抛物线高考题精选
高考数学专题《抛物线》习题含答案解析
专题9.5 抛物线1.(2020·全国高考真题(理))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2 B .3 C .6 D .9【答案】C 【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.2.(2020·北京高三二模)焦点在x 轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是( ) A .x 2=4y B .y 2=4x C .x 2=8y D .y 2=8x【答案】D 【解析】根据题意,要求抛物线的焦点在x 轴的正半轴上, 设其标准方程为22(0)y px p =>, 又由焦点到准线的距离为4,即p =4, 故要求抛物线的标准方程为y 2=8x , 故选:D.3.(全国高考真题)设F 为抛物线2:4C y x =的焦点,曲线()0ky k x=>与C 交于点P ,PF x ⊥轴,则k =( )A .12B .1C .32D .2【答案】D 【解析】由抛物线的性质可得(1,2)221kP y k ⇒==⇒=,故选D. 4.(2020·全国高考真题(文))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)练基础【答案】B 【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.5.(2019·四川高三月考(文))若抛物线22y px =的准线为圆2240x y x ++=的一条切线,则抛物线的方程为( ) A.216y x =- B.28y x =-C.216y x =D.24y x =【答案】C 【解析】∵抛物线22y px =的准线方程为x=2p-,垂直于x 轴. 而圆2240x y x ++=垂直于x 轴的一条切线为4x =-, 则42p=,即8p =. 故抛物线的方程为216y x =. 故选:C .6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】(x -1)2+y 2=4. 【解析】抛物线y 2=4x 中,2p =4,p =2, 焦点F (1,0),准线l 的方程为x =-1, 以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.7.(2019·山东高三月考(文))直线l 与抛物线22x y =相交于A ,B 两点,当AB 4=时,则弦AB 中点M 到x 轴距离的最小值为______. 【答案】32【解析】由题意,抛物线22x y =的焦点坐标为(0,12),根据抛物线的定义如图,所求d=111A B AF BF 113M 2222A B AB M ++--==≥= 故答案为:32. 8.(2021·沙湾县第一中学(文))设过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,且直线AB 的倾斜角为4π,则线段AB 的长是____,焦点F 到A ,B 两点的距离之积为_________.【答案】8 8 【分析】由题意可得直线AB 的方程为1y x =-,然后将直线方程与抛物线方程联立方程组,消去y 后,利用根与系数的关系,结合抛物线的定义可求得答案 【详解】解:由题意得(1,0)F ,则直线AB 的方程为1y x =-,设1122(,),(,)A x y B x y ,由241y x y x ⎧=⎨=-⎩,得2610x x -+=, 所以12126,1x x x x +==, 所以12628AB x x p =++=+=,因为11221,122=+=+=+=+p pAF x x BF x x , 所以()()1212121116118AF BF x x x x x x ⋅=+⋅+=+++=++=, 故答案为:8,89.(2021·全国高三专题练习)已知抛物线顶点在原点,焦点在坐标轴上,又知此抛物线上的一点(),3A m -到焦点F 的距离为5,则m 的值为__________;抛物线方程为__________. 【答案】答案见解析 答案见解析 【分析】由于抛物线的开口方向未定,根据点(),3A m -在抛物线上这一条件,抛物线开口向下,向左、向右均有可能,以此分类讨论,利用焦半径公式列方程可得p 的值,根据点(),3A m -在抛物线上可得m 的值. 【详解】根据点(),3A m -在抛物线上,可知抛物线开口向下,向左、向右均有可能, 当抛物线开口向下时,设抛物线方程为22x py =-(0p >), 此时准线方程为2py =,由抛物线定义知(3)52p --=,解得4p =.所以抛物线方程为28x y ,这时将(),3A m -代入方程得m =±当抛物线开口向左或向右时,可设抛物线方程为22y ax (0a ≠),从p a =知准线方程为2ax =-,由题意知()25232am am⎧+=⎪⎨⎪-=⎩,解此方程组得11192a m =⎧⎪⎨=⎪⎩,22192a m =-⎧⎪⎨=-⎪⎩,33912a m =⎧⎪⎨=⎪⎩,44912a m =-⎧⎪⎨=-⎪⎩,综合(1)、(2)得92m =,22y x =; 92m =-,22y x =-;12m =,218y x =; 12m =-,218y x =-;m =±28xy .故答案为:92,92-,12,12-,±22y x =,22y x =-,218y x =,218y x =-,28x y .10.(2019·广东高三月考(理))已知F 为抛物线2:4T x y =的焦点,直线:2l y kx =+与T 相交于,A B 两点.()1若1k =,求FA FB +的值;()2点(3,2)C --,若CFA CFB ∠=∠,求直线l 的方程.【答案】(1)10(2)3240x y +-= 【解析】(1)由题意,可得()0,1F ,设221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立方程组224y kx x y=+⎧⎨=⎩,整理得2480x kx --=,则124x x k +=,128x x =-,又由22121144x x FA FB +++=+()2121222104x x x x +-=+=.(2)由题意,知211,14x FA x ⎛⎫=- ⎪⎝⎭,222,14x FB x ⎛⎫=- ⎪⎝⎭,()3.3FC =--, 由CFA CFB ∠=∠,可得cos ,cos ,FA FC FB FC =又2114x FA =+,2214x FB =+,则FA FC FB FC FA FC FB FC =, 整理得()1212420x x x x ++-=,解得32k =-, 所以直线l 的方程为3240x y +-=.1.(2021·吉林长春市·高三(理))已知M 是抛物线24y x =上的一点,F 是抛物线的焦点,若以Fx 为始边,FM 为终边的角60xFM ∠=,则FM 等于( ) A .2 B C .D .4【答案】D 【分析】设点200,4y M y ⎛⎫ ⎪⎝⎭,取()1,0a =,可得1cos ,2FM a <>=,求出20y 的值,利用抛物线的定义可求练提升得FM 的值. 【详解】设点()00,M x y ,其中2004y x =,则()1,0F ,2001,4y FM y ⎛⎫=- ⎪⎝⎭,取()1,0a =,则211cos ,2y FM a FM a FM a-⋅<>===⋅⎛,可得4200340480y y -+=,因为20104y ->,可得204y >,解得2012y =,则20034y x ==,因此,014MF x=+=. 故选:D.2.(2017·全国高考真题(文))过抛物线2:4C y x =的焦点F 的直线交C 于点M (在x 轴上方),l 为C 的准线,点N 在l 上且MNl ⊥,则点M 到直线NF 的距离为()A. B. D.【答案】A 【解析】设直线l 与x 轴相交于点P ,与直线MN 相交于点Q ,(1,0)F ,设||||MN MF m ==,因为||2,30PF NQM =∠=,所以||4,||2QF QM m ==, 所以42m m +=,解得:4m =,设00(,)M x y ,由焦半径公式得:014x +=, 所以03x=,0y =,所以sin sin 42NP MNF NFP NF ∠=∠===,所以点M 到直线NF 的距离为||sin 4NM MNF ⋅∠=⋅=3.(2020·广西南宁三中其他(理))已知抛物线28C y x =:的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若PQ =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=【答案】B 【解析】过Q 点作QH PM ⊥于H ,因为PQ =,由抛物线的定义得PQ =,所以在Rt PQH ∆中,4PQH π∠=,所以4PFM π∠=,所以直线PF 的斜率为1k =-,所以直线PF 的方程为()()012y x -=--, 即20x y +-=, 故选B.4.(2020·浙江高三月考)如图,已知抛物线21:4C y x =和圆222:(1)1C x y -+=,直线l 经过1C 的焦点F ,自上而下依次交1C 和2C 于A ,B ,C ,D 四点,则AB CD ⋅的值为( )A .14B .12C .1D .2【答案】C 【解析】因为抛物线21:4C y x =的焦点为(1,0)F ,又直线l 经过1C 的焦点F ,设直线:(1)l y k x =-,由24(1)y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 设1122(,),(,)A x y B x y ,则121=x x由题意可得:1111=-=+-=AB AF BF x x , 同理2=CD x ,所以12cos01︒⋅=⋅⋅==AB CD AB CD x x . 故选C5.【多选题】(2022·全国高三专题练习)已知抛物线21:C y mx =与双曲线222:13y C x -=有相同的焦点,点()02,P y 在抛物线1C 上,则下列结论正确的有( )A .双曲线2C 的离心率为2B .双曲线2C 的渐近线为y x = C .8m =D .点P 到抛物线1C 的焦点的距离为4【答案】ACD 【分析】由双曲线方程写出离心率、渐近线及焦点,即可知A 、B 、C 的正误,根据所得抛物线方程求0y ,即知D 的正误. 