,F 2, 点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 1|是|PF 2|的 倍。
2024高考数学专项复习圆锥曲线基础知识手册
圆锥曲线一、椭圆及其性质第一定义平面内一动点P 与两定点F 1、F 2距离之和为常数(大于F 1F 2 )的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF 1d 1=MF 2d 2=e 焦点焦点在x 轴上焦点在y 轴上图形yxF 1F 2abc O A 1A 2B 2B 1x =a 2cx =-a 2c y x F 1F 2ab c A 1A 2B 2B 1y =a2cy =-a2c标准方程x 2a 2+y 2b 2=1a >b >0y 2a 2+x 2b2=1a >b >0范围-a ≤x ≤a 且-b ≤y ≤b-b ≤x ≤b 且-a ≤y ≤a顶点A 1-a ,0 ,A 2a ,0 ,B 10,-b ,B 20,bA 10,-a ,A 20,a ,B 1-b ,0 ,B 2b ,0轴长长轴长=2a ,短轴长=2b ,焦距=F 1F 2 =2c ,c 2=a 2-b 2焦点F 1-c ,0 、F 2c ,0F 10,-c 、F 20,c焦半径PF 1 =a +e x 0,PF 2 =a -e x 0PF 1 =a -e y 0,PF 2 =a +e y 0焦点弦左焦点弦|AB |=2a +e (x 1+x 2),右焦点弦|AB |=2a -e (x 1+x 2).离心率e =c a=1-b 2a20<e <1 准线方程x =±a 2cy =±a 2c切线方程x 0x a 2+y 0y b 2=1x 0xb 2+y 0y a 2=1通径过椭圆焦点且垂直于对称轴的弦长AB =2b 2a(最短焦点弦)焦点三角形(1)由定义可知:|PF 1|+|PF 2|=2a ,周长为:2a +2c (2)焦点三角形面积:S △F 1PF 2=b 2×tan θ2(3)当P 在椭圆短轴上时,张角θ最大,θ≥1-2e 2cos (4)焦长公式:PF 1 =b 2a -c αcos 、MF 1 =b 2a +c αcos MP =2ab 2a 2-c 22αcos =2ab 2b 2+c 22αsin (5)离心率:e =(α+β)sin α+βsin sin yxF 1F 2θαP OMβ2024高考数学专项复习第一定义平面内一动点P与两定点F1、F2距离之差为常数(大于F1F2)的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF1d1=MF2d2=e焦点焦点在x轴上焦点在y轴上图形yxF1F2bc虚轴实轴ayxF1F2实轴虚轴标准方程x2a2-y2b2=1a>0,b>0y2a2-x2b2=1a>0,b>0范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R 顶点A1-a,0、A2a,0A10,-a、A20,a轴长虚轴长=2b,实轴长=2a,焦距=F1F2=2c,c2=a2+b2焦点F1-c,0、F2c,0F10,-c、F20,c焦半径|PF1|=a+e x0,|PF2|=-a+e x0左支添“-”离心率e=ca=1+b2a2e>1准线方程x=±a2c y=±a2c渐近线y=±ba x y=±ab x切线方程x0xa2-y0yb2=1x0xb2-y0ya2=1通径过双曲线焦点且垂直于对称轴的弦长AB=2b2a(最短焦点弦)焦点三角形(1)由定义可知:|PF1|-|PF2|=2a(2)焦点直角三角形的个数为八个,顶角为直角与底角为直角各四个;(3)焦点三角形面积:S△F1PF2=b2÷tanθ2=c∙y(4)离心率:e=F1F2PF1-PF2=sinθsinα-sinβ=sin(α+β)sinα-sinβyxF1F2Pθαβ定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.方程y 2=2px p >0y 2=-2px p >0x 2=2py p >0x 2=-2py p >0图形yxF x =-p2yxFx =p2y xFy =-p2yxFy =p2顶点0,0对称轴x 轴y 轴焦点F p2,0 F -p 2,0 F 0,p 2 F 0,-p 2准线方程x =-p 2x =p2y =-p 2y =p 2离心率e =1范围x ≥0x ≤0y ≥0y ≤0切线方程y 0y =p x +x 0y 0y =-p x +x 0x 0x =p y +y 0x 0x =-p y +y 0通径过抛物线焦点且垂直于对称轴的弦AB =2p (最短焦点弦)焦点弦AB 为过y 2=2px p >0 焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =x 1+p 2BF =x 2+p2AB =x 1+x 2+p ,(2)x 1x 2=p 24y 1y 2=-p 2(3)AF =p 1-αcos BF =p 1+αcos 1|FA |+1|FB |=2P (4)AB =2psin 2αS △AOB =p 22αsin AB 为过x 2=2py (p >0)焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =p 1-αsin BF =p1+αsin (2)AB =2p 2αcos S △AOB=p 22αcos (3)AF BF=λ,则:α=λ-1λ+1sin yxFx =-p 2αABO yxFαABOy 2=2px (p >0)y 2=2px (p >0)四、圆锥曲线的通法F 1F 2POxyOxyFP MOxyF 1F 2P椭圆双曲线抛物线点差法与通法1、圆锥曲线综述:联立方程设交点,韦达定理求弦长;变量范围判别式,曲线定义不能忘;弦斜中点点差法,设而不求计算畅;向量参数恰当用,数形结合记心间.★2、直线与圆锥曲线的位置关系(1)直线的设法:1若题目明确涉及斜率,则设直线:y =kx +b ,需考虑直线斜率是否存在,分类讨论;2若题目没有涉及斜率或直线过(a ,0)则设直线:x =my +a ,可避免对斜率进行讨论(2)研究通法:联立y =kx +bF (x ,y )=0得:ax 2+bx +c =0判别式:Δ=b 2−4ac ,韦达定理:x 1+x 2=−b a ,x 1x 2=ca(3)弦长公式:AB =(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=(1+k 2)⋅[(x 1+x 2)2-4x 1x 2]=1+1k2(y 1+y 2)2−4y 1y 2 3、硬解定理设直线y =kx +φ与曲线x 2m +y 2n=1相交于A (x 1,y 1)、B (x 2,y 2)由:y =kx +φnx 2+my 2=mn,可得:(n +mk 2)x 2+2kφmx +m (φ2-n )=0判别式:△=4mn (n +mk 2-φ2)韦达定理:x 1+x 2=-2kmφn +mk 2,x 1x 2=m (φ2-n )n +mk 2由:|x 1-x 2|=(x 1+x 2)2-4x 1x 2,代入韦达定理:|x 1-x 2|=△n +mk 2★4、点差法:若直线l 与曲线相交于M 、N 两点,点P (x 0,y 0)是弦MN 中点,MN 的斜率为k MN ,则:在椭圆x 2a 2+y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=−b 2a2;在双曲线x 2a 2−y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=b 2a2;在抛物线y 2=2px (p >0)中,有k MN ⋅y 0=p .(椭圆)设M 、N 两两点的坐标分别为(x 1,y 1)、(x 2,y 2),则有x 12a 2+y 12b 2=1,⋯⋯(1)x 22a 2+y 22b 2=1.⋯⋯(2) (1)−(2),得x 12−x 22a 2+y 12−y 22b 2=0.∴y 2−y 1x 2−x 1⋅y 2+y 1x 2+x 1=−b 2a2.又∵k MN =y 2−y 1x 2−x 1,y 1+y 2x 1+x 2=2y 2x =y x .∴k MN ⋅y x =−b 2a2.圆锥曲线的参数方程1、参数方程的概念在平面直角坐标系中,曲线上任意一点的坐标x ,y 都是某个变数t 的函数x =f (t )y =g (t )并且对于t 的每一个允许值,由这个方程所确定的点M (x ,y )都在这条曲线上,该方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.※2、直线的参数方程(1)过定点P (x 0,y 0)、倾斜角为α(α≠π2)的直线的参数方程x =x 0+t cos αy =y 0+t sin α (t 为参数)(2)参数t 的几何意义:参数t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段的长度再加上表示方向的正负号,也即|M 0M|=|t |,|t |表示直线上任一点M 到定点M 0的距离.当点M 在M 0上方时,t >0;当点M 在M 0下方时,t <0;当点M 与M 0重合时,t =0;(3)直线方程与参数方程互化:y −y o =tan α(x −x o )⇔x =x 0+t cos αy =y 0+t sin α(t 为参数)(4)直线参数方程:x =x 0+aty =y 0+bt (t 为参数),当a 2+b 2=1时,参数方程为标准型参数方程,参数的几何意义才是代表距离.当a 2+b 2≠1时,将参数方程化为x =x 0+aa 2+b 2t y =y 0+ba 2+b 2t 然后在进行计算.★3、圆的参数方程(1)圆心(a ,b ),半径r 的圆(x -a )2+(y -b )2=r 2参数方程x =a +r cos θy =b +r sin θ (θ为参数);特别:当圆心在原点时,半径为r 的圆x 2+y 2=r 2的参数方程为:x =r cos θy =r sin θ (θ是参数).