九年级数学上册第23章旋转(4)单元检测题

合集下载

人教版九年级数学上册单元清 检测内容:第二十三章 旋转

人教版九年级数学上册单元清 检测内容:第二十三章 旋转

检测内容:第二十三章旋转得分________卷后分________评价________一、选择题(每小题3分,共30分)1.(天水中考)下列图形中,是中心对称图形但不是轴对称图形的是( C )2.如图,△ABC绕点A逆时针旋转至△AEF,其旋转角是( A )A.∠BAE B.∠CAE C.∠EAF D.∠BAF第2题图第4题图第5题图3.(赤峰中考)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是( C )4.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(-5,2),(-2,-2),(5,-2),则点D的坐标为( A )A.(2,2) B.(2,-2) C.(2,5) D.(-2,5)5.如图,在平面直角坐标系中,A(1,0),B(-2,4),AB绕点A顺时针旋转90°得到AC,则点C的坐标是( C )A.(4,3) B.(4,4) C.(5,3) D.(5,4)6.如图,在平面直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC 关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是( A )A.(2,-1) B.(1,-2) C.(-2,1) D.(-2,-1)第6题图第7题图第8题图第10题图7.(海南中考)如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,AC =1 cm ,将Rt △ABC 绕点A 逆时针旋转得到Rt △AB ′C ′,使点C 落在AB 边上,连接BB ′,则BB ′的长度是( B )A .1 cm B. 2 cm C .3 cm D .23 cm8.(苏州中考)如图,在△ABC 中,∠BAC =108°,将△ABC 绕点A 按逆时针方向旋转得到△AB ′C ′.若点B ′恰好落在BC 边上,且AB ′=CB ′,则∠C ′的度数为( C )A .18°B .20°C .24°D .28°9.已知坐标平面上的机器人接受指令“[a ,A ]”(a ≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向面对的方向沿直线行走a .若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( D )A .(-1,- 3 )B .(-1, 3 )C .( 3 ,-1)D .(- 3 ,-1)10.(孝感中考)如图,点E 在正方形ABCD 的边CD 上,将△ADE 绕点A 顺时针旋转90°到△ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为点H ,与BC 交于点G .若BG =3,CG =2,则CE 的长为( B )A .54B .154C .4D .92二、填空题(每小题3分,共24分)11.(衡阳中考)如图,点A ,B ,C ,D ,O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按顺时针方向旋转而得到的,则旋转的角度为__90°__.第11题图 第12题图 第13题图第14题图12.(镇江中考)点O 是正五边形ABCDE 的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O 至少旋转__72__°后能与原来的图案互相重合.13.(泰安中考)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(-1,1),C(3,1).△A′B′C′是△ABC关于x轴的对称图形,将△A′B′C′绕点B′逆时针旋转180°,点A′的对应点为M,则点M的坐标为__(-2,1)__.14.如图,用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为__22__度.15.如图,在平面直角坐标系中,点A,B,D的坐标分别为(1,0),(3,0),(0,1),点C在第四象限,∠ACB=90°,AC=BC.若△ABC与△A′B′C′关于点D成中心对称,则点C′的坐标为__(-2,3)__.第15题图第16题图第17题图第18题图16.(随州中考)如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴的正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为17.在Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图),把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=__80或120__.18.(新疆中考)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为.三、解答题(共66分)19.(6分)如图,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置.(1)指出它的旋转中心;(2)说出它的旋转方向和旋转角是多少度;(3)分别写出点A,B,C的对应点.解:(1)它的旋转中心为点A(2)它的旋转方向为逆时针方向,旋转角是45度(3)点A,B,C的对应点分别为点A,E,F20.(6分)(枣庄中考)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图①中,画出一个与△ABC成中心对称的格点三角形;(2)在图②中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图③中,画出△ABC 绕着点C 按顺时针方向旋转90°后的三角形.题图答图解:(1)答案不唯一.如图所示,△DCE 为所求作 (2)答案不唯一.如图所示,△ACD 为所求作 (3)如图所示,△ECD 为所求作21.(9分)(绥化中考)如图,在边长均为1个单位长度的小正方形组成的网格中,点A ,点B ,点O 均为格点(每个小正方形的顶点叫做格点).(1)作点A 关于点O 的对称点A 1;(2)连接A 1B ,将线段A 1B 绕点A 1顺时针旋转90°得点B 对应点B 1,画出旋转后的线段A 1B 1;(3)连接AB 1,求出四边形ABA 1B 1的面积.解:(1)如图所示,点A 1即为所求(2)如图所示,线段A 1B 1即为所求(3)如图,连接BB 1,过点A 作AE ⊥BB 1,过点A 1作A 1F ⊥BB 1,则S 四边形ABA 1B 1=S△ABB 1+S △A 1BB 1 =12 ×8×2+12×8×4=24 22.(9分)如图,把正方形ABCD 绕点C 按顺时针方向旋转45°得到正方形A ′B ′CD ′(此时,点B ′落在对角线AC 上,点A ′落在CD 的延长线上),A ′B ′交AD 于点E ,连接AA ′,CE .求证:(1)△ADA ′≌△CDE ;(2)直线CE 是线段AA ′的垂直平分线.证明:(1)由正方形的性质及旋转得AD =DC ,∠ADC =90°,AC =A ′C ,∠DA ′E =45°,∠ADA ′=∠CDE =90°,∴∠DEA ′=∠DA ′E =45°,∴DA ′=DE ,∴△ADA ′≌△CDE (2)由正方形的性质及旋转得CD =CB ′,∠CB ′E =∠CDE =90°,又CE =CE ,∴Rt △CEB ′≌Rt △CED ,∴∠B ′CE =∠DCE ,∵AC =A ′C ,∴直线CE 是线段AA ′的垂直平分线23.(10分)在Rt △ABC 中,∠ABC =90°,∠BAC =30°,将△ABC 绕点A 顺时针旋转一定的角度α得到△AED ,点B ,C 的对应点分别是E ,D .(1)如图①,当点E 恰好在AC 上时,求∠CDE 的度数;(2)如图②,若α=60°时,点F 是边AC 中点,求证:四边形BFDE 是平行四边形. 解:(1)∵∠ABC =90°,∠BAC =30°,∴∠ACB =60°,∵△ABC 绕点A 顺时针旋转α得到△AED ,点E 恰好在AC 上,∴CA =AD ,∠EAD =∠BAC =30°,∴∠ACD =∠ADC =12(180°-30°)=75°,∵∠EDA =∠ACB =60°,∴∠CDE =∠ADC -∠EDA =15° (2)证明:∵点F 是边AC 中点,∴BF =AF =12 AC ,∵∠BAC =30°,∴BC =12AC ,∠FBA =∠BAC =30°,∴BF =BC ,∵△ABC 绕点A 顺时针旋转60°得到△AED ,∴∠BAE =∠CAD =60°,CB =DE ,∠DEA =∠ABC =90°,∴DE =BF ,如图②,延长BF 交AE 于点G ,则∠BGE =∠GBA +∠BAG =90°,∴∠BGE =∠DEA ,∴BF ∥ED ,∴四边形BFDE 是平行四边形24.(12分)如图①,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°.若固定△ABC ,将△DEC 绕点C 旋转.(1)当△DEC 绕点C 旋转到点D 恰好落在AB 边上时,如图②.①当∠B =∠E =30°时,此时旋转角的大小为__60°__;②当∠B =∠E =α时,此时旋转角的大小为__2α__;(用含a 的式子表示)(2)当△DEC 绕点C 旋转到如图③所示的位置时,小杨同学猜想:△BDC 的面积与△AEC 的面积相等.试判断小杨同学的猜想是否正确,若正确,请你证明小杨同学的猜想;若不正确,请说明理由.题图 答图解:(2)小扬同学猜想是正确的,证明如下:过点B 作BN ⊥CD 于点N ,过点E 作EM ⊥AC 于点M ,∵∠ACB =∠DCE =90°,∴∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3.∵BN ⊥CD ,EM ⊥AC ,∴∠BNC =∠EMC =90°.∵△ACB ≌△DCE ,∴BC =EC ,∴△CBN ≌△CEM ,∴BN =EM ,∵S △BDC =12 ·CD ·BN ,S △ACE =12·AC ·EM ,且CD =AC ,∴S △BDC =S △ACE25.(14分)感知:如图①,在等腰直角三角形ABC 中,∠ACB =90°,BC =m ,将边AB 绕点B 顺时针旋转90°得到线段BD ,过点D 作DE ⊥CB 交CB 的延长线于点E ,连接CD .(1)求证:△ACB ≌△BED ;(2)△BCD 的面积为__12 m 2__;(用含m 的式子表示) 拓展:如图②,在一般的Rt △ABC 中,∠ACB =90°,BC =m ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,用含m 的式子表示△BCD 的面积,并说明理由;应用:如图③,在等腰△ABC 中,AB =AC ,BC =8,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,则△BCD 的面积为__16__;若BC =m ,则△BCD 的面积为__14 m 2__.(用含m 的式子表示)解:感知:(1)证明:∵△ABC 是等腰直角三角形,∴CA =CB =m ,∠A =∠ABC =45°,由旋转的性质可知,BA =BD ,∠ABD =90°,∴∠DBE =45°=∠A ,又∵∠ACB =∠E =90°,∴△ACB ≌△BED拓展:作DG ⊥CB 交CB 的延长线于点G ,∵∠ABD =90°,∴∠ABC +∠DBG =90°,又∠ABC +∠A =90°,∴∠A =∠DBG .又∵∠ACB =∠G ,AB =BD ,∴△ACB ≌△BGD ,∴BC =DG =m ,∴S △BCD =12 BC ·DG =12m 2应用:点拨:作AN ⊥BC 于点N ,DM ⊥BC 交CB 的延长线于点M ,易证△ANB ≌△BMD (AAS),∴BN =DM =12 BC =4.∴S △BCD =12 BC ·DM =12×8×4=16,若BC =m ,则BN =DM =12 BC =12 m ,∴S △BCD =12 BC ·DM =12 ×m ×12 m =14m 2。