【详解】双曲线2C 的离心率为2e ==,故A 正确;双曲线2C 的渐近线为y =,故B 错误; 由12,C C 有相同焦点,即24m=,即8m =,故C 正确; 抛物线28y x =焦点为()2,0,点()02,P y 在1C 上,则04y =±,故()2,4P 或()2,4P -,所以P 到1C 的焦点的距离为4,故D 正确. 故选:ACD .6.【多选题】(2021·海南鑫源高级中学)在下列四个命题中,真命题为( )A .当a 为任意实数时,直线(a -1)x -y +2a +1=0恒过定点P ,则过点P 且焦点在y 轴上的抛物线的标准方程是243x y =B .已知双曲线的右焦点为(5,0),一条渐近线方程为2x -y =0,则双曲线的标准方程为221205x y -= C .抛物线y =ax 2(a ≠0)的准线方程14y a=-D .已知双曲线2214x y m +=,其离心率()1,2e ∈,则m 的取值范围(-12,0)【答案】ACD 【分析】求出直线定点设出抛物方程即可判断A ;根据渐近线方程与焦点坐标求出,a b 即可判断B ;根据抛物线方程的准线方程公式即可判断C ;利用双曲线离心率公式即可判断D . 【详解】对A 选项,直线(a -1)x -y +2a +1=0恒过定点为()2,3P -,则过点P 且焦点在y 轴上的抛物线的标准方程设为22x py =,将点()2,3P -代入可得23p =,所以243x y =,故A 正确;对B 选项,知5,2bc a==,又22225a b c +==,解得225,20a b ==,所以双曲线的标准方程为221520x y -=,故B 错; 对C 选项,得21x y a =,所以准线方程14y a=-,正确;对D 选项,化双曲线方程为2214x y m-=-,所以()1,2e =,解得()12,0m ∈-,故正确.故选:ACD7.(2021·全国高二课时练习)已知点M 为抛物线2:2(0)C y px p =>上一点,若点M 到两定点(,)A p p ,,02p F ⎛⎫⎪⎝⎭的距离之和最小,则点M 的坐标为______.【答案】,2p p ⎛⎫⎪⎝⎭【分析】过点M 作抛物线准线的垂线,垂足为B ,根据抛物线的定义可得||||MF MB =, 易知当A ,B ,M 三点共线时||MB MA +取得最小值且为||AB ,进而可得结果. 【详解】过点M 作抛物线准线的垂线,垂足为B ,由抛物线的定义,知点M 到焦点,02p F ⎛⎫⎪⎝⎭的距离与点M 到准线的距离相等,即||||MF MB =,所以||||||||MF MA MB MA +=+, 易知当A ,B ,M 三点共线时,||MB MA +取得最小值, 所以min 3(||||)||2p MF MA AB +==,此时点M 的坐标为,2p p ⎛⎫⎪⎝⎭. 故答案为:2p p ⎛⎫⎪⎝⎭,8.(2021·全国高二课时练习)抛物线()220y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为______.【分析】设=AF a ,=BF b ,根据中位线定理以及抛物线定义可得()12MN a b =+,在AFB △中,由余弦定理以及基本不等式可得)AB a b ≥+,即可求得MN AB 的最大值.【详解】设=AF a ,=BF b ,作AQ 垂直抛物线的准线于点Q ,BP 垂直抛物线的准线于点P .由抛物线的定义,知AF AQ =,BF BP =.由余弦定理得()2222222cos120AB a b ab a b ab a b ab =+=︒=++=+-.又22a b ab +⎛⎫≤ ⎪⎝⎭,∴()()()()22221344a b ab a b a b a b +-≥+-+=+,当且仅当a b =时,等号成立,∴)AB a b ≥+,∴()1a b MN AB +≤=MN AB9.(2020·山东济南外国语学校高三月考)抛物线C :22y x =的焦点坐标是________;经过点()4,1P 的直线l 与抛物线C 相交于A ,B 两点,且点P 恰为AB 的中点,F 为抛物线的焦点,则AF BF +=________.【答案】1,02⎛⎫⎪⎝⎭9【解析】抛物线C :22y x =的焦点1,02F ⎛⎫⎪⎝⎭. 过A 作AM ⊥准线交准线于M ,过B 作BN ⊥准线交准线于N ,过P 作PK ⊥准线交准线 于K ,则由抛物线的定义可得AM BN AF BF +=+. 再根据P 为线段AB 的中点,119(||||)||4222AM BN PK +==+=, ∴9AF BF +=,故答案为:焦点坐标是1,02⎛⎫ ⎪⎝⎭,9AF BF +=.10.(2019·四川高考模拟(文))抛物线C :()220x py p =>的焦点为F ,抛物线过点(),1P p .(Ⅰ)求抛物线C 的标准方程与其准线l 的方程;(Ⅱ)过F 点作直线与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线的切线,证明两条切线的交点在抛物线C 的准线l 上.【答案】(Ⅰ)抛物线的标准方程为24x y =,准线l 的方程为1y =-;(Ⅱ)详见解析. 【解析】(Ⅰ)由221p p =⨯,得2p =,所以抛物线的标准方程为24x y =,准线l 的方程为1y =-.(Ⅱ)根据题意直线AB 的斜率一定存在,又焦点()0,1F ,设过F 点的直线方程为1y kx =+,联立241x yy kx ⎧=⎨=+⎩,得,2440x kx --=. 设()11,A x y ,()22,B x y ,则124x x k +=,124x x =-.∴()22221212122168x x x x x x k +=+-=+.由214y x =得,1'2y x =,过A ,B 的抛物线的切线方程分别为 ()()1112221212y y x x x y y x x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩, 即21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相加,得()()2212121148y x x x x x =+-+,化简,得()221y kx k =-+,即()21y k x k =--, 所以,两条切线交于点()2,1k -,该点显然在抛物线C 的准线l :1y =-上.1.(2021·全国高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C .D .4【答案】B 【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【详解】抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,其到直线10x y -+=的距离:d == 解得:2p =(6p =-舍去). 故选:B.2.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( ) A B C .2D .3练真题【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.3.(2020·北京高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ). A .经过点O B .经过点P C .平行于直线OP D .垂直于直线OP【答案】B 【解析】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.4.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【详解】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±, 不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =, (6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.5.的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=, 解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-= 解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:1636.(2020·浙江省高考真题)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【答案】(Ⅰ)1(,0)32;【解析】 (Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,p ≤ 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p .。
2024高考数学专项一题打天下之抛物线(共25问)
2024高考数学专项一题打天下之抛物线(共25问)一题打天下之抛物线(共25问)题干:已知动圆过定点(4,0),且在y轴上截得的弦长为8考点1:求标准方程(1)求动圆圆心的轨迹C的方程;考点2:抛物线的定义(1)已知点F(2,0),若P为轨迹C的点,且PF=4,求P的坐标(注意通径)(2)已知点F(2,0),若P为轨迹C的点,且P到y轴的距离为4,求PF(3)抛物线具有如下光学性质:从焦点发出的光线经过抛物线上的一点反射后,反射光线平行于抛物线的对称轴,生活中的探照灯就是利用这个原理设计的,已知F是轨迹C的焦点,从F发出的光线经C上的点M反射后经过点(6,42),求FM(4)已知点F(2,0),点P为轨迹C上第一象限内的一点,作PM垂直于直线l:x=-2,交直线l于M,若PF的斜率为3,求MF答案8(5)M为轨迹C上的点,且FM的延长线交y轴于N,若M为FN的中点,求FN的长(答案6)(6)已知P为直线l:x=-2上的一点,作PA⏊PF交y轴负半轴于A点,连接AF交轨迹C于B点,若PB⎳x轴,求FA的长(答案6,斜边上的中线为斜边的一半)(7)已知点F (2,0),直线l 过点F 且与轨迹C 交于P 、Q 两点,且若PF =3FQ ,求直线l的方程(三种方法)(8)若轨迹C 的焦点为F ,准线为l ,M 是l 上一点,N 是直线MF 与C 的一个交点,若FM =4FN ,求|NF |的长考点3:抛物线中的最值问题(1)若点P 是轨迹C 上的一个动点,求点P 到点(3,0)的距离的最小值(2)已知点F (2,0),T (3,4),P 是轨迹C 上的一动点,求PF +PT 的最小值(3)已知P 是轨迹C 上的一动点,求点P 到直线y =x +4和y 轴的距离之和的最小值(4)若点P 是轨迹C 上的一个动点,点Q 是圆(x -3)2+y 2=1的动点,则求PQ 的最小值(5)点P 是轨迹C 上的一个动点,求点P 到直线y =x +4的距离的最小值考点3:直线与抛物线的位置关系(1)过点(-2,0)的直线与轨迹C 只有一个公共点,求此直线方程(2)已知点F (2,0),直线l 过点F 且与轨迹C 交于P 、Q 两点,且PQ =16,求直线l 的方程(3)已知点F (2,0),直线y =x -1交轨迹C 交于P 、Q 两点,求PQ 的中点坐标(4)已知点F (2,0),斜率为2的直线l 与轨迹C 的交点为A ,B ,与x 轴的交点为P ,若AP =2PB ,求△ABF 的周长和面积(5)已知点F (2,0),求证:命题“如果直线l 过点F 且与轨迹C 交于P 、Q 两点,那么OP •OQ =-12恒成立”是真命题(6)写出(4)中命题的逆命题,判断它是真命题还是假命题,并说明理由。
