(完整版)进制转换ppt

合集下载

人教版中图版(2019)必修一 1.2.2二进制与数制转换(30张PPT)

人教版中图版(2019)必修一  1.2.2二进制与数制转换(30张PPT)

巩固题 1、(65)10=( 2、(77)10=( 3、(35)8=( 4、(78)16=(
)8 )16 )10 )10
十进制与R进制(R可以是任何一个数值)之间的转换方法是什么?
十进制转R进制
除R反向取余法
R进制转十进制
按权展开求和法
思考
03
进制间转换
二进制与八进制转换
二进制转八进制
每三位二进制数对应一位 八进制数
十六进制转二进制
每位十六进制数转换为对应的 四位二进制数
二进制与十六进制转换
二进制转十六进制
(11011011)2=( DB )16
11011011
13
11
D
B
十六进制转二进制
(123)16=(100100011 )21 23源自0001 0010 0011
巩固题
1、(231)8=(
)2
2、(A23)16=(
课后探究
十六进制与八进制 之间如何转换呢?
谢谢
二进制概念与规则
01
二进制基数与数码
二进制基数为2, 数码为0和1
02
逢二进一进位规则
逢二进一
03
数位与权值
不同数位对应不同权值, 权值用基数的幂表示,从 右向左依次为20,21,22···
为什么要了解进制转换呢?
为了更好学习并使用计算机,为后续学习 书写程序使用进制的转换打基础。因为计算 机只认识二进制,也就是0和1,我们生活中的 任何数据通过编码在计算机中都以二进制的 形式存在。
2
17
1
2
8
0
2
4
0
2
2
0
2
1
1

进制转换(二八十六)课件PPT

进制转换(二八十六)课件PPT

按权相加法
2107
103 102 101 100
2×103 1×102 0×101 7×100 2107=2×103+1×102+0×101+7×100
按权相加法
1101
23 22 21 20
1×23 1×22 0×21 1×20 (1107)2=1×23+1×22+0×21+1×20=(13)10
十进制转二进制
• 2 53
1
• 2 26
0

• 2 13
1

•2 6
0


(53)10=(110101)2
练习
• (128)10 • (192)10 • (224)10 • (240)10 • (248)10 • (252)10 • (254)10
作业
• (1010 1111)2 • (0110 0011)2 • (0001 0111)2 • (0001 0001)2 • (1110 1111)2 • (1100 1011)2 • (1011 1101)2
短除法
进制转换
• 二←→八: 用3位二进制数转换为1位八进制数
• 二←→十六:用4位二进制数转换为1位十六进制数
进制转换
• 二←→十:1024 512 256 128 64 32 16 8 4 2 1
• 八←→十六: • 八←→十: • 十六←→十:
进制转换
通过二进制
十进制的位权
1111
1000 100 10 1
十进 0 1 2 3 4 5 6 7 8 制数
9 10 11 12 13 14 15 16 ···
十六 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 ··· 进制

最新总结进制数转换-二进制-八进制-十进制-十六进制--之间转换方法课件PPT

最新总结进制数转换-二进制-八进制-十进制-十六进制--之间转换方法课件PPT
位(bit,比特):计算机内部最小的数据单位,即二进制的一位数 0或1.
字节(byte,拜特,用“B”表示): 1B=8bit ;(1B=1个英文字母=1个数字; 1个汉字=2B)
1KB=1024B; 1MB=1024KB; 1GB=1024MB; 1TB=1024GB.
计算机内部电路只有两种状态,内部数据只能采用二进制表 示,外部输入的其它进制数需通过编译器转化为二进制数.
制”
制”
关键点(技巧):因为2的4次方等于16,所以 4位二进制数等于1位十六进制数。
(101111) 2=(0010 1111) 2
前面补 0成4位
一组
=( 2
F ) 16
注意不能 写成15
( A F ) 16 =( 1010 1111) 2 =( 10101111) 2
返回
*八进制数与十六进制数间的转换
三.十进制→十六进制 (整数部分除16取余, 小数部分乘16取整)
四.十六进制→二进制 (每一位十六进制数表示 四位二进制数)
五.八进制→二进制 (每一位八进制数表示 三位二进制数)
返回
八进制数、十六进制数和十进制数的转换
这三者转换时:
➢可把二进制数作为媒介, ➢先把待转换的数转换成二进制数, ➢然后将二进制数转换成相应数制形式
A 20 B21 C 22 D 23 2、字符“a”的ASCII码值是1100001,转换成十
进制是( ),字符“c”的ASCII码值是是( )
二.八进制→十进制 (按位权乘8的N-1次方)
三.十六进制→十进制 (按位权乘16的N-1次方)
四.二进制→十六进制 (每四位二进制数表示 一位十六进制数)
五.二进制→八进制 (每三位二进制数表示 一位八进制数)

