2019年中考数学-一轮复习专题矩形-综合复习

合集下载

2019届中考数学综合题型专题复习卷:最值问题

2019届中考数学综合题型专题复习卷:最值问题
一、单选题
最值问题
1.对于实数 a,b,定义符号 min{a,b},其意义为:当 a≥b 时,min{a,b}=b;当 a<b 时,min{a,b}=a.例如:
min={2,–1}=–1,若关于 x 的函数 y=min{2x–1,–x+3},则该函数的最大值为( )
A.
B.1 C.
D.
【答案】D
2.在平面直角坐标系内,以原点 O 为圆心,1 为半径作圆,点 P 在直线
⊥AB,垂足为点 F,连接 AC,OC,则下列结论正确的是______.(写出所有正确结论的序号)


②扇形 OBC 的面积为 π;
③△OCF∽△OEC; ④若点 P 为线段 OA 上一动点,则 AP•OP 有最大值 20.25.
【答案】①③④. 30.如图,等腰△ABC 的底边 BC=20,面积为 120,点 F 在边 BC 上,且 BF=3FC,EG 是腰 AC 的垂直平分线,若点 D 在 EG 上运动,则△CDF 周长的最小值为__.
A.3 B.4 C.5 D.6 【答案】C 23.如图,∠AOB=60°,点 P 是∠AOB 内的定点且 OP= ,若点 M、N 分别是射线 OA、OB 上异于点 O 的动点, 则△PMN 周长的最小值是( )
A.
B.
C.6 D.3
【答案】D
24.如图,直线
与 x 轴、y 轴分别交于 A、B 两点,点 P 是以 C(﹣1,0)为圆心,1 为半径的圆上一点,
半径的⊙C 上,Q 是 AP 的中点,已知 OQ 长的最大值为 ,则 k 的值为( )
A.
B.
C.
D.
【答案】C
22.已知抛物线 y= x2+1 具有如下性质:该抛物线上任意一点到定点 F(0,2)的距离与到 x 轴的距离始终相等,

知识点32 矩形、菱形与正方形2019中考真题分类汇编

知识点32  矩形、菱形与正方形2019中考真题分类汇编

一、选择题9.(2019·苏州)如图,菱形ABCD 的对角线AC 、BD 交于点O ,AC =4,BD =16将△ABO 沿点A 到点C 的方向平移,得到△A 'B 'O '.当点A '与点C 重合时,点A 与点B '之问的距离为 ( ) A .6 B .8 C .10 D .12(第9题)【答案】C【解析】∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =OC 12=AC =2,OB =OD 12=BD =8,∵△ABO 沿点A 到点C 的方向平移,得到△A 'B 'O ',点A '与点C 重合,∴O 'C =OA =2,O 'B '=OB =8,∠CO 'B '=90°, ∴AO '=AC +O 'C =6,∴AB'=10,故选C .10.(2019·温州)如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使BM=BC ,作MN ∥BG 交CD 于点L ,交FG 于点N .欧几里得在《几何原本》中利用该图解释了(a+b)(a-b)=a 2-b 2.现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结EP ,记△EPH 的面积为S 1,图中阴影部分的面积为S 2.若点A ,L ,G 在同一直线上,则12S S 的值为 ( )A.2 B.3 C.4 D.6【答案】C【解析】如图,连接ALGL ,PF .由题意:S 矩形AMLD =S 阴=a 2﹣b 2,PH=22-a b ,∵点A ,L ,G 在同一直线上,AM ∥GN ,∴△AML ∽△GNL ,∴=,∴=,整理得a =3b ,∴===,故选C .9.(2019·绍兴)正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积 ( )A.先变大后变小B.先变小后变大C.一直变大D.保持不变10. (2019·烟台)如图,面积为24的ABCD 中,对角线BD 平分,过点D 作交BC 的延长线于点E ,6DE =,则sin DCE ∠的值为( ).A .2425B .45C .34D .1225【答案】A【解析】连接AC ,交BD 于点F ,过点D 作DM CE ⊥,垂足为M因为四边形ABCD 是平行四边形, 所以F 是BD 的中点,AD//BC , 所以DBC ADB ∠=∠,因为BD 是 ABC ∠的平分线, 所以ABD DBC ∠=∠, 所以ABD ADB ∠=∠, 所以AB AD =,所以□ABCD 是菱形, 所以AC BD ⊥, 又因为DE BD ⊥, 所以AC//DE ,因为AC//DE ,F 是BD 的中点, 所以C 是BE 的中点,所以132CF DE ==, 因为四边形ABCD 是菱形, 所以26AC FC ==,2ABCD AC BDS ⨯=菱形, FAB所以222486ABCDS BD AC⨯===菱形, 所以142BF BD ==, 在Rt △BFD 中,由勾股定理得5BC ==,因为四边形ABCD 是菱形, 所以5DC BC ==,因为ABCD S BC DM =⨯菱形 所以245ABCDS DM BC==菱形, 在Rt △DCM 中,24sin 25DM DCE DC ∠==. 6.(2019·江西)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有( )A.3种B.4种C.5种D.6种【答案】B【解题过程】具体拼法有4种,如图所示:4.(2019·株洲)对于任意的矩形,下列说法一定正确的是() A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形 【答案】C 【解析】根据矩形的性质可知,矩形的对角线相等但不一定垂直,所以选项A 是错误的;矩形相邻的边互相垂直,对边互相平行,所以选项B 是错误的;矩形的四个角都是直角,所以四个角都相等是正确的;矩形既是轴对称图形,又是中心对称图形,所以选项D 是错误的;故选C.3. (2019·娄底)顺次连接菱形四边中点得到的四边形是( )A 平行四边形B . 菱形C . 矩形D . 正方形 【答案】C【解析】如图:菱形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,∴EH ∥FG ∥BD ,EH =FG = 12 BD ;EF ∥HG ∥AC ,EF =HG =12AC ,故四边形EFGH 是平行四边形, 又∵AC ⊥BD ,∴EH ⊥EF ,∠HEF =90° ∴四边形EFGH 是矩形. 故选C .10.(2019·安徽)如图,在正方形ABCD 中,点E 、F 将对角线AC 三等分,且AC=12.点P 在正方形的边上,则满足PE+PF=9的点P 的个数是A. 0B. 4C. 6D. 8【答案】D【解题过程】如图,作点F 关于CD 的对称点F /,连接PF /、PF ,则PE +PF =EF /,根据两点之间线段最知可知此时PE +PF 的值最小.过点E 作EH ⊥FF /,垂足为点H ,FF’交CD 于点G ,易知△EHF 、△CFG 是等腰直角三角形,∴EH =FH =FG =F’G=2EF =,∴EF’=9.根据正方形的对称性可知正方形ABCD 的每条边上都有一点P 使得PE +PF 最小值.连接DE 、DF ,易求得DE +DF =>9,CE +CF =12>0,故点P 位于点B 、D 时,PE +PF >9,点P 位于点A 、C 时,PE +PF >9,∴该正方形每条边上都有2处点使得PE +PF =9,共计点P 有8处.1.(2019·无锡)下列结论中,矩形具有而菱形不一定具有的性质是() A.内角和为360° B.对角线互相平分 C.对角线相等 D.对角线互相垂直 【答案】C【解析】本题考查了矩形的性质、菱形的性质,矩形的对角线相等且平分,菱形的对角线垂直且平分,所以矩形具有而菱形不具有的为对角线相等,故选C .2. (2019·泰安)如图,矩形ABCD 中,AB =4,AD =2,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB,则PB的最小值是A.2B.4C.2D.B【答案】D【解析】∵F为EC上一动点,P为DF中点,∴点P的运动轨迹为△DEC的中位线MN,∴MN∥EC,连接ME,则四边形EBCM为正方形,连接BM,则BM⊥CE,易证BM⊥MN,故此时点P与点M重合,点F与点C重合,BP取到最小值,在Rt△BCP中,BP=22BC CP=22.3.(2019·眉山)如图,在矩形ABCD中AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE的长是A.1 B.74C.2 D.125【答案】B【解析】连接CE,∵四边形ABCD是矩形,∴∠ADC=90°,OC=OA,AD=BC=8,DC=AB=6,∵EF⊥AC,OA=OC,∴AE=CE,在Rt△DEC中,DE2+DC2=CE2,即DE2+36=(8-DE)2,解得:x=74,故选B.4.(2019·攀枝花)下列说法错误的是()A.平行四边形的对边相等B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.正方形既是轴对称图形、又是中心对称图形【答案】B【解析】对角线相等的四边形不一定是矩形,如等腰梯形.故选B.5.(2019·攀枝花)如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE折叠到AF,延长EF交DC于G。