专题9.5 抛物线(A)(练习)【必考点专练】2023届高考数学二轮复习专题
专专9.5抛物线专A专一、单选题1. 顶点在坐标原点,焦点是双曲线22145x y -=的左焦点的抛物线标准方程是( ) A. 212x y =B. 212y x =-C. 24y x =-D. 212y x =2. 设抛物线24y x =上一点P 到y 轴的距离是2,则点P 到该抛物线焦点的距离是( ) A. 1B. 2C. 3D. 43. 设抛物线的顶点为O ,焦点为F ,准线为.l P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( )A. 经过点OB. 经过点PC. 平行于直线OPD. 垂直于直线OP4. 已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y轴的距离为9,则p =( )A. 2B. 3C. 6D. 95. 设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为 ( )A.B.C. (1,0)D. (2,0)6. 已知抛物线C :22(0)y px p =>的焦点为F ,点00()2pM x x >是抛物线C上一点,以点M 为圆心的圆与直线2p x =交于E ,G 两点,若1sin 3MFG ∠=,则抛物线C 的方程是( )A. 2y x =B. 22y x =C. 24y x =D. 28y x =7. 已知抛物线24y x =的焦点为F ,过点 F 的直线l 交抛物线于A , B 两点,延长 FB交准线于点C ,若||2||BC BF =,则||||BF AF 的值是( ) A.B.C.D.238. 已知点F 是抛物线24y x =焦点,M ,N 是该抛物线上两点,||||6MF NF +=,则MN 中点到准线距离为( )A.52B. 2C. 3D. 49. 已知抛物线C :24y x =的焦点为F ,过F 作倾斜角为锐角的直线l 交抛物线C 于A 、B 两点,弦AB 的中点M 到抛物线C 的准线的距离为5,则直线l 的方程为 ( )A. 30y --=B. 330x --=C. 10x y --=D. 10x --=10. 已知抛物线C :22(0)y px p =>的焦点为F ,点00()2pM x x >是抛物线C 上一点,以M 为圆心的圆与线段MF 相交于点A ,且被直线2px =截得的弦长为||MA ,若||3||MA AF =,则实数p 为( )A. 3B.C. 2D. 111. 如图,已知抛物线1C 的顶点在坐标原点,焦点在x 轴上,且过点(3,6),圆2C :22+6+8=0x y x -,过圆心2C 的直线l 与抛物线和圆分别交于P ,Q ,M ,N ,则|PN |3|QM |+的最小值为( )A. B. C. D. 12. 已知抛物线22(0)y px p =>与双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,点A 是两曲线的一个交点,且AF x ⊥轴,若l 为双曲线的一条渐近线,且倾斜角为θ,则cos 2(sin 1)(sin 1)θθθ-+等于( )A. 1+B. 1C.D. 3二、多选题13. 在平面直角坐标系xOy 中,过抛物线22x y =的焦点的直线l 与该抛物线的两个交点为11(,)A x y ,22(,)B x y ,则( )A. 1214y y =B. 以AB 为直径的圆与直线12y =-相切C. ||||OA OB +的最小值D. 经过点B 与x 轴垂直的直线与直线OA 交点一定在定直线上14. 过抛物线24y x =的焦点F 作直线交抛物线于,A B 两点,M 为线段AB 的中点,则下列结论正确的是( )A. 以线段AB 为直径的圆与直线12x =-相交B. 以线段BM 为直径的圆与y 轴相切C. 当2AF FB =时,9||2AB = D. ||AB 的最小值为4三、填空题15. 已知抛物线C :24y x =,焦点为F ,点 M 为抛物线C 上的点,且||6FM =,则M 的横坐标是__________,作MN x ⊥轴于点N ,则FMNS=__________.16. 已知抛物线22(0)y px p =>,若第一象限的,A B 在抛物线上,焦点为F ,||2AF =,||4BF =,||3AB =,求直线AB 的斜率为__________.17. 在平面直角坐标系xOy 中,设抛物线212y p x =与222x p y =在第一象限的交点为A ,若OA 的斜率为2,则21p p =__________. 18. 已知F 是抛物线216y x =-的焦点,O 为坐标原点,点P 是抛物线准线上的一动点,点A 在抛物线上,且||8AF =,则||||PA PO +的最小值为__________.四、解答题19. 如图,过抛物线24y x=的焦点F任作直线l,与抛物线交于A,B两点,AB与x 轴不垂直,且点A位于x轴上方,AB的垂直平分线与x轴交于D点.(1)若2,AF FB=求AB所在的直线方程;(2)求证:||||ABDF为定值.20. 在直角坐标系xOy中,动圆P与圆Q:22(2)1x y-+=外切,且圆P与直线1x=-相切,记动圆圆心P的轨迹为曲线.C(1)求曲线C的轨迹方程;(2)设过定点(2,0)S-的动直线l与曲线C交于A,B两点,试问:在曲线C上是否存在点(M与A,B两点相异),当直线MA,MB的斜率存在时,直线MA,MB的斜率之和为定值?若存在,求出点M的坐标;若不存在,请说明理由.答案和解析1.【答案】B解:因为2459c =+=,3c ∴=,∴抛物线的焦点(3,0)F -,32p-=-,6p ∴=,212.y x ∴=- 故选.B2.【答案】C解:由于抛物线24y x =上一点P 到y 轴的距离是2,故点P 的横坐标为2.再由抛物线24y x =的准线为1x =-,以及抛物线的定义可得点P 到该抛物线焦点的距离等于点P 到准线的距离,故点P 到该抛物线焦点的距离是2(1)3--=, 故选:.C3.【答案】B解:根据抛物线的定义可得||||PF PQ =,故线段FQ 的垂直平分线必过点.P 故选.B4.【答案】C解:设点A 的坐标为(,)x y , 由点A 到y 轴的距离为9,可得9,x = 由点A 到抛物线C 的焦点的距离为12,可得122px += 解得 6.p = 故选.C5.【答案】B解:将2x =代入抛物线22y px =,可得y =±OD OE ⊥,可得1OD OE k k ⋅=-,即1=-,解得1p =,所以抛物线方程为:22y x =,它的焦点坐标1(,0).2故选:.B6.【答案】C解:画出图形如图所示,作MD EG ⊥,垂足为D ,由题意得点0(,22)M x ,0()2px >在抛物线上,则082px =,① 由抛物线的性质,可知0||2p DM x =-, 因为1sin 3MFG ∠=, 所以011||||()332pDM MF x ==+,所以001()232p px x -=+,解得0x p =,② 由①②解得02(x p ==-舍去)或0 2.x p ==故抛物线C 的方程为24.y x =故选:.C解:由题意可知,2p =,则(1,0)F ,准线为直线1x =-, 过A ,B 分别作AM ,BN 垂直准线于M ,N , 则有||||BF BN =,||||AF AM =, 因为||2||BC BF =,所以||2||BC BN =, 所以||2||3BC CF =, 所以||23BN p =, 所以4||||3BN BF ==,8||3BC =, 所以||4CF =, 因为||||||p CF AM CA =,所以2||44||||||4||4||CF AM CF AF AF AM ===+++,解得||4AM =, 所以||4AF =,所以4||13||43BF AF ==, 故选:.B解:F 是抛物线24y x =的焦点,(1,0)F ∴,准线方程1x =-,设11(,)M x y ,22(,)N x y , 12||||116MF NF x x ∴+=+++=,解得124x x +=,∴线段MN 的中点横坐标为2,∴线段MN 的中点到该抛物线准线的距离为21 3.+=故选.C9.【答案】A解:抛物线C :24y x =的焦点为(1,0)F ,设直线l 的方程为(1)y k x =-,0k >,点11(,)A x y ,点22(,)B x y ,线段AB 的中点00(,)M x y , 由2(1)4y k x y x=-⎧⎨=⎩,得2222(24)0k x k x k -++=, 所以0∆>,212224k x x k ++=,又因为弦AB 的中点M 到抛物线的准线的距离为5,所以12152x x ++=, 则然22224283k k k +=⇒=,又0k >,所以3k =30.y --= 故选:.A10.【答案】A解:将点M 的点坐标代入抛物线方程得0152px =, 解得0152x p=,即15(,15)2M p ,设圆M 的半径为R ,则过点M 作直线2px =的垂线,垂足为B ,所以||3RMB ==, 又因为||3||MA AF =, 所以4||3RMF =, 所以224()()1533R R -=, 解得3R =, 又因为115322p R p =-,解得3p =或5(p =-舍去). 