进制转换课件ppt

进制转换课件ppt

示例和练习
示例
将二进制数1010转换为十进制数 ,即 0×2^3 + 1×2^2 + 0×2^1 + 1×2^0 = 8 + 0 + 0 + 1 = 9 。
练习
提供多个二进制数,要求学生将 其转换为十进制数。
注意事项和常见错误
注意事项
在进行二进制到十进制的转换时,需要注意权值的计算和进 位的处理。
进制转换的基本原则
确定基数
确定要转换的数所在的 基数,即要转换到的目
标进制。
权值计算
根据目标进制的权值, 从被转换数的最低位开
始逐位计算。
转换过程
按照权值计算结果,将 每一位上的数值转换为 对应的符号(0-9或0-9
、A-F)。
特殊情况处理
对于超过目标进制表示 范围的数,需要进行相 应的处理(如截断或四
示例和练习
示例
将十进制数23转换为二进制数。
练习
自己尝试将几个十进制数转换为二进制数,如15、31、63等。
注意事项和常见错误
注意项
在进行进制转换时,需要注意进制的 表示方法,以及不同进制之间的对应 关系。
常见错误
在进行进制转换时,容易出现余数忘 记加上的错误,以及进制表示不正确 的错误。
2023
练习
将八进制数5678转换为十进制数。
注意事项和常见错误
注意事项
注意八进制数的每一位对应的十进制数 乘以8的相应次方,不要混淆。
VS
常见错误
将八进制数的每一位直接转换为十进制数 ,未按照规则进行转换。
2023
PART 05
十进制到八进制的转换
REPORTING
规则和方法

《进制数之间的转换》课件

《进制数之间的转换》课件
进制之间的转化
目录
CONTENTS
预备知识:进制的概念 其他进制转化为十进制 十进制转化为其他进制 重点回顾
预备知识:进制
数制
十进制
数码
0~9
(表示数的符号)

10
(数码的个数)
权 (每一位所具
有的值)
100,101,102 ... ...
特点
逢十进一
二进制 0~1
2
20,21,22 ... ...
THANKS
2 0 2 0 . 11 . 0 6
方法:数码乘以相应权之和
(101)2=1×22+0×21+1×20=(5)10
二进制转化为十进制
(10011.101)2=1×24+0×23+0×22+1×21+ 1×20+1×2-1+0×2-2+1×2-3 =(19.625)10
八进制转化为十进制
(136)8=1×82 +3×81+6×80 =(94)10
+5*10¹+6*10º
进制:也就是进位计数制,是人为定义的带进位的计数方法,对于任何一种进制---X进制,就表 示每一位置上的数运算时都是逢X进一位。 十进制是逢十进一,十六进制是逢十六进一,八进制 就是逢八进一,二进制就是逢二进一。
01 其 他 进 制 转 化 为 十 进 制 方法:数码乘以相应权之和

十六进制转化为十进制
(2AF5)16 = 2 ×163 +A× 162 +F × 161 +5 × 160 = (10997)10
02 十 进 制 转 化 为 其 他 进 制
方法:连续除以基,直至商为0,从低到高记录余数
十进制转化为二进制