(2)参数θ的几何意义:θ表示x 轴的正方向到圆心和圆上任意一点的半径所成的角.(3)消参的方法:利用sin 2θ+cos 2θ=1,yxF 1F 2PN OMyxM 0tαO M 1αP (x ,y )rxy可得圆方程:(x -a )2+(y -b )2=r 2★4、椭圆的参数方程(1)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为x =a cos φy =b sin φ (φ为参数);椭圆y 2a 2+x 2b2=1(a >b >0)的参数方程为x =b cos φy =a sin φ (φ为参数);(2)参数θ的几何意义:参数θ表示椭圆上某一点的离心角.如图所示,点P 对应的离心角为θ=∠QOx (过P 作PQ ⊥x 轴,交大圆即以2a 为直径的圆于Q ),切不可认为是θ=∠POx .5、双曲线的参数方程(1)双曲线x 2a 2-y 2b 2=1(a >b >0)的参数方程x =a sec φy =b tan φ (φ为参数);sec φ=1cos φ双曲线y 2a 2-x 2b2=1(a >b >0)的参数方程x =b cot φy =a csc φ (φ为参数);csc φ=1sin φ(2)参数θ的几何意义:参数θ表示双曲线上某一点的离心角.※6、抛物线的参数方程(1)抛物线y 2=2px 参数方程x =2pt 2y =2pt(t 为参数,t =1tan α);(2)参数t 的几何意义:抛物线上除顶点外的任意一点与原点连线的斜率的倒数.t =1k OP仿射变换与齐次式1、仿射变换:在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间.※2、椭圆的变换:椭圆b 2x 2+a 2y 2=a 2b 2变换内容x =x y=a b y x =xy =b a yx =b a x y=yx =a b x y =y圆方程x 2+y 2=a 2x 2+y 2=b 2图示yxAB OCyxABOCyxAB OCyxAB OC 点坐标A (x 0,y 0)→A '(x 0,a by 0)A (x 0,y 0)→A '(b ax 0,y 0)斜率变化k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a 2k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a2弦长变化则AB =1+k 2x 1-x 2 ⇒A 'B '=1+k '2x 1-x 2 =1+(a b)2k 2x 1-x 2 yxαPOQ面积变化S△ABC=b a S△A'B'C'(水平宽不变,铅锤高缩小)S△ABC=a b S△A'B'C'(水平宽扩大,铅垂高不变)3、中点弦问题,k OP⋅k AB=−b2a2,中垂线问题k OPk MP=b2a2,且x M=c2x0a2y N=-c2y0b2,拓展1:椭圆内接△ABC中,若原点O为重心,则仿射后一定得到△OB'C'为120°的等腰三角形;△A'B'C'为等边三角形;拓展2:椭圆内接平行四边形OAPB(A、P、B)在椭圆上,则仿射后一定得菱形OA'P'B' 4、面积问题:(1)若以椭圆x2a2+y2b2=1对称中心引出两条直线交椭圆于A、B两点,且k OA⋅k OB=−b2a2,则经过仿射变换后k OA'⋅k OB'=−1,所以S△AOB为定值.(2)若椭圆方程x2a2+y2b2=1上三点A,B,M,满足:①k OA⋅k OB=−b2a2②S△AOB=ab2③OM=sinαOA+cosαOBα∈0,π2,三者等价※5、平移构造齐次式:(圆锥曲线斜率和与积的问题)(1)题设:过圆锥曲线上的一个定点P作两条直线与圆锥曲线交于A、B,在直线PA和PB斜率之和或者斜率之积为定值的情况下,直线AB过定点或者AB定斜率的问题.(2)步骤:①将公共点平移到坐标原点(点平移:左加右减上减下加)找出平移单位长.②由①中的平移单位长得出平移后的圆锥曲线C ,所有直线方程统一写为:mx+ny=1③将圆锥曲线C 展开,在一次项中乘以mx+ny=1,构造出齐次式.④在齐次式中,同时除以x2,构建斜率k的一元二次方程,由韦达定理可得斜率之积(和).圆锥曲线考点归类(一)条件方法梳理1、椭圆的角平分线定理(1)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆长轴交点为N,在长轴上一定存在一个点M,当仅当则x M⋅x N=a2时,∠AMN=∠BMN,即长轴为角平分线;(2)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆短轴交点为N,在短轴上一定存在一个点M,当仅当则y M⋅y N=b2时,∠AMN=∠BMN,即短轴为角平分线;※2、关于角平分线的结论:若直线AO的斜率为k1,直线CO的斜率为k2,EO平分∠AOC则有:k1+k2=tanα+tan(π-α)=0角平分线的一些等价代换条件:作x轴的对称点、点到两边的距离相等.3、四种常用直线系方程(1)定点直线系方程:经过定点P 0(x 0,y 0)的直线系方程为y -y 0=k (x -x 0)(除直线x =x 0),其中k 是待定的系数;经过定点P 0(x 0,y 0)的直线系方程为A (x -x 0)+B (y -y 0)=0,其中A ,B 是待定的系数.(2)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线系方程为(A 1x +B 1y +C 1)+λ(A 2x +B 2y +C 2)=0(除l 2),其中λ是待定的系数.(3)平行直线系方程:直线y =kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠0),λ是参变量.(4)垂直直线系方程:与直线Ax +By +C =0(A ≠0,B ≠0)垂直的直线系方程是Bx -Ay +λ=0,λ是参变量.4、圆系方程(1)过直线l :Ax +By +C =0与圆C :x 2+y 2+Dx +Ey +F =0的交点的圆系方程是x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0,λ是待定的系数.(2)过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0的交点的圆系方程是x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0,λ是待定的系数.★(二)圆锥曲线过定点问题1、直线过定点的背景:(1)直线过定点模型:A ,B 是圆锥曲线上的两动点,M 是一定点,其中α,β分别为MA ,MB 的倾斜角,则:①、MA ⋅MB 为定值⇔直线AB 恒过定点;②、k MA ⋅k MB 为定值⇔直线AB 恒过定点;③、α+β=θ(0<θ<π)⇔直线AB 恒过定点.(2)抛物线中直线过定点:A ,B 是抛物线y 2=2px (p >0)上的两动点,α,β分别为OA ,OB 的倾斜角,则:OA ⊥OB ⇔k OA ⋅k OB =-1⇔α-β =π2⇔直线AB 恒过定点(2p ,0).(3)椭圆中直线过定点模型:A ,B 是椭圆x 2a 2+y 2b2=1(a >b >0)上异于右顶点D 的两动点,其中α,β分别为DA ,DB 的倾斜角,则可以得到下面几个充要的结论:DA ⊥DB ⇔k DA ⋅k DB =-1⇔α-β =π2⇔直线AB 恒过定点(ac 2a 2+b 2,0)2、定点的求解方法:1含参形式简单的直线方程,通过将直线化为y -y 0=k (x -x 0)可求得定点坐标(x 0,y 0)2含参形式复杂的通过变换主元法求解定点坐标.变换主元法:将直线化为h (x ,y )+λf (x ,y )=0,解方程组:h (x ,y )=0f (x ,y )=0 可得定点坐标.eg :直线方程:(2m +1)x +(m -5)y +6=0,将m 看作主元,按照降幂排列:(2x +y )m+x -5y +6=0,解方程组:2x +y =0x -5y +6=0,解得:x =-611y =1211,求得直线过定点(-611,1211).3、关于以AB 为直径的圆过定点问题:(1)直接法:设出参数后,表示出圆的方程.圆的直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0(2)由特殊到一般:利用赋值法,先求出几个位置的圆方程,联立圆方程解出公共交点,该交点即为圆所过的定点,再利用向量数量积为0证明点恒在圆上.★(三)圆锥曲线面积问题1、面积的求解方法:(1)S △ABC =12MN ∙d ,从公式可以看出,求面积重在求解弦长和点到线的距离.(2)S △ABC =12×水平宽×铅锤高,主要以点的坐标运算为主.(3)S △AOB =12x 1y 2-x 2y 1例题1.在平面直角坐标系xOy 中,已知点O 0,0 ,A x 1,y 1 ,B x 2,y 2 不共线,证明:△AOB 的面积为S △AOB =12x 1y 2-x 2y 1 .2、面积中最值的求解(1)f (x )=αx 2+βx +φx +n型:令t =x +n ⇒x =t -n 进行代换后裂项转化为:y =at +bt (2)f (x )=x +n αx 2+βx +φ型:先在分母中配出分子式f (x )=x +n α(x +n )2+λ(x +n )+υ令t =x +n ,此时:y =t αt 2+λt +υ,分子分母同时除t ,此时y =1αt +υt+λ,再利用对勾函数或不等式分析最值.(3)f (x )=αx +βx +n型:令t =x +n ⇒x =t 2-n 进行代换后裂项,可转化为:y =at +bt五、椭圆的二级结论1.PF1+PF2=2a2.标准方程x2a2+y2b2=13.PF1d1=e<14.点P处的切线PT平分△PF1F2在点P处的外角.5.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相离.7.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.8.