故选.A11.【答案】C解:设抛物线的方程:22(0)y px p =>,焦点为F ,则3623p =⨯,则212p =,∴抛物线的标准方程:212y x =,焦点坐标(3,0)F ,准线方程为3x =-, 圆2C :22680x y x +-+=的圆心为(3,0),半径为1,由直线PQ 过圆的圆心即抛物线的焦点,可设直线l 的方程为:3my x =-,设P 、Q 坐标分别为,由联立,得 212360y my --=,21441440m ∆=+>恒成立,由韦达定理得:1212y y m +=,1236y y ⋅=-,,22121291212y y x x ⋅==⨯, 121111||||33PF QF x x ∴+=+++ ,则||3||||13(||1)PN QM PF QF +=+++||3||4PF QF =++当且仅当时等号成立,故选.C12.【答案】A解:将x c =代入双曲线22221x y a b -=中,解得2b y a=±,则,所以24222,4b c b a c a==, 即,所以,令tan baθ=, 即42tan 4tan 4θθ-=,解得2tan 222θ=+,故2222cos 2cos sin tan 112 2.(sin 1)(sin 1)cos θθθθθθθ-==-=+-+- 故选.A13.【答案】ABD解:由抛物线的方程可得焦点1(0,)2F ,显然过焦点F 的直线的斜率存在,设直线l 的方程为:12y kx =+, 联立2122y kx x y⎧=+⎪⎨⎪=⎩,整理可得:2210x kx --=,可得0∆>,122x x k +=,121x x =-,所以21212()121y y k x x k +=++=+,221212144x x y y ==; 所以A 正确;以AB 为直径的圆的圆心坐标为:1212(,)22x x y y ++,即21(,)2k k +, 根据抛物线的定义,可知半径12211||22122y y AB k +++==+, 所以圆心到直线12y =-的距离为:2211122k k ++=+等于半径,所以圆与直线相切,所以B 正确; 当直线AB 与x轴平行时,||||OA OB ==,||||OA OB += 所以||||OA OB +的最小值不是C 不正确;直线OA 的方程为:1112y x y x x x ==,与2x x =的交点坐标为:122(,)2x x x , 因为12122x x =-,所以经过点B 与x 轴垂直的直线与直线OA 交点在定直线12y =-上,故D 正确;故选:.ABD14.【答案】ACD解:24y x =的焦点(1,0)F ,准线方程为1x =-,设A ,B ,M 在准线上的射影为A ',B ',M ',由||||AF AA =',||||BF BB =',111||(||||)(||||)||222MM AA BB AF FB AB '='+'=+=,可得线段AB 为直径的圆与准线1x =-相切, 所以与直线12x =-相交, 故选项A 正确;当直线AB 的斜率不存在时,显然以线段BM 为直径的圆与y 轴相切;当直线AB 的斜率存在且不为0,可设直线AB 的方程为y kx k =-,联立24y x =,可得2222(24)0k x k x k -++=,设11(,)A x y ,22(,)B x y , 可得12242x x k +=+,121x x =,设13x =+,23x =-,可得M 的横坐标为221k +, MB 的中点的横坐标为2212(1)2x k++,222||1|BM x k=--,当1k =时,MB 的中点的横坐标为52,1||22MB =, 显然以线段BM 为直径的圆与y 轴相交,故选项B 错;2AF FB =时,122y y =-,1212244()222y y k x x k k k y k k +=+-=+-==-, 故24y k=-, 212121212(1)(1)[()1]y y k x k x k x x x x =--=-++22224(121)42k y k =--+=-=-, 将24y k =-代入得2162k=, 则28k =,则1249||22282AB x x =++=++=, 故选项C 正确; 显然当直线AB 垂直于x 轴,可得||AB 取得最小值4,故选项D 正确.故选:.ACD15.【答案】5解:抛物线C :24y x =,则焦点(1,0)F ,准线方程l 为1x =-,过点M 作ME l ⊥,垂足为E ,设00(,)M x y ,则||||6MF ME ==,所以016x +=,则05x =,所以点M 的横坐标为5;因为点M 在抛物线上,故204520y =⨯=, 所以0||25y =,即||25MN =,所以11||||(51)254 5.22FMN S FN MN =⨯⨯=⨯-⨯= 故答案为:5;4 5.16.【答案】2解:如图所示,设抛物线的准线为l ,作AC l ⊥于点C ,BD l ⊥于点D ,AE BD ⊥于点E ,由抛物线的定义,可得2AC AF ==,4BD BF ==, 22422,945BE AE AB BE ∴=-==-=-=,∴直线AB 的斜率5tan .2AB AE k ABE BE =∠== 故答案为:5.217.【答案】18解:由题意,设点A 的坐标(,)m n ,OA 的斜率为2,2n m ∴=,又A 是抛物线212y p x =与222x p y =在第一象限的交点,212n p m ∴=与222m p n =,将2n m =代入得2142m p m =与224m p m =,12p m ∴=,24m p =, 故2118p p =, 故答案为1.818.【答案】 解:点P 是抛物线216y x =-的准线上的一动点,P ∴点的横坐标为4,,由抛物线的定义得,A ∴到准线的距离为8,即A 点的横坐标为4-,又点A 在抛物线上,∴从而点A 的坐标为或,∴坐标原点关于准线的对称点的坐标为, 则当A ,P ,B 共线时, 取得最小值,最小值为:, 故答案为413. 19.【答案】解:(1)直线l 斜率不为0,(1,0)F ,设直线:1l x ty =+,11(,)A x y ,22(,)B x y ,A 点在x 轴上方,10y ∴>,20y <,由,可得2440y ty --=,0>,124y y t ∴+=,124y y =-,11222(1,)2(1,)AF FB x y x y =⇒--=-,122y y ∴-=,由,代入124y y =-,因为10y >,所以0t >,解得122t =,AB ∴所在直线方程为22220.x y --=(2)证明:设AB 中点为(,)N N N x y ,1222N y y y t +∴==,221N x t =+,2(21,2)N t t ∴+, 所以AB 中垂线2:2(21)l y t t x t '-=---,2(23,0)D t ∴+,22|||231|22DF t t ∴=+-=+,||(AB=244t ==+,则22||442(||22AB t DF t +==+定值).20. 【答案】解:(1)设动圆圆心为(,)P x y ,动圆圆心P 到点(2,0)Q 的距离与到直线1x =-距离差为定圆半径1,即动点P 到顶点(2,0)的距离等于到定直线2x =-的距离,根据圆抛物线的定义,动点P 的轨迹是以定点(2,0)为焦点,直线2x =-为准线的抛物线,圆心P 的轨迹为曲线C 的方程为:28y x =;(2))假设在曲线C 上存在点M 满足题设条件,不妨设00(,)M x y ,11(,)A x y ,22(,)B x y ; 1010108MA y y k x x y y -==-+,2020208MB y y k x x y y -==-+; 120210*********(2)88()MA MB y y y k k y y y y y y y y y y +++=+=+++++,① 显然动直线l 的斜率非零,故可设其方程为2x ty =-,()t R ∈,联立28y x =,整理得28160y ty -+=,128y y t ∴+=,1216y y =,且12y y ≠,代入①式得020********MA MB t y k k y ty ++=++, 显然00y ≠,于是2000[8()64]()(16)160MA MB MB MA y k k t k k y y +-+++-=,②,欲使②式对任意t R ∈成立,必有,020016816MA MB y k k y y ∴+==+,即2016y =,04y =±, 将此代入抛物线C 的方程可求得满足条件的M 点坐标为(2,4),(2,4)-,综上所述,存在点(M 与A ,B 两点相异),其坐标为为(2,4),(2,4)-,直线MA 、MB 的斜率之和为定值.。
高考真题与模拟训练 专题23 抛物线(试题版)
专题23 抛物线第一部分 真题分类1.(2021·1的距离为A .1B .2CD .42.(2020·北京高考真题)设抛物线的顶点为O ,焦点为F ,准线为l P 是抛物线上异于O 的一点,过,则线段FQ 的垂直平分线( ).A.经过点OBC OP D3.(2019·全国高考真题(文))若抛物线y 2=2px (p >021y p =的一个焦点,则p =A .2B .3C .4D .84.(2021·,点M 为抛物线C 上的点,且M 的横坐标是_______;作MN x ⊥轴于N .5.(2021·全国高考真题(文))抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l C 于P ,Q OQ .已知点()2,0M ,且M 与l 相切.(1)求C ,M 的方程;(2C 3A 均与相切.判断直线23A A 与说明理由.6.(2021·浙江高考真题)如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的2=,(1)求抛物线的方程;(2)设过点F的直线交抛物线与A、B两点,斜率为2的直线l与直线,,MA MB AB,x轴依次交于点P,Q,R,N l在x轴上截距的范围.7.(2020·浙江高考真题)如图,已知椭圆221:12xC y+=,抛物线22:2(0)C y px p=>,点A是椭圆1CA的直线l交椭圆1C于点B,交抛物线2C于M(B,M不同于A).16(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.8.(2019·北京高考真题(理))已知抛物线C:x2=−2py经过点(2,−1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.第二部分 模拟训练1.已知抛物线24x y=的焦点为F,过F l与抛物线相交于A,B两点,PB AB⊥,则A B.2C D.32.已知抛物线2:10C y x=的焦点为F,若点M在抛物线C M到y轴的距离为( )A.2B5C.4D3l的直线交抛物线于A B两点,过点AE,当A OAB的面积为( )A3B.C3D3.已知以圆C:22(1)4x y-+=的圆心为焦点的抛物线1C点,B点是抛物线2C:BM与直线2y=-垂直,垂足为MA B2C D4为坐标原点,,A B为抛物线C上两点,||||AO AF=,且AB.2-C.D5()3,0B为ABC的两个顶点,点C在抛物线24x y=上,且到焦点的距离为13,则A.12B.13C.14D.156x__________.7l A、()13,A y828y x=C10A在直线AA F F的周长为______.F关于y轴的对称点为1F,则四边形1192=的准8y x线上,则该双曲线的方程为__.10F为抛物线CC的切线AN(斜率不为0),设切点为N.(1)求抛物线C的标准方程;(2)求证:以FN为直径的圆过点A.11.已知动点M0的距离比到点1.(1所在的曲线(2,A B、C上的两个动点,如果直线的斜率与直线PB的斜率互为相反数,(3A B、是曲线C上的两个动点,如果直线PA的斜率与直线PB的斜率之和为2,证.。