进位制之间的转换PPT演示课件

进位制之间的转换PPT演示课件
36
十进制转换为八进制
整数 除8取余法 部分
即每次将整数部分除以8, 余数为该位权上的数,而商 继续除以8,余数又为上一 个位权上的数,这个步骤一 直持续下去,直到商为0为 止,最后读数时候,从最后 一个余数起,一直到最前面 的一个余数。
小数 乘8取整法 部分
即将小数部分乘以8,然后取 整数部分,剩下的小数部分继续 乘以8,然后取整数部分,剩下的 小数部分又乘以8,一直取到小数 部分为零为止。如果永远不能为 零,就同十进制数的四舍五入一 样,暂取个名字叫3舍4入。
32
将十六进制转换为二进制
方法:取一分四法,即将一位十六进制数分解成四位二进制数,用四位二进制按权相 加去凑这位十六进制数,小数点位置照旧。
33
四、八进制与十六进制的转换
方法:一般不能互相直接转换,一般是将八进制(或十六进制)转换为二进制,然后再将二进 制转换为十六进制(或八进制),小数点位置不变。那么相应的转换请参照上面二进制与八进 制的转换和二进制与十六进制的转
47
二进制数与十六进制数之间的转换 由于4位二进制数恰好有16个组合状态,即1位十六进制数与4位二进制数是一一对应的.所以,十 六进制数与二进制数的转换是十分简单的.
48
43
二进制与八进制间的转换 从小数点开始,将二进制数的整数和小数部分每三位分为一组,不足三位的分别在整数的最高 位前和小数的最低位后加“0”补足,然后每组用等值的八进制码替代,即得目的数。
44
二进制与十六进制间的转换 从小数点开始,将二进制数的整数和小数部分每四位分为一组,不足四位的分别在整数的最高 位前和小数的最低位后加“0”补足,然后每组用等值的十六进制码替代,即得目的数。
方法:与二进制与八进制转换相似,只不过是一位(十六)与四位(二进制)的转换,下面具 体讲解 (1) 二进制转换为十六进制 方法:取四合一法,即从二进制的小数点为分界点,向左(向右)每四位取成一位,接着将这 四位二进制按权相加,得到的数就是一位十六位二进制数,然后,按顺序进行排列,小数点的 位置不变,得到的数字就是我们所求的十六进制数。如果向左(向右)取四位后,取到最高 (最低)位时候,如果无法凑足四位,可以在小数点最左边(最右边),即整数的最高位(最 低位)添0,凑足四位。

《进制转换教程》课件

《进制转换教程》课件
进制转换教程
contents
目录
• 进制转换概述 • 二进制转换 • 八进制转换 • 十六进制转换 • 进制的混合使用与注意事项
01 进制转换概述
进制转换的定义
进制转换
进制转换是指将一个数从一个进制转换为另一个进制 的过程。
常见进制
常见的进制包括二进制、八进制、十进制和十六进制 。
转换方法
进制转换的方法包括除法定理、乘法定理和表格法等 。
的八进制表示为123。
八进制的其他转换
要点一
总结词
除了转换为十进制和十六进制外,八进制还可以转换为二 进制和其他进制形式。
要点二
详细描述
除了转换为十进制和十六进制外,八进制还可以转换为二 进制和其他进制形式。具体的转换方法和步骤与上述转换 类似,需要根据不同进制的转换规则进行计算和转换。在 计算机科学中,八进制、二进制和十六进制之间的转换是 非常常见的操作,因此掌握这些转换方法对于计算机专业 人员来说非常重要。
03 八进制转换
八进制转换为十进制
总结词
将八进制数转换为十进制数需要使用相应的 数学公式,并按照一定的计算规则进行。
详细描述
首先,将八进制数表示为十进制数的形式, 需要使用数学公式进行转换。具体来说,将 八进制数的每一位分别乘以对应的权值(从 右往左分别为1, 8, 64, ...),然后将得到的 数值相加即可得到十进制数。例如,八进制 数123可以转换为十进制数为1 * 8^2 + 2 * 8^1 + 3 * 8^0 = 64 + 16 + 3 = 83。
在数学和工程领域,经常需要进行不同进制的转换,以满足计算、建模和设计的需要。
进制转换的基本原则
01Байду номын сангаас

进制转换复习资料 (共17张PPT)

进制转换复习资料 (共17张PPT)

单击“转换”按钮Command1后,标签Label2中显示的内容是 ① ,文本框Text2中
显示的内容是 ② 。
Private Sub Command1_Click()
Const x = "转换成二进制数为"
Dim y As Integer
'用于存储输入的十进制自然数
Dim s As String
计算机除了要处理数值类型的数据外,还要处理各种非数值类型 的数据,例如英文字母和汉字。 为了便于信息的交换和应用,必须采用标准化编码。当前国际上 普遍采用的一种字符编码是“美国信息交换标准码”,简称ASCII 码。1个ASCII码对应1个字节。
汉字编码
➢ 汉字与英文字符一样,也是一种字符,在计算机内同样是以二 进制代码形式表示的。
3. 用UltraEdit软件观察“jy@”这几个字符的内码,如 图所示。则“cຫໍສະໝຸດ ina”这几个字符的内码是( C )
A.40 68 69 6C 61
B.40 59 60 6E 61
C.63 68 69 6E 61
D.63 59 60 6E 61
➢将十进制n转二进制数存储在字符变量s中。例如:n=10,转换成二进制数 后s=”1010”
Loop
➢二进制数存储在字符串变量s中。使用“累乘相加”法将二进制转换为十进 制。结果存储在整数变量ans中。
s = "1001 " ans = 0 n = Len(s) For i = 1 to n
x = Val ( Mid ( s, i, 1 ) ) ans = ans * 2 + x
Loop
字符“ p”的内码用十六进制编表示为 A. 77H B. 70H C. 6DH D. 60H