设A1、A2为椭圆的左、右顶点,则△PF1F2在边PF2(或PF1)上的旁切圆,必与A1A2所在的直线切于A2 (或A1).9.椭圆x2a2+y2b2=1(a>b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2-y2b2=1.10.若点P0(x0,y0)在椭圆x2a2+y2b2=1a>b>0上,则在点P0处的切线方程是x0xa2+y0yb2=1.11.若P0(x0,y0)在椭圆x2a2+y2b2=1外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2+y0yb2=1.12.AB是椭圆x2a2+y2b2=1的不平行于对称轴的弦,M为AB的中点,则k OM⋅k AB=-b2a2.13.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则被PO所平分的中点弦的方程是x0xa2+y0yb2=x02a2+y02b2.14.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则过PO的弦中点的轨迹方程是x2a2+y2b2=x0xa2+y0yb2.15.若PQ是椭圆x2a2+y2b2=1(a>b>0)上对中心张直角的弦,则1r12+1r22=1a2+1b2(r1=|OP|,r2=|OQ|).16.若椭圆x2a2+y2b2=1(a>b>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2+1 b2=A2+B2;(2)L=2a4A2+b4B2a2A2+b2B2.17.给定椭圆C1:b2x2+a2y2=a2b2(a>b>0),C2:b2x2+a2y2=a2-b2a2+b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2-b2a2+b2x0,-a2-b2a2+b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为椭圆(或圆)C:x2a2+y2b2=1(a>0,.b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=-1+m1-m⋅b2a2.19.过椭圆x2a2+y2b2=1(a>0,b>0)上任一点A(x0,y0)任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且k BC=b2x0a2y0(常数).20.椭圆x2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,点P为椭圆上任意一点∠F1PF2=γ,则椭圆的焦点三角形的面积为S△F1PF2=b2tanγ2,P±ac c2-b2tan2γ2,±b2c tanγ2.21.若P为椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则a-ca+c=tanα2tanβ2.22.椭圆x2a2+y2b2=1(a>b>0)的焦半径公式:|MF1|=a+ex0,|MF2|=a-ex0(F1(-c,0),F2(c,0),M(x0,y0)).23.若椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当2-1≤e<1时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.24.P为椭圆x2a2+y2b2=1(a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则2a-|AF2|≤|PA|+|PF1|≤2a+|AF2|,当且仅当A,F2,P三点共线时,等号成立.25.椭圆x2a2+y2b2=1(a>b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02≤(a2-b2)2a2+b2k2.26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是椭圆x=a cosϕy=b sinϕ(a>b>0)上一点,则点P对椭圆两焦点张直角的充要条件是e2=11+sin2ϕ.29.设A,B为椭圆x2a2+y2b2=k(k>0,k≠1)上两点,其直线AB与椭圆x2a2+y2b2=1相交于P,Q,则AP=BQ.30.在椭圆x 2a 2+y 2b 2=1中,定长为2m (o <m ≤a )的弦中点轨迹方程为m 2=1-x 2a 2+y 2b 2a 2cos 2α+b 2sin 2α ,其中tan α=-bx ay ,当y =0时,α=90∘.31.设S 为椭圆x 2a 2+y 2b2=1(a >b >0)的通径,定长线段L 的两端点A ,B 在椭圆上移动,记|AB |=l ,M(x 0,y 0)是AB 中点,则当l ≥ΦS 时,有(x 0)max =a 2c -l 2e c 2=a 2-b 2,e =c a;当l <ΦS 时,有(x 0)max =a 2b4b 2-l 2,(x 0)min=0.32.椭圆x 2a 2+y 2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥C 2.33.椭圆(x -x 0)2a 2+(y -y 0)2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥(Ax 0+By 0+C )2.34.设椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记∠F 1PF 2=α,∠PF 1F 2=β,∠F 1F 2P =γ,则有sin αsin β+sin γ=c a =e.35.经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则|P 1A 1|⋅|P 2A 2|=b 2.36.已知椭圆x 2a 2+y 2b2=1(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP ⊥OQ .(1)1|OP |2+1|OQ |2=1a 2+1b2;(2)|OP |2+|OQ |2的最小值为4a 2b 2a 2+b 2;(3)S ΔOPQ 的最小值是a 2b 2a 2+b 2.37.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则|AB |2=2a |MN |.38.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP ⊥MN ,则2a |MN |+1|OP |2=1a 2+1b2.39.设椭圆x 2a 2+y 2b2=1(a >b >0),M (m ,o )或(o ,m )为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q (A 1,A 2为对称轴上的两顶点)的交点N 在直线l :x =a2m(或y =b 2m)上.40.设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF .41.过椭圆一个焦点F的直线与椭圆交于两点P、Q,A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.42.设椭圆方程x2a2+y2b2=1,则斜率为k(k≠0)的平行弦的中点必在直线l:y=kx的共轭直线y=k x上,而且kk =-b2 a2 .43.设A、B、C、D为椭圆x2a2+y2b2=1上四点,AB、CD所在直线的倾斜角分别为α,β,直线AB与CD相交于P,且P不在椭圆上,则PA⋅PBPC⋅PD=b2cos2β+a2sin2βb2cos2α+a2sin2α.44.已知椭圆x2a2+y2b2=1(a>b>0),点P为其上一点F1,F2为椭圆的焦点,∠F1PF2的外(内)角平分线为l,作F1、F2分别垂直l于R、S,当P跑遍整个椭圆时,R、S形成的轨迹方程是x2+y2=a2c2y2=a2y2+b2x x±c2 a2y2+b2x±c2.45.设△ABC内接于椭圆Γ,且AB为Γ的直径,l为AB的共轭直径所在的直线,l分别交直线AC、BC于E和F,又D为l上一点,则CD与椭圆Γ相切的充要条件是D为EF的中点.46.过椭圆x2a2+y2b2=1(a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则|PF||MN|=e2.47.设A(x1,y1)是椭圆x2a2+y2b2=1(a>b>0)上任一点,过A作一条斜率为-b2x1a2y1的直线L,又设d是原点到直线L的距离,r1,r2分别是A到椭圆两焦点的距离,则r1r2d=ab.48.已知椭圆x2a2+y2b2=1(a>b>0)和x2a2+y2b2=λ(0<λ<1),一直线顺次与它们相交于A、B、C、D四点,则│AB│=|CD│.49.已知椭圆x2a2+y2b2=1(a>b>0),A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0),则-a2-b2a<x0<a2-b2 a.50.设P点是椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记∠F1PF2=θ,则(1)|PF1||PF2|=2b21+cosθ.(2)SΔPF1F2=b2tanθ2.51.设过椭圆的长轴上一点B(m,o)作直线与椭圆相交于P、Q两点,A为椭圆长轴的左顶点,连结AP和AQ分别交相应于过H点的直线MN:x=n于M,N两点,则∠MBN=90∘⇔a-ma+m=a2n-m2 b2(n+a)2.52.L是经过椭圆x2a2+y2b2=1(a>b>0)长轴顶点A且与长轴垂直的直线,E、F是椭圆两个焦点,e是离心率,点P∈L,若∠EPF=α,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=b时取等号).53.L是椭圆x2a2+y2b2=1(a>b>0)的准线,A、B是椭圆的长轴两顶点,点P∈L,e是离心率,∠EPF=α,H是L与X轴的交点c是半焦距,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=ab c时取等号).54.L是椭圆x2a2+y2b2=1(a>b>0)的准线,E、F是两个焦点,H是L与x轴的交点,点P∈L,∠EPF=α,离心率为e,半焦距为c,则α为锐角且sinα≤e2或α≤arcsin e2(当且仅当|PH|=b c a2+c2时取等号).55.