专题27 抛物线(解答题)(新高考地区专用)(原卷版)
专题27 抛物线(解答题)1.已知抛物线2:2(0)C y px p =>经过点()06,P y ,F 为抛物线的焦点,且||10PF =. (1)求0y 的值;(2)点Q 为抛物线C 上一动点,点M 为线段 FQ 的中点,试求点M 的轨迹方程.2.设抛物线C :22x py =(0p >)过点()2,1. (1)求抛物线C 的标准方程;(2)若直线l 交曲线C 于M 、N 两点,分别以点M 、N 为切点作曲线C 的切线相交于点P ,且两条切线垂直,求三角形MNP 面积的最小值.3.已知点F 为曲线2:2(0)C y px p =>的焦点,点M 在曲线C 运动,当点M 运动到x 轴上方且满足MF x ⊥轴时,点M 到直线4l y x p =+:的距离为. (1)求曲线C 的方程;(2)设过点F 的直线与曲线C 交于,A B 两点,则在x 轴上是否存在一点P ,使得直线PA 与直线PB 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由. 4.已知抛物线()2:20C y px p =>上一点()0,2P x 到焦点F 的距离02PF x =.(1)求抛物线C 的方程;(2)过点P 引圆()(222:30M x y rr -+=<≤的两条切线PA PB 、,切线PA PB、与抛物线C 的另一交点分别为A B 、,线段AB 中点的横坐标记为t ,求t 的取值范围.5.已知抛物线2:2(0)C y px p =>的焦点为F ,过F 且斜率为2的直线交抛物线于,P Q 两点,10PQ =.(1)求抛物线C 的方程;(2)过点(3,0)的直线l 与抛物线C 相交于,A B 两点,已知(3,0)M -,且以线段AM 为直径的圆与直线3x =-的另一个交点为N ,试问在x 轴上是否存在一定点,使得直线BN 恒过此定点.若存在,请求出定点坐标,若不存在,请说明理由.6.设点F 为抛物线22(0)y px p =>的焦点,,,A B C 三点在抛物线上,且四边形ABCF 为平行四边形,当B 点到y 轴距离为1时,5BF =.(1)求抛物线的方程;(2)平行四边形ABCF 的对角线AC 所在的直线是否经过定点?若经过,求出定点的坐标;若不经过定点,请说明理由.7.设抛物线()2:20E x py p =>的焦点为F ,点A 是E 上一点,且线段AF 的中点坐标为()1,1.(1)求抛物线E 的标准方程;(2)若B ,C 为抛物线E 上的两个动点(异于点A ),且BA BC ⊥,求点C 的横坐标的取值范围.8.已知O 是坐标系的原点,F 是抛物线2:4C x y =的焦点,过点F 的直线交抛物线于A ,B 两点,弦AB 的中点为M ,OAB 的重心为G .(1)求动点G 的轨迹方程;(2)设(1)中的轨迹与y 轴的交点为D ,当直线AB 与x 轴相交时,令交点为E ,求四边形DEMG 的面积最小时直线AB 的方程. 9.已知抛物线2:2(0)C y px p =>过点(4,4)D (1)求抛物线C 的方程,并求其焦点坐标与准线方程;(2)直线l 与抛物线C 交于不同的两点E ,F 过点E 作x 轴的垂线分别与直线OD ,OF 交于A ,B 两点,其中O 为坐标原点.若A 为线段BE 的中点,求证:直线l 恒过定点. 10.已知抛物线2:4E y x =的焦点为F ,准线为l ,过焦点F 的直线交抛物线E 于A 、B . (1)若1AA 垂直l 于点1A ,且16AFA π∠=,求AF 的长;(2)O 为坐标原点,求 OAB 的外心C 的轨迹方程.11.已知抛物线2:2(0)T x py p =>的焦点为F ,B ,C 为抛物线C 上两个不同的动点,(B ,C 异于原点),当B ,C ,F 三点共线时,直线BC 的斜率为1,2BC =.(1)求抛物线T 的标准方程;(2)分别过B ,C 作x 轴的垂线,交x 轴于M ,N ,若MNPBCFS S=,求BC 中点P 的轨迹方程.12.已知抛物线2:2(0)T x py p =>的焦点为F ,B 、C 为抛物线T 上两个不同的动点,当B ,C 过F 且与x 轴平行时,BC 长为1. (1)求抛物线T 的标准方程;(2)分别过B ,C 作x 轴的垂线,交x 轴于M ,N ,若2MNFBCFS S=,求BC 中点的轨迹方程.13.已知抛物线()2:20C y px p =>的内接等边三角形AOB 的面积为O 为坐标原点).(1)试求抛物线C 的方程;(2)已知点()1,1,,M P Q 两点在抛物线C 上,MPQ ∆是以点M 为直角顶点的直角三角形. ①求证:直线PQ 恒过定点;②过点M 作直线PQ 的垂线交PQ 于点N ,试求点N 的轨迹方程,并说明其轨迹是何种曲线.14.设抛物线E :()220y px p =>焦点为F ,准线为l ,A 为E 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B 、D 点.(1)若60BFD ∠=︒,BFD △的面积为3,求p 的值及圆F 的方程; (2)若点A 在第一象限,且A 、B 、F 三点在同一直线1l 上,直线1l 与抛物线E 的另一个交点记为C ,且CF FA λ=,求实数λ的值.15.已知动圆Q 经过定点()0,F a ,且与定直线:l y a =-相切(其中a 为常数,且0a >).记动圆圆心Q 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线?(2)设点P 的坐标为()0,a -,过点P 作曲线C 的切线,切点为A ,若过点P 的直线m 与曲线C 交于M ,N 两点,证明:AFM AFN ∠=∠.16.在平面直角坐标系xOy 中,已知()2,0F ,()2,3M -,动点P 满足12OF MP PF ⋅=. (1)求动点P 的轨迹C 的方程;(2)过点()1,0D 作直线AB 交C 于A ,B 两点,若AFD 的面积是BFD △的面积的2倍,求AB .17.已知抛物线C 的顶点在原点,焦点为()1,0F -. (1)求C 的方程;(2)设P 为C 的准线上一点,Q 为直线PF 与C 的一个交点且F 为PQ 的中点,求Q 的坐标及直线PQ 的方程.18.光学是当今科技的前沿和最活跃的领域之一,抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出,今有抛物线2:2(0)C x py p =>,一平行于y 轴的光线从上方射向抛物线上的点P ,经抛物线2次反射后,又沿平行于y 轴方向射出,若两平行光线间的最小距离为8.(1)求抛物线C 的方程;(2)若直线:l y x m =+与抛物线C 交于A ,B 两点,以点A 为顶点作ABN ,使ABN 的外接圆圆心T 的坐标为493,8⎛⎫⎪⎝⎭,求弦AB 的长度. 19.已知抛物线C 的顶点在坐标原点,准线方程为12y =,F 为抛物线C 的焦点,点P 为直线123=+y x 上任意一点,以P 为圆心,PF 为半径的圆与抛物线C 的准线交于A 、B 两点,过A 、B 分别作准线的垂线交抛物线C 于点D 、E .(1)求抛物线C 的方程;(2)证明:直线DE 过定点,并求出定点的坐标. 20.已知动圆过定点(0,2)A ,且在x 轴上截得的弦长为4. (1)求动圆圆心M 的轨迹方程C ;(2)设不与x 轴垂直的直线l 与轨迹C 交手不同两点()11,P x y ,()22,Q x y .若12112+=x x ,求证:直线l 过定点.21.已知圆221:(1)4M x y -+=,动圆N 与圆M 相外切,且与直线12x =-相切.(1)求动圆圆心N 的轨迹C 的方程. (2)已知点11(,),(1,2)22P Q --,过点P 的直线l 与曲线C 交于两个不同的点,A B (与Q 点不重合),直线,QA QB 的斜率之和是否为定值?若是,求出该定值;若不是,说明理由. 22.已知抛物线()220y px p =->的焦点为F ,x 轴上方的点()2,M m -在抛物线上,且52MF =,直线l 与抛物线交于A ,B 两点(点A ,B 与M 不重合),设直线MA ,MB 的斜率分别为1k ,2k . (1)求抛物线的方程;(2)已知122k k +=-,l :y kx b =+,求b 的值.23.如图所示,A ,B 是焦点为F 的抛物线24y x =上的两动点,线段AB 的中点M 在定直线34x =上. (1)求FA FB +的值;(2)求AB 的最大值.24.已知直线2y x =-与抛物线22y px =相交于A ,B 两点,满足OA OB ⊥.定点()4,2C ,()4,0D -,M 是抛物线上一动点,设直线CM ,DM 与抛物线的另一个交点分别是E ,F .(1)求抛物线的方程;(2)求证:当M 点在抛物线上变动时(只要点E 、F 存在且不重合),直线EF 恒过一个定点;并求出这个定点的坐标.25.已知曲线C 是顶点为坐标原点O ,且开口向右的抛物线,曲线C 上一点A (x 0,2)到准线的距离为52,且焦点到准线的距离小于4. (1)求抛物线C 的方程与点A 的坐标;(2)若MN ,PQ 是过点(1,0)且互相垂直的C 的弦,求四边形MPNQ 的面积的最小值.26.