人教版九年级数学上册第二十三章《旋转》测试带答案解析

人教版九年级数学上册第二十三章《旋转》测试带答案解析

人教版九年级数学上册第二十三章《旋转》测试带答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题12个小题,每小题4分,共48分)1.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列垃圾分类的标志中,既是轴对称图形又是中心对称图形的是()A.可回收物B.厨余垃圾C.有害垃圾D.其它垃圾物3.下列垃圾分类图标分别表示:“可回收垃圾”、“有害垃圾”、“厨余垃圾”、“其它垃圾”,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.观察下列图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会.在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是()A.B.C.D.7.2022年油价多次上涨,新能源车企迎来了更多的关注,如图是理想、蔚来、小鹏、哪吒四款新能源汽车的标志,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.如图,在平面直角坐标系中,△ABC的边AB⊥x轴,A(﹣2,0),C(﹣4,1),二次函数y=x2﹣2x﹣3的图象经过点B.将△ABC沿x轴向右平移m(m>0)个单位,使点A平移到点A′,然后绕点A'顺时针旋转90°,若此时点C的对应点C′恰好落在抛物线上,则m的值为()A B C D .9.如图,将ABC 绕点A 逆时针旋转40︒得到ADE ,AD 与BC 相交于点F ,若80E ∠=︒且AFC 是以线段FC 为底边的等腰三角形,则BAC ∠的度数为( )A .55︒B .60︒C .65︒D .70︒10.如图,在平面内将五角星绕其中心旋转180︒后所得到的图案是( )A .B .C .D .11.如图,矩形ABCD 中,AD =2,ABAC 上有一点G (异于A ,C ),连接 DG ,将△AGD 绕点A 逆时针旋转60°得到△AEF ,则BF 的长为( )A B .C D .=60°,在x 轴正半轴上有一点C ,点C 坐标为()1,0,将线段AC 绕点A 逆时针旋转120°,得线段AD ,连接BD .则BD 的长度为( )A .B .4CD .152二、填空题(本大题4个小题,每小题4分,共16分)13.点(6,1)-关于原点的对称点是__________.14.如图,在ABC 中,80ACB ∠=︒,将ABC 在平面内绕点A 逆时针旋转到AB C ''△的位置,使CC '平分B C A ''∠,则旋转角的度数为__________.15.如图,在ABC 中,70CAB ∠=︒,在同一平面内,将ABC 绕点A 逆时针旋转到AB C ''△的位置,使CC AB '∥,作B D AC '∥交BC 于点D ,则AB D '∠=______.16.如图,在ABC 中,90B ,4AB BC ==,将ABC 绕点A 逆时针旋转60︒,得到ADE ,则点D 到BC 的距离是______.三、解答题(共9个小题,17、18每小题8分,19-25每小题10分,共86分)17.如图所示的正方形网格中,画出将△ABC 绕点C 逆时针旋转90°得到的△MNC ,A 、B 的对应点分别为M 、N .18.如图,ABC 的顶点坐标分别为(4,5)A -,(5,2)B -,(3,4)C -.(1)画出与ABC 关于原点O 对称的111A B C △,并写出点1A 的坐标为___________.(2)D 是x 轴上一点,使DB DC 的值最小,画出点D (保图痕迹),D 点坐标为___________.(3)(,0)P t 是x 轴上的动点,将点C 绕点P 顺时针旋转90︒至点E ,直线25y x =-+经过点E ,则t 的值为___________.19.阅读理解,并解答问题:观察发现:如图1是一块正方形瓷砖,分析发现这块瓷砖上的图案是按图2所示的过程设计的,其中虚线所在的直线是正方形的对称轴.问题解决:用四块如图1所示的正方形瓷砖按下列要求拼成一个新的大正方形,并在图3和图4中各画一种拼法.(1)图3中所画拼图拼成的图案是轴对称图形,但不是中心对称图形;(2)图4中所画拼图拼成的图案既是轴对称图形,又是中心对称图形.20.如图,在平面直角坐标系内,ABC 的顶点坐标分别为(4,4)A -,(2,5)B -,(2,1)C -.(1)平移ABC ,使点C 移到点1(2,2)C ,画出平移后的111A B C △;(2)将ABC 绕点(0,0)旋转180︒,得到222A B C △,画出旋转后的222A B C △;(3)连接12A C ,21A C ,求四边形1221A C A C 的面积.21.如图,在平面直角坐标系中,点A 的坐标为()1,1,点B 的坐标为()4,1,点C 的坐标为()3,3.(1)画出将ABC 向下平移5个单位长度得到的111A B C △;(2)画出将ABC 绕点原点O 逆时针旋转90°后得到的222A B C △,写出2C 的坐标.22.如图,在△ABC 中,AB =AC ,∠BAC =α,点D 在边BC 上(不与点B ,C 重合),连接AD ,以点A 为中心,将线段AD 逆时针旋转180°﹣α得到线段AE ,连接BE .(1)∠BAC +∠DAE = °;(2)取CD 中点F ,连接AF ,用等式表示线段AF 与BE 的数量关系,并证明.23.对于平面直角坐标系xOy 中的图形M 和点P ,给出如下定义:将图形M 绕点P 顺时针旋转90 得到图形N ,图形N 称为图形M 关于点P 的“垂直图形”.例如,图1中点D 为点C 关于点P 的“垂直图形”.(1)点A 关于原点O 的“垂直图形”为点B .①若点A 的坐标为()0,3,则点B 的坐标为___________;②若点B 的坐标为()3,1,则点A 的坐标为___________;(2)(3,3)E -,(2,3)F -,(,0)G a ,线段EF 关于点G 的“垂直图形”记为E F '',点E 的对应点为E ',点F 的对应点为F '.①求点E '的坐标(用含a 的式子表示);②若O 的半径为2E F '',上任意一点都在O 内部或圆上,直接写出满足条件的EE '的长度的最大值.24.已知AOB 和MON △都是等腰直角三角形OM OA ⎫<<⎪⎪⎝⎭,90AOB MON ∠=∠=︒.(1)如图1,连接AM ,BN ,求证:AM BN =;(2)将MON △绕点O 顺时针旋转.①如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=;②当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.25.如图,在Rt ABC △中,90BAC ∠=︒,将Rt ABC △绕点A 旋转一定的角度得到Rt ADE △,且点E 恰好落在边BC 上.(1)求证:AE 平分CED ∠;(2)连接BD ,求证:90DBC ∠=︒.参考答案:1.C【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意.故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,正确掌握相关定义是解题关键.2.C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A.既不是中心对称图形,也不是轴对称图形,故本选项不合题意;B.不是中心对称图形,是轴对称图形,故本选项不合题意;C.既是中心对称图形又是轴对称图形,故本选项符合题意;D.既不是中心对称图形,也不是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.既不是轴对称图形,也不是中心对称图形.故本选项不合题意;B.既是轴对称图形,又是中心对称图形.故本选项符合题意;C.是轴对称图形,不是中心对称图形.故本选项不合题意;D.既不是轴对称图形,也不是中心对称图形.故本选项不合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D【分析】根据轴对称图形和中心对称图形的定义进行判断即可.【详解】A是轴对称图形不是中心对称图形,不符合题意;B是轴对称图形不是中心对称图形,不符合题意;C既不是轴对称图形也不是中心对称图形,不符合题意;D既是轴对称图形又是中心对称图形,符合题意;故选:D.【点睛】本题考查了轴对称图形和中心对称图形的定义,即轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.A【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意;B.是轴对称图形,不是中心对称图形,故本选项不合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.B【分析】根据轴对称图形及中心对称图形的概念可直接进行排除选项.【详解】解:A、文字上方的图案既不是轴对称图形也不是中心对称图形,故不符合题意;B、文字上方的图案既是轴对称图形也是中心对称图形,故符合题意;C、文字上方的图案是轴对称图形但不是中心对称图形,故不符合题意;D、文字上方的图案既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B.【点睛】本题主要考查轴对称图形及中心对称图形的识别,熟练掌握轴对称图形及中心对称图形的概念是解题的关键.7.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.既不是轴对称图形,也不是中心对称图形.故本选项不合题意;B.是轴对称图形,不是中心对称图形.故本选项不符合题意;C.既是轴对称图形又是中心对称图形.故本选项符合题意;D.是轴对称图形,不是中心对称图形.故本选项不合题意.故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.8.C【分析】作CD⊥AB于D,C'D'⊥A'B'于D',先根据已知条件求出点B坐标,由A、B、C三点坐标可得CD=2,AD=1.设点A(﹣2,0)向右平移m个单位后得点A'(m>0),则点A'坐标为(m﹣2,0).进而表示出点C'的坐标为(m﹣1,2),最后将C'坐标代入二次函数解析式中计算即可得到点C坐标.【详解】解:作CD⊥AB于D,C'D'⊥A'B'于D',∵AB⊥x轴,二次函数y=x2﹣2x﹣3的图象经过点B,∴点B(﹣2,5)∵A(﹣2,0),C(﹣4,1),∴CD=2,AD=1.设点A(﹣2,0)向右平移m个单位后得点A'(m>0),则点A'坐标为(m﹣2,0).∵A'D'=AD=1,C'D'=CD=2,∴点C'坐标为(m﹣1,2),又点C'在抛物线上,∴把C'(m﹣1,2)代入y=x2﹣2x﹣3中,得:(m ﹣1)2﹣2(m ﹣1)﹣3=2,整理得:m 2﹣4m ﹣2=0.解得:m 1=m 2=2(舍去).故选:C .【点睛】此题考查了二次函数图象上点的坐标特点,平移的性质,解一元二次方程,正确理解平移的性质是解题的关键.9.B【分析】由旋转的性质得出80E C ∠=∠=︒,40BAD ∠=︒,由等腰三角形的性质得出80C AFC ∠=∠=︒,求出20CAF ∠=︒,根据BAC BAD CAF ∠=∠+∠即可得出答案. 【详解】解:将ABC 绕点A 逆时针旋转40︒得到ADE ,且80E ∠=︒,80E C ∴∠=∠=︒,40BAD ∠=︒,又AFC 是以线段FC 为底边的等腰三角形,AC AF ∴=,80C AFC ∴∠=∠=︒,180180808020CAF C AFC ∴∠=︒-∠-∠=︒-︒-︒=︒,402060BAC BAD CAF ∴∠=∠+∠=︒+︒=︒,故选:B .【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理,熟练掌握旋转的性质是解题的关键.10.C【分析】根据旋转的性质找出阴影部分三角形的位置即可得答案.【详解】∵将五角星绕其中心旋转180︒,∴图中阴影部分的三角形应竖直向下,故选:C .【点睛】本题考查旋转的性质,图形旋转前后,对应边相等,对应角相等,前后两个图形全等;熟练掌握旋转的性质是解题关键.11.A【分析】过点F 作FH ⊥BA 交BA 的延长线于点H ,则∠FHA =90°,△AGD 绕点A 逆时针旋转60°得到△AEF ,得∠F AD =60°,AF =AD =2,又由四边形ABCD 是矩形,∠BAD =90°,得AF=1,由勾股定理得AH=,得到到∠F AH=30°,在Rt△AFH中,FH=12BH=AH+AB,再由勾股定理得BF=【详解】解:如图,过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,∵△AGD绕点A 逆时针旋转60°得到△AEF∴∠F AD=60°,AF=AD=2,∵四边形ABCD是矩形∴∠BAD=90°∴∠BAF=∠F AD+ ∠BAD=150°∴∠F AH=180°-∠BAF=30°AF=1在Rt△AFH中,FH=12由勾股定理得AH=在Rt△BFH中,FH=1,BH=AH+AB由勾股定理得BF=故BF故选:A【点睛】本题考查了图形的旋转,矩形的性质,含30度角的直角三角形的性质,勾股定理等知识,解决此题的关键在于作出正确的辅助线.12.C【分析】连接CD,过点A作AE⊥CD于点E,过点E作FG⊥x轴于点F,过点A作AG⊥FG于点G,设E(m,n),根据旋转证∠ACG=30°,CE,根据两角对应相等证△AEG∽△ECF,求出74E ⎛ ⎝⎭,52D ⎛ ⎝⎭,结合B (-2,0)求出BD =. 【详解】连接CD ,过点A 作AE ⊥CD 于点E ,过点E 作FG ⊥x 轴于点F ,过点A 作AG ⊥FG 于点G ,则∠AEC =∠OFG =∠G =90°,∵∠AOF =90°,∴∠OAG =90°,∴四边形AOFG 是矩形,∵(0,A ,∴FG =OA设E (m ,n ),∴AG =OF =m ,EF =n ,∴CF =m -1,EGn ,由旋转知,∠CAD =120°,AC =AD ,∴CE =DE ,∠ACG =30°,∴CE,∵∠CEF +∠ECF =∠AEG +∠CEF =90°,∴∠AEG =∠ECF ,∴△AEG ∽△ECF ,∴EF CE AG AE ==,∴=n m∵CF CE EG AE==∴74m =,n∴74E ⎛ ⎝⎭, ∵73144-=,735442+=,∴52D ⎛ ⎝⎭,∵∠ABO=60°,=OA∴OB =2,B (-2,0),∴BD =. 故选C .【点睛】本题主要考查了旋转,等腰三角形,含30°的直角三角形,两点间的距离公式,熟练掌握旋转图形全等性质,三线合一含30°角的直角三角形边的性质,两点间的距离公式是解决此题的关键.13.(6,1)-【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是点P '(﹣x ,﹣y ),进而得出答案.【详解】解:点(6,﹣1)关于原点的对称点的坐标为(﹣6,1).故答案为:(﹣6,1).【点睛】此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键. 14.100︒##100度【分析】根据旋转的性质得出80B C A ''∠=︒,C A AC '=,再根据角平分线的性质得出40CC A '∠=︒,利用等腰三角形的性质可求旋转角.【详解】解:∵ABC 在平面内绕点A 逆时针旋转到AB C ''△的位置,∴80C B C A A B ∠︒==''∠,C A AC '=,∵CC '平分B C A ''∠,∴1402CC A B C A '''∠=∠=︒,∴40CC A C CA ''∠=∠=︒,∴100C AC '∠=︒,故答案为:100°.【点睛】本题考查了旋转的性质和等腰三角形的性质,解题关键是熟练运用旋转的性质得出角的度数.15.30°##30度【分析】利用旋转的性质可求得AC =AC ′,∠CAB =∠C ′AB ′,由平行线性质和三角形内角和定理可求得∠C ′AC ;进而求得∠CAB ′即可解答;【详解】解:∵CC AB '∥,∴∠C ′CA =∠CAB =70°,由旋转的性质可得:AC =AC ′,∠CAB =∠C ′AB ′=70°,∴∠ACC ′=∠AC ′C =70°,∴∠C ′AC =180°-70°-70°=40°,∴∠CAB ′=∠C ′AB ′-∠C ′AC =70°-40°=30°,∵B D AC '∥,∴∠AB ′D =∠CAB ′=30°,故答案为:30°.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,平行线的性质;掌握旋转的性质是解题关键.16.2【分析】由旋转的性质可得4AB AD ==,60BAD ∠=︒,可证ABD △是等边三角形,由直角三角形的性质可求解.【详解】解:如图,连接BD ,过点D 作DH BC ⊥于H ,将ABC 绕点A 逆时针旋转60︒,4AB AD ∴==,60BAD ∠=︒,ABD ∴是等边三角形,4BD AB ∴==,60ABD ∠=︒,30DBC ∴∠=︒,DH BC ⊥,122DH BD ∴==, ∴点D 到BC 的距离是2,故答案为:2.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,掌握旋转的性质是解题的关键.17.见解析【分析】根据题意画出旋转后的图形即可;【详解】:如图,【点睛】本题主要考查了图形的旋转,掌握旋转图形的画法是解题的关键.18.(1)作图见详解,(4,5)-(2)作图见详解,13,03⎛⎫- ⎪⎝⎭(3)2-【分析】(1)已知ABC 三点坐标,ABC 关于原点O 对称的111A B C △各对应点的坐标与原坐标的横纵坐标均为相反数,由此即可作图;(2)作点B 关于x 轴的对称点B',连接'CB 交x 轴于点D ,此时BD CD +的值最小; (3)构造全等三角形求出等E 坐标,利用待定系数法即可解问题.【详解】(1)解:已知ABC 三点坐标(4,5)A -,(5,2)B -,(3,4)C -,关于原点对称,则对应点的坐标分别是1(4,5)A -,1(5,2)B -,1(3,4)C -,连接1A ,1B ,1C 所组成的图形为所求图形111A B C △,如图所示,(2)解:作点B 关于x 轴的对称点B',连接'CB 交x 轴于点D ,此时BD CD +的值最小,如图所示,已知(4,5)A -,(5,2)B -,(3,4)C -,点B'是点B 关于x 轴的对称点,∴'(5,2)B --、(34)C -,, ∴直线'BC 解析式为313y x =+,当0y =时,133x , ∴1303D ⎛⎫- ⎪⎝⎭,. (3)解:如图所示,作CH x ⊥轴于H EK x ⊥,轴于K ,根据题意得,(34)C -,,90CHP CPE PKE ∠=∠=∠=︒, ∴9090CPH HCP CPH EPK ∠+∠=︒∠+∠=︒,,∴PCH EPK ∠=∠,∵PC PE =,∴(AAS)PCH EPK △≌△,∴43PK CH EK PH t ====+,,∴4OK t =+,∴(43)E t t ++,,∵点E 在直线25y x =-+上,∴3245t t +=-++(),∴2t =-.【点睛】本题考查平面直角坐标系中图形的旋转变换,一次函数图像上的点的特征,轴对称最短问题等知识,解题的关键是熟练掌握旋转变换的性质,根据题意添加常用辅助线,构造全等三角形解决问题.19.(1)见解析(2)见解析【分析】(1)按照轴对称的意义得出答案即可;(2)按照轴对称的定义和中心对称的定义设计,所设计的图案既是中心对称图形,又是轴对称图形.(1)解:(1)参考图案,如图所示:(2)(2)参考图案,如图所示:【点睛】本题考查利用轴对称或中心对称设计图案,关键是理解轴对称和中心对称的定义.20.(1)见解析(2)见解析(3)6【分析】(1)首先确定C 点的平移规律,依此规律平移A 、B 两点,从而得到111A B C △; (2)利用中心对称的性质作出A 、B 、C 的对应点2A 、2B 、2C 即可;(3)先求112AC C 的面积,四边形1221A C A C 的面积为112AC C 面积的2倍.(1)解:如图所示,111A B C △为所求作;(2)解:如图所示,222A B C △为所求作; (3)解:如图,123C C =,1A 到12C C 距离为2; 则112AC C 的面积为:13232⨯⨯=. ∴由图可得四边形1221A C A C 的面积为236S =⨯=.【点睛】本题考查了坐标的平移,中心对称图形的画法,网格中图形面积的求法,解题的关键是根据题意画出图象. 21.(1)见解析 (2)见解析,()3,3-【分析】(1)利用平移的坐标特征写出1A 、1B 、1C 的坐标,然后描点依次连接即可; (2)利用网格特点和旋转的性质找出 A 、B 、C 的对应点 2A 、2B 、2C ,然后描点依次连接即可得 (1)解:经过平移可得:()11,4A -,()14,4B -,()13,2C -,顺次连接,如图所示:111A B C △即为所求作;(2)解:旋转后的点的坐标分别为:()21,1A -,()21,4B -,()23,3C -,然后顺次连接, 如图所示:222A B C △即为所求作,2C 的坐标()3,3-【点睛】本题考查了作图:平移及旋转变换,找到对应点的坐标,然后顺次连接各点是解题关键. 22.(1)180 (2)12AF BE =,证明见解析;【分析】(1)由旋转可知∠DAE =180°-a ,所以得到:∠BAC +∠DAE =a +180°-a =180°; (2)连接并延长AF ,使FG =AF ,连接DG ,CG ;因为DF =CF ,AF =GF ;可以得到四变形ADGC 为平行四边形;从而有∠DAC +∠ACG =180°,再证∠ACG =∠BAE 继而证明△ABE ≌△CAG 得到BE =AG ,即可得线段AF 与BE 的数量关系; 【详解】(1)解:由旋转可知∠DAE =180°-a , ∠BAC +∠DAE =a +180°-a =180° 故答案为:180(2)解:如图所示:连接并延长AF ,使FG =AF ,连接DG ,CG ; ∵DF =CF ,AF =GF ;∴四变形ADGC 为平行四边形; ∴∠DAC +∠ACG =180°,即∠ACG =180°-∠DAC ,∠BAE =∠BAC +∠DAE-∠DAC =180°-∠DAC , 所以∠ACG =∠BAE ,∵四变形ADGC 为平行四边形; ∴AD =CG , 又∵AD =AE , AE =CG ,在△ABE 和△CAG 中,{AB CA BAE ACG AE CG=∠=∠=∴△ABE ≌△CAG , ∴BE =AG , ∴AF =12AG =12BE ,故线段AF 与BE 的数量关系:AF =12BE ;【点睛】本题考查了旋转的性质,旋转角的定义,以及全等三角形的性质的判定,解题的关键是熟悉并灵活应用以上性质. 23.(1)①()3,0,②()1,3- (2)①(3,3)a a ++,【分析】(1)①②根据“垂直图形”的定义可得答案;(2)①过点E 作EP x ⊥轴于点P ,过点E '作E H x '⊥轴于点H ,利用AAS证明PEG HGE '△≌△得3E H PG a '==+,3GH EP ==,从而得出答案;②由点E '的坐标可知,满足条件的点E '在第一象限的O 上,求出点E '的坐标,从而解决问题. (1)解:①点A 的坐标为()0,3, ∴点B 的坐标为()3,0,故答案为:()3,0;②当()3,1B 时,如图,()1,3A -,故答案为:()1,3-; (2)解:①过点E 作EP x ⊥轴于点P ,过点E '作E H x '⊥轴于点H ,90EGE ∠'=︒,EG E G =',90EGP E GH ∴∠+∠'=︒,90EGP E ∠+∠=︒, E E GH ∴∠=∠',EPG GHE ∠=∠',∴AAS HG PEG E '△≌△(), 3E H PG a ∴'==+,3GH EP ==,3OH a ∴=+,3,3E a a ∴'++();②如图,观察图象知,满足条件的点E '在第一象限的O 上,()3,3E a a '++,2OE '=,()()222332a a ∴+++=,3a +=负值舍去),3a ∴=,E ∴',EE ∴'EE ∴'【点睛】本题是几何变换综合题,主要考查了全等三角形的判定与性质,“垂直图形”的定义,坐标与图形,求出点E '的坐标是解题的关键.24.(1)见解析;(2)①见解析; 【分析】(1)证明△AMO ≌△BNO 即可;(2)①连接BN ,证明△AMO ≌△BNO ,得到∠A =∠OBN =45°,进而得到∠MBN =90°,且△OMN 为等腰直角三角形,再在△BNM 中使用勾股定理即可证明; ②分两种情况分别画出图形即可求解.【详解】解:(1)∵AOB 和MON △都是等腰直角三角形, ∴90OA OB ON OM AOBNOM ,,,又=+=90+AOM NOM AON AON ,=+=90+BON AOB AON AON ,∴=BON AOM , ∴()AMO BNO SAS ≌, ∴AM BN =;(2)①连接BN ,如下图所示:∴==90AOM AOBBOM BOM , ==90BON MONBOM BOM ,且OA OB OM ON ,==, ∴()AMO BNO SAS ≌, ∴45A OBN,AM BN =,∴454590ABNABOOBN,且OMN ∆为等腰直角三角形,∴MN ,在Rt BMN ∆中,由勾股定理可知:22222(2)2BM BN MN OM OM ,且AM BN =∴2222AM BM OM +=; ②分类讨论:情况一:如下图2所示,设AO 与NB 交于点C ,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AMAH HM; 情况二:如下图3所示,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AM AH HM;故46322AM或.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 25.(1)见解析 (2)见解析【分析】(1)根据旋转性质得到对应边相等,对应角相等,进而根据等边对等角性质可将角度进行等量转化,最后可证得结论;(2)根据旋转性质、等腰三角形的性质以及三角形内角和定理对角度进行等量转化可证得结论.【详解】(1)证明:由旋转性质可知:AE AC =,AED C ∠=∠,AEC C ∴∠=∠AED AEC ∴∠=∠AE ∴平分CED ∠.(2)证明:如图所示:由旋转性质可知:AD AB =,90DAE BAC ∠=∠=︒,ADB ABD ∴∠=∠,DAE BAE BAC BAE ∠-∠=∠-∠,即DAB EAC ∠=∠,=1802DAB ABD ∠︒-∠,1802EAC C ∠=︒-∠, ABD C ∴∠=∠,∵在Rt ABC △中,90BAC ∠=︒, 90ABC C ∴∠+∠=︒, 90ABC ABD ∴∠+∠=︒,即90DBC ∠=︒.【点睛】本题考查了三角形的旋转变化,熟练掌握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键.。

2024-2025学年人教新版九年级上册数学《第23章 旋转》单元测试卷(有答案)

2024-2025学年人教新版九年级上册数学《第23章 旋转》单元测试卷(有答案)