已知椭圆x2a2+y2b2=1(a>b>0),直线L通过其右焦点F2,且与椭圆相交于A、B两点,将A、B与椭圆左焦点F1连结起来,则b2≤|F1A|⋅|F1B|≤(2a2-b2)2a2(当且仅当AB⊥x轴时右边不等式取等号,当且仅当A、F1、B三点共线时左边不等式取等号).56.设A、B是椭圆x2a2+y2b2=1(a>b>0)的长轴两端点,P是椭圆上的一点,∠PAB=α,∠PBA=β,∠BPA=γ,c、e分别是椭圆的半焦距离心率,则有(1)|PA|=2ab2|cosα|a2-c2cos2α.(2)tanαtanβ=1-e2.(3)SΔPAB=2a2b2b2-a2cotγ.57.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点)、外部的两点,且x A、x B的横坐标x A⋅x B=a2,(1)若过A点引直线与这椭圆相交于P、Q两点,则∠PBA=∠QBA;(2)若过B引直线与这椭圆相交于P、Q两点,则∠PAB+∠QAB=180∘.58.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A点引直线与这椭圆相交于P、Q两点,(若BP交椭圆于两点,则P、Q不关于x轴对称),且∠PBA=∠QBA,则点A、B的横坐标x A、x B满足x A⋅x B=a2;(2)若过B点引直线与这椭圆相交于P、Q两点,且∠PAB+∠QAB=180∘,则点A、B的横坐标满足x A⋅x B=a2.59.设A,A 是椭圆x2a2+y2b2=1的长轴的两个端点,QQ 是与AA 垂直的弦,则直线AQ与A Q 的交点P的轨迹是双曲线x2a2-y2b2=1.60.过椭圆x2a2+y2b2=1(a>b>0)的左焦点F作互相垂直的两条弦AB、CD则8ab2a2+b2≤|AB|+|CD|≤2(a2+b2)a.61.到椭圆x 2a 2+y 2b2=1(a >b >0)两焦点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆(x ±a )2+y 2=b 2.62.到椭圆x 2a 2+y 2b2=1(a >b >0)的长轴两端点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆x ±a e 2+y 2=b e 2.63.到椭圆x 2a 2+y 2b2=1(a >b >0)的两准线和x 轴的交点的距离之比为a -c b (c 为半焦距)的动点的轨迹是姊妹圆x ±a e 2 2+y 2=b e 2 2(e 为离心率).64.已知P 是椭圆x 2a 2+y 2b2=1(a >b >0)上一个动点,A ,A 是它长轴的两个端点,且AQ ⊥AP ,A Q ⊥AP ,则Q 点的轨迹方程是x 2a 2+b 2y 2a4=1.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆x 2a 2+y 2b 2=1(a >b >0)长轴的端点为A ,A ,P (x 1,y 1)是椭圆上的点过P 作斜率为-b 2x 1a 2y 1的直线l ,过A ,A 分别作垂直于长轴的直线交l 于M ,M ,则(1)|AM ||A M |=b 2.(2)四边形MAA M 面积的最小值是2ab .67.已知椭圆x 2a 2+y2b2=1(a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC ⎳x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆(x -a )2a 2+y 2b 2=1(a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB必经过一个定点2ab 2a 2+b 2,0 .(2)以OA 、OB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2a 2+b 2 2+y 2=ab 2a 2+b 2 2(x ≠0).69.P (m ,n )是椭圆(x -a )2a 2+y 2b2=1(a >b >0)上一个定点,PA 、PB 是互相垂直的弦,则(1)直线AB 必经过一个定点2ab 2+m (a 2-b 2)a 2+b 2,n (b 2-a 2)a 2+b 2 .(2)以PA 、PB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2+a 2m a 2+b 2 2+y -b 2n a 2+b 2 2=a 2[b 4+n 2(a 2-b 2)](a 2+b 2)2(x ≠m 且y ≠n ).70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)d 1d 2=b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)d 1d 2>b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)d 1d 2<b 2,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆x 2a 2+y 2b2=1(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D两点,则梯形ABDC的对角线的交点M的轨迹方程是x2a2+4y2b2=1(y≠0).72.设点P(x0,y0)为椭圆x2a2+y2b2=1(a>b>0)的内部一定点,AB是椭圆x2a2+y2b2=1过定点P(x0,y0)的任一弦,当弦AB平行(或重合)于椭圆长轴所在直线时(|PA|⋅|PB|)max=a2b2-(a2y02+b2x02)b2.当弦AB垂直于长轴所在直线时,(|PA|⋅|PB|)min=a2b2-(a2y02+b2x02)a2.73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切.74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点.75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c与a-c.76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e.86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线.87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89.已知椭圆x2a2+y2b2=1(a>0,b>0)(包括圆在内)上有一点P,过点P分别作直线y=b a x及y=-b a x的平行线,与x 轴于M ,N ,与y 轴交于R ,Q .,O 为原点,则:(1)|OM |2+|ON |2=2a 2;(2)|OQ |2+|OR |2=2b 2.90.过平面上的P 点作直线l 1:y =b a x 及l 2:y =-b ax 的平行线,分别交x 轴于M ,N ,交y 轴于R ,Q .(1)若|OM |2+|ON |2=2a 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).(2)若|OQ |2+|OR |2=2b 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).91.点P 为椭圆x 2a 2+y 2b2=1(a >0,b >0)(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记ΔOMQ 与ΔONR 的面积为S 1,S 2,则:S 1+S 2=ab 2.92.点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记△OMQ 与△ONR 的面积为S 1,S 2,已知S 1+S 2=ab 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).93.过椭圆焦点垂直于长轴的弦(通径)是最短的弦,长为2b 2a,过焦点最长弦为长轴.94.过原点最长弦为长轴长2a ,最短弦为短轴长2b .95.与椭圆x 2a 2+y 2b 2=1(a >b >0)有共焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(a >b >0,λ>-b 2).96.与椭圆y 2a 2+x 2b 2=1(a >b >0)有共焦点的椭圆方程为y 2a 2+λ+x 2b 2+λ=1(a >b >0,λ>-b 2).97.焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2时,即点P 为短轴端点时,θ最大;cos θ=r 21+r 22-4c 22r 1r 2=r 1+r 2 2-2r 1r 2-4c22r 1r 2=4b 22r 1r 2-1=2b 2r 1r 2-1≥2b 2r 1+r 222-1=2b 2-a 2a 2=b 2-c 2a 2当且仅当r 1=r 2时,等号成立.②S =12|PF 1||PF 2|sin θ=c |y 0|=sin θ1+cos θb 2=b 2tan θ2,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).98.AB 为过F 的焦点弦,则1FA +1FB =2ab 299.