设抛物线2:4y x Γ=的焦点为F ,直线:0l x my n --=经过F 且与Γ交于A 、B 两点.(1)若8AB =,求m 的值;(2)设O 为坐标原点,直线AO 与Γ的准线交于点C ,求证:直线BC 平行于x 轴. 27.已知抛物线2:2C y px =的焦点为()1,0F ,斜率为k 的直线1l 过点()()0,0P m m >,直线1l 与抛物线C 相交于A ,B 两点.(1)求抛物线C 的方程;(2)直线2l 过点()()0,0P m m >,且倾斜角与1l 互补,直线2l 与抛物线C 交于M ,N 两点,且FAB 与FMN 的面积相等,求实数m 的取值范围.28.已知曲线C 上每一点到直线l :32x =-的距离比它到点1,02F ⎛⎫⎪⎝⎭的距离大1. (1)求曲线C 的方程;(2)若曲线C 上存在不同的两点P 和Q 关于直线l :20x y --=对称,求线段PQ 中点的坐标.29.已知抛物线2:2(0)E x py p =>的焦点为,F 点Р在抛物线E 上,点Р的横坐标为2,且2PF =.(1)求抛物线E 的标准方程;(2)若,A B 为抛物线E 上的两个动点(异于点P ),且AP AB ⊥,求点B 的横坐标的取值范围.30.已知抛物线22x py =(0p >)上点P 处的切线方程为10x y --=. (1)求抛物线的方程;(2)设11()A x y ,和22()B x y ,为抛物线上的两个动点,其中12y y ≠,且124y y +=,线段AB 的垂直平分线l 与y 轴交于点C ,求ABC 面积的最大值.31.已知点P 是抛物线C :212y x =上的一点,其焦点为点F ,且抛物线C 在点P 处的切线l 交圆O :221x y +=于不同的两点A ,B . (1)若点()2,2P ,求AB 的值;(2)设点M 为弦AB 的中点,焦点F 关于圆心O 的对称点为'F ,求'F M 的取值范围. 32.已知M 是抛物线2:4C y x =上一点,F 是抛物线C 的焦点,4MF =. (1)求直线MF 的斜率;(2)已知动圆E 的圆心E 在抛物线C 上,点()2,0D 在圆E 上,且圆E 与y 轴交于A ,B 两点,令||DA m =,||DB n =,求n mm n+最大值.33.已知抛物线2:2(0)C x py p =>的焦点为F ,Q 是抛物线上的一点,()2FQ =.(1)求抛物线C 的方程;(2)过点()0,4P x 的直线l 与抛物线C 交于M 、N 两点,且P 为线段MN 的中点.若线段MN 的中垂线交y 轴于A ,求AMN 面积的最大值.34.已知抛物线()2:20C y px p =>的焦点为F ,点F 到直线10x y -+=.(1)求抛物线C 的方程;(2)点O 为坐标原点,直线1l 、2l 经过点()1,0M -,斜率为1k 的直线1l 与抛物线C 交于A 、B 两点,斜率为2k 的直线2l 与抛物线C 交于D 、E 两点,记MA MB MD ME λ=⋅⋅⋅,若1212k k =-,求λ的最小值. 35.已知曲线C 上的动点M 到y 轴的距离比到点F (1,0)的距离小1, (1)求曲线C 的方程;(2)过F 作弦PQ RS 、,设PQ RS 、的中点分别为A B 、,若0PQ RS ⋅=,求||AB 最小时,弦PQ RS 、所在直线的方程;(3)在(2)条件下,是否存在一定点T ,使得AF TB FT λ=-?若存在,求出T 的坐标,若不存在,试说明理由.36.已知抛物线2:2(0)C x py p =>的焦点到直线:l y x =-的距离为.(1)求抛物线C 的方程; (2)如图,若1,02N ⎛⎫-⎪⎝⎭,直线l '与抛物线C 相交于,A B 两点,与直线l 相交于点M ,且||||AM MB =,求ABN 面积的取值范围.37.已知抛物线2:4C y x =的焦点为F ,过点()2,0P 的直线交抛物线C 于()11,A x y 和()22,B x y 两点.(1)当124x x +=时,求直线AB 的方程;(2)若过点P 且垂直于直线AB 的直线l 与抛物线C 交于,C D 两点,记ABF 与CDF 的面积分别为12,S S ,求12S S 的最小值.38.已知抛物线2:2(0)C x py p =>上一点()M ,9m 到其焦点下的距离为10. (1)求抛物线C 的方程;(2)设过焦点F 的的直线l 与抛物线C 交于,A B 两点,且抛物线在,A B 两点处的切线分别交x 轴于,P Q 两点,求AP BQ ⋅的取值范围.39.已知抛物线E :()220y px p =>的焦点为F ,过点F 作圆C :229(2)2x y ++=的两条切线1l ,2l 且12l l ⊥. (1)求抛物线E 的方程;(2)过点F 作直线l 与E 交于A ,B 两点,若A ,B 到直线34200x y ++=的距离分别为1d ,2d .求12d d +的最小值.40.已知抛物线C 的顶点在原点O ,准线为12x =-.(1)求抛物线C 的标准方程;(2)点A ,B 在C 上,且OA OB ⊥,⊥OD AB ,垂足为D ,直线OD 另交C 于E ,当四边形OAEB 面积最小时,求直线AB 的方程.。
抛物线高考真题精选
抛物线精选高考真题赏析一、单选题1.2020年全国(Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A .2B .3C .6D .92.2020年全国(Ⅲ)设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( )A .1,04⎛⎫ ⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭ C .(1,0) D .(2,0)3.2018年全国(I 卷)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=A .5B .6C .7D .84.2017年全国(1卷)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为A .16B .14C .12D .10.5.2016年全国(1卷)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=,|DE|=,则C 的焦点到准线的距离为 A .2 B .4 C .6 D .86.2014年全国(Ⅰ)已知抛物线C :的焦点为F ,准线为,P 是上一点,Q 是直线PF 与C 得一个交点,若4FP FQ =,则( ) A . B . C . D .7.2014年全国(Ⅱ卷)设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,则AB =( ) A .303 B .6C .12D .3二、解答题 8.2018年全国(II )设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.9.2019年全国(Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为试卷第2页,总2页 A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.10.2018年全国(I 卷)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN ∠=∠.11.2017年全国(1卷)设A 、B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率;(2)M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程.12.(2016新课标全国卷Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (Ⅰ)求OH ON;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.13.2019年全国(Ⅲ)已知曲线2:,2x C y D =,为直线12y 上的动点,过D 作C 的两条切线,切点分别为,A B .(1)证明:直线AB 过定点: (2)若以50,2E ⎛⎫ ⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.。
2024届高考数学复习:精选历年真题、好题专项(抛物线)练习(附答案)
2024届高考数学复习:精选历年真题、好题专项(抛物线)练习一. 基础小题练透篇1.已知点P 到点F (0,1)的距离比它到直线l :y +2=0的距离小1,则点P 的轨迹方程为( )A .x 2=-4yB .x 2=4yC .y 2=-4xD .y 2=4x2.[2023ꞏ江西省南昌市摸底]设F 为抛物线C :x 2=16y 的焦点,直线l :y =-1,点A 为C 上一点且|AF |=5,过点A 作AP ⊥l 于P ,则|AP |=( )A.4 B .3 C .2 D .13.已知抛物线y 2=8x 的准线为l ,点P 是抛物线上的动点,直线l 1的方程为2x -y +3=0,过点P 分别作PM ⊥l ,垂足为M ,PN ⊥l 1,垂足为N ,则|PM |+|PN |的最小值为( )A .655 B .755C .5D .2+3554.已知抛物线y 2=16x ,过点M (2,0)的直线交抛物线于A ,B 两点,F 为抛物线的焦点,若|AF |=12,O 为坐标原点,则四边形OAFB 的面积是( )A.202 B .102 C .52 D .5225.[2023ꞏ湖南省湘潭市一模]已知抛物线C :y 2=2px (p >0)的焦点为F ,点T 在C 上,且|FT |=52 ,若点M 的坐标为(0,1),且MF ⊥MT ,则C 的方程为( )A .y 2=2x 或y 2=8xB .y 2=x 或y 2=8xC .y 2=2x 或y 2=4xD .y 2=x 或y 2=4x6.已知直线l :y =k (x -2)(k >0)与抛物线C :y 2=8x 交于A ,B 两点,F 为抛物线C 的焦点,若AF → =2FB →,则k 的值是( )A .13 B .223 C .22 D .247.