立体几何知识点总结(全)

合集下载

高中立体几何知识点总结

高中立体几何知识点总结

一、空间点、线、面的位置关系1.1 点与点•点的定义:空间中的任意一点。

•点的坐标表示:a⃗=(a x,a y,a z)。

1.2 直线与直线•直线的定义:无限延伸的平面内的所有点。

•直线的方程表示:r⃗=(x,y,z),其中Ax+By+Cz+D=0。

1.3 直线与平面•直线的平面方程表示:r⃗=(x,y,z),其中Ax+By+Cz+D=0。

•直线与平面的交点表示:设直线上的点为P(x0,y0,z0),则有Ax0+ By0+Cz0+D=0。

1.4 平面与平面•平面的定义:无限延伸的平面内的所有点。

•平面的方程表示:r⃗=(x,y,z),其中Ax+By+Cz+D=0。

1.5 平面与空间体•平面与空间体的交线表示:设空间体上的点为P(x0,y0,z0),则有Ax0+By0+Cz0+D=0。

二、空间几何体2.1 柱体•柱体的定义:底面为圆形或矩形,顶面与底面平行的空间几何体。

•柱体的体积公式:V=底面积×高。

2.2 锥体•锥体的定义:底面为圆形或三角形,顶点在底面内的空间几何体。

•锥体的体积公式:V=1底面积×高。

32.3 球体•球体的定义:所有点与球心等距的空间几何体。

•球体的体积公式:V=4πR3。

32.4 空间四边形•空间四边形的定义:四个顶点在空间中的四边形。

•空间四边形的面积公式:S=12|a⃗×b⃗⃗|,其中a⃗和b⃗⃗为四边形的两条对角线。

三、空间角的计算3.1 线线角•线线角的定义:两条直线之间的夹角。

•线线角的计算公式:θ=arccos(|a⃗⃗⋅b⃗⃗||a⃗⃗||b⃗⃗|),其中a⃗和b⃗⃗为两条直线的方向向量。

3.2 线面角•线面角的定义:直线与平面之间的夹角。

•线面角的计算公式:θ=arccos(|n⃗⃗⋅a⃗⃗||n⃗⃗||a⃗⃗|),其中n⃗⃗为平面的法向量,a⃗为直线的方向向量。

3.3 面面角•面面角的定义:两个平面之间的夹角。

•面面角的计算公式:θ=arccos(|n⃗⃗1⋅n⃗⃗2||n⃗⃗1||n⃗⃗2|),其中n⃗⃗1和n⃗⃗2为两个平面的法向量。

立体几何知识点梳理

立体几何知识点梳理

考点梳理一 、空间几何体(一) 空间几何体的类型1.多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2. 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二)空间几何体的表面积与体积1. 空间几何体的表面积圆柱的表面积 :222Srl r ππ=+ 圆锥的表面积:2Srl r ππ=+ 圆台的表面积:22Srl r Rl R ππππ=+++ 球的表面积:24S R π=2. 空间几何体的体积柱体的体积 :VS h =⨯底 锥体的体积 :13V S h =⨯底 台体的体积:1)3V S S h =+⨯下上( 球体的体积:343V R π= (三)空间几何体的三视图和直观图1. 三视图: 正视图, 侧视图, 俯视图.2. 直观图:斜二测画法二 、直线与平面的位置关系(一)线面平行1.判定定理:////a b b a a ααα⎫⎪⊂⇒⎬⎪⊄⎭2.性质定理:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭(二)线面垂直1. 判定定理:,a b a b O l a l a l b ααα⊂⎫⎪=⎪⎪⊄⇒⊥⎬⎪⊥⎪⊥⎪⎭2.性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:,l a l a αα⊥⊂⇒⊥(2)垂直于同一平面的两直线平行.即:,//ab a b αα⊥⊥⇒(三)面面平行1.判定定理:一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.2.性质定理:垂直于同一条直线的两个平面平行.(四)面面垂直 1.判定定理:a a ααββ⊂⎫⇒⊥⎬⊥⎭2.性质定理:AB l l l ABαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭。

立体几何知识点总结

立体几何知识点总结

立体几何知识点总结一、点、线、面的基本概念在立体几何中,点是最基本的元素,没有长度、宽度和高度;线是由无数个点连成的,具有长度但没有宽度和高度;面是由无数个线段连成的,具有长度和宽度但没有高度。

二、立体图形的分类1. 点、线、面组成的立体图形称为多面体,如正方体、长方体、正六面体等。

2. 圆柱体是由一个平面上的圆沿着一条与该平面不重合的直线滚动形成的,如圆柱、圆台等。

3. 圆锥体是由一个平面上的射线围绕一个与该平面不重合的点旋转形成的,如圆锥、圆台等。

4. 球体是由一个平面上的圆围绕其直径旋转形成的。

三、立体图形的性质1. 多面体的面数、边数和顶点数之间满足欧拉公式:面数+顶点数=边数+2。

2. 多面体的表面积可以通过计算各面的面积之和得到。

3. 多面体的体积可以通过计算底面积乘以高得到。

4. 圆柱体的侧面积可以通过计算侧面的长度乘以高得到。

5. 圆柱体的体积可以通过计算底面积乘以高得到。

6. 圆锥体的侧面积可以通过计算锥侧的长度乘以高得到。

7. 圆锥体的体积可以通过计算底面积乘以高再除以3得到。

8. 球体的表面积可以通过计算球的半径乘以4π得到。

9. 球体的体积可以通过计算球的半径的立方乘以4/3π得到。

四、立体图形的投影1. 平行投影是指物体与投影面平行,投影线平行于视线的投影方式。

2. 中心投影是指物体与投影面垂直,投影线经过视点的投影方式。

3. 斜投影是指物体与投影面不平行,投影线不垂直于视线的投影方式。

五、立体图形的相交关系1. 相交是指两个或多个立体图形的内部部分有重叠的部分。

2. 相切是指两个立体图形的边或面部分有公共点但没有内部有重叠的部分。

3. 相离是指两个立体图形的边和面之间没有公共点。

六、立体图形的旋转、平移和对称1. 旋转是指将一个立体图形绕着某个轴进行旋转,可以得到一个新的立体图形。

2. 平移是指将一个立体图形沿着某个方向进行平行移动,保持形状不变。

3. 对称是指将一个立体图形围绕某个中心进行对称,得到与原图形相似但位置对称的图形。

立体几何知识点总结(全)