2020年中考数学一轮专项复习——矩形、菱形、正方形(含解析)

2020年中考数学一轮专项复习——矩形、菱形、正方形(含解析)

第3题图A. 20 °B.302020年中考数学一轮专项复习一一矩形、菱形、正方形课时1 矩形■基础过关1. (2019重庆模拟)下列关于矩形对角线的说法中,正确的是 ( )A.对角线相互垂直B.面积等于对角线乘积的一半C.对角线平分一组对角D.对角线相等2 . (2019临沂)如图,在?ABCD 中,M, N 是BD 上两点,个条件,使四边形 AMCN 是矩形,这个条件是()B. MB= MOD. / AMB = Z CNDBM = DN,连接 AM, MC , CN, NA.添加一1A. OM =2ACC. BD± AC3 .如图,将矩形纸片 数为( )ABCD 沿BD 折叠,得到△ BCD, CD 与AB 交于点E.若/1 = 35°,则/ 2的度第2题图5.如图,矩形 ABCD 中,A (-2, 0), B (2, 0), C (2, 2),将AB 绕点A 旋转,使点 B 落在边CD 上的点E 处,则点E 的坐标为()B. (2击,2) D. (2^3-2, 2)4. (2019贵阳模拟)如图,在矩形ABCD ( ) ABCD 中,AE 平分/ BAD,交边BC 于点E,若ED=5, EC=3,则A. 11B. 14C. 22D. 28A.(a 2) C. (1 ,6.如图,在矩形ABCD 中,对角线 AC 与BD 相交于点 O,过点A 作BD 的垂线,垂足为E.已知/ EAD= 3/BAE,则/ EAO 的度数为(A . 22.5B. 67.5C. 45°D. 60°7 . (2020原创)如图,点O 是矩形 则^ BOE 的周长为()ABCD 对角线 AC 的中点,OE // AB 交AD 于点E.若AB=6, BC=8,A. 10B. 8 + 2^5C. 8+2^13D. 14E第4题图第5题图4第6题图10.(人教八下P55练习2题)如图,?ABCD的对角线AC、BD交于点O, △ OAB是等边三角形,AB =4.(1)求证:四边形ABCD是矩形;(2)求四边形ABCD的面积.8. (2018遵义)如图,点P是矩形ABCD的对角线AC上一点, 点E, F,连接PB、PD.若AE=2, PF = 8.则图中阴影部分的面积为过点P作EF // BC,分别交AB, CD于A. 10 8.12 C. 16D. 189.(2019徐州)如图,矩形ABCD中,AC、BD交于点O, M、N分别为BC、OC的中点,若MN = 4, 则AC的长为第7题图第8题图第9题图第10题图11 . (2019怀化)已知:如图,在?ABCD中,AEXBC, CFXAD, E, F分别为垂足.⑴求证:△ ABE^A CDF ;(2)求证:四边形AECF是矩形.第11题图12 . (2019连云港)如图,在^ ABC中,AB = AC>AABC沿着BC方向平移得到△ DEF ,其中点E在边BC上,DE 与AC相交于点O.(1)求证:△ OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.第12题图1 . (2019台州)如图,有两张矩形纸片 ABCD 和EFGH, AB=EF =2 cm, BC = FG=8 cm 把纸片 ABCD 交叉叠放在纸片 EFGH 上,使重叠部分为平行四边形,且点 D 与点G 重合,当两张纸片交叉所成的角 “最 小时,tan a 等于()2 .如图,在矩形 ABCD 中,AB = 4, BC = 6, E 是矩形内部的一个动点,且 AEXBE,则线段CE 的最 小值为.A.B. 2C. 187D.8_15;1 DB EC F第1题图第2题图立满分冲关1. (2019眉山模拟)如图,在矩形ABCD中,E是AD边的中点,BEXAC,垂足为点F,连接DF ,分析下列四个结论:① CF = 3AF;②AB=DF;③DF = ^BC;④S四边形CDEF^S MBF.其中正确白结论有( )第1题图A . 1个B,2个C,3个D,4个【错误结论纠正】请将错误结论改正确.2 .如图,在矩形ABCD中,ZBAC=30°,对角线AC, BD交于点O, / BCD的平分线CE分别交AB, BD于点E, H,连接OE.(1)求/ BOE的度数;(2)若BC=1,求^ BCH的面积;(3)求S A CHO :S^BHE的值.H E第2题图课时2菱形(建议时间:40分钟)名■基础过关1. (2019玉林)菱形不具备的性质是()A.是轴对称图形B.是中心对称图形C.对角线互相垂直D.对角线一定相等2. (2019 河北)如图,菱形ABCD 中,/ D= 150°,则/ 1 =()A.30 °B. 25 °C. 20 °D. 15 °DB第2题图3. (2019襄阳)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C, D两点,连接AC, BC, AD, BD,则四边形ADBC一定是()A.正方形B.矩形第3题图4. (2019呼和浩特)已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为()A.2 2B. 2 . 5C. 4 2D. 2 . 105. (2019宁夏)如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是()A.AC± BDB.AB = ADC.AC= BDD./ ABD = Z CBD,4第5题图6 . (2019赤峰)如图,菱形ABCD的周长为20,对角线AC、BD相交于点O, E是CD的中点,则OE 的长是()A. 2.5B. 3第6题图7. (2019天津)如图,四边形ABCD 为菱形,A, B两点的坐标分别是(2, 0), (0, 1),点C, D在坐标轴上,则菱形ABCD的周长等于(y6D第7题图A. 5B.4 3C.4 5D. 208 . (2019永州)如图,四边形ABCD的对角线相交于点O,且点。