[2023ꞏ江苏省高三月考]已知抛物线C :y 2=8x 的焦点为F ,在C 上有一点P ,||PF =8,则点P 到x 轴的距离为____________.8.[2023ꞏ广东省深圳市月考]已知抛物线C :y 2=2px 的焦点为F ,点A 为抛物线C 上横坐标为3的点,过点A 的直线交x 轴的正半轴于点B ,且△ABF 为正三角形,则p =________.二. 能力小题提升篇1.[2023ꞏ广西柳州市摸底考试]已知F 是抛物线y 2=8x 的焦点,直线l 是抛物线的准线,则F 到直线l 的距离为( )A .2B .4C .6D .82.[2023ꞏ陕西省西安市高三模拟]已知抛物线E :y 2=2px (p >0)的焦点为F ,点A 是抛物线E 的准线与坐标轴的交点,点P 在抛物线E 上,若∠P AF =30°,则sin ∠PF A =( )A .12B .33C .34D .323.[2023ꞏ四川大学模拟]设点P 是抛物线C 1:x 2=4y 上的动点,点M 是圆C 2:(x -5)2+(y +4)2=4上的动点,d 是点P 到直线y =-2的距离,则d +|PM |的最小值是( )A .52 -2B .52 -1C .52D .52 +14.[2023ꞏ四川省高三模拟]已知△ABC 的三个顶点都在抛物线y 2=4x 上,点M (2,0)为△ABC 的重心,直线AB 经过该抛物线的焦点,则线段AB 的长为( )A .8B .6C .5D .45.[2023ꞏ广东省开平市高三检测]已知F 是抛物线C :y 2=16x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N ,若3FM → =2MN →,则||FN =__________.6.[2023ꞏ江苏省南京模拟]已知圆C: (x -3)2+y 2=4,点M 在抛物线T :y 2=4x 上运动,过点M 引直线l 1,l 2与圆C 相切,切点分别为P ,Q ,则|PQ |的取值范围为________.三. 高考小题重现篇1.[2022ꞏ全国乙卷]设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B (3,0),若||AF =||BF ,则||AB =( )A .2B .2 2C .3D .322.[2020ꞏ全国卷Ⅰ]已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A .2B .3C .6D .93.[2020ꞏ全国卷Ⅲ]设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A .⎝⎛⎭⎫14,0B .⎝⎛⎭⎫12,0C .(1,0)D .(2,0)4.[2020ꞏ北京卷]设抛物线的顶点为O ,焦点为F ,准线为l ,P 是抛物线上异于O 的一点,过P 作PQ ⊥l 于Q ,则线段FQ 的垂直平分线( )A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP5.[2021ꞏ北京卷]已知抛物线C :y 2=4x ,C 的焦点为F ,点M 在C 上,若|FM |=6,则M 的横坐标是________.6.[2021ꞏ山东卷]已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP ,若|FQ |=6,则C 的准线方程为________.四. 经典大题强化篇1.[2023ꞏ湖北省高三联考]记以坐标原点为顶点、F (1,0)为焦点的抛物线为C ,过点F 的直线l 与抛物线C 交于A ,B 两点.(1)已知点M 的坐标为(-2,0),求∠AMB 最大时直线AB 的倾斜角;(2)当l 的斜率为12 时,若平行l 的直线m 与C 交于M ,N 两点,且AM 与BN 相交于点T ,证明:点T 在定直线上.2.[2023ꞏ山西省运城市模拟]已知P (1,2)在抛物线C :y 2=2px 上. (1)求抛物线C 的方程;(2)A ,B 是抛物线C 上的两个动点,如果直线P A 的斜率与直线PB 的斜率之和为2,证明:直线AB 过定点.参考答案一 基础小题练透篇1.答案:B答案解析:由题意,点P 到点F (0,1)的距离等于它到直线y =-1的距离,则点P的轨迹是以F 为焦点,y =-1为准线的抛物线,则点P 的轨迹方程为x 2=4y .2.答案:C答案解析:抛物线方程C :x 2=16y ,准线方程为:y =-4,因为|AF |=5,所以点A 到准线的距离为5,且y A >0,直线l :y =-1与准线方程的距离为d =3,所以|AP |=5-3=2 .3.答案:B答案解析:令抛物线y 2=8x 的焦点为F ,则F (2,0),连接PF ,如图,因为l 是抛物线y 2=8x 的准线,点P 是抛物线上的动点,且PM ⊥l 于M ,于是得|PM |=|PF |,点F (2,0)到直线l 1:2x -y +3=0的距离d =|2×2-0+3|22+(-1)2=755 ,又PN ⊥l 1于N ,显然点P 在点F 与N 之间,于是有|PM |+|PN |=|PF |+|PN |≥d ,当且仅当F ,P ,N三点共线时取“=”,所以|PM |+|PN |的最小值为d =755.4.答案:A答案解析:抛物线y 2=16x 的准线方程为x =-4,设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知,x 1+4=12,x 1=8,y 21 =16×8,由抛物线的对称性,不妨令y 1=82 ,设直线AB 的方程为x =my +2,由⎩⎪⎨⎪⎧x =my +2,y 2=16x , 得y 2-16my -32=0,y 1y 2=-32,∴y 2=-22 ,四边形OAFB 的面积S =12 |OF |·|y 1-y 2|=12×4×102 =202 .5.答案:A答案解析:设T (x 0,y 0),则MT → =(x 0,y 0-1),又由F (p 2 ,0),所以MF →=(p 2,-1),因为MF ⊥MT ,所以MF → ·MT →=0,可得p 2x 0-y 0+1=0,由y 20 =2px 0,联立方程组,消去x 0,可得y 20 -4y 0+4=0,所以y 0=2,x 0=2p,故T(2p,2),又由|FT |=x 0+p 2 =52 ,所以52 -p 2 =2p ,即p 2-5p +4=0,解得p =1或p =4,所以C 的方程为y 2=2x 或y 2=8x .6.答案:C答案解析:直线l :y =k (x -2)(k >0)过(2,0),即直线l 过抛物线的焦点F (2,0),画出图象如图所示,过A 作直线垂直于抛物线的准线,垂足为D ;过B 作直线垂直于抛物线的准线,垂足为C ,过B 作BE ⊥AD ,交AD 于E .依题意AF → =2FB →,设|AF |=2|BF |=2t (t >0), 则|AE |=|AD |-|BC |=t ,|AB |=|AF |+|BF |=3t ,|BE |=(3t )2-t 2=22 t ,所以直线l 的斜率k =|BE ||AE | =22 . 7.答案:43答案解析:由抛物线的定义可知:||PF =x p +2=8,所以x p =6,代入y 2=8x 中,得y 2p =48,所以||y p =43 ,故点P 到x 轴的距离为43 . 8.答案:2答案解析:由题意可知,当B 在焦点F 的右侧时,|AF |=3+p 2 ,|FD |=3-p2,又|FD |=12 ⎝ ⎛⎭⎪⎫3+p 2 ,所以12 ⎝⎛⎭⎪⎫3+p 2 =3-p2 ,解得p =2;当B 在焦点F 的左侧时,同理可得p =18,此时点B 在x 轴的负半轴,不合题意.二 能力小题提升篇1.答案:B答案解析:由y 2=8x 得p =4,所以F 到直线l 的距离为p =4. 2.答案:B答案解析:过P 作准线的垂线,垂足为Q ,由∠PAF =30°,可得∠APQ =30°,由题意如图所示:在Rt△AQP 中,cos ∠APQ =|QP ||PA | =32, 由抛物线的性质可得|PQ |=|PF |,所以|PF ||PA | =32 , 在△PAF 中,由正弦定理可得:|PA |sin ∠PFA =|PF |sin ∠PAF ,所以sin ∠PFA =|AP ||PF | ·sin ∠PAF =23·12 =33 . 故选B.3.答案:B答案解析:由题知圆C 2:(x -5)2+(y +4)2=4, ∴C 2()5,-4 ,r =2F (0,1)为抛物线焦点,y =-1为抛物线准线, 则过点P 向y =-1作垂线垂足为D ,如图所示:则d =1+||PD ,根据抛物线定义可知||PD =||PF , ∴d =1+||PF ,∴d +|PM |=1+||PF +||PM ,若求d +|PM |的最小值,只需求||PF +||PM 的最小值即可, 连接FC 2与抛物线交于点P 1,与圆交于点M 1,如图所示,此时||PF +||PM 最小,为||FC 2 -r ,()d +||PMmin=1+||FC 2 -r ,∵F (0,1),C 2()5,-4 ,∴||FC 2 =52 ,∴()d +||PM min =1+||FC 2 -r =52 -1. 故选B. 4.答案:B答案解析:设抛物线y 2=4x 的焦点为F ,则F (1,0).根据题意可知,点M (2,0)为△ABC 的重心,若直线AB 的斜率不存在, 则不妨取A (1,2),B (1,-2),则结合重心可得C 为(4,0),不合题意; 故直线AB 的斜率存在,设直线AB 的方程为y =k (x -1),k ≠0,A (x 1,y 1),B (x 2,y 2),C (m ,n ),则有y 21 =4x 1,y 22 =4x 2,n 2=4m ,联立方程⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1), 得ky 2-4y -4k =0,Δ=16(1+k 2)>0, 则y 1+y 2=4k ,y 1y 2=-4,因为点M (2,0)为△ABC 的重心,所以n +y 1+y 23=0, 即n =-()y 1+y 2 ,所以m +x 1+x 23 =2,∴m +x 1+x 2=n 2+y 21 +y 22 4=2()y 1+y 22-2y 1y 24 =6,即32k2 +8=24,解得k 2=2,则||AB =x 1+x 2+p =()y 1+y 22-2y 1y 24+2=4k2 +4=6,故线段AB 的长为6,故选B.5.