2024-2025学年人教新版九年级上册数学《第23章旋转》单元测试卷一.选择题(共10小题,满分30分)1.如图,若点M是等边△ABC的边BC上一点,将△AMC绕点A顺时针旋转得到△ANB,连接MN,则下列结论:①∠BMN=30°;②MN=AM;③BN∥AM,其中正确的个数有()A.3个B.2个C.1个D.0个2.把如图所示的五角星图案,绕着它的中心旋转,若旋转后的五角星能与自身重合.则旋转角至少为()A.30°B.45°C.60°D.72°3.下列图形是中心对称图形的是()A.B.C.D.4.在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是()A.(﹣1,﹣3)B.(﹣1,3)C.(1,﹣3)D.(3,1)5.我国杨秉烈先生在上世纪八十年代发明了繁花曲线规画图工具,利用该工具可以画出许多漂亮的繁花曲线,繁花曲线的图案在服装、餐具等领域都有广泛运用.下面四种繁花曲线中,是轴对称图形的是()A.B.C.D.6.如图,三个完全相同的四边形组成的图案绕点O旋转可以和原图形重合,则旋转角可以是()A.60°B.90°C.120°D.150°7.将如图所示的图案通过平移后可以得到的图案是()A.B.C.D.8.李明家有一个时钟,假期间,某天上午他8点整出门锻炼,回家时发现时针刚好旋转了60°,那么李明回家的时间是()A.9点整B.9点半C.10点整D.10点半9.如图,已知点A(﹣1,0),B(0,2),A与A′关于y轴对称,连结A′B,现将线段A′B以A′点为中心顺时针旋转90°得A'B',点B的对应点B′的坐标为()A.(3,1)B.(2,1)C.(4,1)D.(3,2)10.如图,在正方形网格中,A,B,C,D,E,F,G,H,M,N是网格线交点,△ABC与△DEF关于某点对称,则其对称中心是()A.点G B.点H C.点M D.点N二.填空题(共10小题,满分30分)11.在圆、正六边形、正八边形中,属于中心对称图形的有个.12.在平面直角坐标系中,若点A(a,3)与点B(﹣1,b)于原点对称,则a+b=.13.时钟从下午3时到晚上9时,时针沿顺时针方向旋转了度.14.如图,点O是矩形ABCD的对称中心,点P,Q分别在边AD,BC上,且PQ经过点O,AB=6,AP =3,BC=8,点E是边AB上一动点.则△EPQ周长的最小值为.15.如图,方格纸中每个小正方形的边长均为1,已知A(﹣1,3),B(﹣4,4),C(﹣2,1).(1)画△ABC关于原点成中心对称的△A1B1C1;(2)若第二象限存在点D,使点A、B、C、D构成平行四边形,则D的坐标为.16.如图,在平面直角坐标系中有一个航空母舰的简图.若将该图案各个顶点的纵坐标保持不变,横坐标都减去3,则所得到的新图案是由原图案向平移3个单位长度得到的.17.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为.18.如图是由中国结和雪花两种元素组成的一个图案,这个图案绕着它的旋转中心旋转角度α°(0°<α<360°)后能够与它本身重合,则角α最小是度.19.如图,小刚利用计算机绘制了一个树叶图案,曲线C1为抛物线的一部分,顶点为A,曲线C2与曲线C1关于直线y=﹣x对称,点B为点A的对称点,则点B的坐标为.20.如图,O是△ABC内的点,AB=AC,∠BAC=90°,∠BOC=130°,将△AOB绕点A按逆时针方向旋转90°,得到△ADC,连接OD.设∠AOB为α,当△COD为等腰三角形时,α为.三.解答题(共6小题,满分60分)21.如图,这是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,求BB'的长.22.已知点M(3m﹣2,2m+1),解答下列问题:(1)若点M与(﹣7,﹣7)关于原点对称,求点m的值;(2)若点N(3,9),且直线MN平行于x轴,求点M的坐标.23.如图,在五边形ABCDE中,∠EAB=∠BCD=90°,AB=BC,∠ABC=α,AE+CD=DE.(1)将△ABE绕点B顺时针旋转α,画出旋转后的△BCM,并证明D、C、M三点在一条直线上;(2)求证:△EBD≌△MBD.24.如图3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.25.如图,在△ABC中,AB=BC,点O是AC边上的中点,将△ABC绕着点O旋转180°得到△ACD.(1)求证:四边形ABCD是菱形;(2)如果∠ABC=30°,BC=2,求菱形ABCD的面积.26.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.参考答案与试题解析一.选择题(共10小题)1.【答案】C2.【答案】D3.【答案】B4.【答案】A5.【答案】C6.【答案】C7.【答案】D8.【答案】C9.【答案】A10.【答案】C二.填空题(共10小题)11.【答案】见试题解答内容12.【答案】﹣2.13.【答案】180.14.【答案】.15.【答案】(1)见解答.(2)(﹣5,2)或(﹣3,6).16.【答案】左.17.【答案】见试题解答内容18.【答案】60.19.【答案】(﹣2,0).20.【答案】85°或115°或145°.三.解答题(共6小题)21.【答案】4.22.【答案】(1)m=3;(2)M(10,9).23.【答案】(1)画图见解析,证明见解析;(2)见解析.24.【答案】见解析.25.【答案】(1)略;(2)2.26.【答案】见试题解答内容。

人教版九年级数学上册第23章旋转单元测试题含答案

人教版九年级数学上册第23章旋转单元测试题含答案



(25)
24.解:(1)根据对称中心的性质,可得 对称中心的坐标是 D1D 的中点, ∵D1,D 的坐标分别是(0,3),(0,2), ∴对称中心的坐标是(0,2.5). (2)∵A,D 的坐标分别是(0,4),(0,2),
∴正方形 ABCD 与正方形 A1B1C1D1 的边长都是:4﹣ 2=2, ∴B,C 的坐标分别是(﹣ 2,4),(﹣ 2,2),
A.
B.
C.
D.
4.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )
A.
B.
C.
D.
5.如图,在△ABC 中,∠CAB=65°,将△ABC 在平面内绕点 A 旋转到△AB′C′的位置,使
CC′∥AB,则旋转角的度数为( )
A.35°
B.40°
C.50°
D.65°
(5 题图)
(9 题图)
人教版九年级数学上册第 23 章旋转单元测试题(含答案)
一.选择题(共 10 小题)
1.在下列现象中:①时针转动,②电风扇叶片的转动,③转呼啦圈,④传送带上的电视机,中是旋转的有( )A.①②
B.②③
C.①④
D.③④
2.下列汉字或字母中既是中心对称图形又是轴对称图形的是( )
A.
B.
C.
D.
3.如图四个圆形网案中,分别以它们所在网的圆心为旋转中心,顺时针旋转 72°后,能与 原图形完全重合的是( )
8.在平面直角坐标系中,把点 P(﹣ 3 ,2)绕原点 O 顺时针旋转 180°,所得到的对应点 P′
的坐标为( )
A.(3,2)
B.(2,﹣ 3 )
C.(﹣ 3 ,﹣ 2) D.(3,﹣ 2)

【3套】人教版九年级数学上册第23章旋转单元练习卷含答案

【3套】人教版九年级数学上册第23章旋转单元练习卷含答案

人教版九年级数学上册第23章旋转单元练习卷含答案一、单选题1.已知点与点关于坐标原点对称,则实数a、b的值是A. ,B. ,C. ,D. ,2.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A. B. C. D.3.将图绕中心按顺时针方向旋转60°后可得到的图形是()A. B. C. D.4.如图,四边形ABCD是正方形,△ADE绕着点A旋转90°后到达△ABF的位置,连接EF,则△AEF的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.如图,□ABCD绕点A逆时针旋转32°,得到□AB′C′D′,若点B′与点B是对应点,若点B′恰好落在BC边上,则∠C=()A. 106°B. 146°C. 148°D. 156°6.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是( )A. B. C. D.7.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()个.A. 1B. 2C. 3D. 48.已知点P1(a,3)与P2(﹣5,﹣3)关于原点对称,则a的值为()A. 5B. 3C. 4D. -5二、填空题9.在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2016次这样的变换得到的点A2016的坐标是________.10.我们知道,在平面内,如果一个图形绕着一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转的这个角称为这个图形的一个旋转角.例如,正方形绕着它的对角线的交点旋转90°后能与自身重合所以正方形是旋转对称图形,它有一个旋转角为90°.(1)判断下列说法是否正确(在相应横线里填上“对”或“错”)①正五边形是旋转对称图形,它有一个旋转角为144°.________②长方形是旋转对称图形,它有一个旋转角为180°.________(2)填空:下列图形中时旋转对称图形,且有一个旋转角为120°的是________ .(写出所有正确结论的序号)①正三角形②正方形③正六边形④正八边形11.在下列图案中可以用平移得到的是________(填代号).12.如图是奥迪汽车的车牌标志,右边的三个圆环可以看作是左边的圆环经过________得到的.13.将一个自然数旋转180°后,可以发现一个有趣的现象,有的自然数旋转后还是自然数.例如,808,旋转180°后仍是808.又如169旋转180°后是691.而有的旋转180°后就不是自然数了,如37.试写一个五位数,使旋转180°后仍等于本身的五位数________.(数字不得完全相同)14.如图,在平面直角坐标系中,是由绕着某点旋转得到的,则这点的坐标是________.15.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________ .三、解答题16.如图,在直角坐标系中,已知△ABC各顶点坐标分别为A(0,1),B(3,﹣1),C(2,2),试作出与△ABC关于原点对称的图形△A1B1C1,并直接写出A1,B1,C1的坐标.17.找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.18.如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)四、作图题19.如图,阴影部分是由4个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑一个小正方形,使涂黑后整个图形的阴影部分成为轴对称图,并画出其对称轴.答案一、单选题1.【答案】D【解析】【解答】点与点关于坐标原点对称,实数a、b的值是:,.故答案为:D【分析】根据关于原点对称点的坐标特点:横纵坐标都互为相反数,就可求出a、b的值。

人教版九年级数学上册第23章 旋转 单元检测题及答案(必考要点)

人教版九年级数学上册第23章 旋转 单元检测题及答案(必考要点)

人教版九年级数学上册第23章《旋转》单元测试及答案 (1)一、选择题(每小题4分,共40分)1.如果两个图形可通过旋转而相互得到,则下列说法中正确的有( ). ①对应点连线的中垂线必经过旋转中心.②这两个图形大小、形状不变.③对应线段一定相等且平行. ④将一个图形绕旋转中心旋转某个定角后必与另一个图形重合. A .1个 B .2个 C .3个 D .4个2.如图1,同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的,其中菱形AEFG 可以看成是把菱形ABCD 以A 为中心( ). A .顺时针旋转60°得到 B .顺时针旋转120°得到 C .逆时针旋转60°得到 D .逆时针旋转120°得到图 1 图 2 图3 3.如图2,C 是线段BD 上一点,分别以BC 、CD 为边在BD 同侧作等边△ABC和等边△CDE,AD 交CE 于F ,BE 交AC 于G ,则图中可通过旋转而相互得到的三角形对数有( ). A .1对 B .2对 C .3对 D .4对4.如图3,△ABC 中,AD 是∠BAC 内的一条射线,BE ⊥AD ,且△CHM 可由△BEM 旋转而得,则下列结论中错误的是( ).A .M 是BC 的中点B .EH 21FMC .CF ⊥AD D .FM ⊥BC 5.如图4,O 是锐角三角形ABC 内一点,∠AOB =∠BOC =∠COA =120°,P 是△ABC 内不同于O 的另一点;△A ′BO ′、△A ′BP ′分别由△AOB 、△APB 旋转而得,旋转角都为60°,则下列结论中正确的有( ).①△O ′BO 为等边三角形,且A ′、O ′、O 、C 在一条直线上. ②A ′O ′+O ′O =AO +BO .③A ′P ′+P ′P =PA +PB . ④PA +PB +PC>AO +BO +CO . 图 4A .1个B .2个C .3个D .4个6.如图5,有四个图案,它们绕中心旋转一定的角度后,都能和原来的图案相互重合,其中有一个图案与其余三个图案旋转的角度不同,它是( ).7.把26个英文字母按规律分成5组,现在还有5个字母D 、M 、Q 、X 、Z ,请你按原规 律补上,其顺序依次为( )① F R P J L G ( ) ② H I O ( )③ N S ( ) ④ B C K E ( ) ⑤ V A T Y W U ( )A .Q X Z M DB .D M Q Z XC .Z X MD Q D .Q X Z D M8.4张扑克牌如图6(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图6(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张B.第二张、第三张C.第三张、第四张D.第四张、第一张图6(1)图6 (2)9.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是().(A)︒9060(D)︒45(C)︒30(B)︒10.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()(A)︒9060︒45︒30(B)︒图8 图9二、填空题(每小题4分,共20分)11.如图9所示,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=________.12.如图10,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA_______PB+PC (填“>”、“<”或“=”).13.如图11,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=________.图10 图11 图12 图1314.如图12,O是等边△ABC内一点,将△AOB绕B点逆时针旋转,使得B、O两点的对应点分别为C、D,则旋转角为_____________,图中除△ABC外,还有等边三形是_____________.15.如图13,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有_____________.三、作图题16.如图14,将图形绕O点按顺时针方向旋转45°,作出旋转后的图形.(8分)四、解答题17.如图15,△ABC 、△ADE 均是顶角为42°的等腰三角形,BC 、DE 分别是底边,图中的哪两个三角形可以通过怎样的旋转而相互得到? (8分)18.(9分) 如图16,△ABC 是等腰三角形,∠BAC=36°,D △ABD 经过旋转后到达△ACE 的位置, ⑴旋转中心是哪一点? ⑵旋转了多少度?⑶如果M 是AB 的中点,那么经过上述旋转后,点M 19.(9分) 如图17所示,△ABP 是由△ACE 绕A 点旋转得到的, 那么△ABP 与△ACE 是什么关系?若∠BAP =40°,∠B =30°, ∠PAC =20°,求旋转角及∠CAE 、∠E 、∠BAE 的度数。

《第23章 旋转》单元检测试卷及答案(共六套)

《第23章 旋转》单元检测试卷及答案(共六套)