备考2022年中考数学一轮复习-图形的性质_四边形_矩形的性质-综合题专训及答案

备考2022年中考数学一轮复习-图形的性质_四边形_矩形的性质-综合题专训及答案

备考2022年中考数学一轮复习-图形的性质_四边形_矩形的性质-综合题专训及答案矩形的性质综合题专训1、(2019苏州.中考模拟) 如图1,在矩形A8CD中,BC>A8,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC 于点C.(1)求证:AB+AK=KD:(2)若KD=KG,BC=4- .①求KD的长度;②如图2,点P是线段KD上的动点(不与点D、K重合),PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=m,当S= 时,求m的值.△PMN2、(2019萧山.中考模拟) 如图,已知一张长方形纸片,AB=CD=a,AD=BC=b(a <b<2a).将这张纸片沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折叠后的纸片再次沿着另一条过点A的折痕翻折,点E恰好与点D重合,此时折痕交DC于点G.(1)在图中确定点F、点E和点G的位置;(2)连接AE,则∠EAB=;(3)用含有a、b的代数式表示线段DG的长.3、(2018信阳.中考模拟) 如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=–x+3交AB,BC于点M,N,反比例函数的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.4、(2018岳阳.中考模拟) 如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是直线x=﹣1.(1)求抛物线对应的函数关系式;(2)点N在线段OA上,点M在线段OB上,且OM=2ON,过点N作x轴的垂线交线段AB于点Q,交抛物线于点P.①当ON为何值时,四边形OMPN为矩形;②△AOQ能否为等腰三角形?若能,求出此时ON的值;若不能,请说明理由.5、(2017冷水滩.中考模拟) 如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:△AEF≌△DCE;(2)若CD=1,求BE的长.6、(2017城.中考模拟) 如图,矩形纸片ABCD(AD>AB)中,将它折叠,使点A与C重合,折痕EF交AD于E,交BC于F,交AC于O,连结AF、CE.(1)求证:四边形AFCE是菱形;(2)过E作EP⊥AD交AC于P,求证:AE2=AO•AP;(3)若AE=8,△ABF的面积为9,求AB+BF的值.7、(2011深圳.中考真卷) 如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.8、(2019港南.中考模拟) 已知长方形中,,点在边上,由往运动,速度为,运动时间为秒,将沿着翻折至,点对应点为,所在直线与边交与点,(1)如图,当时,求证:;(2)如图,当为何值时,点恰好落在边上;(3)如图,当时,求的长.9、(2018德阳.中考真卷) 如图点、分别是矩形的边、上一点,若,且,(1)求证:点为的中点;(2)延长与的延长线相交于点,连结,已知,求的值.10、(2017贵州.中考模拟) 如图,为了绿化小区,某物业公司要在形如五边形ABCDE 的草坪上建一个矩形花坛PKDH.已知:PH∥AE,PK∥BC,DE=100米,EA=60米,BC=70米,CD=80米.以BC所在直线为x轴,AE所在直线为y轴,建立平面直角坐标系,坐标原点为O.(1)求直线AB的解析式.(2)若设点P的横坐标为x,矩形PKDH的面积为S,求S关于x的函数关系式.11、(2020锦江.中考模拟) 如图1,在矩形ABCD中,AB=1,对角线AC,BD相交于点O,∠COD=60°,点E是线段CD上一点,连接OE,将线段OE绕点O逆时针旋转60°得到线段OF,连接DF.(1)求证:DF=CE;(2)连接EF交OD于点P,求DP的最大值;(3)如图2,点E在射线CD上运动,连接AF,在点E的运动过程中,若AF=AB,求OF的长.12、(2020鹤岗.中考真卷) 如图,在平面直角坐标系中,矩形的边长是方程的根,连接,,并过点作,垂足为,动点P从点B以每秒2个单位长度的速度沿方向匀速运动到点D为止;点M沿线段以每秒个单位长度的速度由点D向点A匀速运动,到点A为止,点P与点M同时出发,设运动时间为t秒(1)线段________;(2)连接和,求的面积s与运动时间的函数关系式;(3)在整个运动过程中,当是以为腰的等腰三角形时,直接写出点P的坐标.13、(2020长春.中考真卷) (教材呈现)下图是华师版八年级下册数学教材第121页的部分内容.(1)(问题解决)如图①,已知矩形纸片,将矩形纸片沿过点的直线折叠,使点A落在边上,点A的对应点为,折痕为,点E在上.求证:四边形是正方形.(2)(规律探索)由(问题解决)可知,图①中的为等腰三角形.现将图①中的点沿向右平移至点处(点在点的左侧),如图②,折痕为,点在上,点P在上,那么还是等腰三角形吗?请说明理由.(3)(结论应用)在图②中,当时,将矩形纸片继续折叠如图③,使点C与点P重合,折痕为,点G在上.要使四边形为菱形,则________.14、(2019扬州.中考模拟) 如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF(1)求证:四边形AEDF为菱形;(2)试探究:当AB:BC=,菱形AEDF为正方形?请说明理由.15、(2020温州.中考模拟) 如图,矩形ABCD中,AB=6,BC=6 ,动点P从点A出发,以每秒个单位长度的速度沿线段AD运动,动点Q从点D出发,以每秒2个单位长度的速度沿折线段D﹣O﹣C运动,已知P、Q同时开始移动,当动点P 到达D点时,P、Q同时停止运动.设运动时间为t秒.(1)当t=1秒时,求动点P、Q之间的距离;(2)若动点P、Q之间的距离为4个单位长度,求t的值;(3)若线段PQ的中点为M,在整个运动过程中;直接写出点M运动路径的长度________.矩形的性质综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