已知椭圆Γ:x 2a 2+y 2b2=1a >b >0 的左右焦点分别为F 1、F 2.椭圆Γ在点P 处的切线为l ,Q ∈l .且满足∠AQF1=θ0<θ<π2,则点Q在以C0,±cθcot为圆心,a θsin为半径的圆上.六、双曲线的二级结论1.PF1-PF2=2a2.标准方程x2a2-y2b2=13.PF1d1=e>14.点P处的切线PT平分△PF1F2在点P处的内角.5.PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以实轴为直径的圆,除去实轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相交.7.以焦点半径PF1为直径的圆必与以实轴为直径的圆外切.8.设P为双曲线上一点,则△PF1F2的内切圆必切于与P在同侧的顶点.9.双曲线x2a2-y2b2=1(a>0,b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2+y2b2=1.10.若点P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)上,则在点P0处的切线方程是x0xa2-y0yb2=1.11.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)外,则过P0作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2-y0yb2=1.12.若AB是双曲线x2a2-y2b2=1(a>0,b>0)的不平行于对称轴且过原点的弦,M为AB的中点,则k OM⋅k AB=b2a2.13.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则被P0所平分的中点弦的方程是x0xa2-y0yb2=x02a2-y02 b2 .14.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则过Po的弦中点的轨迹方程是x2a2-y2b2=x0xa2-y0y b2.15.若PQ是双曲线x2a2-y2b2=1(b>a>0)上对中心张直角的弦,则1r12+1r22=1a2-1b2(r1=|OP|,r2=|OQ|).16.若双曲线x2a2-y2b2=1(b>a>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2-1 b2=A2+B2;(2)L=2a4A2+b4B2|a2A2-b2B2|.17.给定双曲线C1:b2x2-a2y2=a2b2(a>b>0),C2:b2x2-a2y2=a2+b2a2-b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2+b2a2-b2x0,-a2+b2a2-b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为双曲线x2a2-y2b2=1(a>0,b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=1+m1-m⋅b2a2.19.过双曲线x2a2-y2b2=1(a>0,b>o)上任一点A(x0,y0)任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且k BC=-b2x0a2y0(常数).20.双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,点P为双曲线上任意一点∠F1PF2=γ,则双曲线的焦点角形的面积为S△F1PF2=b2cotγ2=b2γ2tan,P±ac c2+b2cot2γ2,±b2c cotγ2.21.若P为双曲线x2a2-y2b2=1(a>0,b>0)右(或左)支上除顶点外的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则c-ac+a=tan α2cotβ2(或c-ac+a=tanβ2cotα2).22.双曲线x2a2-y2b2=1(a>0,b>o)的焦半径公式:F1(-c,0),F2(c,0)当M(x0,y0)在右支上时,|MF1|=ex0+a,|MF2|=ex0-a.当M(x0,y0)在左支上时,|MF1|=-ex0-a,|MF2|=-ex0+a.23.若双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤2+1时,可在双曲线上求一点P,使得PF1是P到对应准线距离d1与PF2的比例中项.24.P为双曲线x2a2-y2b2=1(a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线左支内一定点,则|AF2|-2a≤|PA|+|PF1|,当且仅当A,F2,P三点共线且P在左支时,等号成立.25.双曲线x2a2-y2b2=1(a>0,b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02>(a2+b2)2 a2-b2k2k≠0且k≠±a b .26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是双曲线x=a secϕy=b tanϕ(a>0,b>0)上一点,则点P对双曲线两焦点张直角的充要条件是e2=11-tan2ϕ.29.设A,B为双曲线x2a2-y2b2=k(a>0,b>0,k>0,k≠1)上两点,其直线AB与双曲线x2a2-y2b2=1相交于P,Q,则AP=BQ.30.在双曲线x2a2-y2b2=1中,定长为2m(m>0)的弦中点轨迹方程为m2=1-x2a2-y2b2a2cosh2t+b2sinh2t,coth t=-aybx,x=0时t=0,弦两端点在两支上x2a2-y2b2-1a2sinh2t+b2cosh2t,coth t=-bxay,y=0时t=0,弦两端点在同支上31.设S为双曲线x2a2-y2b2=1(a>0,b>0)的通径,定长线段L的两端点A,B在双曲线右支上移动,记|AB|=l,M(x0,y0)是AB中点,则当l≥ΦS时,有(x0)min=a2c+l2e c2=a2+b2,e=c a;当l<ΦS时,有(x0)min=a2b4b2+l2.32.双曲线x2a2-y2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤C2.33.双曲线(x-x0)2a2-(y-y0)2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤(Ax0+By0+C)2.34.设双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记∠F1PF2=α,∠PF1F2=β,∠F1F2P=γ,则有sinα±(sinγ-sinβ)=c a=e.35.经过双曲线x2a2-y2b2=1(a>0,b>0)的实轴的两端点A1和A2的切线,与双曲线上任一点的切线相交于P1和P2,则|P1A1|⋅|P2A2|=b2.36.已知双曲线x2a2-y2b2=1(b>a>0),O为坐标原点,P、Q为双曲线上两动点,且OP⊥OQ.(1)1|OP|2+1 |OQ|2=1a2-1b2;(2)|OP|2+|OQ|2的最小值为4a2b2b2-a2;(3)SΔOPQ的最小值是a2b2b2-a2.37.MN是经过双曲线x2a2-y2b2=1(a>0,b>0)过焦点的任一弦(交于两支),若AB是经过双曲线中心O且平行于MN的弦,则|AB|2=2a|MN|.38.MN是经过双曲线x2a2-y2b2=1(a>b>0)焦点的任一弦(交于同支),若过双曲线中心O的半弦OP⊥。
圆锥曲线(椭圆、双曲线、抛物线)知识点总结教学提纲
双曲线知识点一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点.要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x (a >0,b >0)(焦点在x 轴上);12222=-bx a y (a >0,b >0)(焦点在y 轴上);1. 如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-b y a x 共焦点的双曲线系方程是12222=--+kb y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:已知双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。
三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>上220022-=1x y a b⇔2 直线与双曲线:(代数法)设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点);b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,若0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;若2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点; 若k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a -<<直线与双曲线交于两点(左支一个点右支一个点); 2020b x k a y >(00y ≠)或2020b x b k a a y << (00y ≠)或bk a <-或k 不存在,直线与双曲线在一支上有两个交点; 当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a ≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。