《第23章 旋转》单元检测试卷(一)一、选择题(每小题3分,共30分) 1.下列图形中,是中心对称图形的是( )A .B .C .D .2.平面直角坐标系内一点P (-2,3)关于原点对称的点的坐标是( ) A .(3,-2) B . (2,3) C .(-2,-3) D . (2,-3) 3.如图所示,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α=( )A .20°B .30°C .40°D .50°4.在下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是( )5.已知a <0,则点P (﹣a 2,﹣a+1)关于原点的对称点P′在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是( )A .A N E GB .K B X NC .X I H OD .Z D W H7.四边形ABCD 的对角线相交于O ,且AO=BO=CO=DO ,则这个四边形( )ABCA B C DA.仅是轴对称图形B.仅是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形,又不是中心对称图形8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()A.︒9030 B.︒60 D.︒45 C.︒9.下列命题正确的个数是( )(1)成中心对称的两个三角形是全等三角形;(2)两个全等三角形必定关于某一点成中心对称;(3)两个三角形对应点的连线都经过同一点,则这两个三角形关于该点成中心对称;(4)成中心对称的两个三角形,对称点的连线都经过对称中心.A.1 B.2 C.3 D.410.如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是( )A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45°二、填空题(每小题3分,共24分)11.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( )A.点M B.格点N C.格点P D.格点Q12.已知a<0,则点P(a2,-a+3)关于原点的对称点P1在第________象限.13.如图4,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是.14.如图5,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是__________.15.如图6,四边形ABCD中,º,AB=AD,AE⊥BC于E,若线段AE=5,则S四边形ABCD=.16.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA__________PB+PC(选填“>”、“=”、“<”)17.已知点P(﹣b,2)与点Q(3,2a)关于原点对称,则a+b的值是__________.18.直线y=x+3上有一点P(3,n),则点P关于原点的对称点P′为__________.EDCBA图6O DCBA图4 图5三、解答题(共66分)19.如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.(1)线段OA1的长是__________,∠AOB1的度数是__________;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.20.(9分)如图10,E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF =EF,请你用旋转的方法求∠EBF的大小.21.(9分)已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图11(1), 连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋转的过程中,线段DF与BF的长始终相等”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转, 连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图11(2)为例说明理由.图10图1FED CBA(1)D图2GFECBA(2)22.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.23.如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.24.如图,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?答案:一、选择题(每小题3分,共30分)1.B 2.D 3.A 4.B 5.D 6.D 7.C 8.C 9.B 10.B 二、填空题(每小题3分,共24分)11.B12.故答案为15°.13.故答案为:4.14.故填空答案:4π.15.∴PA<PB+PC.16.故答案为:(3,﹣4).17.故答案为:2.18.故答案为:(﹣3,﹣6).三、解答题(共66分)19.(1)解:因为,∠OAB=90°,OA=AB,所以,△OAB为等腰直角三角形,即∠AOB=45°,根据旋转的性质,对应点到旋转中心的距离相等,即OA1=OA=6,对应角∠A1OB1=∠AOB=45°,旋转角∠AOA1=90°,所以,∠AOB1的度数是90°+45°=135°.(2)证明:∵∠AOA1=∠OA1B1=90°,∴OA∥A1B1,又∵OA=AB=A1B1,∴四边形OAA1B1是平行四边形.(3)解:▱OAA1B1的面积=6×6=36.20.解:将△BCE 以B 为旋转中心,逆时针旋转90º,使BC 落在BA 边上,得△BAM ,则∠MBE=90º,AM=CE,BM=BE,因为CE +AF =EF ,所以MF =EF ,又BF=BF,所以△FBM ≌△FBE,所以∠MBF=∠EBF, 所以∠EBF=ºº190452⨯=21.解:(1)解:(1)不正确.若在正方形GAEF 绕点A 顺时针旋转45°,这时点F 落在线段AB 或AB 的延长线上.(或将正方形GAEF 绕点A 顺时针旋转,使得点F 落在线段AB 或AB 的延长线上).如图:设AD=a ,AG=b ,则22a 2b +a ,2b|<a , ∴DF >BF ,即此时DF ≠BF ;(2)连接BE ,则DG=BE .如图,(2)连接BE ,则DG=BE .如图, ∵四边形ABCD 是正方形,∴AD=AB ,∵四边形GAEF 是正方形,∴AG=AE , 又∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE , ∴△DAG ≌△BAE ,∴DG=BE . ∵四边形ABCD 是正方形,∴AD=AB , ∵四边形GAEF 是正方形,∴AG=AE , 又∠DAG+∠GAB=90°,∠BAE+∠GAB=90°, ∴∠DAG=∠BAE ,∴△DAG ≌△BAE ,∴DG=BE . 22.(1)证明:∵将线段CD 绕点C 按顺时针方向旋转90°后得CE , ∴CD=CE ,∠DCE=90°, ∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE , 在△BCD 和△FCE 中,,∴△BCD ≌△FCE (SAS ).(2)解:由(1)可知△BCD ≌△FCE ,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.23.解:猜想:BM=FN.证明:在正方形ABCD中,BD为对角线,O为对称中心,∴BO=DO,∠BDA=∠DBA=45°,∵△GEF为△ABD绕O点旋转所得,∴FO=DO,∠F=∠BDA,∴OB=OF,∠OBM=∠OFN,在△OMB和△ONF中,∴△OBM≌△OFN,∴BM=FN.24.解:(1)∵BC=BE,BA=BF,∴BC和BE,BA和BF为对应边,∵△ABC旋转后能与△FBE重合,∴旋转中心为点B;(2)∵∠ABC=90°,而△ABC旋转后能与△FBE重合,∴∠ABF等于旋转角,∴旋转了90度;(3)AC=EF,AC⊥EF.理由如下:∵△ABC绕点B顺时针旋转90°后能与△FBE重合,∴EF=AC,EF与AC成90°的角,即AC⊥EF.《第23章旋转》单元检测试卷(二)时间:120分钟满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.下列图形绕某点旋转180°后,不能与原来图形重合的是()2.如图,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAEC.∠EAF D.∠BAF3.下列图案中,是轴对称图形但不是中心对称图形的是()4.如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC 的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′等于()A.2 B.3 C.4 D.1.5第2题图第4题图第5题图第7题图5.如图所示的两个三角形是经过什么图形变换得到的()A.旋转 B.旋转和平移C.旋转和轴对称 D.平移和轴对称6.若点A(-2,n)在x轴上,则点B(n-1,n+1)关于原点对称的点的坐标为()A .(1,1)B .(-1,-1)C .(1,-1)D .(-1,1)7.如图,△ABC 绕点C 按顺时针旋转15°到△DEC .若点A 恰好在DE 上,AC ⊥DE ,则∠BAE 的度数为( )A .15° B.55° C.65° D.75°8.如图,将斜边长为4的直角三角板放在直角坐标系xOy 中,两条直角边分别与坐标轴重合,P 为斜边的中点.现将此三角板绕点O 顺时针旋转120°后,点P 的对应点的坐标是( )A .(3,1)B .(1,-3)C .(23,-2)D .(2,-23)第8题图 第9题图 第10题图9.如图,O 是等边△ABC 内的一点,OB =1,OA =2,∠AOB =150°,则OC 的长为( )A. 3B. 5C.7 D .310.如图,边长为1的正方形ABCD 绕点A 逆时针旋转30°到正方形AB ′C ′D ′的位置,则图中阴影部分的面积为( )A.12B.33 C .1-33 D .1-34 二、填空题(每小题3分,共24分)11.请写出一个是中心对称图形的几何图形的名称:_________________. 12.如图,将△OAB 绕着点O 逆时针连续旋转两次得到△OA ″B ″,每次旋转的角度都是50°.若∠B ″OA =120°,则∠AOB =________.第12题图 第13题图13.如图所示,在△ABC中,∠C=90°,AC=BC=4cm.若以AC的中点O为旋转中心,将这个三角形旋转180°后,点B落在B′处,则BB′=________cm. 14.如图,在4×4的正方形网格中,每个小正方形的边长均为1,将△AOB绕点O逆时针旋转90°得到△COD,则旋转过程中形成的阴影部分的面积为_______.第14题图第15题图15.如图,将等边△ABC绕顶点A按顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数为________.16.如图所示,已知抛物线C1,抛物线C2关于原点中心对称.如果抛物线C1的解析式为y=34(x+2)2-1,那么抛物线C2的解析式为___________________.第16题图第17题图第18题图17.如图,直线y=-43x+4与x轴、y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是________________.18.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D,E分别是AB,AC的中点,点G,F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是________________.三、解答题(共66分)19.(8分)如图,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置.(1)指出它的旋转中心;(2)说出它的旋转方向和旋转角是多少度;(3)分别写出点A,B,C的对应点.20.(8分)如图,已知四边形ABCD,画四边形A1B1C1D1,使它与四边形ABCD关于C 点中心对称.21.(8分)请你画出一条直线,把如图所示的平行四边形和圆两个图形分成面积相等的两部分(保留作图痕迹).22.(10分)如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的大小.23.(10分)在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB 绕点A逆时针旋转90°得到△AEF,点O,B的对应点分别是点E,F.(1)若点B的坐标是(-4,0),请在图中画出△AEF,并写出点E,F的坐标;(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.24.(10分)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.25.(12分)如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB,BA(或它们的延长线)于点E,F,∠EDF=60°,当CE=AF时,如图①,小芳同学得出的结论是DE=DF.(1)继续旋转三角形纸片,当CE≠AF时,如图②,小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;(2)再次旋转三角形纸片,当点E,F分别在CB,BA的延长线上时,如图③,请直接写出DE与DF的数量关系;(3)连接EF ,若△DEF 的面积为y ,CE =x ,求y 与x 的关系式,并指出当x 为何值时,y 有最小值,最小值是多少?参考答案1.B2.A3.A4.A5.D6.C7.A8.B9.B 解析:如图,将△AOB 绕B 点顺时针旋转60°到△BO ′C 的位置,由旋转的性质,得BO =BO ′,∴△BO ′O 为等边三角形,由旋转的性质可知∠BO ′C =∠AOB =150°,∴∠CO ′O =150°-60°=90°.又∵OO ′=OB =1,CO ′=AO =2,∴在Rt△COO ′中,由勾股定理,得OC =OO ′2+O ′C 2=12+22= 5.故选B.10.C 11.平行四边形(答案不唯一) 12.20° 13.4 5 14.94π 15.60° 16.y =-34(x -2)2+1 17.(7,3) 18.495≤l <13 解析:连接DE ,作AH ⊥BC 于H .在Rt△ABC 中,∵∠BAC =90°,AB =4,AC =3,∴BC =AB 2+AC 2=5.∵12·AB ·AC =12·BC ·AH ,∴AH =125.∵AD =DB ,AE =EC ,∴DE ∥CB ,DE =12BC =52.∵DG ∥EF ,∴四边形DGFE 是平行四边形,∴GF =DE =52.由题意得MN ∥BC ,GM ∥FN ,∴四边形MNFG 是平行四边形,∴当MG=NF=AH时,可得四边形MNFG周长的最小值为2×125+2×52=495,当G与B重合时可得周长的最大值为13.∵G不与B重合,∴495≤l<13.19.解:(1)它的旋转中心为点A;(2分)(2)它的旋转方向为逆时针方向,(4分)旋转角是45度;(6分)(3)点A,B,C的对应点分别为点A,E,F.(8分)20.解:四边形A1B1C1D1如图所示.(8分)21.解:如图所示.(8分)22.解:(1)由旋转的性质知AP′=AP=6,∠P′AB=∠PAC,(3分)∴∠P′AP =∠BAC=60°,∴△P′AP是等边三角形,∴PP′=PA=6;(5分)(2)∵P′B=PC=10,PB=8,PP′=6,∴P′B2=P′P2+PB2,∴△P′PB为直角三角形,且∠P′PB=90°.(7分)由(1)知△P′AP是等边三角形,∴∠APP′=60°.∴∠APB=∠P′PB+∠P′PA=90°+60°=150°.(10分)23.解:(1)∵△AOB绕点A逆时针旋转90°后得到△AEF,∴AO⊥AE,AB⊥AF,BO⊥EF,AO=AE,AB=AF,BO=EF,∴△AEF如图所示.(3分)∵AO⊥AE,AO =AE,∴点E的坐标是(3,3).∵EF=OB=4,∴点F的坐标是(3,-1);(5分)(2)∵点F落在x轴的上方,∴EF<AO.(7分)又∵EF=OB,∴OB<AO.又∵AO =3,∴OB<3,∴一个符合条件的点B的坐标是(-2,0).(10分)24.(1)证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C.∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴A1B=AB=BC,∠A=∠A1=∠C ,∠A 1BD =∠CBC 1.(3分)在△BCF 与△BA 1D 中,{∠C =∠A 1,BC =BA 1,∠CBF =∠A 1BD ,∴△BCF ≌△BA 1D ;(5分)(2)解:四边形A 1BCE 是菱形.(6分)理由如下:∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴∠A 1=∠A .∵∠ADE =∠A 1DB ,∴∠AED =∠A 1BD =α,∴∠DEC =180°-α.∵∠C =α,∴∠A 1=α,∴∠A 1BC =360°-∠A 1-∠C -∠A 1EC =180°-α.∴∠A 1=∠C ,∠A 1BC =∠A 1EC ,∴四边形A 1BCE 是平行四边形.(9分)又∵A 1B =BC ,∴四边形A 1BCE 是菱形.(10分) 25.解:(1)成立.(1分)证明如下:连接BD .∵四边形ABCD 是菱形,∴AD =AB .又∵∠DAB =60°,∴△ABD 是等边三角形,∴AD =BD ,∠ADB =60°,∴∠DBE =∠DAF =60°.∵∠EDF =60°,∴∠ADF =∠BDE .∵在△ADF 与△BDE 中,{∠ADF =∠BDE ,AD =BD ,∠DAF =∠DBE ,∴△ADF ≌△BDE (ASA ),∴DE =DF ;(4分)(2)DF =DE .(8分) 解析:连接BD .∵四边形ABCD 是菱形,∴AD =AB .又∵∠DAB =60°,∴△ABD 是等边三角形,∠DAF =120°.∴AD =BD ,∠ADB =60°,∴∠DBE =120°.∵∠EDF =60°,∴∠ADF =∠BDE .∵在△ADF 与△BDE 中,{∠ADF =∠BDE ,AD =BD ,∠DAF =∠DBE ,∴△ADF ≌△BDE (ASA ),∴DF =DE ;(3)如图,过点D 作DH ⊥AB ,DG ⊥EF .由(2)知,DE =DF .又∵∠EDF =60°,∴△DEF 是等边三角形.∵四边形ABCD 是边长为2的菱形,∴DH =3.∵△ADF ≌△BDE ,CE =x ,∴AF =BE =x -2,∴FH =AF +AH =x -2+1=x -1,∴DF =(x -1)2+3=x 2-2x +4,DG =32×x 2-2x +4,(10分)∴y =S △DEF =12·EF ·DG =12×x 2-2x +4×32×x 2-2x +4=34(x -1)2+334.∴当x =1时,y 最小值=334.(12分)《第23章旋转》单元检测试卷(三)班级:姓名:得分:一、选择题(每小题3分,共36分)1.如下图,将△ABC旋转至△CDE,则下列结论中一定成立的是( ) A.AC=CE B.∠A=∠DEC C.AB=CD D.BC=EC2.如下图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个旋转角等于( )A.120° B.90° C.60° D.30°(第1题)(第2题)3.下列图形绕某点旋转180°后,不能与原来图形重合的是( )4.如下图,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是( )A.OC=OC′ B.OA=OA′C.BC=B′C′ D.∠ABC=∠A′C′B′5.若点A(n,2)与点B(-3,m)关于原点对称,则n-m=( )A.-1 B.-5 C.1 D.56.下列命题中的真命题是( )(A)全等的两个图形是中心对称图形. (B)关于中心对称的两个图形全等. (C)中心对称图形都是轴对称图形. (D)轴对称图形都是中心对称图形.7.下列图形中,是中心对称的图形有( )①正方形 ②长方形 ③等边三角形 ④线段 ⑤角 ⑥平行四边形。

人教版九年级数学(上)第二十三章《旋转》检测卷含答案

人教版九年级数学(上)第二十三章《旋转》检测卷含答案

人教版九年级数学(上)第二十三章《旋转》检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列图形,既是轴对称图形,又是中心对称图形的是2.将大写字母E绕点P按顺时针方向旋转90°得到的图形是3.下列说法中,正确的有①平行四边形是中心对称图形;②两个全等三角形一定成中心对称;③中心对称图形的对称中心是连接两对称点的线段的中点;④一个图形若是轴对称图形,则一定不是中心对称图形;⑤一个图形若是中心对称图形,则一定不是轴对称图形.A.1个B.2个C.3个D.4个4.如图,已知点O是六边形ABCDEF的中心,图中所有的三角形都是等边三角形,则下列说法正确的是A.△ODE绕点O顺时针旋转60°得到△OBCB.△ODE绕点O逆时针旋转120°得到△OABC.△ODE绕点F顺时针旋转60°得到△OABD.△ODE绕点C逆时针旋转90°得△OAB5.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度,得到的点的坐标是A.(4,-3)B.(-4,3)C.(0,-3)D.(0,3)6.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,△ABC绕着点B逆时针旋转90°到△A'BC'的位置,则AA'的长为A.10√2B.10C.20D.5√27.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为A.30,2B.60,2D.60,√3C.60,√328.如图,在平面直角坐标系中,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为A.(-a,-b)B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b+2)9.有两个完全重合的直尺,将其中一个始终保持不动,另一个直尺绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是A.图①B.图②C.图③D.图④10.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点.下列结论:①(BE+CF )=√22BC ;②S △AEF ≤14S △ABC ;③S 四边形AEDF =AD ·EF ;④AD ≥EF ;⑤AD 与EF 可能互相平分,其中正确结论的个数是A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.已知a<0,则点P (-a 2,-a+1)关于原点的对称点P'在第 四 象限.12.如图所示,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 落在CB 延长线上的点E 处,则∠BDC= 15° .13.如图,在Rt △ABC 中,∠ACB=90°,∠BAC=60°,AB=6,Rt △AB'C'可以看作是由Rt △ABC 绕点A 逆时针方向旋转60°得到的,则线段B'C 的长为 3√7 .14.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,AC=6√3,BC 的中点为D ,将△ABC 绕点C 顺时针旋转任意一个角度得到△FEC ,EF 的中点为G ,连接DG 在旋转过程中,DG 的最大值是 9 .三、(本大题共2小题,每小题8分,满分16分)15.如图,四边形ABCD绕点O旋转后,顶点A的对应点为点E.试确定旋转后的四边形.解:如图所示,四边形EB'C'D'即为四边形ABCD绕点O旋转后的四边形.AB,请你用旋转的16.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,且AF=12方法说明线段BE和DF之间的关系.AB,∴AE=AF,解:∵四边形ABCD为正方形,∴AD=AB,∠BAD=90°,∵E是AD的中点,AF=12∴△DFA≌△BEA,∴把△ABE绕点A逆时针旋转90°可得到△ADF,∴BE=DF,BE⊥DF.四、(本大题共2小题,每小题8分,满分16分)17.△ABC在平面直角坐标系中的位置如图所示,A,B,C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.答案图解:(1)如图,C 1(-3,2). (2)如图,C 2(-3,-2).18.已知点P (x+1,2x-1)关于原点的对称点在第一象限,试化简:|x-3|-|1-x|. 解:∵点P (x+1,2x-1)关于原点的对称点P'的坐标为(-x-1,-2x+1),点P'在第一象限,∴{-x -1>0,-2x +1>0,∴x<-1,∴|x-3|-|1-x|=-x+3-1+x=2.五、(本大题共2小题,每小题10分,满分20分)19.如图,在等边△ABC 中,AC=9,点O 在AC 上,且AO=3,点P 是AB 上的一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,求AP 的长. 解:如图,∵AC=9,AO=3,∴OC=6,∵△ABC为等边三角形,∴∠A=∠C=60°,∵线段OP绕点D逆时针旋转60°得到线段OD,要使点D恰好落在BC上,∴OD=OP,∠POD=60°,∵∠1+∠2+∠A=180°,∠1+∠3+∠POD=180°,∴∠1+∠2=120°,∠1+∠3=120°,∴∠2=∠3,在△AOP和△CDO中,{∠A=∠C,∠2=∠3, OP=OD,∴△AOP≌△CDO,∴AP=CO=6.20.在平面直角坐标系中,O为原点,B(0,6),A(8,0),以点B为旋转中心把△ABO逆时针旋转,得△A'BO',点O,A旋转后的对应点为O',A',记旋转角为β.(1)如图1,若β=90°,求AA'的长;(2)如图2,若β=120°,求点O'的坐标.解:(1)∵β=90°,∴∠A'BA=90°,∵A(8,0),B(0,6),∴OA=8,OB=6,根据勾股定理得,AB=√OA 2+OB 2=√82+62=10, 由旋转的性质得,A'B=AB=10,在Rt △A'BA 中,根据勾股定理得,AA'=√AB 2+A 'B 2=√102+102=10√2. (2)如图,过点O'作O'C ⊥y 轴于点C , 由旋转的性质得,O'B=OB=6,∵β=120°,∴∠OBO'=120°,∴∠O'BC=180°-120°=60°, ∴BC=12O'B=12×6=3,CO'=√O 'B 2-BC 2=√62-32=3√3,∴OC=OB+BC=6+3=9,∴点O'的坐标为(3√3,9).六、(本题满分12分)21.如图,在等腰△ABC 中,∠CAB=90°,P 是△ABC 内一点,PA=1,PB=3,PC=√7,将△APB 绕点A 逆时针旋转后与△AQC 重合.求: (1)线段PQ 的长; (2)∠APC 的度数.解:(1)∵△APB 绕点A 旋转与△AQC 重合,∴AQ=AP=1,∠QAP=∠CAB=90°, ∴在Rt △APQ 中,PQ=√AQ 2+AP 2=√2.(2)∵∠QAP=90°,AQ=AP,∴∠APQ=45°.∵△APB绕点A旋转与△AQC重合,∴CQ=BP=3.在△CPQ中,PQ=√2,CQ=3,CP=√7,∴CP2+PQ2=CQ2,∴∠CPQ=90°,∴∠APC=∠CPQ+∠APQ=135°.七、(本题满分12分)22.如图,▱ABCD中,AB⊥AC,AB=1,BC=√5,对角线BD,AC交于点O.将直线AC绕点O顺时针旋转分别交BC,AD于点E,F.(1)试说明在旋转过程中,AF与CE总保持相等;(2)证明:当旋转角为90°时,四边形ABEF是平行四边形;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能请说明理由;如果能,求出此时AC绕点O顺时针旋转的角度.解:(1)在▱ABCD中,AD∥BC,OA=OC,∴∠1=∠2,在△AOF和△COE中,{∠1=∠2,OA=OC,∠3=∠4,∴△AOF≌△COE(ASA),∴AF=CE.(2)由题意,∠AOF=90°(如图1),又∵AB ⊥AC ,∴∠BAO=90°,∴∠BAO=∠AOF ,∴AB ∥EF ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,即AF ∥BE , ∵AB ∥EF ,AF ∥BE ,∴四边形ABEF 是平行四边形.(3)当EF ⊥BD 时,四边形BEDF 是菱形(如图2).由(1)知,AF=CE ,∵▱ABCD ,∴AD=BC ,AD ∥BC ,∴DF ∥BE ,DF=BE ,∴四边形BEDF 是平行四边形,又∵EF ⊥BD ,∴▱BEDF 是菱形,∵AB ⊥AC ,∴在△ABC 中,∠BAC=90°,∴BC 2=AB 2+AC 2, ∵AB=1,BC=√5,∴AC=√BC 2-AB 2=√(√5)2-12=2, ∵四边形ABCD 是平行四边形,∴OA=12AC=12×2=1, ∵在△AOB 中,AB=AO=1,∠BAO=90°, ∴∠1=45°,∵EF ⊥BD ,∴∠BOF=90°,∴∠2=∠BOF-∠1=90°-45°=45°,即旋转角为45°. 八、(本题满分14分)23.如图1,在正方形ABCD 中,点M ,N 分别在AD ,CD 上,若∠MBN=45°,易证MN=AM+CN. (1)如图2,在梯形ABCD 中,BC ∥AD ,AB=BC=CD ,点M ,N 分别在AD ,CD 上,若∠MBN=12∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD 中,AB=BC ,∠ABC+∠ADC=180°,点M ,N 分别在DA ,CD 的延长线上,若∠MBN=12∠ABC ,试探究线段MN ,AM ,CN 又有怎样的数量关系?请直接写出猜想,不需证明.解:(1)MN=AM+CN.理由如下:如图2,∵BC ∥AD ,AB=BC=CD ,∴梯形ABCD 是等腰梯形,∴∠A+∠BCD=180°,把△ABM 绕点B 顺时针旋转使AB 边与BC 边重合,则△ABM ≌△CBM',∴AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC ,∴∠BCM'+∠BCD=180°,∴点M',C ,N 三点共线,∵∠MBN=12∠ABC ,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=∠ABC-∠MBN=12∠ABC ,∴∠MBN=∠M'BN ,在△BMN 和△BM'N 中,{BM =BM ',∠MBN =∠M 'BN ,BN =BN , ∴△BMN ≌△BM'N (SAS),∴MN=M'N ,又∵M'N=CM'+CN=AM+CN ,∴MN=AM+CN.(2)MN=CN-AM.。