《进制数之间的转换》课件

《进制数之间的转换》课件
十六进制数是一种数字表示方式,使用0-9和A-F共16个字符表示。
十六进制数的每一位可以表示4位二进制数,因此十六进制数可以方便地转换为二进制数。
十六进制数的每一位可以表示3位八进制数,因此十六进制数可以方便地转换为八进制数。
十六进制数在计算机编程和网络通信中广泛使用,因为它可以方便地表示二进制数和八 进制数。
THANK YOU
汇报人:
示例6:将八进制数GHI转 换为十六进制数
十六进制数转二进制数的示例
示例:将十六进制数1A转换为二进制数
单击此处输入你的项正文,请尽量言简意阐述观点。
步骤:将1A拆分为1和A,分别转换为二进制数
单击此处输入你的项正文,请尽量言简意阐述观点。
结果:1转换为0001,A转换为1010,合并结果为00十 六进制数转二进制数的示例
单击此处输入你的项正文,请尽量言简意阐述观点。
示例:将十六进制数1A转换为二进制数
单击此处输入你的项正文,请尽量言简意阐述观点。
步骤:将1A拆分为1和A,分别转换为二进制数
单击此处输入你的项正文,请尽量言简意阐述观点。
结果:1转换为0001,A转换为1010,合并结果为*** *. 结论:十六进制数1A转换为二进制数为***
八进制数的每一位 数字代表一个8的 幂次,从右到左依 次为8^0、8^1、 8^2、...
八进制数的表示方 法 通 常 为 前 缀 " 0 o" 或"0",例如 0o123表示八进制 数123。
八进制数在计算机 编程和硬件设计中 有广泛应用,例如 Unix和Linux系统 的文件权限表示。
十六进制数的定义
单击此处添加正文,文字是您思想的提炼,请
尽量言简意赅,单击此处添加正文;