与焦半径相关的圆锥曲线的解题技巧
焦半径、焦点弦、焦点三角形的巧妙应用提示:会推导、会运用,可以简化运算(一)焦半径有两种计算方式:根据离心率、坐标;根据离心率、焦准距、倾斜角。
1)焦半径 根据离心率、坐标计算,焦半径的代数形式椭圆: (图1) (图2)F1、F2为椭圆的焦点,椭圆的一点A (x ,y ),A 与F1、F2的线段AF1、AF2叫做焦半径,分别设为r1、r2,根据椭圆第二定义有:2111'()''AF r a e r AA e x e a ex AA AA c ==⇒=⋅=+⋅=+ 左焦半径2222'()''AF r a e r AA e x e a ex AA AA c==⇒=⋅=-⋅=- 右焦半径椭圆的焦半径:左加右减。
长轴在y 轴上可以比照,易得上减下加。
左边下边都为负,不足都要加。
双曲线:(图3)(图4)双曲线为双支,焦半径可能在一支上,也可能在两支上。
在一支上时,称之为焦半径,通常也叫焦半径。
在两支上叫外焦半径。
以焦点在左支上为例,推导左焦半径公式。
设焦半径AF1为r1,根据双曲线第二定义有:2111'(''''')()''F A r a e r AA e AA A A e x e a ex AA AA c ==⇒=⋅=-=--⋅=--同理,右支2211'()''F A r a e r AA e x e a ex AA AA c==⇒=⋅=-⋅=-+ 双曲线焦半径,与椭圆有两点相反,左减右加,半长轴取反。
实轴在y 轴上,可以比照,易得上加下减。
联想特征:左边下边都为负,要减一起减。
可以从图形上理解,双曲线的左半支相当于抛物线的右半支。
以左焦点为起点的外焦半径,根据双曲线第二定义有:2122'(""')()''F B r a e r BB e BB B B e x e a ex BB BB c==⇒=⋅=+⋅=+⋅=+同理,以右焦点为起点的外焦半径公式:2222'()''F B r a e r BB e x e a ex BB BB c==⇒=⋅=-+⋅=-双曲线外焦半径,与椭圆相同。
圆锥曲线的解题方法
圆锥曲线的解题方法导语:定义中提到的定点,称为圆锥曲线的焦点;定直线称为圆锥曲线的准线;固定的常数(即圆锥曲线上一点到焦点与准线的距离比值)称为圆锥曲线的离心率;焦点到准线的距离称为焦准距;焦点到曲线上一点的线段称为焦半径。
过焦点、平行于准线的直线与圆锥曲线相交于两点,此两点间的线段称为圆锥曲线的通径,物理学中又称为正焦弦。
第一、圆锥曲线的解题方法:一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。
例题:动点P(x,y)到定点A(3,0)的距离比它到定直线x=—5的距离少2、求动点P的轨迹方程。
解析:依题意可知,{C},由题设知{C},{C}{C}。
(2)定义法:根据圆锥曲线的定义确定曲线的形状。
上述例题同样可以由定义法求出曲线方程:作直线x=—3,则点P到定点A与到定直线x=—3的距离相等,所以点P的轨迹是以A为焦点,以x=—3为准线的抛物线。
(3)待定系数法:通过题设条件构造关系式,待定参数即可。
例1:已知点(—2,3)与抛物线{C}的焦点的距离是5,则P=_____。
解析:抛物线{C}的焦点为{C},由两点间距离公式解得P=4例2:设椭圆{C}的右焦点与抛物线{C}的焦点相同,离心率为{C},则椭圆的方程为_____。
解析:抛物线{C}的焦点坐标为(2,0),所以椭圆焦半径为2,故离心率{C}得m=4,而{C},所以椭圆方程为{C}。
二、圆锥曲线最值问题(1)化为求二次函数的最值根据已知条件求出一个参数表示的二次函数解析式,用配方法求出在一定范围自变量下函数的最值。
例题:曲边梯形由曲线{C}及直线x=1,x=2所围成,那么通过曲线上哪一点作切线,能使此切线从曲边梯形上切出一个最大面积的普通梯形。
解析:设切点{C},求出切线方程{C},再求出这条切线与直线x=1,x=2的交点纵坐标,根据梯形面积公式列出函数关系式:梯形面积={C},从而得出结论。
(2)利用圆锥曲线性质求最值先利用圆锥曲线的定义性质列出关系式,再用几何或代数方法求最值。
离心率的求法(解析版)
第一篇圆锥曲线专题05离心率的求法一、求离心率值的问题求离心率的值需要构造一个含有,,a b c 或数字的等式,而等式关系如何构造,只能依照题目中给出的条件结合几何形状见招拆招,没套路可言。
1、基本方法:从定义出发,特别注意第一定义中的焦点三角形问题,以椭圆为例,在焦点三角形中三条边中蕴含了,a c 的关系,因此如果能找出三条边的关系也就可以求出离心率的值。
例1:如图,12,F F 是椭圆221:14x C y +=和双曲线2C 的公共焦点,若四边形12AF BF 为矩形,则双曲线的离心率为____________.【解析】关于共焦点的问题,c 相等,在椭圆里面1224AF AF a +==在12RT AF F ∆中满足2221212+=AF AF F F ,解得12AF AF则在双曲线中a c ==62e =例2:设椭圆的两个焦点分别是12,F F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,则椭圆的离心率为_________.2、几何法,几何方法不是方法,而是分析几何图形的能力,根据题目中给出的或隐含的条件找出等量关系即可,比如题目中给出的等腰,中垂线,垂直等条件都可能是破解题目的入手点。
例3:已知,A B 为双曲线E 的左右顶点,点M 在E 上,ABM ∆为等腰三角形且顶角为120︒,则E 的离心率为_________.上图中A,B 两点不是焦点,2AB a =,且条件中没有b 和c 的量,因此无法构成等量关系,但是注意双曲线的方程本身就是包含,a b 的等式,因此题目的关键不是构造等式而是求出点M 的坐标,代入到双曲线的方程中即可求出离心率。
【解析】从M 点作x 轴的垂线,垂足为C ,因为2,60BM a MBC ︒=∠=所以,BC a MC ==,所以点M 的坐标为(2)a 代入到双曲线中得2222(2)(3)1a a b -=整理得e =例4:设12,F F 分别是椭圆2222:1x y E a b+=的左右焦点,过点1F 的直线交椭圆E 于A,B 两点,11||3||AF BF =,若23cos 5AF B ∠=,求椭圆E 的离心率。
补上一课 利用圆锥曲线的二级结论秒解选择、填空题
补上一课 ,利用圆锥曲线的二级结论秒解选择、填空题)1.焦点三角形的面积、离心率(1)设P 点是椭圆x 2a 2+y 2b 2=1(a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点,记∠F 1PF 2=θ,则 ①|PF 1||PF 2|=2b 21+cos θ;②S △PF 1F 2=b 2tanθ2;③e =sin ∠F 1PF 2sin ∠PF 1F 2+sin ∠PF 2F 1.(2)设P 点是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上异于实轴端点的任一点,F 1,F 2为其焦点,记∠F 1PF 2=θ,则 ①|PF 1||PF 2|=2b 21-cos θ;②S △PF 1F 2=b 2tan θ2;③e =sin ∠F 1PF 2|sin ∠PF 1F 2-sin ∠PF 2F 1|.2.中心弦的性质设A ,B 为圆锥曲线关于原点对称的两点,点P 是曲线上与A ,B 不重合的任意一点,则k AP ·k BP =e 2-1. 3.中点弦的性质设圆锥曲线以M (x 0,y 0)(y 0≠0)为中点的弦AB 所在的直线的斜率为k . (1)若圆锥曲线为椭圆x 2a 2+y 2b 2=1(a >b >0),则k AB =-b 2x 0a 2y 0,k AB ·k OM =e 2-1.(2)若圆锥曲线为双曲线x 2a 2-y 2b 2=1(a >0,b >0),则k AB =b 2x 0a 2y 0,k AB ·k OM =e 2-1.(3)若圆锥曲线为抛物线y 2=2px (p >0),则k AB =py 0.4.焦点弦的性质(1)过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 且倾斜角为α(α≠90°)的直线交椭圆于A ,B两点,且|AF → |=λ|FB →|,则椭圆的离心率等于|λ-1(λ+1)cos α|.(2)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 且倾斜角为α(α≠90°)的直线交双曲线右支于A ,B 两点,且|AF → |=λ|FB →|,则双曲线的离心率等于|λ-1(λ+1)cos α|.(3)过抛物线y 2=2px (p >0)的焦点F 倾斜角为θ的直线交抛物线于A ,B 两点,则两焦半径长为p1-cos θ,p1+cos θ,1|AF |+1|BF |=2p ,|AB |=2psin 2θ,S △AOB =p 22sin θ.题型一 椭圆焦点三角形的面积、离心率【例1】 在椭圆x 225+y 29=1上,△PF 1F 2为焦点三角形,如图所示.(1)若θ=60°,则△PF 1F 2的面积是________; (2)若α=45°,β=75°,则椭圆离心率e =________. 答案 (1)33 (2)6-22解析 (1)由焦点三角形公式,得S △PF 1F 2=b 2tan θ2,即S △PF 1F 2=3 3.(2)由公式e =sin (α+β)sin α+sin β=sin 60°sin 45°+sin 75°=6-22.【训练1】 (1)若P 是x 2100+y 264=1上的一点,F 1,F 2是其焦点,若∠F 1PF 2=60°,则△F 1PF 2的面积为________.(2)在椭圆Ax 2+By 2=1上,△PF 1F 2为焦点三角形,∠PF 2O =45°,∠PF 1O =15°,则椭圆的离心率e =________. 答案 (1)6433 (2)32-62解析 (1)S △F 1PF 2=b 2tan α2=64×33=6433.(2)由公式e =sin (β+α)sin β+sin α,即得e =32-62. 