立体几何知识点总结(全)

立体几何知识点总结(全)重合直线:完全重合,有无数个公共点。

三.点与平面的位置关系点与平面的位置关系有以下三种情况:点在平面上;点在平面外;点在平面内。

四.直线与平面的位置关系直线与平面的位置关系有以下三种情况:直线与平面相交,相交点为一点;直线在平面内;直线与平面平行,没有交点。

五.平面与平面的位置关系平面与平面的位置关系有以下三种情况:平面相交,相交线为一条直线;平面平行,没有交点;平面重合,完全重合。

1)定义:两个平面相交于一条直线,且这条直线与两个平面的法线垂直,则这两个平面垂直;2)判定定理:如果一个平面内的一条直线与另一个平面的法线垂直,则这两个平面垂直。

符号:a,b简记为:线面垂直,则面面垂直.符号:aba b4.平面与平面垂直的性质定理:如果两个平面垂直,则它们的交线垂直于这两个平面。

符号:a b。

a简记为:面面垂直,则线线垂直.符号:abb定义:当两个平面所成的二面角为直角时,这两个平面互相垂直。

判定定理:如果一个平面通过另一个平面的垂线,则这两个平面垂直。

可以简记为:线面面垂直,则面面垂直。

符号表示为l,推论是如果一个平面与另一个平面的垂线平行,则这两个平面垂直。

平面与平面垂直的性质定理:如果两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。

可以简记为面面垂直,则线面垂直。

证明线线平行的方法包括三角形中位线、平行四边形、线面平行的性质、平行线的传递性和面面平行的性质。

证明线线垂直的方法包括定义中的两条直线所成的角为90°,线面垂直的性质,利用勾股定理证明两相交直线垂直,以及利用等腰三角形三线合一证明两相交直线垂直。

(完整版)立体几何知识点总结

(完整版)立体几何知识点总结

立体几何知识点总结1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'''''EDCBAABCDE-或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''EDCBAP-几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''EDCBAP-几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个扇环。