备考2023年中考数学一轮复习-图形的性质_四边形_矩形的判定-综合题专训及答案

备考2023年中考数学一轮复习-图形的性质_四边形_矩形的判定-综合题专训及答案

备考2023年中考数学一轮复习-图形的性质_四边形_矩形的判定-综合题专训及答案矩形的判定综合题专训1、(2016保定.中考模拟) 如图,在菱形ABCD中,P是对角线AC上任一点(不与A,C重合),连接BP,DP,过P作PE∥CD交AD于E,过P作PF∥AD交CD于F,连接EF.(1)求证:△ABP≌△ADP;(2)若BP=EF,求证:四边形EPFD是矩形.2、(2018宁波.中考模拟) 已知:如图,在▱ABCD中,DE平分∠ADB,交AB于E,BF 平分∠CBD,交CD于F.(1)求证:△ADE≌△CBF;(2)当AD与BD满足什么关系时,四边形DEBF是矩形?请说明理由.3、(2017莱西.中考模拟) 如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.4、(2017蒙阴.中考模拟) 已知:如图,在△A BC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.(1)求证:AD=CE;(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.5、(2017日照.中考真卷) 如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形.请加以证明.6、(2016潍坊.中考真卷) 正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.7、(2017潮南.中考模拟) △ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?8、(2016深圳.中考模拟) 如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=2 时,求sin∠A ED的值.9、(2017阜康.中考模拟) 如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4 ,tanα= ,求四边形OBEC的面积.10、(2018新疆维吾尔自治区.中考真卷) 如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接FB,DF.判断四边形EBFD的形状,并说明理由.11、(2020湖州.中考模拟) 如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F 分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.12、(2020兰州.中考模拟) 在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C 点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.13、(2020开远.中考模拟) 如图,在▱ABCD中,∠BAD的平分线交CD于点E,交BC 的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.14、(2020昆明.中考真卷) 如图1,在矩形ABCD中,AB=5,BC=8,点E,F分别为AB,CD的中点.(1)求证:四边形AEFD是矩形;(2)如图2,点P是边AD上一点,BP交EF于点O,点A关于BP的对称点为点M,当点M落在线段EF上时,则有OB=OM.请说明理由;(3)如图3,若点P是射线AD上一个动点,点A关于BP的对称点为点M,连接AM,DM,当△AMD是等腰三角形时,求AP的长.15、(2021岑溪.中考模拟) 如图,抛物线交轴于点、,交轴于点,点的坐标为(3,0),点的坐标为(0,3),点与点关于抛物线的对称轴对称.(1)求抛物线的解析式;(2)若点为抛物线对称轴上一动点,连接,以、为边作平行四边形,是否存在这样的点,使平行四边形是矩形?若存在,请求出点的坐标;(3)在(2)的结论下,求出的值.矩形的判定综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

2019中考数学一轮综合复习同步讲义(第14课矩形)

2019中考数学一轮综合复习同步讲义(第14课矩形)