人教新版数学九年级上学期《第23章旋转》单元测试(含答案)

人教新版数学九年级上学期《第23章旋转》单元测试(含答案)

人教新版数学九年级上学期《第23章旋转》单元测试一.选择题(共10小题)1.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A.1种B.2种C.3种D.4种2.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.3.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70°B.80°C.84°D.86°4.如图,E是正方形ABCD的边CB延长线上的一点.把△AEB绕着点A逆时针旋转后与△AFD重合,则旋转的角度可能是()A.90°B.60°C.45°D.30°5.如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.216°6.已知点A关于x轴的对称点坐标为(﹣1,2),则点A关于原点的对称点的坐标为()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)7.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)8.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2)B.(2010,﹣2)C.(2012,﹣2)D.(0,2)9.将Rt△AOB 如图放置在直角坐标系中,并绕O点顺时针旋转90°至△COD的位置,已知A(﹣2,0),∠ABO=30°.则△AOB旋转过程中所扫过的图形的面积为()A.B.C.D.10.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n的坐标是()+1A.(4n﹣1,)B.(2n﹣1,)C.(4n+1,)D.(2n+1,)二.填空题(共6小题)11.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有种.12.下图右侧有一盒拼板玩具,左侧有五块板a、b、c、d、e,如果游戏时可以平移或旋转,但不能翻动盒中任何一块,那么a、b、c、d、e中,是盒中找不到的?(填字母代号)13.将一副三角板的两个直角顶点叠放在一起拼成如下的图形.若∠EAB=40°,则∠CAD=;将△ABC绕直角顶点A旋转时,保持AD在∠BAC的内部,设∠EAC=x°,∠BAD=y°,则x与y的关系是.14.如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=秒时,点P与点C中心对称,且对称中心在直径AB上.15.如图,在直角坐标系中,已知点P0的坐标为(1,0),以O旋转中心,将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,OP n(n为正整数),则点P6的坐标是;△P5OP6的面积是.16.在五行五列的方格棋盘上沿骰子的某条棱翻动骰子,骰子在棋盘上只能向它所在格的左、右、前、后格翻动.开始时骰子在3C处,如图1,将骰子从3C处翻动一次到3B处,骰子的形态如图2;如果从3C处开始翻动两次,使朝上,骰子所在的位置是.三.解答题(共7小题)17.如图是由16个小正方形组成的正方形网格图,现已将其中的两个涂黑.请你用四种不同的方法分别在下图中再涂黑三个空白的小正方形,使它成为轴对称图形.18.如图,已知平面直角坐标系中两点A(﹣1,5)、B(﹣4,1).(1)将A、B两点沿x轴分别向右平移5个单位,得到点A1、B1,请画出四边形ABB1A1,并直接写出这个四边形的面积;(2)画一条直线,将四边形ABB1A1分成两个全等的图形,并满足这两个图形都是轴对称图形.19.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D按逆时针方向旋转90°得到△DCM.(1)求证:EF=MF;(2)当AE=1时,求EF的长.20.在△ABC中,AB=AC,∠BAC=100°.将线段CA绕着点C逆时针旋转得到线段CD,旋转角为α,且0°<α<360°,连接AD、BD.(1)如图1,当α=60°时,∠CBD的大小为;(2)如图2,当α=20°时,∠CBD的大小为;(提示:可以作点D关于直线BC的对称点)(3)当α为°时,可使得∠CBD的大小与(1)中∠CBD的结果相等.21.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.22.在学习了第四章《基本的平面图形》的知识后,小明将自己手中的一副三角板的两个直角顶点叠放在一起拼成如下的图形1和图形2.(1)在图1中,当AD平分∠BAC时,小明认为此时AB也应该平分∠FAD,请你通过计算判断小明的结论是否正确.(2)小明还发现:只要AD在∠BAC的内部,当△ABC绕直角顶点A旋转时,总有∠FAB=∠DAC(见图2),请你判断小明的发现是否正确,并简述理由.(3)在图2中,当∠FAC=x,∠BAD=y,请你探究x与y的关系.23.如图,在等边△ABC中,点D是AC边上一点,连接BD,过点A作AE⊥BD 于E.(1)如图1,连接CE并延长CE交AB于点F,若∠CBD=15°,AB=4,求CE的长;(2)如图2,当点D在线段AC的延长线上时,将线段AE绕点A逆时针旋转60°得到线段AF,连接EF,交BC于G,连接CF,求证:BG=CG.参考答案一.选择题1.C.2.D.3.B.4.A.5.B.6.A.7.B.8.B.9.D.10.C.二.填空题11.13.12.D.13.40°,y=180﹣x.14.或或或.15.512.16.2B或4B.三.解答题17.解:注:本题画法较多,只要满足题意均可,画对一个得(1分).18.解:(1)如图所示的四边形ABB1A1即为要求画的四边形,S四边形ABB1A1=5×(5﹣1)=20(平方单位);(2)如图所示:∵四边形ABB1A1是平行四边形,∴直线AB1即为所要求画的直线.19.(1)证明:∵△DAE绕点D逆时针旋转90°得到△DCM,∴DE=DM,∠EDM=90°,∵∠EDF=45°,∴∠FDM=45°,∴∠EDF=∠FDM.又∵DF=DF,DE=DM,∴△DEF≌△DMF,∴EF=MF;(2)解:设EF=MF=x,∵AE=CM=1,AB=BC=3,∴EB=AB﹣AE=3﹣1=2,BM=BC+CM=3+1=4,∴BF=BM﹣MF=4﹣x.在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4﹣x)2=x2,解得:x=,则EF的长为.20.解:(1)∵∠BAC=100°,AB=AC,∴∠ABC=∠ACB=40°,当α=60°时,由旋转的性质得AC=CD,∴△ACD是等边三角形,∴∠DAC=60°,∴∠BAD=∠BAC﹣∠DAC=100°﹣60°=40°,∵AB=AC,AD=AC,∴∠ABD=∠ADB==70°,∴∠CBD=∠ABD﹣∠ABC=70°﹣40°=30°,故答案为:30°;(2)如图2所示;作点D关于BC的对称点M,连接AM、BM、CM、AM.则△CBD≌△CBM,∴∠BCM=∠BCD=∠ACD=20°,CD=CA=CM,∴∠ACM=60°,∴△ACM是等边三角形,∴AM=AC=AB,∠MAC=60°,∴∠BAM=40°,∵∠CAD=∠CDA=(180°﹣20°)=80°,∴∠BAD=∠CAD=20°,∵AD=AD,∴△DAB≌△DAM,∴BD=DM,∵BD=BM,∴BD=DM=BM,∴∠DBM=60°,∴∠DBC=∠CBM=30°,故答案为30°(3)①由(1)可知,∠α=60°时可得∠BAD=100°﹣60°=40°,∠ABC=∠ACB=90°﹣=40°,∠ABD=90°﹣∠BAD=120°﹣=70°,∠CBD=∠ABD﹣∠ABC=30°.②如图3,翻折△BDC到△BD1C,则此时∠CBD1=30°,∠BCD=60°﹣∠ACB=﹣30°=20°,∠α=∠ACB﹣∠BCD1=∠ACB﹣∠BCD=﹣20°=20°;③以C为圆心CD为半径画圆弧交BD的延长线于点D2,连接CD2,∠CDD2=∠CBD+∠BCD=30°+﹣30°=50°,∠DCD2=180°﹣2∠CDD2=180°﹣100°=80°,∠α=60°+∠DCD2=140°.综上所述,α为60°或20°或140°时,∠CBD=30°.故答案为60或20或140.21.解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.22.解:(1)小明的结论正确,理由如下:∵AD平分∠BAC,∠BAD+∠CAD=90°,∴∠BAD=∠CAD=45°.∵∠FAB+∠BAD=90°,∴∠FAB=45°,∴∠FAB=∠BAD,∴AB平分∠FAD.(2)小明的结论正确,理由如下:∵∠BAD+∠CAD=90°,∠FAB+∠BAD=90°,∴∠FAB=∠DAC.(3)∵∠FAC=∠FAB+90°,∴∠FAB=∠FAC﹣90°.∵∠BAD=90°﹣∠FAB,∴∠BAD=180°﹣∠FAC,即y=180°﹣x(90<x<180°).23.解:(1)∵△ABC为等边三角形∴AB=BC=AC=4,∠BAC=60°且∠DBC=15°∴∠ABE=45°且AE⊥BD∴∠BAE=∠ABE=45°∴AE=BE,且AC=BC∴CF垂直平分AB即AF=BF=2,CF⊥AB∵∠ABE=45°∴∠FEB=∠ABE=45°∴BF=EF=2,∵Rt△BCF中,CF==2∴CE=2﹣2(2)如图2:过点M作CM∥BD∵将线段AE绕点A逆时针旋转60°得到线段AF∴AE=AF,∠EAF=60°,∴△AEF为等边三角形∴∠AFE=∠AEF=60°∴∠FAC+∠EAC=60°,且∠BAE+∠EAC=60°∴∠BAE=∠CAF,且AB=AC,AE=AF∴△ABE≌△ACF∴BE=CF,∠AEB=∠AFC=90°∴∠BEF=150°,∠MFC=30°∵MC∥BD∴∠BEF=∠GMC=150°,∴∠CMF=30°=∠CFM∴CM=CF且CF=BE∴BE=CM且∠BGE=∠CGM,∠BEG=∠CMG ∴△BGE≌△GMC∴BG=GC。

人教版九年级数学上册第二十三章 旋转 单元测试题

人教版九年级数学上册第二十三章 旋转 单元测试题

A.(1,﹣ ) B.( ,1)
C.(2 ,﹣2) D.(2,﹣2 )
7.如图,矩形 ABCD 的对角线 AC,BD 相交于点 O,AB=2,∠ABO=60°,线段 EF 绕 点 O 转动,与 AD,BC 分别相交于点 E,F,当∠AOE=60°时,EF 的长为( )
2 / 32
A.1
B.
C.2
D.4
三、解答题 17.如图,将△ABC 绕点 A 逆时针旋转到△AED,其中点 B 与点 E 是对应点,点 C 与点 D
是对应点,且 DC∥AB,若∠CAB=65°,求∠CAE 的度数?
18.如图,在四边形 ABCD 中,∠ABC=30°,将△DCB 绕点 C 顺时针旋转 60°后,点 D 的对应点恰好与点 A 重合,得到△ACE,若 AB=3,BC=4,求 BD 的长? 5 / 32
人教版九年级数学上册第二十三章 旋转 单元测试题 一.选择题 1.如图,菱形 ABCD,E 是对角线 AC 上一点,将线段 DE 绕点 E 顺时针旋转角度 2α,点
D 恰好落在 BC 边上点 F 处,则∠DAB 的度数为( )
A.α
B.90°﹣α
C.180°﹣2α
D.2α
2.如图,将 Rt△ABC 绕点 A 按顺时针方向旋转一定角度得到 Rt△ADE,点 B 的对应点 D 恰好落在 BC 边上,若 DE=12,∠B=60°,则点 E 与点 C 之间的距离为( )
6 / 32
21.已知,在等边△ABC 中,点 E 在 BA 的延长线上,点 D 在 BC 上,且 ED=EC (1)如图 1,求证:AE=DB; (2)如图 2,将△BCE 绕点 C 顺时针旋转 60°至△ACF(点 B、E 的对应点分别为点 A、 F),连接 EF.在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对线段长 度之差等于 AB 的长.

第23章 旋转单元测试试题(含解析)

第23章 旋转单元测试试题(含解析)

人教版九年级上册第23章旋转单元测试(时间100分钟,总分100分)一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2. 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4 C.3 D.33.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70° B.35° C.40° D.50°4. 如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格5. 如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=()A.2 B.3 C.4 D.1.56.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′ B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′7. 如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是()A.45° B.60° C.90° D.120°8. 如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD 交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对 B.2对 C.3对 D.4对9. 如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30° B.60° C.90° D.120°10. 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC 的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.1二、填空(共8个小题,每题3分,共24分)11.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E 的对应点为F,则∠EAF的度数是.12. △ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是.13.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.14. 如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是°.15.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.16. 如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B 运动的最短路径长为.17. 如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.18. 如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2,其中正确结论是(填序号)三、解答题(前3题每题7分,后三题分别为8、8、9分,共46分)19.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点 A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.20. 如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果点A是旋转中心,那么点B经过旋转后,点B旋转到什么位置?21.如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度;(2)连结AD,交OC于点E,求∠AEO的度数.22. 将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC 与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.23.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45∘,将△ADF绕点A顺时针旋转90∘后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.24.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN 的形状及此时PM=PN还成立吗?不必说明理由。

人教版九年级数学上册第23章旋转单元测试卷(含答案解析)

人教版九年级数学上册第23章旋转单元测试卷(含答案解析)