立体几何知识点总结

立体几何知识点总结

立体几何知识点总结一、点、线、面的基本概念1. 点:在几何中,点是最基本的概念,它没有长度、宽度和高度,只有位置,可以用来确定物体的位置。

2. 线:由无数个点组成,是一维的几何图形,没有宽度和高度,只有长度,可以用来表示物体的轨迹或连接两个点。

3. 面:由无数条线组成,是二维的几何图形,有长度和宽度,没有高度,可以用来表示物体的表面。

二、立体几何的基本元素1. 点、线、面的组合:在立体几何中,可以通过将点、线、面进行组合和运算得到更复杂的几何体,如球体、立方体等。

2. 立体体积:立体体积是指一个物体所占据的空间大小。

常见的表示立体体积的单位有立方米、立方厘米等。

3. 立体表面积:立体表面积是指一个物体外表面的总面积。

通常用平方米、平方厘米等单位来表示。

4. 立体的投影:立体的投影是指立体在不同平面上的投影图形。

常见的投影有正投影和斜投影两种。

三、常见的立体几何图形1. 球体:球体是由所有到一个点的距离相等的点组成的几何图形。

它具有无限个面,其中每个面都是一个圆。

2. 圆柱体:圆柱体是由两个平行的圆面和一个连接这两个圆面的侧面组成的。

它的底面和顶面是圆,侧面是矩形。

3. 圆锥体:圆锥体是由一个圆面和一个连接这个圆面和一个点的侧面组成的。

它的底面是圆,侧面是三角形。

4. 立方体:立方体是由六个相等的正方形组成的几何图形。

它的六个面都是正方形,每个面都有相同的边长。

5. 正四面体:正四面体是由四个相等的三角形组成的几何图形。

它的四个面都是等边三角形,每个面都有相同的边长。

四、常见的立体几何性质1. 对称性:立体几何中的许多图形具有对称性,即通过某个中心轴或中心点将图形分为两个相互对称的部分。

2. 平行性:立体几何中的平面和直线可以平行,即它们在空间中不相交,且永远保持相同的距离。

3. 垂直性:立体几何中的直线和平面可以垂直,即它们相互垂直交于一个点,形成直角。

4. 相似性:在立体几何中,如果两个图形的形状相似,则它们的对应边长比相等,对应角度相等。

立体几何初步知识点全总结

立体几何初步知识点全总结

立体几何初步知识点全总结一、空间几何体的结构。

1. 棱柱。

- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。

- 直棱柱:侧棱垂直于底面的棱柱。

正棱柱:底面是正多边形的直棱柱。

- 性质:- 侧棱都相等,侧面是平行四边形。

- 两个底面与平行于底面的截面是全等的多边形。

- 过不相邻的两条侧棱的截面(对角面)是平行四边形。

2. 棱锥。

- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。

- 正棱锥:底面是正多边形,且顶点在底面的射影是底面正多边形的中心的棱锥。

- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。

- 棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。

3. 棱台。

- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

- 分类:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等。

- 性质:- 棱台的各侧棱延长后交于一点。

- 棱台的上下底面是相似多边形,侧面是梯形。

4. 圆柱。

- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。

- 性质:- 圆柱的轴截面是矩形。

- 平行于底面的截面是与底面全等的圆。

5. 圆锥。

- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体叫做圆锥。

- 性质:- 圆锥的轴截面是等腰三角形。

- 平行于底面的截面是圆,截面半径与底面半径之比等于顶点到截面距离与圆锥高之比。

6. 圆台。

- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。

立体几何知识点

立体几何知识点

§09. 立体几何 知识要点一、平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个. 4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向)二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a=,则ba ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围[)180,0∈θ) (直线与直线所成角(]90,0∈θ)(斜线与平面成角()90,0∈θ)(直线与平面所成角[]90,0∈θ)(向量与向量所成角])180,0[∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 12方向相同12方向不相同距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面) 三、直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”) [注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交) ⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. ● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA . ● 三垂线定理的逆定理亦成立.这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行. [注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)] ⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.POAa2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”) 推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. [注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面. 证明:如图,找O 作OA 、OB 分别垂直于21,l l , 因为ααββ⊥⊂⊥⊂OB PM OA PM,,,则OBPM OA PM⊥⊥,.6. 两异面直线任意两点间的距离公式:θcos 2222mn dnml +++=(θ为锐角取加,θ为钝取减,综上,都取加则必有⎥⎦⎤⎝⎛∈2,0πθ)7. ⑴最小角定理:21cos cos cos θθθ=(1θ为最小角,如图)⑵最小角定理的应用(∠PBN 为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条. 成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有. 五、 棱锥、棱柱. 1. 棱柱.⑴①直棱柱侧面积:ChS=(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑵{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}. {直四棱柱}⋂{平行六面体}={直平行六面体}.四棱行六面体直平行六面体长方正四棱方体底面是侧棱垂直底面底面是矩形底面是正方形侧面与⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形...... 图1θθ1θ2图2P αβθM A B O②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×) (直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直. ⑷平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则1c o s c o s c o s 222=++γβα.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2c o s c o s c o s 222=++γβα.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形)②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形. [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3VShV ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心. [注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch21S =(底面周长为C ,斜高为'h )③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α) 附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --. 则la S ⋅=211①,bl S ⋅=212②,ba =⋅αcos ③ ⇒①②③得αcos 底侧S S =.lab c注:S 为任意多边形的面积(可分别多个三角形的方法). ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形. ⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心. ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直简证:A B ⊥CD ,AC ⊥BD ⇒ BC ⊥AD. 令b AC c AD a AB ===,,得c a c b AD BC c AD a b AB AC BC-=⋅⇒=-=-=,,已知()(),0=-⋅=-⋅c a b b c a 0=-⇒c b c a 则0=⋅AD BC .iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形. iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形. 简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'FGH BO AC BO O 90°易知EFGH 为平行四边形⇒EFGH 为长方形.若对角线等,则EFGHFG EF ⇒=为正方形.3. 球:⑴球的截面是一个圆面. ①球的表面积公式:24R S π=. ②球的体积公式:334R V π=.⑵纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B点的经度.BDFEH GBCDAO 'O r附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:hr V 231π=(r 为半径,h 为高)③锥形体积:ShV31=(S 为底面积,h 为高)4. ①内切球:当四面体为正四面体时,设边长为a ,ah 36=,243aS =底,243aS =侧得aa a R R a R a a a 46342334/424331433643222=⋅==⇒⋅⋅+⋅=⋅.注:球内切于四面体:hS R S 313R S 31V 底底侧ACDB ⋅=⋅+⋅⋅⋅=-②外接球:球外接于正四面体,可如图建立关系式. 六. 空间向量.1. (1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.注:①若a 与b 共线,b 与c 共线,则a 与c 共线.(×) [当0=b 时,不成立] ②向量c b a ,,共面即它们所在直线共面.(×) [可能异面]③若a ∥b ,则存在小任一实数λ,使b a λ=.(×)[与0=b 不成立] ④若a 为非零向量,则00=⋅a .(√)[这里用到)0(≠b b λ之积仍为向量](2)共线向量定理:对空间任意两个向量)0(,≠b b a ,a ∥b 的充要条件是存在实数λ(具有唯一性),使b a λ=.(3)共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α平行,记作a ∥α. (4)①共面向量定理:如果两个向量b a ,不共线,则向量P 与向量b a ,共面的充要条件是存在实数对x 、y 使by a x P+=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是PABC 四点共面的充要条件.(简证:→+==++--=AC z AB y AP OC z OB y OA z y OP)1(P 、A 、B 、C 四点共面)注:①②是证明四点共面的常用方法.OR2. 空间向量基本定理:如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使cz b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使OCz OB y OA x OP ++=(这里隐含x+y+z≠1).注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心,则向量)(31c b a AQ++=用MQAM AQ+=即证.3. (1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标). ①令a =(a 1,a 2,a 3),),,(321b b b b =,则),,(332211b a b a b a b a ±±±=+))(,,(321R a a a a ∈=λλλλλ332211b a b a b a b a ++=⋅ a∥)(,,332211R b a b a b a b∈===⇔λλλλ332211b a b a b a ==⇔332211=++⇔⊥b a b a b a b a222321aaa ++==(a a =⇒⋅=)232221232221332211||||,cos b b b a a a b a b a b a b a ba b a ++⋅++++=⋅⋅>=<②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.(2)法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α②利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,ADCB21,n n 反方,则为其夹角).③证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使CECD ABμλ+=.(常设CECD ABμλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).A一、四面体.:1、①四面体的六条棱的垂直平分面交于一点,这一点叫做此四面体的外接球的球心; ②四面体的四个面组成六个二面角的角平分面交于一点,该点叫此四面体内接球的球心; ③四面体的四个面的重心与相对顶点的连接交于一点,这一点叫做此四面体的重心,且重心将每条连线分为3︰1; ④12个面角之和为720°,每个三面角中任两个之和大于另一个面角,且三个面角和为180°. 2. 直角四面体:有一个三面角的三个面角均为直角的四面体称为直角四面体,相当于平面几何的直角三角形. (在直角四面体中,记V 、l 、S 、R 、r 、h 分别表示其体积、六条棱长之和、表面积、外接球半径、内切球半径及侧面上的高),则有空间勾股定理: S 2△ABC +S 2△BCD +S 2△ABD =S 2△ACD.3. 等腰四面体:对棱都相等的四面体称为等腰四面体,好象平面几何中的等腰三角形.根据定义不难证明以长方体的一个顶点的三条面对角线的端点为顶点的四面体是等腰四面体,反之也可以将一个等腰四面体拼补成一个长方体.(在等腰四面体ABCD 中,记BC = AD =a ,AC = BD = b ,AB = CD = c ,体积为V ,外接球半径为R ,内接球半径为r ,高为h ),则有 ①等腰四面体的体积可表示为22231222222222cb a ba c ac b V-+⋅-+⋅-+=;②等腰四面体的外接球半径可表示为22242cb a R++=;③等腰四面体的四条顶点和对面重心的连线段的长相等,且可表示为22232cb a m ++=;④h = 4r.二、常用结论、方法和公式1.从一点O 出发的三条射线OA 、OB 、OC ,若∠AOB=∠AOC ,则点A 在平面∠BOC 上的射影在∠BOC 的平分线上;2. 已知:直二面角M -AB -N 中,AE ⊂ M ,BF ⊂ N,∠EAB=1θ,∠ABF=2θ,异面直线AE 与BF 所成的角为θ,则;cos cos cos 21θθθ=OAB CD3.立平斜公式:如图,AB 和平面所成的角是1θ,AC 在平面内,BC 和AB 的射影BA 1成2θ,设∠ABC=3θ,则cos 1θcos 2θ=cos 3θ;4.异面直线所成角的求法:(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线; (2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;7.空间距离的求法(1)两异面直线间的距离,高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算;(2)求点到直线的距离,一般用三垂线定理作出垂线再求解;(3)求点到平面的距离,一是用垂面法,借助面面垂直的性质来作,因此,确定已知面的垂面是关键;二是不作出公垂线,转化为求三棱锥的高,利用等体积法列方程求解;8.正棱锥的各侧面与底面所成的角相等,记为θ,则S 侧cos θ=S 底;9.已知:长方体的体对角线与过同一顶点的三条棱所成的角分别为,,,γβα因此有cos 2α+cos 2β+cos 2γ=1; 若长方体的体对角线与过同一顶点的三侧面所成的角分别为,,,γβα则有cos 2α+cos 2β+cos 2γ=2;10.正方体和长方体的外接球的直径等与其体对角线长;11.欧拉公式:如果简单多面体的顶点数为V ,面数为F,棱数为E.那么V+F -E=2;并且棱数E =各顶点连着的棱数和的一半=各面边数和的一半;12.柱体的体积公式:柱体(棱柱、圆柱)的体积公式是V 柱体=Sh.其中S 是柱体的底面积,h 是柱体的高.13.直棱柱的侧面积和全面积 S直棱柱侧= c (c 表示底面周长, 表示侧棱长) S棱柱全=S 底+S 侧14.棱锥的体积:V 棱锥=Sh 31,其中S 是棱锥的底面积,h 是棱锥的高。