进制转换课件

进制转换课件
1、( 2A.3 )16=( 2、( 3B.12)16=(
101010.0011
)2 )2
111011.0001001
欢迎进入中等测试
十六进制转为二进制数高等测试
1、( 52A.3 )16=( 2、( 35.02)16=(
10100101010.0011
)2 )2
110101.0000001
欢迎进入高等测试
1、(1001010.01)2=( 112.2
2、(10100110.1)2=( 246.4
)8
)8
欢迎进入高等测试
二进制转为八进制数注意事项
1、当小数点右侧分段中不足三位时,一定 要右侧补零。 2、小数点要最后落下来,不能丢掉。 3、有几段二进制位,就会产生几个八进制 数,仔细检查段数与个数。
返回
二进制转为十六进制数
学习项目 记一记
看一看 练一练 想一想
使学生掌握二进制转为 十六进制的方法,运用所学 的知识解决实际问题。记忆 常见的十六进制所对应的二 进制表示。
二进制转为十六进制数的方法
方法:将二进制数从小数点的位置开始,分 别向其左右的方向,每四位分成一段,转成 一位十六进制数。当不足四位时,按距小数 点的方向,分别补零。
二进制转为八进制数练习测试
A B C
二进制转为八进制数简单测试
1、(100101)2=(
2、(10100110)2=(
45
246
)8
)8
欢迎进入简单测试
二进制转为八进制数中等测试
1、(1001.01)2=(
2、(101110.1)2=(
11.2
56.4
)8
)8
欢迎进入中等测试
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
进位计数制的概念 计算机中常用的几种进制 不同进位制之间的转换
总结 布置作业
一、进位计数制的概念
☞进位计数制 1. Introduction
进位计数制也称数制,就是人们利用数字符号按进 位原则进行数据大小计算的方法。通常人们在日常生活 中是以十进制来表达数值并进行计算的。另外还有二进 制、八3进. 制Ch和al十le六ng进e制rs等F。orwad
1、十进制转非十进制
2)十进制小数转换成二进制小数
说明:采用“乘以2顺向取整法”。即把给定 的十进制小数不断乘以2,取乘积的整数部分作为二 进制小数的最高位,然后把乘积小数部分再乘以2, 取乘积的整数部分,得到二进制小数的第二位,如 此不断重复,得到二进制小数的其他位。
例:将(0.875)10转换成二进制小数: 0.875×2=1.75 整数部分=1 (高位)
二、计算机中常用的几种进制
二进制
二进制的特点
(1)有两个数码:0,1 (2)基数为2 (3)逢二进一(加法运算),借一当二(减法运算) (4)按权展开式。
二、计算机中常用的几种进制
八进制
八进制的特点
(1)有八个数码:0,1,2,3,4,5,6,7 (2)基数为8 (3)逢八进一(加法运算),借一当八(减法运算) (4)按权展开式。
2.非十进制数转换成十进制数
练习:(1)将二进制数10110.11转换成十进制数
(2)将八进制数35.7转换成十进制数
(3)将十六进制数A7D.E转换成十进制数 答案:
(1)(10110.11)2 =(1×24+0×23+1×22+1×21+0×20+1×2-1+1×2-2)10 =(22.75)10
所以, (215.25)10=( 11010111.01)2
三、不同进位制数之间的转换 2、非十进制转十进制
方法:乘权求和
二进制
八进制
十六进制
2.非十进制数转换成十进制数
1)二进制数转换成十进制数 例:(1101.01)2
=(1×23+1×22+0×21+1×20+0×2-1+1×2-2 )10 =(13.25)10
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/
1.2计算机中信息的表示
4. Conclusion
一、进位计数制的概念
在数制中,有三个基本概念:数码、基数和位权
1、数码:指一个数制中表示基本数值大小不同的数字符 号。例如,在十进制中有十个数码:0,1,2,3,4,5 ,6,7,8,9;在二进制中有两个数码:0,1。
2、基数:指一个数值所使用数码的个数。例如,十进制 的基数为10,二进制的基数为2。
2.非十进制数转换成十进制数
0.75×2=1.5
整数部分=1
0.5×2=1
整数部分=1 (低位)
所以,(0.875)10=(0.111)2
1、十进制转非十进制
说明:对一个既有整数又有小数部分的十进制数, 只要分别把整数部分和小数部分转换成二进制,然后 用小数点连接起来即可。
练习:将(215.25)10转换成二进制数
答案: (215)10=(11010111)2 (0.25)10=(0.01)2
二、计算机中常用的几种进制
十六进制
十六进制的特点
(1)有十六个数码:0,1,2,3,4,5,6,7,8,9,A ,B,C,D,E,F
(2)基数为16 (3)逢十六进一(加法运算),借一当十六(减法运算) (4)按权展开式。
三、不同进位制数之间的转换
在数制的转换中,通常在数值后面加字母D、 B、O、H分别表示该数是十、二、八、十六进 制数,D、B、O、H的含义分别是Decimal、 Binary、Octal、Hexadecimal。
3、位权:指一个数值中某一位上的1所示数值的大小。例 如,十进制的123,1的位权是102=100,2是位权101=10,3的 位权是100=1。
二、计算机中常用的几种进制
数制
二进制 八进制 十六进制 十进制
非十进制
二、计算机中常用的几种进制
十进制
十进制的特点
(1)有十个数码:0,1,2,3,4,5,6,7,8,9 (2)基数为10 (3)逢十进一(加法运算),借一当十(减法运算) (4)按权展开式。
LOGO
PPT模板下载:/moban/ 节日PPT模板:/jieri/ PPT背景图片:/beijing/ 优秀PPT下载:/xiazai/ Word教程: /word/ 资料下载:/ziliao/ PPT课件下载:/kejian/ 范文下载:/fanwen/
3)十六进制数转换成十进制数 说明:十六进制数共有16个不同的符号:0、1、2、3 、4、5、6、7、8、9、A、B、C、D、E、F,其中A表 示10,B表示11,C表示12,D表示13,E表示14,F表 示15,转换方法同前,仅仅基数为16。
例:将转换成(4C.A)16十进制 (4C.A)16 =(4×161+12×160+1பைடு நூலகம்×16-1)10 =(76.625)10
这里,“2”是基数,“2i”(i=3,2,1,0,-1,-2)为位 权
2.非十进制数转换成十进制数
2)八进制数转换成十进制数 方法同二进制转换成十进制完全一样,仅仅 基数有所不同。
例:将(24.6)8转换成十进制 (24.6)8=(2×81+4×80+6×8-1)10 =(20.75)10
2.非十进制数转换成十进制数
说明:通常采用按位展开、按权相乘法
三、不同进位制数之间的转换 1、十进制转非十进制
二进制
八进制
十六进制
1、十进制转非十进制
方法: 整数部分除基取余 小数部分乘基取整
1、十进制转非十进制
1)十进制整数转换成二进制整数
说明:通常采用“除2取余法,商为零止,倒排列” 例:将(57)10转换成二进制数
相关文档
最新文档