人教版九年级数学上册第23章旋转单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.以正方形ABCD的对角线AC、BD所在的直线为坐标轴,建立平面直角坐标系,如图所示,已知点A的坐标是(,现将正方形ABCD绕原点O顺时针旋转45o,则旋转后点C的对应点坐标是( )A.B.( C.(-1,1) D.(1,-1) 2.如图,ABC中,90A∠=,若以点C为旋转中心,将ABC旋ACB∠=,25转θ到DEC的位置,使点B恰好落在边DE上,则θ等于()A.55B.50C.65D.703.若两个图形成中心对称,则下列说法:①对应点的连线一定经过对称中心;②这两个图形的形状和大小完全相同;③这两个图形的对应线段一定互相平行;④将一个图形围绕对称中心旋转180后必与另一个图形重合.其中正确的有()A.1个B.2个C.3个D.4个4.将AOB绕点O旋转180得到DOE,则下列作图正确的是()A.B.C.D.5.平移、旋转与轴对称都是图形之间的一些主要变换,下列关于图形经这些变换后说法错误的()A .对应线段的长度不变B .对应角的大小不变C .图形的形状和大小不变D .图形的位置不变6.如图,AOB 是等边三角形,()2,0B ,将AOB 绕O 点逆时针方向旋转90到''A OB 位置,则'A 坐标是( )A .(-B .()C .)1-D .(1,- 7.已知点()3,A a -和点(),2B b -关于原点对称,则a 与b 的值分别是( )A .2a =,3b =B .2a =-,3?b =C .2a =-,3b =-D .2a =,3b =- 8.如图,将Rt ABC 绕点A 按顺时针旋转一定角度得到Rt ADE ,点B 的对应点D 恰好落在BC 边上.若1AB =,60B ∠=,则CD 的长为( )A .0.5B .1.5CD .19.将点()A 绕着原点顺时针方向旋转60得到点B ,则点B 的坐标是( )A .)3-B .)C .(3,D .( 10.关于某一点成中心对称的两个图形,下列说法中,正确的个数有( )①这两个图形完全重合;②对称点的连线互相平行③对称点所连的线段相等;④对称点的连线相交于一点;⑤对称点所连的线段被同一点平分⑥对应线段互相平行或在同一直线上,且一定相等.A .3个B .4个C .5个D .6个二、填空题11.如图所示的图形为中心对称图形,点O 为它的对称中心,写出一组关于点O 的对称点是________.12.如图,△ABC 与△DEF 关于点O 成中心对称,则线段BC 与EF 的关系是___________.13.已知点()3,1P -,则点P 关于原点O 的对称点的坐标是________.14.坐标平面内点P (,2)与点Q (3,-2)关于原点对称,则_______. 15.在图案设计中常用的作图工具有________,________,________.16.如图,甲图怎样变成乙图:________.17.四个单位正方形以边对边方式相连接而成,可以拼成如图的五种不同形状.用一片“L ”形(图中第一个)分别于其余四个中的一片拼成轴对称图形,所有的可能共有________种.18.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么正确的平移方法是________.19.如图,请画出一个图形经过两次轴对称变换之后得到的图形,其中图①中的两条对称轴是平行的,图②中的两条对称轴是垂直的.仔细观察上面的两个图形经过两次轴对称变换之后得到的图形.图①中的图形除经过两次轴对称变换得到之外,还可以通过我们学过的________变换得到,图②中的图形还可以通过________变换得到.20.如图,在ABC 中,90C ∠=,3AC =,4BC =,点O 是BC 中点,将ABC绕点O 旋转得'A B C ',则在旋转过程中点A 、'C 两点间的最大距离是________.三、解答题21.如图,正方形网格中,小格的顶点叫做格点,连接任意两个格点的线段叫做格点线段.(1)如图1,格点线段AB 、CD ,请添加一条格点线段EF ,使它们构成轴对称图形;(2)如图2,格点线段AB 和格点C ,在网格中找一格点D ,使格点A 、B 、C 、D 四点构成中心对称图形;(3)在(2)的条件下,如果每一小正方形边长为1,那么四边形ABCD 的面积S 为_________. (请直接填写) 22.如图,将边长为1的等边OAP 按图示方式,沿x 轴正方向连续翻转2011次,点P 依次落在点1P ,2P ,3P ,4P ,…,2007P 的位置.试写出1P ,3P ,50P ,2011P 的坐标.23.观察图形由()()()()1234的变化过程,写出每一步图形中各顶点的坐标是如何变化的,图形是如何变化的.24.如图所示,把一个直角三角尺ABC 绕着60角的顶点B 顺时针旋转,使得点C 与AB 的延长线上的点D 重合,已知8BC =.(1)三角尺旋转了多少度?连结CD ,试判断BCD 的形状;(2)求AD 的长;(3)边结CE ,试猜想线段AC 与CE 的大小关系,并证明你的结论.25.如图,AC 与BD 互相平分且相交于点O ,点E 、F 分别在AB 、CD 上,且AE CF =,试利用“中心对称”的有关知识,说明点E 、O 、F 在同一直线上且OE OF =.26.如图是两个等边三角形拼成的四边形.()1这个图形是不是旋转对称图形?是不是中心对称图形?若是,指出对称中心. ()2若ACD 旋转后能与ABC 重合,那么图形所在平面上可以作为旋转中心的点共有几个?请一一指出.27.问题原型:如图①,在矩形ABCD 中,12AB BC a ==,点E 是BC 边中点,将线段AE 绕点E 顺时针旋转90得到线段'A E ,易得'BA E 的面积为212a . 初步探究:如图②,在Rt ABC 中,BC a =,90ACB ∠=,将线段AB 绕点B 顺时针旋转90,得到线段BE ,用含a 的代数式表示BCE 的面积,并说明理由. 简单应用:如图③,在等腰三角形ABC 中,AB AC =,6BC =,将线段AB 绕点B 顺时针旋转90得到线段BE ,直接写出BCE 的面积.28.阅读下面材料:如图(1),把△ABC沿直线BC平行移动线段BC的长度,可以变到△DEC的位置;如图(2),以BC为轴,把△ABC翻折180∘,可以变到△DBC的位置;如图(3),以点A为中心,把△ABC旋转180∘,可以变到△AED的位置.像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.回答下列问题:①在图(4)中,可以通过平行移动、翻折、旋转中的哪一种方法怎样变化,使△ABE变到△ADF的位置;②指图中线段BE与DF之间的关系,为什么?参考答案1.D【解析】【分析】利用旋转的性质结合正方形的性质得出EO=FO=1,进而得出旋转后点C的对应点坐标.【详解】如图所示:将正方形ABCD绕原点O顺时针旋转45°,得到如图所示图形,∵点A的坐标是(0),∴则EO=FO,故EO=FO=1,则旋转后点C的对应点坐标是:(1,-1).故选D.【点睛】此题主要考查了坐标与图形的性质以及正方形的性质,得出EO=FO的长是解题关键.2.B【解析】【分析】先根据互余计算出∠ABC=65°,再根据旋转的性质得CB=CE,∠BCE=∠ACD=θ,∠E=∠ABC=65°,则根据等腰三角形的性质得∠E=∠CBE=65°,然后在△BCE中根据三角形内角和定理可计算出∠BCE的度数.【详解】∵∠ACB=90°,∠A=25°,∴∠ABC=65°,∵△ABC旋转θ到△DEC的位置,使点B恰好落在边DE上,∴CB=CE,∠BCE=∠ACD=θ,∠E=∠ABC=65°,∴∠E=∠CBE=65°,∴∠BCE=180°−2×65°=50°,即θ=50°.故选B.【点睛】考查旋转的性质,旋转前后对应角相等,对应边相等.3.C【分析】根据两个图形成中心对称分别分析得出答案即可.【详解】①对应点的连线一定经过对称中心,根据成中心对称的性质得出,此选项正确;②这两个图形的形状和大小完全相同;根据成中心对称的性质得出,此选项正确;③这两个图形的对应线段一定互相平行或在一条直线上,故此选项在错误;④将一个图形围绕对称中心旋转180后必与另一个图形重合,根据成中心对称的性质得出,此选项正确;故正确的有3个.故选C.【点睛】此题主要考查了成中心对称图形的性质,熟练掌握定义与性质是解题关键.4.D【分析】把一个图形绕某一点O转动一个角度的图形变换叫做旋转.【详解】解:观察选项中的图形,只有D选项为△ABO绕O点旋转了180°.【点睛】本题考察了旋转的定义.5.D【解析】【分析】根据平移、旋转与轴对称的性质,这三种变换只是改变图形的位置,变化前和变化后的图形全等即可判断.【详解】根据平移、旋转与轴对称的性质可得A、B、C都正确,这三种变换都是图形位置的变化,故D错误;故选:D.【点睛】本题主要考查了平移、旋转与轴对称的性质,变化前和变化后的图形全等.6.B【解析】【分析】过点A′作A′C⊥x轴于C,根据点B的坐标求出等边三角形的边长,再求出∠A′OC=30°,然后求出OC、A′C,再根据点A′在第二象限写出点A′的坐标即可.【详解】如图,过点A′作A′C⊥x轴于C,∵B(2,0),∴等边△AOB的边长为2,又∵∠A′OC=90°-60°=30°,∴OC=2×2A′C=2×12=1,∵点A′在第二象限,∴点A′(1).故选:B.【点睛】本题考查了坐标与图形变化-旋转,等边三角形的性质,根据旋转的性质求出∠A′OC=30°,然后解直角三角形求出点A′的横坐标与纵坐标的长度是解题的关键.7.A【解析】【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数,求得a、b的值.【详解】∵点A(-3,a)和点B(b,-2)关于原点对称,∴a=2,b=3,故选:A.【点睛】本题主要考查了关于原点对称的点的坐标特点,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.8.D【分析】解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD 是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC-BD计算即可得解.【详解】∵∠B=60°,∴∠C=90°-60°=30°,∵∴,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD 是等边三角形,∴BD=AB=1,∴CD=BC-BD=2-1=1.故选D .【点睛】本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD 是等边三角形是解题的关键.9.A【解析】【分析】如图,过B 点作BC ⊥x 轴,垂足为C ,由旋转的性质,∠COB=60°,解直角三角形可求OC ,BC ,确定B 点坐标.【详解】如图,过B 点作BC ⊥x 轴,垂足为C ,依题意,得∠COB=60°,在Rt △OBC 中,×12,∴B -3).故选:A .【点睛】本题考查了点的坐标与图形旋转变换的关系.关键是根据题意,画出图形,解直角三角形求10.A【解析】【分析】根据对称中心图形的性质分别判断得出即可.【详解】①这两个图形能够完全重合,此选项错误;②对称点的连线应相交于一点,故此选项错误;③对称点所连的线段不一定相等,此选项错误;④对称点的连线相交于一点,此选项正确;⑤对称点所连的线段被同一点平分,此选项正确;⑥对应线段互相平行或在同一直线上,且一定相等,此选项正确.故正确的有3个.故选:A.【点睛】此题主要考查了对称图形的性质,根据其定义得出是解题关键.11.点A与点C【解析】【分析】根据中心对称图形的概念进行解答即可.【详解】∵图形为中心对称图形,点O为它的对称中心,∴点A与点C关于点O的对称,故答案为:点A与点C.【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.平行且相等【分析】根据△ABC与△DEF关于O点成中心对称,得出对应边之间的关系即可得出答案.∵△ABC 与△DEF 关于O 点成中心对称.∴线段BC 与EF 的关系是:平行且相等.故答案为平行且相等.【点睛】考查了中心对称的性质,熟记中心对称对应边的关系是解决问题的关键.13.()3,1-【解析】【分析】根据“平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】根据关于原点对称的点的坐标的特点,∴点P (-3,1)关于原点过对称的点的坐标是(3,-1).故答案为:(3,-1).【点睛】本题主要考查了关于原点对称的点的坐标的特点,比较简单.14.-3【解析】∵关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=-3,15.直尺 圆规 三角尺【解析】【分析】直尺,圆规是尺规作图的必备工具;三角尺是画直角的常用工具.【详解】在图案设计中常用的作图工具有直尺,圆规,三角尺.【点睛】本题考查常用的作图工具.熟知尺规作图和画直角的工具是解答此题的关键.16.先将甲逆时针旋转30度,再向左平移5cm ,就能与乙图重合.【分析】根据两图的位置关系结合几何变换的知识即可作出回答.【详解】由题意得:先将甲逆时针旋转30度,再向左平移5cm,就能与乙图重合.故答案为:先将甲逆时针旋转30度,再向左平移5cm,就能与乙图重合.【点睛】本题考查利用平移、旋转设计图案的知识,难度不大,此题还可以(先将甲向左平移5cm,再将甲逆时针旋转30度).17.5【分析】根据轴对称的性质进行组合即可.【详解】解:如图,可得五种图形.故答案:5.【点睛】本题主要考查轴对称的性质,灵活组合图形是关键.18.向右平移2个格,再向下平移3个格(答案不唯一)【分析】根据图形,对比图①与图②中位置关系,对选项进行分析,排除错误答案.【详解】观察图形可知:平移是先向下平移3格,再向右平移2格,也可以是先向右平移2格,再向下平移3格,故答案为先向下平移3格,再向右平移2格或向右平移2个格,再向下平移3个格.【点睛】本题考查了图形的平移方法,认真观察图形是解题的关键.19.平移旋转【解析】【分析】根据轴对称是沿某条直线翻折得到新图形,旋转是绕某个点旋转一定角度得到新图形,可得答案.【详解】如图:,图①中的图形除经过两次轴对称变换得到之外,还可以通过我们学过的平移变换得到,图②中的图形还可以通过旋转变换得到,故答案为:平移,旋转.【点睛】本题考查了几何变换的类型,旋转是绕某个点旋转一定角度得到新图形,观察时要紧扣图形变换特点,认真判断.20.2【分析】连接OA,AC′,如图,易得OC=2,再利用勾股定理计算出质得OC′=OC=2,根据三角形三边的关系得到AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),从而得到AC′的最大值.【详解】连接OA,AC′,如图,∵点O 是BC 中点,∴OC=12BC=2,在Rt △AOC 中,∵△ABC 绕点O 旋转得△A′B'C′,∴OC′=OC=2,∵AC′≤OA+OC′(当且仅当点A 、O 、C′共线时,取等号),∴AC′的最大值为即在旋转过程中点A 、C′两点间的最大距离是故答案为【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.21.(1)略(仅一种)(2′) (2)略(两种)(6′) (3)S="6" (8′)【详解】本题主要考查轴对称图形和中心对称图形.(1)做AO ⊥CD 于点O ,并延长到E ,使EO=AO ,连接BC 并延长至F ,使BC=CF,连接EF 即可;(2)利用中心对称图形的性质,可以做一个平行四边形;(3)根据所围成的长方形的面积减去周边三角形的面积,即可求得平行四边形的面积22.1P 点的坐标为()1,0,3P 点的坐标为52⎛ ⎝⎭,点50P 的坐标为()49,0,点2011P 的坐标为()2011,0.【解析】【分析】由图形可直接得到P 1点的坐标为(1,0);P 2点的坐标为(1,0);作P 3B ⊥CD 于B ,利用等边三角形的性质易得CB=12,P 3P 3点的坐标为(52;P 4点和P 5点的坐标可直接得到,都为(4,0);P 6点的坐标为(6-12,2,所以脚标数为3的倍数的点,它的横坐标为脚标数减12,纵坐标为2;脚标数除以3,余数为1和2的点的横坐标都等于余数为1的脚标数,纵坐标为0,依此规律易得P 50,P 2011的坐标.【详解】1P 点的坐标为()1,0;2P 点的坐标为()1,0;作3P B CD ⊥于B ,如图,∵3P CD 为等边三角形,∴1CB 2=,3P B =∴3P 点的坐标为52⎛ ⎝⎭;4P 点的坐标为()4,0;5P 点的坐标为()4,0;6P 点的坐标为162⎛- ⎝⎭; 而503162=⨯+,201136701=⨯+,∴点50P 的坐标为()49,0,点2011P 的坐标为()2011,0.【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了等边三角形的性质.23.见解析.【分析】解题的关键是观察图形,找出图中图形坐标的变化情况,总结出规律.【详解】解:根据图形和坐标的变化规律可知:由()()12→:纵坐标没变,横坐标变为原来的2倍,因此图形做了横向拉伸变化; 由()()23→:点A 横坐标没变,纵坐标变为原来的相反数,因此图形关于x 轴对称; 由()()34→:图形中三个顶点的横坐标没变,纵坐标都增加了1-,即点A 、点O 、点B 向下平移一个单位.因此图形做了平移变化.【点睛】本题主要考查了图形的平移和轴对称变换,解题的关键是要掌握坐标的变化和图形之间对应的变化规律,根据坐标的变化特点可推出图形的变化.24.(1)见解析;(2)24;(3)AC CE =.理由见解析.【解析】【分析】(1)根据题意得∠EBD=∠ABC=60°则∠ABE=120°,所以三角尺旋转了120度;根据旋转的性质得BC=BD ,可判断△BCD 为等腰三角形;(2)含30度三角形三边的关系由∠A=30°,BC=8得到AB=2BC=16,则AD=AB+BD=24;(3)由∠EBD=∠ABC=60°得到∠EBC=60°,根据“SAS”可判断△ABC ≌△EBC ,所以AC=CE .【详解】(1)∵EBD ABC 60∠∠==,∴ABE 120∠=,∴三角尺旋转了120度;∵BC BD =,∴BCD 为等腰三角形;(2)在Rt ABC ,A 30∠=,BC 8=,∴AB 2BC 16==,∴AD AB BD 16824=+=+=;(3)AC CE =.理由如下:连结CE ,如图,∵EBD ABC 60∠∠==,∴EBC 60∠=,∴ABC EBC ∠∠=,在ABC 和EBC 中BA BE ABC EBC BC BC =⎧⎪∠=∠⎨⎪=⎩,∴()ABC EBC SAS ≅,∴AC CE =.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了含30度三角形三边的关系和三角形全等的判定与性质.25.见解析.【解析】【分析】连接AD 、BC ,根据对角线互相平分的四边形是平行四边形求出四边形ABCD 是平行四边形,再根据平行四边形的中心对称性判断出E 、F 是对称点,然后根据轴对称性解答.【详解】证明:如图,连接AD 、BC ,∵AC 与BD 互相平分且相交于点O ,∴四边形ABCD 是平行四边形,∴点O 是平行四边形ABCD 的对称中心,∵AE CF =,∴点E 、F 是对称点,∴点E 、O 、F 在同一直线上且OE OF =.【点睛】本题考查了中心对称,主要利用了平行四边形的判定与中心对称性,对称点的连线经过对称中心并且被对称中心平分,熟记性质并作辅助线构造出平行四边形是解题的关键. 26.()1这个图形是旋转对称图形,对称中心为AC 的中点;()23个,点A ,点C ,AC 的中点【分析】(1)根据旋转对称图形的定义得出即可;(2)利用△ACD 旋转后能与△ABC 重合,结合图形得出旋转中心.【详解】解:()1这个图形是旋转对称图形,对称中心为AC 的中点;()23个,旋转中心可以为:点A ,点C ,AC 的中点.【点睛】本题考查了旋转对称图形、中心对称图形的性质,解题的关键是熟练的掌握旋转对称图形、中心对称图形的性质.27.初步探究:BCE 的面积为212a .理由见解析;简单应用:9BCE S =. 【解析】【分析】初步探究:作EF ⊥BC 于F ,如图2,由旋转的性质得AB=EB ,∠ABE=90°,再根据等角的余角相等得到∠A=∠EBF ,则可根据“AAS”可判断△ABC ≌△BEF ,所以BC=EF=a ,然后根据三角形面积公式可得到S △BCE ═12a 2; 简单应用:作AH ⊥BC 于H ,连结EH ,如图3,根据等腰三角形的性质得CH=BH=12BC=3,然后利用探究的结论得到S △BEH =12BH 2=92,于是有S △BCE =2S △BEH =9. 【详解】初步探究:BCE 的面积为21a 2.理由如下: 作EF BC ⊥于F ,如图2,∵线段AB 绕点B 顺时针旋转90,得到线段BE ,∴AB EB =,ABE 90∠=,∴ABC EBF 90∠∠+=,∵ABC A 90∠∠+=,∴A EBF ∠∠=,在ABC 和BEF 中ACB EFB A EBF AB BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABC BEF ≅,∴BC EF a ==, ∴2BCE 11S BC EF a 22=⋅=; 简单应用:作AH BC ⊥于H ,连结EH ,如图3,∵AB AC =, ∴1CH BH BC 32===, ∵线段AB 绕点B 顺时针旋转90得到线段BE , ∴2BEH 19SBH 22==, ∴BCE BEH S 2S 9==.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.本题的关键是构建全等三角形.28.①旋转90∘;②BE=DF,BE⊥DF.证明见解析.【分析】①AB和AD是对应线段,那么应绕点A逆时针旋转90°得到;②关系应包括位置关系和数量关系.旋转前后的三角形是全等的,延长BE交DF于点G,利用对应角相等,可得到垂直.【详解】①在图4中可以通过旋转90∘使△ABE变到△ADF的位置.②由全等变换的定义可知,通过旋转90∘,△ABE变到△ADF的位置,只改变位置,不改变形状大小,∴△ABE≅△ADF.∴BE=DF,∠ABE=∠ADF.∵∠ADF+∠F=90∘,∴∠ABE+∠F=90∘,∴BE⊥DF.【点睛】本题主要考查翻折变换(折叠问题),关键在于熟悉旋转前后的三角形全等是个突破口.。