题型二 中心弦的性质【例2】 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右顶点分别为A ,B ,点P 在椭圆上异于A ,B 两点,若AP 与BP 的斜率之积为-12,则椭圆的离心率为________.答案 22解析 k AP ·k BP =-12,e 2-1=-12,∴e 2=12,e =22.【训练2】 (1)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,实轴的两个端点为A ,B ,点P 为双曲线上不同于顶点的任一点,则直线PA 与PB 的斜率之积为________.(2)如图,在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,B 、C 分别为椭圆的上、下顶点,直线BF 2与椭圆的另一交点为D ,e =35,若cos ∠F 1BF 2=725,则直线CD 的斜率为________.答案 (1)3 (2)1225解析 (1)k PA·k PB=e2-1=3.(2)设∠DBO=θ,则cos∠F1BF2=cos 2θ=2cos2θ-1=725,cos2θ=1625,cos θ=45,利用Rt△F2OB易知k BD=-43,e=35,由k BD·k CD=e2-1,得k CD=1225.题型三 中点弦的性质【例3】已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E 相交于A,B两点,且AB的中点为M(-12,-15),则E的方程为( )A.x23-y26=1 B.x24-y25=1C.x26-y23=1 D.x25-y24=1答案 B解析 由题意可知k AB=-15-0-12-3=1,k MO=-15-0-12-0=54,由双曲线中点弦中的斜率规律得k MO·k AB=b2a2,即54=b2a2,又9=a2+b2,联立解得a2=4,b2=5,故双曲线的方程为x24-y25=1.【训练3】(1)已知椭圆E:x2a2+y2b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A,B两点,若AB的中点坐标为(1,-1),则E的方程为( )A.x245+y236=1 B.x236+y227=1C.x227+y218=1 D.x218+y29=1(2)(一题多解)(2018·全国卷Ⅲ)已知点M(-1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=________.答案 (1)D (2)2解析 (1)c =3,a 2-b 2=9,AB 的中点记为P (-1,1),由k AB ·k OP =e 2-1则 (-1)×-1-01-3=-b 2a 2,∴a 2=2b 2,解得a 2=18,b 2=9.(2)法一 取AB 的中点M ′(x 0,y 0),分别过点A ,B 作准线x =-1的垂线,垂足分别是A ′,B ′,又∠AMB =90°,点M 在准线上,∴|MM ′|=12|AB |=12(|AF |+|BF |)=12(|AA ′|+|BB ′|),∴MM ′平行于x 轴,∴y 0=1,又由中点弦的性质得k AB =py 0=2.法二 设抛物线的焦点为F ,A (x 1,y 1),B (x 2,y 2),则{y 21=4x 1,y 2=4x 2,所以y 21-y 2=4(x 1-x 2),则k =y 1-y 2x 1-x 2=4y 1+y 2,取AB 的中点M ′(x 0,y 0),分别过点A ,B 作准线x =-1的垂线,垂足分别为A ′,B ′,又∠AMB =90°,点M 在准线x =-1上,所以|MM ′|=12|AB |=12(|AF |+|BF |)=12(|AA ′|+|BB ′|).又M ′为AB 的中点,所以MM ′平行于x 轴,且y 0=1,所以y 1+y 2=2,所以k =2.法三 由题意知抛物线的焦点为(1,0),则过C 的焦点且斜率为k 的直线方程为y =k (x -1)(k ≠0),由{y =k (x -1),y 2=4x ,消去y 得k 2(x -1)2=4x ,即k 2x 2-(2k 2+4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k 2,x 1x 2=1.由{y =k (x -1),y 2=4x ,消去x 得y 2=4(1ky +1),即y 2-4ky -4=0,则y 1+y 2=4k,y 1y 2=-4,则∠AMB =90°,得MA → ·MB →=(x 1+1,y 1-1)·(x 2+1,y 2-1)=x 1x 2+x 1+x 2+1+y 1y 2-(y 1+y 2)+1=0,将x 1+x 2=2k 2+4k 2,x 1x 2=1与y 1+y 2=4k ,y 1y 2=-4代入,得k =2.题型四 焦点弦的性质【例4】 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =32,经过右焦点且斜率为k (k>0)的直线交椭圆于A ,B 两点,已知AF → =3FB →,则k =( )A .1 B.2 C.3 D .2 答案 B解析 ∵λ=3,e =32,由规律得32cos α=3-13+1,cos α=33,k =tan α= 2.【训练4】 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A 、B 两点,O 为坐标原点,则△AOB 的面积为( ) A.334 B.938C.6332D.94答案 D解析 抛物线C :y 2=3x 中,2p =3,p =32,故S △OAB =p 22sin θ=942sin 30°=94.一、选择题1.过点M (-2,0)的直线m 与椭圆x 22+y 2=1交于P 1,P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为( ) A .2 B .-2 C.12 D .-12答案 D解析 k 1k 2=-b 2a 2=-12.2.已知抛物线y 2=8x 的焦点为F ,直线y =k (x -2)与此抛物线相交于P ,Q 两点,则1|FP |+1|FQ |=A.12B .1C .2D .4解析 直线y =k (x -2)过抛物线的交点F (2,0),则1|FP |+1|FQ |=2p =12.3.已知椭圆C :x 24+y 23=1的左,右顶点分别为A 1,A 2,点P 在椭圆C 上,且直线PA 2的斜率的取值范围是[-2,-1],那么直线PA 1的斜率的取值范围是( ) A.[12,34] B.[38,34]C.[12,1]D.[34,1]答案 B解析 由对称弦结论知kPA 1·kPA 2=e 2-1=(12)2-1=-34,又kPA 2∈[-2,-1],∴kPA 1=-34kPA 2∈[38,34]. 4.已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则点P 到x 轴的距离为( ) A.32 B.62C.3D.6答案 B解析 设P 到x 轴的距离为y P ,故12×22×y P =12×1tan 30°,解得y P =62,故P 到x 轴的距离为62.5.抛物线y 2=2px (p >0)的焦点为F ,过焦点F 且倾斜角为π6的直线与抛物线相交于A ,B 两点,若|AB |=8,则抛物线的方程为( ) A .y 2=4x B .y 2=8x C .y 2=2x D .y 2=6x解析 |AB |=2p sin 2θ,∴2p =|AB |sin 2θ=8×sin 2π6=2,∴y 2=2x .6.已知直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线交于A ,B 两点,(点A 在第一象限),若BA → =4BF →,则△AOB 的面积为( )A.833 B.433 C.832 D.432 答案 B 解析 由题意知AF BF =3,AF =p 1-cos θ,BF =p1+cos θ, ∴1+cos θ1-cos θ=3,cos θ=12,sin θ=32,S =p 22sin θ=43=433.7.(2018·全国Ⅲ卷)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( ) A.5 B .2 C.3 D.2 答案 C解析 不妨设一条渐近线的方程为y =ba x ,则F 2到y =ba x 的距离等于b ,在Rt △F 2PO 中,|F 2O |=c ,所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中,根据余弦定理得cos ∠POF 1=a 2+c 2-(6a )22ac =-cos ∠POF 2=-ac ,即3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =ca = 3. 8.已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若△AOB 的面积为26,则|AB |=( ) A .24 B .8 C .12 D .16解析 p =2,S △AOB =p 22sin θ=26,∴sin θ=16,∴|AB |=2p sin 2θ=24.9.(2021·广州调研)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的长轴是短轴的2倍,过右焦点F 且斜率为k (k >0)的直线与Γ相交于A ,B 两点,且AF → =3FB →,则k =( )A .1B .2 C.3 D.2 答案 D解析 依题意a =2b ,e =1-(ba)2 =32,又λ=3,由e =|λ-1(λ+1)cos α|得32=|3-1(3+1)cos α|,|cos α|=33,又k >0,∴α∈(0,π2),得cos α=33,k =tan α=2.10.