第14课 平行四边形与矩形⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧判定:性质:矩形面积公式:周长公式:判定:性质:平行四边形中考真题练习1.在□ABCD 中,延长AB 到E,使BE=AB ,连接DE 交BC 于F ,则下列结论不一定成立的是( ) A.CDF E ∠=∠ B.DF EF = C.BF AD 2= D.CF BE 2=第1题图 第2题图 第3题图2.如图,矩形ABCD 的周长是20cm,以AB 、CD 为边向外作正方形ABEF 和正方形ADGH,若正方形ABEF 和ADGH 的面积之和68cm 2,那么矩形ABCD 的面积是( )A.21cm 2B.16cm 2C.24cm 2D.9cm23.如图,在矩形ABCD 中,AB=8,BC=16,将矩形ABCD 沿EF 折叠,使点C 与点A 重合,则折痕EF 长为( ) A.6 B.12 C.52 D.544.如图,在Rt △ABC 中,∠B=900,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有□ADCE 中,DE 最小的值是( )A.2B.3C.4D.5BDC FEGA第4题图 第5题图5.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC,CD,DA 运动至点A 停止.设点P 运动的路程为x,△ABP 的面积为y,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( ) A.10 B.16 C.18 D.206.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为 .7.一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为 .8.如图,在四边形ABCD 中,对角线AC 、BD 交于点O ,AD ∥BC,请添加一个条件: ,使四边形ABCD 为平行四边形(不添加任何辅助线).第8题图 第9题图 第10题图 9.如图,在□ABCD 中,DE 平分∠ADC,AD=6,BE=2,则□ABCD 的周长是 . 10.如图,在□ABCD 中,BC=10,sinB=,AC=BC ,则□ABCD 的面积是 .11.如图,在矩形ABCD 中,对角线AC,BD 交于点O,已知0120AOD ∠=,AB=2.5,则AC 的长为 .第11题图 第12题图 第13题图12.如图,已知在矩形ABCD 中,点E 在边BC 上,BE=2CE,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C /、D /处,且点C /、D /、B 在同一条直线上,折痕与边AD 交于点F ,D /F 与BE 交于点G .设AB=t,那么△EFG 的周长为 (用含t 的代数式表示).13.如图,将矩形ABCD 沿CE 向上折叠,使点B 落在AD 边上的点F 处.若AE=32BE ,则长AD 与宽AB 的比值是 .14.如图,在矩形ABCD 中,53=BC AB ,以点B 为圆心,BC 长为半径画弧,交边AD 于点E.若34=⋅ED AE ,则矩形ABCD 的面积为 .第14题图 第15题图 第16题图15.如图,在平面直角坐标系中,矩形OABC 的顶点错误!未找到引用源。

2019中考数学一轮复习第22讲矩形、菱形、正方形精选优质课件

2019中考数学一轮复习第22讲矩形、菱形、正方形精选优质课件

商标注册建议书商标是企业的重要资产之一,具有标志企业形象、保护企业利益的作用。

因此,商标注册是企业发展过程中的重要环节。

本文将就商标注册提出一些建议,帮助企业更好地保护自己的商标权益。

一、选择合适的商标1.1 商标的独特性商标应该具有独特性,能够与其他商标区分开来。

避免使用与已有商标过于相似的图形、文字或组合,以免引发侵权纠纷。

1.2 商标的易记性商标应该具有辨识度和易记性,便于消费者记忆和识别。

简洁、清晰、具有个性化的商标更容易被市场接受和认可。

1.3 商标的适用范围在选择商标时要考虑到商标的适用范围,避免选择过于狭窄或过于广泛的商标。

商标的适用范围应该与企业的业务范围相匹配,有利于商标的有效保护。

二、进行商标注册前的调研2.1 商标注册可行性调研在进行商标注册前,应该对所选择商标的可注册性进行调研。

了解市场上已有的商标情况,避免选择与已有商标相同或相似的商标,以免被驳回。

2.2 商标注册地区选择根据企业的经营范围和市场需求,选择合适的商标注册地区。

不同地区的商标注册规定和程序可能有所不同,需要提前了解并遵守相关规定。

2.3 商标注册费用预算在进行商标注册前,需要对商标注册费用进行预算。

商标注册费用包括申请费、审查费、续展费等,企业应该根据自身实际情况做好费用规划。

三、申请商标注册3.1 准备商标注册资料在申请商标注册前,需要准备好相关的商标注册资料,包括商标申请表、商标样本、商标分类等。

确保资料的完整性和准确性,有利于商标注册的顺利进行。

3.2 提交商标注册申请根据商标注册要求,将准备好的商标注册资料提交给商标注册机构。

在提交申请时要注意填写资料的准确性和完整性,避免因资料不全或错误而导致注册失败。

3.3 跟踪商标注册进展在提交商标注册申请后,企业应该及时跟踪商标注册进展,了解审查情况和可能的问题。

及时处理审查中的疑问和问题,有助于商标注册的顺利进行。

四、维护商标权益4.1 商标续展商标注册后,企业需要定期进行商标续展,确保商标权益的持续有效。

【图文】最新2019年初中中考数学一轮复习精编重点考点专题25 矩形菱形与正方形

【图文】最新2019年初中中考数学一轮复习精编重点考点专题25 矩形菱形与正方形
2

x,CD=6x,
2 2
则 S△DHC= ×HM×CD=3x ,S△EDH= ×DH =13x , ∴3S△EDH=13S△DHC,故④正确; 故选:D.
2.(山东省东营市·3 分)如图,在矩形 ABCD 中,E 是 AD 边的中点,BE⊥AC,垂足为点 F, 连接 DF, 分析下列四个结论: ①△AEF∽△CAB; ②CF=2AF; ③DF=DC; ④tan∠CAD= 2. 其 中正确的结论有( A.4 个 B.3 个 ) C.2 个 D.1 个
2019 年中考数学升学复习专用
初中数学中考专题复习
数学必考考点分类汇编
中考数学专题复习
解析版
2019 年中考数学一轮复习
数学重要专题复习汇编
2019


为更好的检验中考升学学生对初中数学知识的掌握程度,总结经验查 漏补缺,提升学习成绩。根据最新考纲整理编排了初中数学所有专题复习 试卷, 试卷中的试题均来自全国各地中考真题, 具有极大的参考复习价值。 专题复习将数学知识点进行延伸和拓展,将一些零散的知识,系统化、网络 化、规律化,能够更好的剖析考点,归纳总结出解题的方法和规律,最终 提高学生解题能力。这样的复习既可以可领先教学进度,又能贴近教学需 要,通过打造高效优质测验试卷,让您能够快速提升教学质量,让学生能 够在升学中取得更好成绩。
2 2 2
在△EHF 和△DHC 中, ∴△EHF≌△DHC(SAS) , ∴∠HEF=∠HDC,

∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确; ③∵△CFG 为等腰直角三角形,H 为 CG 的中点, ∴FH=CH,∠GFH= ∠GFC=45°=∠HCD,

备考2023年中考数学一轮复习-图形的性质_四边形_矩形的性质-填空题专训及答案

备考2023年中考数学一轮复习-图形的性质_四边形_矩形的性质-填空题专训及答案

备考2023年中考数学一轮复习-图形的性质_四边形_矩形的性质-填空题专训及答案矩形的性质填空题专训1、(2019常州.中考真卷) 如图,在矩形中,,点是的中点,点在上,,点、在线段上.若是等腰三角形且底角与相等,则________.2、(2016无锡.中考真卷) 如图,矩形ABCD的面积是15,边AB的长比AD的长大2,则AD的长是________.3、(2016石家庄.中考模拟) 如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y= (x>0)的图象经过矩形的对称中心E,且与边BC交于点D,则点CD的长为________.4、(2017徐汇.中考模拟) 如图,矩形ABCD的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果AB:BC=3:4,那么AB的长是________.5、(2019绍兴.中考模拟) 如图,矩形ABCD中,AB=2,点E在AD边上,以E为圆心,EA长为半径的⊙E与BC相切,交CD于点F,连接EF.若扇形EAF的面积为,则BC的长是________.6、(2019龙湾.中考模拟) 如图所示是小明设计带矩形、菱形、正方形图案的一块具有轴对称美的瓷砖作品. 若,,则矩形的周长是________ .7、(2019.中考模拟) 如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为________.8、(2014金华.中考真卷) 如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是________.9、(2017和.中考模拟) 如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D 落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2 .以上结论中,你认为正确的有________.(填序号)10、(2017中.中考模拟) 如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C′,再将所折得的图形沿EF折叠,使得点D和点A重合.若AB=3,BC=4,则折痕EF的长为________11、(2017枣庄.中考真卷) 在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED 的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=________.(结果保留根号)12、(2020新野.中考模拟) 如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为________.13、(2017平顶山.中考模拟) 如图,在矩形ABCD中,AB=2 ,AD=4,点E是BC边上一个动点,连接AE,作DF⊥AE于点F,当BE的长为________时,△CDF是等腰三角形.14、(2017许昌.中考模拟) 如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC 边上时,AE的长为________.15、(2017林州.中考模拟) 已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B,C 重合),经过点O、P折叠该纸片,得点B′和折痕OP(如图①)经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ(如图②),当点C′恰好落在OA上时,点P的坐标是________.16、(2019遂宁.中考真卷) 如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B.二次函数的图象经过、G、A三点,则该二次函数的解析式为________.(填一般式)17、(2017贵州.中考模拟) 在平面直角坐标系中,四边形OABC为矩形,点A的坐标为(4,0),点B的坐标为(4,3),动点M,N分别从O、B同时出发,以每秒1个单位长度的速度运动,其中,点M沿OA向终点A运动,点N沿BC向终点C 运动,过点M作MP⊥OA,交AC于P,连接NP.下列说法①当点M运动了2秒时,点P的坐标为(2,);②当点M运动秒时,△NPC是等腰三角形;③当点N运动了2秒时,△NPC的面积将达到最大值.其中正确的有________.18、(2020保康.中考模拟) 如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是________.19、(2021徐州.中考真卷) 如图,四边形与均为矩形,点分别在线段上.若,矩形的周长为,则图中阴影部分的面积为.20、如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC、ED分别交于点M,N.已知AB=4,BC=6,则MN的长为.矩形的性质填空题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:。

2019数学中考第一轮复习课件第23讲_矩形、菱形、正方形

2019数学中考第一轮复习课件第23讲_矩形、菱形、正方形

1.下列命题中,真命题是( D ) A.对角线相等的四边形是矩形 B.对角线互相垂直的四边形是菱形 C.对角线互相垂直且相等的四边形是正方形 D.对角线互相平分的四边形是平行四边形
2.如图,在菱形 ABCD 中,AB=5,∠BCD=120°,则对角线 AC 等于( D )
A.20
B.15
C.10
考点一 矩形的定义、性质和判定
1.定义:有一个角是直角的平行四边形是矩形. 2.性质:(1)矩形的四个角都是直角;(2)矩形的对角线互相平分且相等;(3)矩形既是轴 对称图形,又是中心对称图形,它有两个对称轴,它的对称中心是对角线的交点. 3.判定:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形; (3)对角线相等的平行四边形是矩形.
考点二 菱形的定义、性质和判定 1.定义:有一组邻边相等的平行四边形是菱形. 2.性质:(1)菱形的四条边都相等,对角线互相垂直平分,并且每条对角线平分一组对 角;(2)菱形既是轴对称图形又是中心对称图形. 3.判定:(1)有一组邻边相等的平行四边形是菱形;(2)四条边都相等的四边形是菱形; (3)对角线互相垂直的平行四边形是菱形.
D.5
3.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线(直角三角形的中位 线)剪去上面的小直角三角形.将留下的纸片展开,得到的图形是( A )
4.如图,已知矩形 ABCD,一条直线将该矩形 ABCD 分割成两个多边形(含三角形),若
这两个多边形的内角和分别为 m 和 n,则 m+n 不可能是( D )
考点四 平行四边形、矩形、菱形、正方形的关系
(1)(2010·芜湖)下列命题中是真命题的是( ) A.对角线互相垂直且相等的四边形是正方形 B.有两边和一角对应相等的两个三角形全等 C.两条对角线相等的平行四边形是矩形 D.两边相等的平行四边形是菱形