人教版数学九年级上册第23章《旋转》单元检测试卷及答案解析

人教版数学九年级上册第23章《旋转》单元检测试卷及答案解析

第23章《旋转》单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是()2.以下图的右边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是()3.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转B.对称和旋转 C.对称和平移 D.旋转和平移4.已知点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,则a+b 的值为()A.1 B.5 C.6 D.45.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.60°B.72°C.90°D.144°7.如图,将△OAB 绕点O 逆时针旋转80°,得到△OCD ,若∠A=2∠D=100°,则∠α的度数是( )A .50°B .60°C .40°D .30°8.在平面直角坐标系xOy 中,A 点坐标为(3,4),将OA 绕原点O 顺时针旋转180°得到OA′,则点A′的坐标是( )A .(﹣4,3)B .(﹣3,﹣4)C .(﹣4,﹣3)D .(﹣3,4)9.如图,将Rt △ABC (其中∠B=30°,∠C=90°)绕点A 按顺时针方向旋转到△AB1C1的位置,使得点B 、A 、B1在同一条直线上,那么旋转角等于( )B 1C 1C BAA .30°B .60°C .90°D .180° 10.如图,在△ABC 中,∠AB=90°,将△ABC 绕点A 顺时针旋转90°,得到△ADE ,连接BD ,若AC=3,DE=1,则线段BD 的长为( )E DCB AA .5B .3C .4D .10二、填空题(共6小题,每小题3分,共18分)11.如图,△ABC 中,∠C =30°,将△ABC 绕点A 顺时针旋转60°得△ADE ,AE 与BC 交于F ,则∠AFB =_______°.12如图,把Rt △ABC 绕点A 逆时针旋转44°,得到Rt △AB′C′,点C′恰好落在边AB 上,连接BB′,则∠BB′C′=图11B'C'CBA图1213.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为.14.如图,直线y=﹣33x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是.15.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.16.在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为.三、解答题(共8题,共72分)17.(本题8分)如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?18.(本题8分)将下图所示的图形面积分成相等的两部分.(图中圆圈为挖去部分)19.(本题8分)19.(8分)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.20.(本题8分)如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?21.(本题8分)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴,垂足为A.(1)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;(2)△O′A′B′与△OAB关于原点对称,写出点B′、A′的坐标.22.(本题10分)当m为何值时(1)点A(2,3m)关于原点的对称点在第三象限;(2)点B(3m﹣1,0.5m+2)到x轴的距离等于它到y轴距离的一半?23.(本题10分)直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?24.(本题12分)等边△OAB在平面直角坐标系中,已知点A(2,0),将△OAB 绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)求出点B的坐标;(2)当A1与B1的纵坐标相同时,求出a的值;(3)在(2)的条件下直接写出点B1的坐标.第23章《旋转》单元测试卷解析一、选择题1.【答案】A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误;故选:C2.【答案】以图的右边缘所在的直线为轴将该图形向右翻转180°后,黑圆在右上角,再按顺时针方向旋转180°,黑圆在左下角.故选:A.3.【答案】根据对称和旋转定义可知:“当窗理云鬓,对镜贴花黄”是对称;“坐地日行八万里”是旋转.故选B.4.【答案】∵点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,∴a=2014,b=﹣2013,则a+b的值为:2014﹣2013=1.故选:A.5.【答案】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m﹣n=﹣3,∴m=2,n=5,∴点M(m,n)在第一象限,故选A.6.【答案】如图,设O的是五角星的中心,∵五角星是正五角星,∴∠AOB=∠BOC=∠COD=∠DOE=∠AOE,∵它们都是旋转角,而它们的和为360°,∴至少将它绕中心顺时针旋转360÷5=72°,才能使正五角星旋转后与自身重合.故选:B.7.【答案】∵将△OAB绕点O逆时针旋转80°,∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α,∠D=100°∵∠A=2∠D=100°,∴∠D=50°∵∠C+∠D+∠DOC=180°,∴100°+50°+80°﹣α=180°解得α=50°,故选A8.【答案】根据题意得,点A关于原点的对称点是点A′,∵A点坐标为(3,4),∴点A′的坐标(﹣3,﹣4).故选B.9.【答案】∵B、A、B1在同一条直线上,∴∠BAB1=180°,∴旋转角等于180°.故选D.10.【答案】由旋转的性质可知:BC=DE=1,AB=AD,∵在RT△ABC中,AC=3,BC=1,∠ACB=90°,∴由勾股定理得:10又旋转角为90°,∴∠BAD=90°,∴在RT △ADB 中,即:BD 的长为故:选A二、填空题11.【答案】90º12.【答案】∵Rt △ABC 绕点A 逆时针旋转40°得到Rt △AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=12(180°﹣∠BAB′)=12(180°﹣44°)=68°, ∵∠AC′B′=∠C=90°,∴B′C′⊥AB ,∴∠BB′C′=90°﹣∠ABB′=90°﹣68°=22°.故答案为:22°.13.【答案】∵AO=32,BO=2,∴AB=52,∴OA+AB1+B1C2=6,∴B2的横坐标为:6,且B2C2=2,∴B4的横坐标为:2×6=12,∴点B2016的横坐标为:2016÷2×6=6048.∴点B2016的纵坐标为:2. ∴点B2016的坐标为:(6048,2).故答案为:(6048,2).14.【答案】令y=0x+2=0,解得令x=0,则y=2,∴点A (0),B (0,2),∴OB=2,∴∠BAO=30°,∴AB=2OB=2×2=4,∵△AOB 绕点A 顺时针旋转60°后得到△AO′B′,∴∠BAB′=60°,∴∠OAB′=30°+60°=90°,∴AB′⊥x 轴,∴点B′(4).故答案为:(4).15.【答案】∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.16.【答案】如图所示:在直角△OBC 中,OC=12AC=12BC=1cm ,则(cm ),则(cm ).故答案为:cm .三、解答题17.【答案】这个图形的旋转中心为圆心;∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.18.【答案】如图:19.【答案】解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0,∴x=-1,∴x+2y=-720.【答案】(1)证明:在△AEB与△ADC中,AB=AC,∠A=∠A,AE=AD;∴△AEB≌△ADC,∴∠B=∠C.(2)解:先将△ADC绕点A逆时针旋转50°,再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.或先将△ADC绕点A顺时针旋转50°,再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.21.【答案】(1)如图,点C的坐标为(﹣2,4);(2)点B′、A′的坐标分别为(﹣4,﹣2)、(﹣4,0).22.【答案】(1)∵点A(2,3m),∴关于原点的对称点坐标为(﹣2,﹣3m),∵在第三象限,∴﹣3m<0,∴m>0;(2)由题意得:①0.5m +2=12(3m ﹣1),解得:m=52;②0.5m +2=﹣12(3m ﹣1),解得:m=﹣34.23.【答案】(1)点P 关于原点的对称点P'的坐标为(2,1); (2)OP '=(a )动点T 在原点左侧,当1TO OP '=时,△P'TO 是等腰三角形,∴点1T,0),(b )动点T 在原点右侧,①当T2O=T2P'时,△P'TO 是等腰三角形,得:2T (54,0),②当T3O=P'O 时,△P'TO 是等腰三角形,得:3T,0),③当T4P'=P'O 时,△P'TO 是等腰三角形,得:点T4(4,0).综上所述,符合条件的t 的值为,54,4.24.【答案】(1)如图1所示过点B 作BC ⊥OA ,垂足为C .图1∵△OAB 为等边三角形,∴∠BOC=60°,OB=BA .∵OB=AB ,BC ⊥OA ,∴OC=CA=1.在Rt △OBC中,BCOC =,∴∴点B 的坐标为(1.(2)如图2所示:(A 1)图2yx O B 1CB A∵点B1与点A1的纵坐标相同,∴A1B1∥OA .①如图2所示:当a=300°时,点A1与点B1纵坐标相同.如图3所示:A 1图3yxO B 1CBA当a=120°时,点A1与点B1纵坐标相同.∴当a=120°或a=300°时,点A1与点B1纵坐标相同.(3)如图2所示:由旋转的性质可知A1B1=AB=2,点B 的坐标为(1,2), ∴点B1的坐标为(﹣1.如图3所示:由旋转的性质可知:点B1的坐标为(1.∴点B1的坐标为(﹣11.【素材积累】司马迁写《史记》汉朝司马迁继承父业,立志著述史书。

九年级数学上册 第二十三章 旋转 单元测试卷及答案(2023年人教版)

九年级数学上册 第二十三章 旋转  单元测试卷及答案(2023年人教版)

九年级数学上册第二十三章旋转单元测试卷及答案(人教版)一、选择题(每题3分,共30分)1.【教材P69习题T2拓展】垃圾混置是垃圾,垃圾分类是资源.下列可回收物、有害垃圾、厨余垃圾、其他垃圾四种垃圾回收标识中,既是轴对称图形又是中心对称图形的是()2.【教材P60例题变式】如图,将方格纸中的图形绕点O逆时针旋转90°后得到的图形是()3.【教材P69练习T2改编】点(-1,2)关于原点的对称点坐标是() A.(-1,-2) B.(1,-2) C.(1,2) D.(2,-1) 4.如图,四边形ABCD为正方形,O为对角线AC,BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA?()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°(第4题)(第5题)(第6题)(第7题)5.【教材P77复习题T7变式】如图,点O是▱ABCD的对称中心,EF是过点O 的任意一条直线,它将平行四边形分成两部分,四边形ABOE和四边形CDOF 的面积分别记为S1,S2,那么S1,S2之间的关系为()A. S1>S2B. S1<S2C.S1=S2 D. 无法确定6.如图,将Rt△ABC(∠B=25°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C ,A ,B 1在同一条直线上,那么旋转角等于( )A .65°B .80°C .105°D .115°7.如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE绕点A 顺时针旋转到与△ABF 重合,则EF =( ) A.41 B.42 C .5 2 D .2138.如图,在平面直角坐标系中,将点P (2,3)绕原点O 顺时针旋转90°得到点P ′,则点P ′的坐标为( )A .(3,2)B .(3,-1)C .(2,-3)D .(3,-2)(第8题) (第9题) (第10题)9.如图,点P 是等腰直角三角形ABC 外一点,把BP 绕点B 顺时针旋转90°到BP ′,已知∠AP′B =135°,P ′A ∶P ′C =1∶3,则P ′A ∶PB 等于( )A .1∶ 2B .1∶2 C.3∶2 D .1∶ 310.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45°后得到正方形OA 1B 1C 1;依此方式,绕点O 连续旋转2 022次得到正方形OA 2 022B 2 022C 2 022,那么点A 2 022的坐标是( )A.⎝ ⎛⎭⎪⎫22,-22 B .(-1,0) C.⎝ ⎛⎭⎪⎫-22,-22 D .(0,-1) 二、填空题(每题3分,共24分)11.【教材P 63习题T 5变式】如图,风车图案围绕着旋转中心至少旋转________度,会和原图案重合.(第11题) (第12题) (第13题)12.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为________.13.如图所示,图形①经过________变换得到图形②;图形①经过________变换得到图形③;图形①经过________变换得到图形④.(填“平移”“旋转”或“轴对称”)14.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=________.(第14题)(第15题)(第16题)(第17题) 15.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形,若点A的坐标是(1,3),则点M的坐标是__________,点N的坐标是__________.16.如图,在Rt△OAB中,∠OAB=90°,O A=AB=6,将△O AB绕点O按逆时针方向旋转90°得到△OA1B1.连接AA1,则四边形OAA1B1的面积为________.17.如图,将△ABC在平面内绕点A逆时针旋转40°到△AB′C′的位置,若CC′∥AB,则∠CAB′的度数为________.18.如图,将一个45°角的顶点与正方形ABCD的顶点A重合,在正方形的内部绕着点A旋转,角的两边分别与CD,CB边相交于F,E两点,与对角线BD交于N,M两点,连接EF,则下列结论:①AE=AF;②EF=BE+DF;③△CEF的周长等于正方形ABCD周长的一半;④S△AEF =S△ABE+S△ADF.其中正确的结论有____________(填序号).三、解答题(19~22题每题8分,23题10分,其余每题12分,共66分) 19.如图,在△ABC中,∠B=10°,∠ACB=20°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转角的度数;(2)求∠BAE的度数和AE的长.20.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2,C2的坐标.21.【教材P70习题T4拓展】平面直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.22.如图,在6×6的网格中已经涂黑了三个小正方形,请按下列要求画图.(1)在图①中涂黑一个小正方形,使涂黑的四个小正方形组成一个轴对称图形.(2)在图②中涂黑一个小正方形,使涂黑的四个小正方形组成一个中心对称图形.23.如图,△BAD是由△BEC在平面内绕点B旋转60°得到的,且AB⊥BC,BE =CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.25.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,试判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α.答案一、1.B 2.C 3.B 4.C 5.C 6.D7.D8.D9.B10.B点规律:2022=252×8+6,则点A2022在点A6的位置,点A6与点C重合.二、11.6012.π13.轴对称;旋转;平移14.215.(-1,-3);(1,-3)16.3617.30°18.②③④点思路:将△ADF绕点A顺时针旋转90°,点D与点B重合,利用全等的知识判断.三、19.解:(1)旋转中心是点A.∵∠CAB=180°-∠B-∠ACB=150°,∴旋转角是150°.(2)∠BAE=360°-150°×2=60°.由旋转的性质得△ABC≌△ADE,∴AB=AD,AC=AE.又∵点C是AD的中点,∴AC=12AD=12AB=12×4=2.∴AE=2.20.解:(1)如图,△A1B1C1即为所求.(2)如图,△AB2C2即为所求.点B2的坐标为(4,-2),点C2的坐标为(1,-3).21.解:根据题意,得(x2+2x)+(x+2)=0,y=-3.解得x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0.∴x=-1.∴x+2y=-7.22.解:(1)如图①所示:①、②、③、④处涂黑都可以使涂黑的四个小正方形组成一个轴对称图形;(2)如图②所示:①、②处涂黑都可以使涂黑的四个小正方形组成一个中心对称图形.23.(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°得到的,∴DB=CB,∠ABE=∠DBC=60°.∵AB⊥BC,∴∠ABC=90°.∴∠CBE=30°.∴∠DBE=30°.∴∠DBE=∠CBE.在△BDE和△BCE中,DB=CB,∠DBE=∠CBE,BE=BE,∴△BDE≌△BCE(SAS).(2)解:四边形ABED为菱形.理由:由(1)得△BDE≌△BCE,∴EC=ED.∵△BAD是由△BEC旋转得到的,∴△BAD≌△BEC.∴BA=BE,AD=EC.又∵BE=CE,EC=ED,∴BA=BE=AD=ED.∴四边形ABED为菱形.24.点方法:(1)可以用观察法初步判断AE和DB的数量、位置关系,通过边长DB交AE于点M,利用全等的知识进行验证.解:(1)AE=DB,AE⊥DB.理由:如图①,延长DB交AE于点M.由题意可知,CA=CB,CE=CD,∠ACE=∠BCD=90°,∴△ACE≌△BCD(SAS).∴AE=DB,∠AEC=∠BDC.∵∠ACE=90°,∴∠AEC+∠EAC=90°,∴∠BDC+∠EAC=90°.∴在△AMD 中,∠AMD =180°-90°=90°.∴AE ⊥DB .(2)DE =AF ,DE ⊥AF .理由:如图②,设ED 与AF 相交于点N ,由题意易知BE =AD .∵∠EBD =∠C +∠BDC =90°+∠BDC ,∠ADF =∠BDF +∠BDC =90°+∠BDC ,∴∠EBD =∠ADF .又∵DB =DF ,∴△EBD ≌△ADF (SAS).∴∠E =∠FAD ,DE =AF .∵∠E =45°,∴∠FAD =45°.又∵∠EDC =45°,∴∠AND =90°.∴DE ⊥AF .25.解:(1)∠ABD =30°-12α.(2)△ABE 为等边三角形.证明如下:连接AD ,CD .∵线段BC 绕点B 逆时针旋转60°得到线段BD ,∴BC =BD ,∠DBC =60°.∴△BCD 是等边三角形.∴BD =CD .∵∠ABE =60°,∴∠ABD =60°-∠DBE =∠EBC =30°-12α.在△ABD 和△ACD 中,AB =AC ,AD =AD ,BD =CD ,∴△ABD ≌△ACD (SSS).∴∠BAD =∠CAD =12∠BAC =12α.∵∠BCE =150°,∴∠BEC =180°-12α150°=12α.∴∠BAD =∠BEC .在△ABD 和△EBC 中,∠BAD =∠BEC ,∠ABD =∠EBC ,BD =BC ,∴△ABD ≌△EBC (AAS).∴AB =BE .又∵∠ABE =60°,∴△ABE 为等边三角形.(3)由(2)可知△BCD 为等边三角形,∴∠BCD =60°.∵∠BCE =150°,∴∠DCE =150°-60°=90°.∵∠DEC =45°,∴△DCE 为等腰直角三角形,∴DC =CE =BC .∴∠CBE =∠BEC .∵∠BCE =150°,∴∠EBC =180°-150°2=15°.而由(2)知∠EBC =30°-12α,∴30°-12α=15°.∴α=30°.。

