抛物线高考题精选

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线专题

1.. 设抛物线

28y x =上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是

A. 4

B. 6

C. 8

D. 12 2.设抛物线

28y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足,如果直线AF 斜率为3-,那么PF =

(A )4

3 (B ) 8 (C ) 83 (D ) 16

3.设抛物线y 2=8x 的焦点为F ,准线为l,P 为抛物线上一点,PA ⊥l,A 为垂足.如果直线AF 的斜率为-3,那么

|PF|= (A)43 (B)8 (C)83 (D) 16

4.已知抛物线

22(0)y px p =>,过其焦点且斜率为1的直线交抛物线与A 、B 两点,若线段AB 的中点

的纵坐标为2,则该抛物线的准线方程为 (A )1x = (B)1x =- (C)2x = (D)2x =-

5.过抛物线

24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =;

则AOB ∆的面积为( )

()

A 2

()B 2 ()C

32

()D 22

6.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。若点M 到该抛物线焦点的距离为3,则||OM

=( )A 、22 B 、23 C 、4 D 、25

7.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,43AB =;

则C 的实轴长为( )()

A 2 ()

B 22 ()

C 4 ()

D 8

8.已知抛物线C :

2

4y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=

A .4

5 B .35 C .3

5-

D .

45-

9.将两个顶点在抛物线

22(0)y px p =>上,另一个顶点是此抛物线焦点的正三角形个数记为

n ,则

A .n=0

B .n=1

C . n=2

D .n

≥3

10.设斜率为2的直线l 过抛物线

2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面

积为4,则抛物线方程为( ).

A.

24y x =± B.28y x =± C. 24y x = D. 28y x =

11.已知直线

)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。若FB FA 2=,

则k= (A)3

1

(B)

32 (C)

32

(D)3

22

12.设抛物线

2y =2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交

于C ,

BF

=2,则∆BCF 与∆ACF 的面积之比

BCF ACF

S S ∆∆=

(A )

45 (B )23 (C )47 (D )1

2

13.(2009四川卷理)已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直

线1l 和直线2l 的距离之和的最小值是 A.2 B.3 C.

115 D.37

16

14.(2009重庆卷理)已知以4T =为周期的函数

21,(1,1]

()12,(1,3]

m x x f x x x ⎧-∈-⎪=⎨--∈⎪⎩,其中0m >。若方程

3()f x x =恰有5个实数解,则m 的取值范围为( )

A .158

)3

B .15

7)

C .48(

,)33

D .4

(

7)3

15.已知抛物线2:

8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且2AK =,则

AFK ∆的面积为( )

(A)4 (B)8

(C)16 (D)32

16.已知抛物线y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于

A.3

B.4

C.32

D.42

17.设

F

为抛物线

2

4y x =的焦点,

A B C ,,为该抛物线上三点,若FA FB FC ++=0u u u r u u u r u u u r

,则

FA FB FC ++=u u u r u u u r u u u r

( ) A .9

B .6

C .4

D .3

18.抛物线

24y x =的焦点为F ,准线为l ,经过F 3x 轴上方的部分相交于

A ,AK l ⊥,垂足为K ,则AKF △的面积是(

) A .4

B .3

3

C .43

D .8

19.已知抛物线22(0)y px p =>的焦点为F ,点11

1222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132x x x =+, 则有(

) A.

123FP FP FP +=

B.222

123FP FP FP +=

C.213

2

FP FP FP =+

D.

2

213

FP FP FP =·

20.已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足||||MN MP MN NP ⋅+⋅u u u u r u u u r u u u u r u u u r

=0,则

动点P (x ,y )的轨迹方程为

(A )x y 82

= (B )x y 82-= (C )x y 42= (D )x y 42

-= 21.(全国卷I )抛物线

2y x =-上的点到直线4380x y +-=距离的最小值是

A .

43 B .75 C .

8

5

D .3 22.在直角坐标系xOy 中,直线l 过抛物线=4x 的焦点F.且与该撇物线相交于A 、B 两点.其中点A 在x 轴上

方。若直线l 的倾斜角为60º.则△OAF 的面积为 _______

23陕西13. 右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.

24.己知抛物线的参数方程为2=2,=2,

x pt y pt ⎧⎨⎩(t 为参数),其中>0p ,焦点为F ,

准线为l ,过抛物线上一点M 作的垂线,垂足为E ,若||=||EF MF ,点M 的横坐标是3,则

=p .

25.(2009宁夏海南卷理)设已知抛物线C 的顶点在坐标原点,焦点为F(1,0),直线l 与抛物线C 相交于A ,B 两点。若AB 的中点为(2,2),则直线ι的方程为____________. 26.(江西卷15)过抛物线2

2(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线分别交于A 、B 两

点(

A 在y 轴左侧)

,则AF FB

= .

27.(全国一14)已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三

角形面积为 . 28.重庆14、过抛物线

22y x =的焦点F

作直线交抛物线于

,A B 两点,若

25

,,12

AB AF BF =

<则

相关文档
最新文档