立体几何知识点归纳

立体几何知识点归纳

一、空间几何体(一)空间几何体的结构:1、几何体:2、多面体:3、旋转体:4、棱柱:5、棱锥:6、棱台:7、圆柱:8、圆锥:9、圆台:10、球:(二)简单几何体的构成:1、2、(三)三视图:1、投影:2、投影类型:3、三视图:(1)正视图(2)侧视图:(3)俯视图:(三)直观图:(1)直观图:(2)斜二测画法规则:(四)体积面积公式:1、柱体体积:2、锥体体积:3、台体体积:4、球体体积:球体表面积:5、祖暅原理:二、平面的性质与直线的位置关系1、平面意义:(1)空间图形是由点、线、面组成的(2)平面图形与空间图形的概念:如果一个图形的所有点都在同一个平面内,则称这个图形为平面图形,否则称为空间图形(3)平面的两个特征:①无限延展 ②平的(没有厚度) 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性一个平面把空间分成两部分,一条直线把平面分成两部分 2 平面的基本性质公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 或者:∵,A B αα∈∈,∴AB α⊂ 应用:①判定直线在平面内;②判定点在平面内模式:a A A aαα⊂⎧⇒∈⎨∈⎩.公理2如果两个不重合平面有一个公共点,那么它们有且只有一条过该点的公共直线。

推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭ 如图示:或者:∵,A A αβ∈∈,∴,l A l αβ=∈ 应用:①确定两相交平面的交线位置;②判定点在直线上公理3 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈.应用:①确定平面;②证明两个平面重合“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证.推论1:推论2:推论3:3、 空间两直线的位置关系(1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不同在任何..一个平面内,没有公共点; 4、平线直线:(1)公理4 :平行于同一条直线的两条直线互相平行(空间平行线的传递性)推理模式://,////a b b c a c ⇒.(2)空间四边形:顺次连结不共面的四点A,B,C,D 所组成的四边形叫空间四边形,相对顶点的连线AC,BD 叫空间四边形的对角线(3)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(4)等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.指出:等角定理及其推论,说明了空间角通过任意平行移动具有保值性,因而成为异面直线所成角的基础.5、异面直线:不同在任何..一个平面内,没有公共点 (1).空间两条异面直线的画法a b1A CA(2)异面直线判定定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线推理模式:,,,A B l B l ααα∉∈⊂∉⇒AB 与l 是异面直线(3)异面直线判定方法:判定定理、反证法。