第一学期人教版九年级上册数学第23章《旋转》单元测试卷(含答案)

第一学期人教版九年级上册数学第23章《旋转》单元测试卷(含答案)

第23章旋转单元测试卷一、填空题〔共10 小题,每题 3 分,共30 分〕1.如图,矩形OABC和ABEF,B(3, 4).如图,矩形OABC和ABEF,B(3, 4).(1)画出矩形OABC绕点O逆时针旋转90∘后的矩形OA1B1C1,并写出B1的坐标为________,点B运动到点B1所经过的途径的长为________;(2)假设点E的坐标为(5, 2),那么点F的坐标为________,请画一条直线l平分矩形OABC与ABEF组成图形的面积〔保存必要的画图痕迹〕.2.如下图是日本三菱汽车的标志,它可以看作由一个菱形经过________次旋转,每次至少旋转________得到的.3.如下图的图形为中心对称图形,点O为它的对称中心,写出一组关于点O的对称点是________.4.点A(−1, 2)关于y轴的对称点坐标是________;点A关于原点的对称点的坐标是________.5.点P坐标为(1, 1),将点P绕原点逆时针旋转45∘得点P1,那么点P1的坐标为________.6.如图是4×4的正方形网格,再把其中一个白色小正方形涂上阴影,使整个阴影局部成为轴对称图形,这样的白色小正方形有________个.7.如下图,把甲图案“扶直〞属于________变换.甲图案与乙图案形状、大小完全一样,假设让甲图案与乙图案重合,还需________变换.8.图中,甲图怎样变成乙图:________.9.如图,将△ABC绕点C按顺时针方向旋转64∘至△A′B′C,使点A′落在BC的延长线上.那么∠ACB′=________度.10.如图,在直角坐标系中,点A(−3, 0)、B(0, 4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4,那么△2017的直角顶点的坐标为________.二、选择题〔共10 小题,每题 3 分,共30 分〕11.将点A(−2, 3)绕原点O旋转180∘得到点P,那么点P的坐标是〔〕A.(2, 3)B.(−2, −3)C.(2, −3)D.(3, −2)12.如图,将两块大小一样的三角板重叠在一起,∠A=30∘,∠B=60∘,BC=10cm,把上面一块三角板绕顶点C作逆时针方向旋转到△A′B′C′的位置,点B′在AB上,A′B′与AC相交于点D,那么A′D的长度为〔〕A.14cmB.15cmC.16cmD.17cm13.如图,四边形ABD与四边形FGHE关于一个点成中心对称,那么这个点是〔〕A.O1B.O2C.O3D.O414.要使正十二边形旋转后与自身重合,至少应将它绕中心旋转的度数为〔〕A.75∘B.60∘C.45∘D.30∘15.在以下由纸折叠而成的图案中,是中心对称图形的是〔〕A.B.C. D.16.将等腰直角三角形AOB按图放置,然后绕O点逆时针旋转90∘至A′OB′位置,点B(2, 0),那么A的坐标〔〕A.(1, 1)B.(√2, √2)C.(−1, 1)D.(−√2, √2)17.在直角坐标系中,点A(−2, 3)与点B关于原点成中心对称,那么点B的坐标为〔〕A.(2, 3)B.(2, −3)C.(−2, −3)D.(−2, 3)18.平移、旋转与轴对称都是图形之间的一些主要变换,以下关于图形经这些变换后说法错误的〔〕A.对应线段的长度不变B.对应角的大小不变C.图形的形状和大小不变D.图形的位置不变19.如图,正三角形网格中,已有两个小正三角形被涂黑,随机将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的概率是〔〕A.1 7B.2 7C.37D.以上答案都不对20.如图,Rt△ABC中,∠C=90∘,AC=8,BC=6,△ABC绕着点B逆时针旋转90∘到△A′B′C′的位置,AA′的长为〔〕A.10√2B.10C.20D.5√2三、解答题〔共6 小题,每题10 分,共60 分〕21.(1)如图1,在正方形网格中,每个小正方形的边长均为1个单位.将△ABC向绕点C逆时针旋转90∘,得到△A′B′C′,请你画出△A′B′C′〔不要求写画法〕.21.(2)如图2,点O和△ABC,试画出与△ABC关于点O成中心对称的图形.22.△ABC各顶点坐标分别为A(5, 1),B(2, 3),C(0, 0),将它绕原点顺时针方向旋转90∘,得到△A1B1C1(1)求A1,B1,C1的坐标;(2)求△A1B1C1的面积.23.将Rt△ABC绕顶点C分别旋转90∘、180∘、270∘得到图所示的图形,连接BB1、B1B2、B2B3、B3B,直角边BC=1,求四边形BB1B2B3的形状及其面积.24.某校九年级学习小组在探究学习过程中,用两块完全一样的且含60∘角的直角三角板ABC 与AFE按如下图(1)位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0∘<α< 90∘),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30∘时,四边形ABPF是什么样的特殊四边形?并说明理由.25.(1)如图1,在△ABC中,绕点C旋转180∘后,得到△CA′B′.请先画出变换后的图形,写出以下结论正确的序号是________.①△ABC≅△A′B′C;②线段AB绕C点旋转180∘后,得到线段A′B′;③A′B′ // AB;④C是线段BB′的中点.在(1)的启发下解答下面问题:25.(2)如图2,在△ABC中,∠BAC=120∘,D是BC的中点,射线DF交BA于E,交CA的延长线于F,请猜测∠F等于多少度时,BE=CF?〔直接写出结果,不证明〕(3)如图3,在△ABC中,假如∠BAC≠120∘,而(2)中的其他条件不变,假设BE=CF的结论仍然成立,那么∠BAC与∠F满足什么数量关系〔等式表示〕并加以证明.26.阅读下面材料:如图(1),把△ABC沿直线BC平行挪动线段BC的长度,可以变到△DEC的位置;如图(2),以BC为轴,把△ABC翻折180∘,可以变到△DBC的位置;如图(3),以点A为中心,把△ABC旋转180∘,可以变到△AED的位置.像这样,其中一个三角形是由另一个三角形按平行挪动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.答复以下问题:①在图(4)中,可以通过平行挪动、翻折、旋转中的哪一种方法怎样变化,使△ABE变到△ADF 的位置;②指图中线段BE与DF之间的关系,为什么?答案π(5, −2)1.(−4, 3)522.2120∘3.点A与点C4.(1, 2)(1, −2)5.(0, √2)6.47.旋转平移8.绕点A顺时针旋转9.5210.(8064, 0)11-20:CBADD CBDCA21.解:(1)(2)如下图:22.解:(1)如图,△ABC绕原点顺时针方向旋转90∘得到△A1B1C1,点A1,B1,C1的坐标分别为(5, −1),(3, −2),(0, 0);(2)△A1B1C1的面积=5×2−12×2×3−12×2×1−12×1×5=3.5.23.解:∵将Rt△ABC绕顶点C分别旋转90∘、180∘、270∘得到图所示的图形,直角边BC=1,∵BC=CB1=CB2=CB3=1,∠B1CB2=∠B1CB=∠B2CB3=∠BCB3=90∘,∵BB1=BB3=B2B3=B1B3,B1B3=BB2,∵四边形BB1B2B3为正方形,∵BB1B2B3的面积为:2×2×12=2.24.(1)证明:∵用两块完全一样的且含60∘角的直角三角板ABC与AFE按如下图(1)位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0∘<α<90∘),∵AB=AF,∠BAM=∠FAN,在△ABM和△AFN中,{∠FAN=∠BAM AB=AF∠B=∠F,∵△ABM≅△AFN(ASA),∵AM=AN;(2)解:当旋转角α=30∘时,四边形ABPF是菱形.理由:连接AP,∵∠α=30∘,∵∠FAN=30∘,∵∠FAB=120∘,∵∠B=60∘,∵∠B+∠FAB=180∘,∵AF // BP,∵∠F=∠FPC=60∘,∵∠FPC=∠B=60∘,∵AB // FP,∵四边形ABPF是平行四边形,∵AB=AF,∵平行四边形ABPF是菱形.25.解:(1)根据旋转的性质,知①②③④都是正确的.(2)60∘.(3)等量关系:∠BAC=2∠F.作△FCD关于点D的中心对称三角形DBF′,那么∠F′=∠F,FC=BF′=BE,∠F′=∠F=∠BED=∠FEA.∵∠BAC=2∠F.26.解:①在图4中可以通过旋转90∘使△ABE变到△ADF的位置.②由全等变换的定义可知,通过旋转90∘,△ABE变到△ADF的位置,只改变位置,不改变形状大小,∵△ABE≅△ADF.∵BE=DF,∠ABE=∠ADF.∵∠ADF+∠F=90∘,∵∠ABE+∠F=90∘,∵BE⊥DF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上册第23章旋转(4)单元检测题
第23章《旋转》单元测试及答案 (4)
一﹨选择题
1.(苏州)下列图形中,旋转600后可以和原图形重合的是( )
A ﹨正六边形
B ﹨正五边形
C ﹨正方形
D ﹨正三角形
2.(眉山)数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O 旋转多少度后 和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°. 以上四位同学的回答中,错误的是( )
A ﹨甲
B ﹨乙
C ﹨丙
D ﹨丁
3.(南平)如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位置,若B A AC ''⊥,则BAC ∠的度数是( )
A ﹨50°
B ﹨60°
C ﹨70°
D ﹨80°
4.(安徽)在平面直角坐标系中,A 点坐标为(3,4),将OA 绕原点O 逆时针旋转900得到
OA ´,则点A ´的坐标是( )
A ﹨(-4,3)
B ﹨(-3,4)
C ﹨(3,-4)
D ﹨(4,-3)
5.(济宁)在平面直角坐标系中,将点A 1(6,1)向左平移4个单位到达点A 2的位置,再向上平移3个单位到达点A 3的位置,△A 1A 2A 3绕点A 2逆时针方向旋转900,则旋转后A 3的坐标为( )
A ﹨(-2,1)
B ﹨(1,1)
C ﹨(-1,1)
D ﹨(5,1)
6.(嘉兴)如图,8×8方格纸上的两条对称轴EF ﹨MN
相交于中心点O ,对△ABC 分别作下列变换:
①先以点A 为中心顺时针方向旋转90°,再向右平移4
格﹨向上平移4格;
②先以点O 为中心作中心对称图形,再以点A 的对应点
为中心逆时针方向旋转90°;
③先以直线MN 为轴作轴对称图形,再向上平移4格,再
以点A 的对应点为中心顺时针方向旋转90°.
其中,能将△ABC 变换成△PQR 的是( )
A ﹨①②
B ﹨①③
C ﹨②③
D ﹨①②③ 7.(黑龙江)在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )
A B C D
8.(潍坊)如图,边长为1的正方形ABCD 绕点A 逆时针旋转30︒到正方形AB C D ''',图 中阴影部分的面积为( )
A ﹨
12 B ﹨33 C ﹨313- D ﹨314
-
二﹨填空题
9.(盐城)写出两个..你熟悉的中心对称的几何图形名称,它是 . 10.(衡阳)如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为_____________.
11.(吉林)如图,直线l 与双曲线交于A ﹨C 两点,将直线l 绕点O 顺时针旋转α度角(0°<α≤45°),与双曲线交于B ﹨D 两点,则四边形ABCD 的形状一定是_________.
12.(邵阳)如图,若将△ABC 绕点O 顺时针旋转180°后得到△A'B'C',则A 点的对应点A'点的坐标是_____________.
13.(江阴)如图,已知梯形ABCD 中,AD ∥BC ,∠B = 90°,AD = 3,BC = 5,AB = 1, 把线段CD 绕点D 逆时针旋转90 °到DE 位置,连结AE ,则AE 的长为 .
14.(北京)在平面直角坐标系xOy 中,直线y =-x 绕点O 顺时针旋转90°得到直线l ,直线l 与反比例函数x
k y =的图象的一个交点为A (a ,3),则反比例函数的解析式是______. 15.(青岛)如图,P 是正三角形 ABC 内的一点,且PA =6,PB =8,
PC =10.若将△PAC 绕点A 逆时针旋转后,得到△P'AB ,则
点P 与点P' 之间的距离为_______,∠APB =______°.
16.(东营)在平面直角坐标系中,已知点P 0的坐标为(1,0),将点P 0绕着原点O 按逆时 针方向旋转60°得点P 1,延长OP 1到点P 2,使OP 2=2OP 1,再将点P 2绕着原点O 按逆时针 方向旋转60°得点P 3,则点P 3的坐标是__________.
三﹨解答题
17.(宿迁)如图,在平面直角坐标系中,三角形②﹨③是由三角形①依次旋转后所得的图形.(1)在图中标出旋转中心P 的位置,并写出它的坐标;(2)在图上画出再次旋转后的三角形④.
18.(大连)如图,已知△ABC 和△A″B″C″及点O .
⑴画出△ABC 关于点O 对称的△A′B′C ′;
⑵若△A″B″C″与△A′B′C′关于点O ′对称,请确定点O′的位置;
⑶探究线段OO′与线段CC″之间的关系,并说明理由.
19.(大兴安岭)如图,在网格中有一个四边形图案.
(1)请你画出此图案绕点D 顺时针方向旋转900,1800,2700的图案,你会得到一个美丽的图
案,千万不要将阴影位置涂错;
(2)若网格中每个小正方形的边长为l ,旋转后点A 的对应点依次为A 1﹨A 2﹨A 3,求四边形AA 1A 2A 3的面积;
(3)这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.
20.(贺州)如图,梯形ABCD 中,DC AB ∥,EF 是中位线,EG AB ⊥于G ,FH AB ⊥于H ,梯形的高1()2
h AB DC =+.沿着GE HF ,分别把AGE △,BHF △剪开,然后按图中箭头所指方向,分别绕着点E F ,旋转180,将会得到一个什么样的四边形?简述理由.
21.(汉川)如图,边长为2的等边三角形OAB 的顶点A 在x 轴的正半轴上,B 点位于第一象限。

将△OAB 绕点O 顺时针旋转30°后,恰好点A 落在双曲线)0(>x x k y =
上。

(1)求双曲线)0(>x x
k y =的解析式;(2)等边三角形OAB 继续按顺时针旋转多少度后,A 点再次落在双曲线上?
22.(衡阳)已知,如图□ABCD 中,A B ⊥AC ,AB=1,BC=5 ,对角线AC ﹨BD 交于0点,将直线AC 绕点0顺时针旋转,分别交BC ﹨AD 于点E ﹨F
(1)证明:当旋转角为90°时,四边形ABEF 是平行四边形;
(2)试说明在旋转过程中,线段AF 与EC 总保持相等;
(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点0顺时针旋转的度数.
四﹨附加题
23.(聊城)如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即111A B C △和222A B C △.
(1)请你指出在方格纸内如何运用平移﹨旋转变换,将111A B C △重合到222A B C △上;
(2)在方格纸中将111A B C △经过怎样的变换后可以与222A B C △成中心对称图形?画出变换后的三角形并标出对称中心.
24.(内蒙古)如图(a ),两个不全等的等腰直角三角形OAB 和OCD 叠放在一起,并且有公共的直角顶点O .
(1)将图(a )中的OAB △绕点O 顺时针旋转90角,在图(b )中作出旋转后的OAB △(保留作图痕迹,不写作法,不证明).
(2)在图(a )中,你发现线段AC ,BD 的数量关系是 ,直线
AC ,BD 相交成
度角. (3)将图(a )中的OAB △绕点O 顺时针旋转一个锐角,得到图(c ),这时(2)中的两个结论是否成立?作出判断并说明理由.若OAB △绕点O 继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.
参考答案:1~8 ABCA CDCC 9﹨ 略 10﹨ 72° 11﹨ 平行四边形 12﹨(3,-2) 13﹨52 14﹨x
y 9= 15﹨6;150° 16﹨(-1,3) 17﹨略 18﹨(1)略;(2)连接C′C ′和′A″A ′相交于点O′;(3)OO′∥CC″,OO′=
21CC″ 19﹨(1)略;(2)123AA A A S 四边形=123AB B B S 四边形-43BAA S =34;(3)结论:AB 2+BC 2=AC 2
20﹨正方形 21﹨(1)x
y 3=;(2)120°22﹨(1)当AOF=90°时,AB ∥EF ∵AF ∥BE ,∴四边形ABEF 为平行四边形;(2)∵四边形ABCD 为平行四边形∴AO=CO ,∠FAO=∠ECO ,∠AOF=∠COE ΔAOF ≌ΔC OE ∴AF=EC ;(3)四边形BEDF 可以是菱形 理由:如图,连接BF ﹨DE 由(2)知ΔAOF ≌ΔC OE ,得OE=OF ∴EF 与BD 互相平分,当EF ⊥BD 时,四边形BEDF 为菱形。

在Rt ΔABC 中,AC=2∴OA=1=AB 又AB ⊥AC ∴∠AOB=45゜ ∴∠AOF=45゜∴AC 绕点O 顺时针旋转45゜时,四边形BEDF 为菱形
23﹨(1)将111A B C △向上平移4个单位,再向右平移3个单位,然后绕点1C 顺时针旋转90.
(2)将111A B C △逆时针旋转90得133A B C △,133A B C △与222A B C △关于点P 中心对称. 24﹨解:(1)略;(2)AC=BD ﹨90°;(3)成立.旋转更大角时,结论仍然成立.。

相关文档
最新文档