福建省2019年中考数学总复习第五单元四边形第29课时矩形课件

福建省2019年中考数学总复习第五单元四边形第29课时矩形课件

.
课前考点过关
考点三 矩形的判定
1.定义法. 【疑难典析】
2.有三个角是直角的① 四边形
是矩形.
要利用矩形的判定3,必须满足以下两 个条件:
3.对角线相等的② 平行四边形 是矩形.
①对角线相等;
②平行四边形.
课前考点过关
| 对点自评|
题组一 基础关
1.矩形具有而一般的平行四边形不一定具有的特征是( C ) A.对角相等 B.对角线互相平分 C.对角线相等 D.对边相等
D. 34
Rt△ABC 斜边上的中线,∴OB= AC=5.
2
1
课前考点过关
题组二 易错关
【失分点】 忽视矩形中对角线的关系;疏忽对角线相等的四边形不一定为矩形;对矩形的折叠掌握不扎实. 5.下列关于矩形的说法中正确的是( B ) A.对角线相等的四边形是矩形 B.矩形的对角线相等且互相平分 C.对角线互相平分的四边形是矩形 D.矩形的对角线互相垂直且平分
【答案】D 【解析】连接 BF,BF 与 AE 的交点为 H.
∵BC=6,点 E 为 BC 的中点,∴BE=3, 又∵AB=4,∴AE= ������������2 + ������������ 2 =5,
图 29-5 A.1.8 B.2.4 C.3.2 D.3.6
∴BH= ,则 BF∠BFC=90° ,∴CF= 62 -( ) =3.6.
5
24 2
课前考点过关
9.[2018· 福州质检] 如图 29-6,矩形 ABCD 中,E 是 BC 上一点,将△ABE 沿 AE 折叠,得到△AFE,若 F 恰 好是 CD 的中点,则
������������ ������������
【答案】B 【解析】∵四边形 ABCD 是矩形, ∴∠ABC=90° ,AB∥CD,AB=CD. ∵OE∥AB,点 O 是 AC 的中点, ∴OE∥CD,OE 是△ACD 的中位线, ∴CD=2OE=6,∴AB=6.在 Rt△ABC 中,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年中考数学一轮复习专题矩形综合复习一选择题:1.下列命题是假命题的是( )A.矩形的对角线相等B.矩形的对边相等C.矩形的对角线互相平分D.矩形的对角线互相垂直2.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有( )A.1个 B.2个 C.3个D.4个3.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°4.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()A.3B.4C.5D.75.如图,在矩形ABCD中,AB=2,BC=4,对角线AC垂直平分线分别交AD、AC于点E、O,连接CE,则CE长为( )A.3B.3.5C.2.5D.2.86.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是( )A.30°B.60°C.90° D.120°7.如图是一张矩形纸片ABCD,AD=10 cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=( )A.4 cmB.6 cmC.8 cmD.10 cm8.如图,在Rt△ABC中,∠A=90°,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,动点P从点B出发,沿着BC匀速向终点C运动,则线段EF的值大小变化情况是( )A.一直增大B.一直减小C.先减小后增大D.先增大后减少9.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A′BC′D′.若边A′B交线段CD于H,且BH=DH,则DH的值是( )A.B.8-2 C. D.610.如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是-1,则对角线AC、BD的交点表示的数是( )A.5.5B.5C.6D.6.511.如图在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=3,BC=8,则△EFM的周长是()A.21B.15C.13D.1112.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定13.如图,在矩形ABCD中,AB=2,BC=1,动点P从点A出发,沿路线A→B→C做匀速运动,那么△CDP的面积S与点P运动的路程x之间的函数图象大致是()A. B. C. D.14.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC 的面积分别是S1、S2的大小关系是()A.S1>S2 B.S1=S2 C.S1<S2 D.3S1=2S215.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12B.24C.12D.1616.如图,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下列结论:△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE,其中正确的结论的个数有( )A.1B.2C.3D.417.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()A.4B.4.8C.5.2D.618.如图4,正方形ABCD中,点E在BC的延长线上,AE平分∠DAC,则下列结论:(1)∠E=22.50.(2)∠AFC=112.50.(3)∠ACE=1350.(4)AC=CE. (5) AD∶CE=1:.其中正确的有()A.5个B.4个C.3个D.2个19.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE ⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是()A.4≥x>2.4B.4≥x≥2.4C.4>x>2.4D.4>x≥2.420.如图,矩形ABCD中,AB=6,AD=8,顺次连结各边中点得到四边形A1B1C1D1,再顺次连结四边形A1B1C1D1各边中点得到四边形A2B2C2D2…,依此类推,则四边形A7B7C7D7的周长为()A.14B.10C.5D.2.5二填空题:21.如图,矩形A BCD中,点E在线段AD延长线上,AD=DE,连接BE与DC相交于点F,连接AF,请从图中找出一个等腰三角形.22.如图,在矩形ABCD中,AB=5cm,且∠BOC=120°,则AC 的长为____________;23.如图矩形ABCD中,AB=8㎝,CB=4㎝,E是DC的中点,BF=BC,则四边形DBFE的面积为______________。24.如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA、PR的中点.如果DR=3,AD=4,则EF的长为________.25.如图,O为矩形ABCD的中心,将直角三角板的直角顶点与O点重合,转动三角板使两直角边始终与BC、AB相交,交点分别为M、N.如果AB=4,AD=6,OM=x,ON=y,则y与x的函数关系式是.26.