立体几何知识点总结

立体几何知识点总结

立体几何知识点总结1.空间多边形不在同一平面内的若干线段首尾相接所成的图形叫做空间折线.若空间折线的最后一条线段的尾端与最初一条线段的首端重合,则叫做封闭的空间折线.若封闭的空间折线各线段彼此不相交,则叫做这空间多边形平面,平面是一个不定义的概念,几何里的平面是无限伸展的.平面通常用一个平行四边形来表示.平面常用希腊字母α、β、γ…或拉丁字母M 、N 、P 来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.在立体几何中,大写字母A ,B ,C ,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:a) A ∈l —点A 在直线l 上;A ∉α—点A 不在平面α内;b) l ⊂α—直线l 在平面α内;c) a ⊄α—直线a 不在平面α内;d) l ∩m=A —直线l 与直线m 相交于A 点;e) α∩l=A —平面α与直线l 交于A 点;f) α∩β=l —平面α与平面β相交于直线l.2.平面的基本性质公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3 经过不在同一直线上的三个点,有且只有一个平面.根据上面的公理,可得以下推论.推论1 经过一条直线和这条直线外一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.3.证题方法4.空间线面的位置关系 共面 平行—没有公共点(1)直线与直线 相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有无数个公共点(2)直线和平面 直线不在平面内 平行—没有公共点(直线在平面外) 相交—有且只有一公共点(3)平面与平面 相交—有一条公共直线(无数个公共点)平行—没有公共点5.异面直线的判定证明两条直线是异面直线通常采用反证法.有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”.6.线面平行与垂直的判定(1)两直线平行的判定①定义:在同一个平面内,且没有公共点的两条直线平行.②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a ∥α,a β,α∩β=b,则a ∥b.③平行于同一直线的两直线平行,即若a ∥b,b ∥c,则a ∥c.证题方法 间接证法直接证法 反证法同一法④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b.(2)两直线垂直的判定①定义:若两直线成90°角,则这两直线互相垂直.②一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b∥c,a⊥b,则a⊥c③一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.即若a⊥α,b⊂α,a⊥b.④三垂线定理和它的逆定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直.⑤如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a∥α,b⊥α,则a⊥b.⑥三个两两垂直的平面的交线两两垂直,即若α⊥β,β⊥γ,γ⊥α,且α∩β=a,β∩γ=b,γ∩α=c,则a⊥b,b ⊥c,c⊥a.(3)直线与平面平行的判定①定义:若一条直线和平面没有公共点,则这直线与这个平面平行.②如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.即若a⊄α,b⊂α,a∥b,则a ∥α.③两个平面平行,其中一个平面内的直线平行于另一个平面,即若α∥β,l⊂α,则l∥β.④如果一个平面和平面外的一条直线都垂直于同一平面,那么这条直线和这个平面平行.即若α⊥β,l⊥β,l⊄α,则l∥α.⑤在一个平面同侧的两个点,如果它们与这个平面的距离相等,那么过这两个点的直线与这个平面平行,即若A∉α,B∉α,A、B在α同侧,且A、B到α等距,则AB∥α.⑥两个平行平面外的一条直线与其中一个平面平行,也与另一个平面平行,即若α∥β,a⊄α,a⊄β,a∥α,则α∥β.⑦如果一条直线与一个平面垂直,则平面外与这条直线垂直的直线与该平面平行,即若a⊥α,b⊄α,b⊥a,则b ∥α.⑧如果两条平行直线中的一条平行于一个平面,那么另一条也平行于这个平面(或在这个平面内),即若a∥b,a∥α,b∥α(或b⊂α)(4)直线与平面垂直的判定①定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直.②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.即若m⊂α,n⊂α,m∩n=B,l⊥m,l⊥n,则l⊥α.③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若l∥a,a⊥α,则l⊥α.④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若α∥β,l⊥β,则l⊥α.⑤如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若α⊥β,a∩β=α,l⊂β,l⊥a,则l⊥α.⑥如果两个相交平面都垂直于第三个平面,则它们的交线也垂直于第三个平面,即若α⊥γ,β⊥γ,且a∩β=α,则a⊥γ.(5)两平面平行的判定①定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点⇔α∥β.②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b⊂α,a∩b=P,a∥β,b ∥β,则α∥β.③垂直于同一直线的两平面平行.即若α⊥a,β⊥a,则α∥β.④平行于同一平面的两平面平行.即若α∥β,β∥γ,则α∥γ.⑤一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,b⊂α,c,d⊂β,a ∩b=P,a∥c,b∥d,则α∥β.(6)两平面垂直的判定①定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角α-a-β=90°⇔α⊥β.②如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l⊥β,l⊂α,则α⊥β.③一个平面垂直于两个平行平面中的一个,也垂直于另一个.即若α∥β,α⊥γ,则β⊥γ.7.直线在平面内的判定(1)利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内.(2)若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β,A∈α,AB⊥β,则AB⊂α.(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若A∈a,a⊥b,A∈α,b ⊥α,则a⊂α.(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若P∉α,P∈β,β∥α,P∈a,a∥α,则a⊂β.(5)如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a∥α,A ∈α,A∈b,b∥a,则b⊂α.8.存在性和唯一性定理(1)过直线外一点与这条直线平行的直线有且只有一条;(2)过一点与已知平面垂直的直线有且只有一条;(3)过平面外一点与这个平面平行的平面有且只有一个;(4)与两条异面直线都垂直相交的直线有且只有一条;(5)过一点与已知直线垂直的平面有且只有一个;(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.9.射影及有关性质(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.(3)图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影仍是一个图形.(4)射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短.10.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.异面直线所成的角(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.(2)取值范围:0°<θ≤90°.(3)求解方法①根据定义,通过平移,找到异面直线所成的角θ;②解含有θ的三角形,求出角θ的大小.11.直线和平面所成的角(1)定义和平面所成的角有三种:(i)垂线面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.(ii)垂线与平面所成的角直线垂直于平面,则它们所成的角是直角.(iii)一条直线和平面平行,或在平面内,则它们所成的角是0°的角.(2)取值范围0°≤θ≤90°(3)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ.②解含θ的三角形,求出其大小.③最小角定理斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面内任何直线所成的角.12.二面角及二面角的平面角(1)半平面 直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角 条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180°(3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.如图,∠PCD 是二面角α-AB-β的平面角.平面角∠PCD 的大小与顶点C 在棱AB 上的位置无关.②二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB ⊥平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD ⊥α,平面PCD ⊥β.③找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法(iii)三垂线法(Ⅳ)根据特殊图形的性质(4)求二面角大小的常见方法①先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.②利用面积射影定理S ′=S ·cos α其中S 为二面角一个面内平面图形的面积,S ′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.13.空间的各种距离点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法:1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.3)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S ·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求.14.直线和平面的距离(1)定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.(2)求线面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②将线面距离转化为点面距离,然后运用解三角形或体积法求解之.③作辅助垂直平面,把求线面距离转化为求点线距离.15.平行平面的距离(1)定义个平行平面同时垂直的直线,叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.(2)求平行平面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线(面)距离,通过解三角形或体积法求解之.16.异面直线的距离(1)定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.(2)求两条异面直线的距离常用的方法①定义法题目所给的条件,找出(或作出)两条异面直线的公垂线段,再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法。