(2017·全国Ⅰ卷)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10 答案 A解析 (极坐标法)设l 1的倾斜角为θ,那么|AB |=|AF |+|BF |=21-cos θ+21-cos (π+θ)=21-cos θ+21+cos θ=4sin 2θ,因此l 2的倾斜角为θ+π2或θ-π2,即|DE |=4sin 2(θ±π2),因此即求4(1sin 2θ+1cos 2θ)在[0,π2]上的最小值,令f (θ)=4sin 2θcos 2θ,取最小值时sin θcos θ取最大值,因此θ=π4,结果414=16. 11.如图,已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,椭圆上一点P 使∠F 1PF 2=90°,则椭圆离心率e 的取值范围是( )A .(0,1) B.(0,12]C.(0,22) D.[22,1)答案 D解析 设B 为短轴上端点,则S △F 1PF 2=b 2tan 45°=b 2≤S △F 1BF 2=bc ,∵a >b >0,∴b ≤c ,即b 2≤c 2,∴e 2=c 2a 2≥12,又∵e <1,∴22≤e <1,故选D.二、填空题12.已知P 是椭圆x 225+y 29=1上的点,F 1,F 2分别是椭圆的左、右焦点,若PF 1→ ·PF 2→|PF 1→ ||PF 2→ |=12,则△PF 1F 2的面积为________. 答案 3 3解析 设〈PF 1→ ,PF2→ 〉=θ,则由PF 1→ ·PF 2→|PF 1→ ||PF 2→ |=12, 知cos θ=12,θ=π3,∴S △PF 1F 2=b 2tan θ2=9×33=3 3.13.经过椭圆x 24+y 2=1上一点(3,12)的切线方程为________________. 答案 3x +2y -4=0解析 把(3,12)代入椭圆的切线方程x 0x a 2+x 0y b 2=1,得3x 4+y 2=1,即3x +2y -4=0.14.在椭圆Ax 2+By 2=1上,△PF 1F 2为焦点三角形,椭圆离心率e =12,∠PF 2O =60°,则tan ∠PF 1O 的值为________.答案 3解析 设∠PF 1O =θ,由题意可得12=sin (θ+60°)sin θ+sin 60°,解得cos θ=12,∴θ=60°,故tan ∠PF 1O =tan θ=3.15.若点O 和点F 分别为椭圆x 29+y 28=1的中心和左焦点,点P 为椭圆上的任一点,则OP → ·FP →的最小值为________. 答案 6解析 点P 为椭圆x 29+y 28=1上的任意一点,设P (x ,y )(-3≤x ≤3,-22≤y ≤22),依题意得左焦点F (-1,0),∴OP → =(x ,y ),FP → =(x +1,y ),∴OP → ·FP →=x (x +1)+y 2=x 2+x +72-8x 29=19(x +92)2 +234.∵-3≤x ≤3, ∴32≤x +92≤152,∴94≤(x +92)2 ≤2254, ∴14≤19(x +92)2 ≤22536, ∴6≤19(x +92)2 +234≤12,即6≤OP → ·FP → ≤12,故最小值为6.16.已知P为椭圆C:x24+y23=1上一个动点,F1,F2是椭圆C的左、右焦点,O为坐标原点,O到椭圆C在P点处切线的距离为d,若|PF1|·|PF2|=247,则d=________.答案 14 2解析 由椭圆的焦半径公式得|PF1||PF2|=|(2+12x0)(2-12x0)|=4-14x20=247,x20=167,∴y20=97,不妨取P(47,37),切线47x4+37y3=1.x+y=7,∴d=142.。
圆锥曲线中二级结论的应用
1
椭圆上异于 A , B 两点,若 AP 与 BP 的斜率之积为- ,则椭圆的离心
2
2
率为
.
2
1
2
1
1
1
2
2
2
∵ kAP ·kBP =- ,∴- 2 =- ,即 e -1=- ,∴ e = ,∴ e = .
2
2
2
2
2
2. (1)如图,已知点 A , B 为双曲线实轴端点, P 是双曲线上异于 A , B
−1
的离心率等于
.
(+1)cos
2
2
(2)倾斜角为α的直线 l 过焦点 F 与双曲线 2 - 2 =1( a >0, b >0)相交于
A , B 两点.
则焦点弦长 =
2 2
2 +2 sin2 −2
.
3. 过抛物线 y 2=2 px ( p >0)的焦点 F 且倾斜角为θ的直线交抛物线于 A ,
2
B 两点,则 △ =
.
2sin
跟踪训练
2
4. 经过椭圆 + y 2=1的左焦点 F 1作倾斜角为60°的直线 l ,直线 l 与椭
2
8 2
圆相交于 A , B 两点,则线段 AB 的长为
.
7
焦点弦长
2 2
2× 2×1
2 2
8 2
= 2 2 2
=
=3 =
.
2
2
7
( − )sin +
1 = −
则ቊ
即ቐ
−21 = 2,
= − 1.
1
将①及 c =
2
−
9(2 −4)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线离心率和焦点三角形
上课时间:2013.1. 授课教师:
上课内容:
1)学习重难点:圆锥综合复习.重点圆锥和双曲线
2)学习规划:常见题型的解题技巧和方法
1、设12F F ,分别是双曲线2222x y a b
-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠= 且123AF AF =,则双曲线的离心率为( )
A .52
B .102
C .152
D .5
2、设F 为抛物线24y x =的焦点,A B
C ,,为该抛物线上三点,若FA FB FC ++=0 ,则FA FB FC ++= ( )
A .9
B .6
C .4
D .3
3、双曲线221102
x y -=的焦距为( ) A. 32 B. 42 C. 33 D. 43
4、椭圆14
22=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF = ( )
A .23
B .3
C .2
7 D .4 5、直线y=x-3与抛物线x y 42=交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为( )
(A )48. (B )56 (C )64 (D )72.
6、已知椭圆的中心在原点,离心率2
1=e ,且它的一个焦点与抛物线x y 42-=的焦点重合,则此椭圆方程为( )
13422=+y x B .16822=+y x C .1222=+y x D .1422
=+y x 7、若双曲线2221613x y p
-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( )
(A)2 (B)3 (C)4 (D)42
8、已知椭圆1532222=+n y m x 和双曲线1322222=-n
y m x 有公共的焦点,那么双曲线的渐近线方程是( )
A .y x 215±=
B .x y 215±=
C .y x 43±=
D .x y 4
3±= 9、双曲线)0(122≠=-mn n
y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )
A .163
B .83
C .3
16 D .38 10、设椭圆2212516
x y +=上一点P 到左准线的距离为10,F 是该椭圆的左焦点,若点M 满足1()2
OM OP DF =+ ,则||OM = . 11、已知直线()()20y k x k =+>与抛物线2:8C y x =相交于A B 、两点,F 为C 的
焦点,若||2||FA FB =,则k = ( )
A. 1
3 B.23 C. 23 D. 223 12、若圆422=+y x 与圆)0(06222>=-++a ay y x 的公共弦长为32,则a=________.
(二)典型填空题
13、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为
(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为
14、F 是椭圆13
422=+y x 的右焦点,A(1,1)为椭圆内一定点,P 为椭圆上一动点。
(1)PF PA +的最小值为
(2)PF PA 2+的最小值为
(三)有关参数数值和范围
15、若方程222=+ky x 表示焦点在y 轴上的椭圆,求k 的范围
16、椭圆88222=-ky x k 的一个焦点为)7,0(,求k 值
17、若方程1532
2=-+-k
y k x 表示椭圆,求k 的范围
18、已知12
522=---k y k x 是双曲线,求k 的范围
19、双曲线8822=-ky kx 的一个焦点为)3,0(,则k 的值
(四)焦点三角形的周长以及面积问题
20、已知△ABC 的顶点B ,C 在椭圆13
22=+y x 上,顶点A 是椭圆的一个焦点,且椭圆的另一个焦点F 在BC 上,则△ABC 周长是( )。
21、已知1F 、2F 是椭圆1:2222=+b
y a x C (a >b >0)的两个焦点,P 为椭圆C 上一点,且21PF PF ⊥.若21F PF ∆的面积为9,则b =____________.
22、椭圆的两个焦点为21,F F 在12
2
22=+b y a x )0(>>b a ,P 为椭圆上的一点且21PF PF ⊥。
若△21F PF 的面积为9,则b=( )。
23、双曲线122
22=-b y a x )0,0(>>b a 的左焦点1F ,右焦点2F ,P 在双曲线上,且
21PF F ∠=090,若△21F PF 的面积为9,则b=( )。
24、已知21,F F 是椭圆15
922=+y x 的左右焦点,P 为椭圆上的点,且2:1:21=PF PF ,则=<21cos PF F
( )。
25、已知双曲线192
2
2=-b y x )0,0(>>b a 的左焦点1F ,右焦点2F ,直线l 经过左焦点1F ,与双曲线交与A ,B 两点,且有m AB =,则△2ABF 的周长( )。