如图,矩形ABCD 的边长AB=8,AD=4,若将△DCB沿BD所在直线翻折,点C落在点F处,DF与AB交于点E. 则cos∠ADE= .27.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=4cm,则四边形CODE 的周长为28.如图,将矩形纸片ABC(D)折叠,使点(D)与点B重合,点C落在点处,折痕为EF,若,那么的度数为度.29.如图,矩形ABCD中,AD=4,∠CAB=30o,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是30.小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E 点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD长与宽的比值为.三简答题:31.如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.求证:DF=DC.32.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.33.长为1,宽为a的矩形纸片(<a<1),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的矩形为正方形,则操作终止.(I)第二次操作时,剪下的正方形的边长为;(Ⅱ)当n=3时,a的值为.(用含a的式子表示)34.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.35.如图,在矩形OABC中,点A、C的坐标分别为(10,0),(0,2),点D是线段BC上的动点(与端点B、C不重合),过点D作直线交线段OA于点E.(1)矩形OABC的周长是;(2)连结OD,当OD=DE时,求的值;(3)若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC重叠部分的面积是否会随着E点位置的变化而变化,若不变,求出该重叠部分的面积;若改变,请说明理由.36.如图,长方形ABCD,AB=9,AD=4.E为CD边上一点,CE=6.(1)求AE的长.(2)点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P 运动的时间为t秒,则当t为何值时,△PAE为等腰三角形?37.长方形ABCD中,AD=10,AB=8,将长方形ABCD折叠,折痕为EF(1)当A′与B重合时(如图1),EF= ;(2)当直线EF过点D时(如图2),点A的对应点A′落在线段BC上,求线段EF的长;(3)如图3,点A的对应点A′落在线段BC上,E点在线段AB上,同时F点也在线段AD 上,则A′在BC上的运动距离是;38.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH 的值,并说明理由.39.如图1,矩形ABCD中,AB=6,BC=8,点E、F分别是BC、CD边上的点,且AE⊥EF,BE=2,(1)求证:AE=EF;(2)延长EF交矩形∠BCD的外角平分线C P于点P(图2),试求AE与EP的数量关系;40.如图,把宽为2cm的纸条ABCD沿EF,GH同时折叠,B、C两点恰好落在AD边的P点处,若△PFH的周长为10cm,求长方形ABCD的面积.参考答案1、D2、A3、A4、A5、C6、C7、A8、C9、C 10、A 11、D 12、C 13、A14、B 15、D 16、C 17、B 18、A. 19、D; 20、D 21、△AFB或△AFE, 22、10cm;23、10㎝2;24、2.5; 25、 26、 27、8 cm 28、125º29、 30、31、证明:∵四边形ABCD是矩形,∴AB=CD,AD∥BC,∠B=90°.∵DF⊥AE,∴∠AFD=∠B=90°.∵AD∥BC,∴∠DAE=∠AEB.又∵AD=AE,∴△ADF≌△EAB(AAS).∴DF=AB.又∵AB=DC,∴DF=DC.32、【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中,,∴△DMO≌△BNO(AAS),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+42,解得:x=5,所以MD长为5.33、【解答】解:由题意,可知当<a<1时,第一次操作后剩下的矩形的长为a,宽为1﹣a,所以第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1.故答案为:1﹣a;此时,分两种情况:①如果1﹣a>2a﹣1,即a<,那么第三次操作时正方形的边长为2a﹣1.∵经过第三次操作后所得的矩形是正方形,∴矩形的宽等于1﹣a,即2a﹣1=(1﹣a)﹣(2a﹣1),解得a=;②如果1﹣a<2a﹣1,即a>,那么第三次操作时正方形的边长为1﹣a.则1﹣a=(2a﹣1)﹣(1﹣a),解得a=.故答案为:或.34、(1)证明:∵CF平分∠ACD,且MN∥BD,∴∠ACF=∠FCD=∠CFO.∴OF=OC.同理:OC=OE.∴OE=OF.(2)由(1)知:OF=OC,OC=OE,∴∠OCF=∠OFC,∠OCE=∠OEC.∴∠OCF+∠OCE=∠OFC +∠OEC.而∠OCF+∠OCE+∠OFC+∠OEC=180°,∴∠ECF=∠OCF+∠OCE=90°.∴EF===13.∴OC=EF=.(3)连接AE、AF.当点O移动到AC中点时,四边形AECF为矩形.理由如下:由(1)知OE=OF,当点O移动到AC中点时,有OA=OC,∴四边形AECF为平行四边形.又∵∠ECF=90°,∴四边形AECF为矩形.35、(1)24(2)∵OC=2 OA=10 ∴D(2-4,2),E(2,0) ∵OD=DE ∴OE=2CD 2=2(2-4) ∴=4(3)设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM为平行四边形根据轴对称知,∠MED=∠NED∵DM∥NE ∴∠MDE=∠NED∴∠MED=∠MDE ∴MD=ME ∴平行四边形DNEM为菱形过点D作DH⊥OA,垂足为H,∴DH=2设菱形DNEM 的边长为,∴HN=HE-NE=OE-OH-NE=4-,在RT△DHN中,解得∴菱形DNEM的面积=NE·DH=5∴矩形O1A1B1C1与矩形OABC重叠部分的面积不会随着点E位置的变化而变化,面积始终为5.36、(1)在长方形ABCD中,∠D=90°,CD=AB=9在Rt△ADE中,DE=9-6=3,AD=4,∴AE=5(2)若△PAE为等腰三角形,则有三种可能.当EP=EA时,AP=6,∴t=BP=3当AP=AE时,则9-t=5,∴t=4当PE=PA时,则(6-t)2+42=(9-t)2,∴t=综上所述,符合要求的t值为3或4或.37、1)EF=10 (2)5(3)438、【解答】解:(1)△AED≌△CEB′证明:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°,又∵∠B′EC=∠DEA,∴△AED≌△CEB′;(2)由折叠的性质可知,∠EAC=∠CAB,∵CD∥AB,∴∠CAB=∠ECA,∴∠EAC=∠ECA,∴AE=EC=8﹣3=5.在△ADE中,AD===4,延长HP交AB于M,则PM⊥AB,∴PG=PM.∴PG+PH=PM+PH=HM=AD=4.39、(1)∵AE⊥EF,∴∠BEA+∠CEF=90°。

相关文档
最新文档