立体几何的知识点整理归纳

立体几何的知识点整理归纳

一、立体几何知识点归纳第一章空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。

旋转体一一把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2 )柱,锥,台,球的结构特征1.棱柱1.1棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2相关棱柱几何体系列 (棱柱、斜棱柱、直棱柱、正棱柱)的关系:斜棱柱①棱柱棱垂直于底j 直棱柱底面是正多—正棱柱*夂[其他棱柱川② 四棱柱I 底面为平行四边形|平行六面体|侧棱垂直于底面|直平行六面体底面为矩形长方体底面为正方形■正四棱柱I 侧棱与底面边长相等.1.3棱柱的性质:① 侧棱都相等,侧面是平行四边形;② 两个底面与平行于底面的截面是全等的多边形; ③ 过不相邻的两条侧棱的截面是平行四边形; ④ 直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1.4长方体的性质:① 长方体一条对角线长的平方等于一个顶点上三条棱的 平方和;【如图】AC i 2二AB 2 • AD 2 • AA 2② (了解)长方体的一条对角线 AC 1与过顶点A 的三条 棱所成的角分别是:\, 那么cos 2 二 ' cos 2 : cos 2=1, sin 2 二 ' sin 2 “ - sin 2=2 ;③ (了解)长方体的一条对角线AC 1与过顶点A 的相邻三个面所成的角分别是 :-,则 cos 2 二'cos 2 : cos 2= 2, sin 2 口 " sin 2 : sin 2 = 1.1.5侧面展开图:正n 棱柱的侧面展开图是由 n 个全等矩形组成的以底面周长和侧棱长为邻 边的矩形.绻棱柱侧一C h卄亠土宀KW1.6面积、体积公式:‘(其中c 为底面周长,hS直棱柱全=ch +2S 底,《柱二S 底h为棱柱的高)2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴, 其 余各边旋转而形成的曲面所围成的几何体叫圆柱•2.2圆柱的性质:上、下底及平行于底面的截面都是 等圆;过轴的截面(轴截面)是全等的矩形2.3侧面展开图:圆柱的侧面展开图是以底面周长和 母线长为邻边的矩形•正方体底面B2.4面积、体积公式2 2 、 、,S 圆柱侧= 2- rh ; S 圆柱全=2irrh +2irr , V 圆柱=S 底h=ir r h (其中r 为底面半径,h 为圆柱高)3.棱锥离与顶点到底面的距离之比;② 正棱锥各侧棱相等,各侧面是全等的等腰三角形;③ 正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面 边长一半,构成四个直角三角形。

(完整版)立体几何知识点总结完整版

(完整版)立体几何知识点总结完整版

立体几何知识点【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。

2、 空间两条直线的三种位置关系,并会判定。

3、 平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线 平行及角相等的方法。

4、 异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范 围,会求异面直线的所成角。

5•理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算 ;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6•了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念•掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图, 能识别上述的三视图所表示的立体模型, 会用斜二测法画出它们的直观图•7•空间平行与垂直关系的论证 •8.掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题 ,进一步掌握异面直线所成角的求解方法,熟练解决有关问题9•理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转 化法、向量法)•对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离。

【知识络构建】<— 翅MJL 何体的峯构特征一袞间几何怀的表面锲和体枳 —I 吩间儿何体的三视图和吒现图 空何向話的槪念线性运算空间向园数呈积理和坐标运算【重点知识整合】1. 空间几何体的三视图专间儿何体空问点仁n线、平面ft置关系宀VIHI向虽与<体儿何(1) 正视图:光线从几何体的前面向后面正投影得到的投影图;(2) 侧视图:光线从几何体的左面向右面正投影得到的投影图;(3) 俯视图:光线从几何体的上面向下面正投影得到的投影图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.2. 斜二测画水平放置的平面图形的基本步骤(1) 建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox, Oy,建立直角坐标系;(2) 画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox', Oy',使/ x Oy = 45。

立体几何知识点总结高考

立体几何知识点总结高考

立体几何知识点总结高考1. 立体几何基本概念(1)点、线、面、体的概念立体几何中的基本概念有点、线、面、体等。

点是没有大小、只有位置的几何图形,用大写字母表示;线是由无限多个点连在一起形成的,具有长度的图形,用小写字母表示;面是由无限多个线构成的,具有面积的图形,用小写字母加上一个尖角字母表示;体是由无限多个面构成的,具有体积的图形,用大写字母加上一个倒三角字母表示。

(2)平行线、垂直线平行线是在同一个平面内,既不相交也不相交的直线,用平行线符号“||”表示;垂直线是两条直线相交的两条线段的夹角为90度。

(3)平面与直线的位置关系平面与直线的位置关系有相交、平行、重合等。

2. 空间几何图形的性质(1)点、线、面、体的性质点没有面积,没有长度;线有长度,但没有面积;面有面积,但体积为零;体有体积,具有长度、宽度和高度。

(2)平行线的性质平行线的性质包括对顶角相等,内错角相等等。

3. 空间几何图形的计算(1)立体图形的表面积和体积立体图形的表面积和体积是对立体几何知识点的重点掌握内容。

包括长方体、正方体、圆柱体、圆锥体、球体等的表面积和体积的计算方法。

(2)空间几何图形的相似性空间几何图形的相似性是指两个或两个以上的几何图形的形状和大小都相同,称为相似图形。

在计算中,可利用相似三角形的性质进行计算。

4. 空间几何图形的展开(1)立体图形的展开立体图形的展开是将一个立体图形展开成平面图形的过程。

对不同的立体图形有不同的展开方式和规则,需要灵活运用。

5. 线段和角的表示(1)线段的表示线段是由两个端点所确定的一段直线。

用两个大写字母表示。

(2)角的表示角是由两条射线分界的平面角色,用三个字母表示,其中中间字母是角的顶点。

6. 平面几何图形和立体几何图形的关系平面几何图形和立体几何图形在空间中是相互联系、相互影响的。

在图形的计算和应用中,需要注意两者之间的转化和联系。

以上就是对高考立体几何知识点的总结,掌握这些知识可以帮助学生在高考数学中取得更好的成绩。

高中数学立体几何知识点归纳

高中数学立体几何知识点归纳

高中数学立体几何知识点归纳
点:没有长度、宽度和高度的几何基本元素。

线:由一组点组成,具有长度但没有宽度和高度。

面:由一组线组成,具有长度和宽度但没有高度。

三棱柱:底面为三角形,侧面为三个矩形。

四棱柱:底面为四边形,侧面为四个矩形。

圆柱:底面为圆形,侧面为矩形。

锥:底面为任意多边形,侧面为三角形。

圆锥:底面为圆形,侧面为三角形。

球:所有点到球心的距离相等。

圆球:球的表面。

体积:立体几何体所占的空间大小。

表面积:立体几何体表面的总面积。

基本公式:
三棱柱体积公式:V = 底面积 * 高
四棱柱体积公式:V = 底面积 * 高
圆柱体积公式:V = 底面积 * 高
锥体积公式:V = 1/3 * 底面积 * 高
圆锥体积公式:V = 1/3 * 底面积 * 高
球体积公式:V = 4/3 * π * 半径³
圆球表面积公式:A = 4 * π * 半径²
正投影:由平行光线投射而成,可得到等比例的图形。

斜投影:由斜光线投射而成,图形会产生放大或缩小的效果。

直线与平面的关系:
相交:直线与平面交于一点。

平行:直线不与平面相交。

共面:直线在平面上。

线面垂直:直线与平面相交,且相交点在平面上。

同位角:以同一边为边的两个角。

对顶角:两个相对角。

互补角:两个角的和为90度。

相邻补角:两个角的和为180度。

高考立体几何知识点总结(详细)

高考立体几何知识点总结(详细)

高考立体几何知识点总结一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱面的中心,这样的棱锥叫做正棱锥。

2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。

高中数学立体几何知识点

高中数学立体几何知识点

高中数学立体几何知识点(大全)一、【空间几何体结构】1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。

2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。

棱柱(1):棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。

底面是几边形就叫做几棱柱。

(2):棱柱中除底面的各个面。

(3):相邻侧面的公共边叫做棱柱的侧棱。

(4):侧面与底面的公共顶点叫做棱柱的顶点棱柱的表示:用表示底面的各顶点的字母表示。

如:六棱柱表示为ABCDEF-A’B’C’D’E’F’3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥。

棱锥4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱(1):旋转轴叫做圆柱的轴。

(2):垂直于轴的边旋转而成的圆面叫做圆柱的底面。

(3):平行于轴的边旋转而成的曲面叫做圆柱的侧面。

(4):无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

圆柱用表示它的轴的字母表示,如:圆柱O’O(注:棱柱与圆柱统称为柱体)5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。

圆锥(1):作为旋转轴的直角边叫做圆锥的轴。

(2):另外一条直角边旋转形成的圆面叫做圆锥的底面。

(3):直角三角形斜边旋转形成的曲面叫做圆锥的侧面。

(4):作为旋转轴的直角边与斜边的交点。

(5):无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。

圆锥可以用它的轴来表示。

如:圆锥SO(注:棱锥与圆锥统称为锥体)二、【棱台和圆台的结构特征】1.棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。

棱台(1):原棱锥的底面和截面分别叫做棱台的下底面和上底面。

高中数学立体几何知识点总结(超详细)

高中数学立体几何知识点总结(超详细)

立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修2 第一章 空间几何体知识点总结
一.空间几何体的三视图
正视图:光线从几何体的前面向后面正投影得到的投影图;反映了物体的高度和长度 侧视图:光线从几何体的左面向右面正投影得到的投影图;反映了物体的高度和宽度 俯视图:光线从几何体的上面向下面正投影得到的投影图。

反映了物体的长度和宽度 三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 二.空间几何体的直观图
斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''x O y ∠=450
(或1350

③画对应图形
在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘
轴,且长度保持不变;
在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘
轴,且长度变为原来的一半; 直观图与原图形的面积关系:4
2S ⋅=原图形直观图S 三.空间几何体的表面积与体积
⑴圆柱侧面积;l r S ⋅⋅=π2侧面 ⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面 h S V ⋅=柱体h S V ⋅=
3
1锥体()
1
3
V h S S S S =+⋅+下下
台体上上
球的表面积和体积 32
3
44R V R S ππ=
=球球,. 正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。

正四面体是每个面都是全等的等边三角形的三棱锥。

第二章 点、直线、平面之间的位置关系知识点总结
一. 平面基本性质即三条公理
公理1
公理2
公理3
图形语言
文字
语言
如果一条直线上的两点在
一个平面内,那么这条直线
在此平面内. 过不在一条直线上的三点,有且只有一个平面.
如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
符号
语言 ,,A l B l l A B ααα∈∈⎫⇒⊂⎬∈∈⎭
,,,,A B C A B C α
⇒不共线确定平面
,l
P P P l αβαβ=⎧∈∈⇒⎨∈⎩
作用 判断线在面内
确定一个平面
证明多点共线
公理2的三条推论:
推论1 经过一条直线和这条直线外的一点,有且只有一个平面; 推论2 经过两条相交直线,有且只有一个平面; 推论3 经过两条平行直线,有且只有一个平面.
二.直线与直线的位置关系
共面直线: 相交直线:同一平面内,有且只有一个公共点;
平行直线:同一平面内,没有公共点;
异面直线:不同在任何一个平面内,没有公共点。

(既不平行,也不相交) 三.直线与平面的位置关系有三种情况:
在平面内——有无数个公共点 . 符号 a α 相交——有且只有一个公共点 符号 a ∩α= A 平行——没有公共点 符号 a ∥α
说明:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示 1.直线和平面平行的判定
(1)定义:直线和平面没有公共点,则称直线平行于平面;
(2)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号: ////a b a a b ααα
⊄⎫
⎪⊂⇒⎬⎪⎭
2.直线和平面平行的性质定理:
一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行,则线线平行.
符号: a a a b b α
βαβ⊂⇒=⎫
⎪⎬⎪⎭
3.直线与平面垂直
⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。

⑵判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

简记为:线线垂直,则线面垂直.
符号:,,m n m n A l l m l n α
α⊂⎫⎪
=⇒⊥⎬⎪⊥⊥⎭
4.直线与平面垂直
性质Ⅰ:垂直于同一个平面的两条直线平行。

符号: a a b b αα⊥⎫
⇒⎬⊥⎭
性质Ⅱ:垂直于同一直线的两平面平行
符号:l l ααββ⊥⎫⇒⎬⊥⎭
推论:如果两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.
符号语言:a ∥b, a ⊥α,⇒b ⊥α
四.平面与平面的位置关系:
平行——没有公共点: 符号 α∥β 相交——有一条公共直线: 符号 α∩β=a 1.平面与平面平行的判定
(1)定义:两个平面没有公共点,称这两个平面平行;
(2)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

简记为:线面平行,则面面平行.
符号:,,a b a b A a b αααβββ⊂⊂⎫
⎪=⇒⎬⎪⎭
2.平面与平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。

简记为:面面平行,则线线平行.
符号:a a b b αβ
αγβγ=⇒=⎫

⎬⎪⎭
补充:平行于同一平面的两平面平行; 夹在两平行平面间的平行线段相等;
两平面平行,一平面上的任一条直线与另一个平面平行; 3.平面与平面垂直的判定
⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。

⑵判定定理:一个平面经过另一个平面的一条垂线,则这两个平面垂直。

简记为:线面面垂直,则面面垂直. 符号:
l l βαβα⊥⇒⊥⊂⎫
⎬⎭
推论:如果一个平面平行于另一个平面的一条垂线,则这个平面与另一个平面垂直。

4.平面与平面垂直的性质定理:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。

简记为:面面垂直,则线面垂直.
证明线线平行的方法
①三角形中位线 ②平行四边形 ③线面平行的性质 ④平行线的传递性 ⑤面面平行的性质 ⑥垂直于同一平面的两直线平行;
证明线线垂直的方法
①定义:两条直线所成的角为90°;(特别是证明异面直线垂直); ②线面垂直的性质 ③利用勾股定理证明两相交直线垂直;
④利用等腰三角形三线合一证明两相交直线垂直;
五:三种成角
1.异面直线成角
步骤:1、平移,转化为相交直线所成角;2、找锐角(或直角)作为夹角;3、求解
注意:取值范围:(0。

,90。

].
2.线面成角:斜线与它在平面上的射影成的角,取值范围:(0。

,90。

].
如图:PA 是平面α的一条斜线,A 为斜足,O 为垂足,OA 叫斜线PA 在平面α上射影,PAO ∠为线面角。

3.二面角:从一条直线出发的两个半平面形成的图形
取值范围:(0。

,180。


六.点到平面的距离:定义法和等体积法
----,,l OA OB l OA l OB l AOB αβαβαβ⊂⊂⊥⊥∠如图:在二面角中,O 棱上一点,,,的平面角。

且则为二面角
空间向量与立体几何知识点总结
一.向量基本运算:设()111,,a x y z =,()222,,b x y z =
1.12121200a b a b x x y y z z ⊥⇔⋅=⇔++= 2.121212//,,a b a b x x y y z z λλλλ⇔=⇔=== 3.21a a a x =
⋅=+21
cos ,a b a b a b
x ⋅〈〉=
=
+
一、直线与平面、平面与平面的平行与垂直的向量方法 1.若两直线l 1、l 2的方向向量分别是1u 、2u ,则有l 1⇔1u 2u ⇔1u 2u 两平面α、β的法向量分别

1v 、2v ,则有α⇔1v 2v ⇔1v 2v 直线l 的方向向量是u ,平面的法向量是v ,则有l ⇔u v ⇔u v
条异面直线所成角的求法
设直线a 、b 的方向向量为a 、b ,其夹角为ϕ,则有 cos |cos |a b a b
θϕ⋅==

2.直线和平面所成角的求法
设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ,则有
sin |cos |cos sin a u a u
θϕθϕ
⋅==
=⋅或
3.二面角的求法
设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212
cos n n n n θ⋅=

三. 点P 到平面α的距离
如果令平面α的法向量为n ,考虑到法向量的方向,可以得到B 点到平面α的距离为
AB n BO n
⋅=。

相关文档
最新文档