答案:16答案解析:易知焦点F 的坐标为(4,0),准线l 方程为x =-4,如图, 抛物线准线与x 轴交点为A ,作MB ⊥l 于B ,NC ⊥l 于C ,AF ∥MB ∥NC ,则||MN ||NF =||BM -||CN ||OF ,由3FM → =2MN →,得||MN ||NF =35,又||CN =4,||OF =4,所以||BM -44 =35 ,||BM =325 ,||MF =||BM =325 ,||MF ||NF =25,所以||FN =16.6.答案:[22 ,4)答案解析:如图,连接CP ,CQ ,CM ,依题意,CP ⊥MP ,CQ ⊥MQ ,而|CP |=|CQ |=2,而|MP |=|MQ |,则CM 垂直平分线段PQ ,于是得四边形MPCQ 的面积为Rt△CPM 面积的2倍,从而得12 |PQ |·|CM |=2·12 |CP |·|MP |,即|PQ |=2|CP |·|MP ||CM | =4|CM |2-|CP |2|CM | =41-4|CM |2 ,设点M (t ,s ),而C (3,0),s 2=4t (t ≥0),则|CM |2=(t -3)2+s 2=t 2-2t +9=(t -1)2+8≥8,当且仅当t =1时取“=”,∀t ≥0,|CM |2∈[8,+∞),因此得0<4|CM |2 ≤12 ,即12 ≤1-4|CM |2 <1,得22 ≤|PQ |<4, 所以|PQ |的取值范围为[22 ,4).三 高考小题重现篇1.答案:B答案解析:由题意得,F (1,0),则||AF =||BF =2,即点A 到准线x =-1的距离为2,所以点A 的横坐标为-1+2=1, 不妨设点A 在x 轴上方,代入得,A (1,2), 所以||AB =(3-1)2+()0-22=22 .故选B.2.答案:C答案解析:设焦点为F ,点A 的坐标为(x 0,y 0),由抛物线定义得|AF |=x 0+p2,∵点A 到y 轴距离为9,∴x 0=9, ∴9+p2 =12,∴p =6. 3.答案:B答案解析:由抛物线的对称性不妨设D 在x 轴上方、E 在x 轴下方.由⎩⎪⎨⎪⎧x =2,y 2=2px得D (2,2p ),E (2,-2p ),∵OD ⊥OE ,∴OD → ·OE → =4-4p =0,∴p =1,∴C 的焦点坐标为⎝ ⎛⎭⎪⎫12,0 . 4.答案:B 答案解析:不妨设抛物线的方程为y 2=2px (p >0),P (x 0,y 0)(x 0>0),则Q ⎝ ⎛⎭⎪⎫-p2,y 0 ,F ⎝ ⎛⎭⎪⎫p 2,0 ,直线FQ 的斜率为-y 0p ,从而线段FQ 的垂直平分线的斜率为p y 0 ,又线段FQ 的中点为⎝ ⎛⎭⎪⎫0,y 02 ,所以线段FQ 的垂直平分线的方程为y -y 02 =py 0 (x -0),即2px -2y 0y +y 2=0,将点P 的横坐标代入,得2px 0-2y 0y +y 20 =0,又2px 0=y 20 ,所以y =y 0,所以点P 在线段FQ 的垂直平分线上.5.答案:5答案解析:设点M 的坐标为(x 0,y 0),则有|FM |=x 0+1=6,解得x 0=5.6.答案:x =-32答案解析:不妨设P ⎝ ⎛⎭⎪⎫p 2,p ,∴Q ⎝ ⎛⎭⎪⎫6+p2,0 , PQ →=(6,-p ),因为PQ ⊥OP ,所以p2×6-p 2=0,∵p >0,∴p =3,∴C 的准线方程为x =-32.四 经典大题强化篇1.答案解析:(1)设直线的方程为x =my +1,A (x 1,y 1),B (x 2,y 2)()y 1>0,y 2<0 . 记∠AMF =α,∠BMF =β,则tan α=y 1x 1+2=y 1my 1+3, tan β=-y 2x 2+2 =-y 2my 2+3, 则tan ∠AMB =tan ()α+β =tan α+tan β1-tan αtan β=3()y 1-y 2()m 2+1y 1y 2+3m ()y 1+y 2+9. 由题设得抛物线方程为y 2=4x ,联立⎩⎪⎨⎪⎧y 2=4x x =my +1 消去x 得y 2-4my -4=0,∴⎩⎪⎨⎪⎧Δ>0y 1+y 2=4m y 1y 2=-4,y 1-y 2=4m 2+1 ,∴tan ∠AMB =12m 2+18m 2+5,令t =m 2+1 ,则t ≥1,∴tan ∠AMB =12t 8t 2-3 =128t -3t. 由单调性得当t =1时,tan ∠AMB 最大为125,此时m =0,直线AB 的倾斜角为90°. (2)设T ()x 0,y 0 ,TM → =λTA → ()λ≠1 则由AB ∥MN 得TN → =λTB →, ∴⎩⎨⎧y M -y 0=λ()y A -y 0y N -y 0=λ()y B -y 0 ,∴y M +y N -2y 0=λ()y A +y B -2y 0 . 又∵k AB =12,∴y A -y B x A -x B =4y A +y B =12 ⇒y A +y B =8,同理y M +y N =8,∴8-2y 0=λ()8-2y 0 ,又∵λ≠1,∴8-2y 0=0,∴y 0=4, ∴点T 在定直线y =4上.2.答案解析:(1)将P 点坐标代入抛物线方程y 2=2px 得4=2p ,即p =2,所以抛物线C 的方程为y 2=4x ;(2)设AB :x =my +t ,将AB 的方程与y 2=4x 联立得y 2-4my -4t =0,Δ>0=16m 2+16t >0⇒m 2+t >0, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4t ,k PA =y 1-2x 1-1 =y 1-2y 21 4-1 =4y 1+2,同理:k PB =4y 2+2 , 由题意:4y 1+2 +4y 2+2=2,4(y 1+y 2+4)=2(y 1y 2+2y 1+2y 2+4),解得y 1y 2=4,有-4t =4,即t =-1, 故直线AB :x =my -1恒过定点(-1,0).。
高考数学专题复习:抛物线及其方程
高考数学专题复习:抛物线及其方程一、单选题 1.抛物线212y x =的焦点坐标是( ) A .10,2⎛⎫ ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .10,8⎛⎫ ⎪⎝⎭D .(0,1)2.抛物线24y x =的焦点坐标为( ) A .(1,0) B .(1,0)- C .1(0,)16-D .1(0,)163.抛物线28y x =的焦点坐标为( ) A .10,32⎛⎫ ⎪⎝⎭B .1,016⎛⎫ ⎪⎝⎭C .()0,2D .()2,04.已知抛物线26y x =的焦点为F ,过点F 作直线交抛物线于点,A B .若8AB =,则AB 中点的横坐标的值为( ) A .1B .52C .3D .55.已知动点M 34125x y +-=,则动点M 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆6.在抛物线22(0)y px p =>上,若横坐标为3的点到焦点的距离为5,则p =( ) A .12B .1C .2D .47.已知抛物线()2:20C y px p =>的焦点为F ,准线:1l x =-,点M 在抛物线C 上,点M在直线:1l x =-上的射影为A ,且直线AF 的斜率为MAF △的面积为( ).A B .C .D .8.已知抛物线22y x =的焦点为F ,点()001,02M y y ⎛⎫> ⎪⎝⎭在抛物线上,以M 为圆心,||MF 为半径的圆交y 轴于G ,H 两点,则||GH 的长为( )A .12B C .1D9.已知抛物线22(0)y px p =>的焦点为1,02F ⎛⎫⎪⎝⎭,过F 的直线l 交抛物线于A ,B 两点,且2AF FB =,则l 的斜率为( )A .±1B .C .D .±10.抛物线()20y ax a =>上点1,2M m ⎛⎫ ⎪⎝⎭到其准线l 的距离为1,则a 的值为( ) A .14B .12C .2D .411.设O 为坐标原点,P 是以F 为焦点的抛物线()2102y x n n=>上任意一点,M 是线段PF 的中点,则直线OM 的斜率的最大值为( )A B C 2D .112.已知P 为曲线:C x =90,4T ⎛⎫⎪⎝⎭,()3,3A ,则PT PA +的最小值为( )A .6B .234C .5D .214二、填空题13.已知抛物线方程为214y x =-,则其焦点坐标为________.14.二次函数()20y axa =>图象上的A 、B 两点均在第一象限.设点10,4F a ⎛⎫⎪⎝⎭,当4AF =,2BF =,3AB =时,直线AB 的斜率为________.15.准线方程为1x =的抛物线标准方程为________.16.已知抛物线28y x =的焦点与2221x y a+=()0a >的右焦点重合,则a =________.三、解答题17.已知拋物线C :28x y =,点F 是拋物线的焦点,直线l 与拋物线C 交于AB 两点.点M 的坐标为()2,2-.(1)若直线l 过抛物线的焦点F ,且1MA MB ⋅=,求直线l 的斜率;(2)分别过A ,B 两点作拋物线C 的切线,两切线的交点为M ,求直线l 的斜率.18.已知抛物线1C :22y px =(0p >)的焦点与双曲线2C :221412x y-=右顶点重合.(1)求抛物线1C 的标准方程;(2)设过点()0,1的直线l 与抛物线1C 交于不同的两点A ,B ,F 是抛物线1C 的焦点,且1FA FB ⋅=,求直线l 的方程.19.抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M 与l 相切.(1)求C ,M 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 的位置关系,并说明理由.20.已知三点(0,0)(1,2)(1,2)O A B -,,,(,)M x y 为曲线C 上任意一点,满足MA MB +()2OM OA OB =⋅++.(1)求曲线C 的方程;(2)已知点(1,2)P ,,R S 为曲线C 上的不同两点,且PR PS ⊥,PD RS ⊥,D 为垂足,证明:存在定点Q ,使||DQ 为定值.21.如图所示,已知抛物线24x y =的焦点为F ,过F 的直线交抛物线于A ,B 两点,A 在y 轴左侧且AB 的斜率大于0.(1)当直线AB 的斜率为1时,求弦长AB 的长度;(2)点()0,0P x 在x 轴正半轴上,连接PA ,PB 分别交抛物线于C ,D ,若//AB CD 且3AB CD =,求0x .22.已知点(1,0)F ,直线:2l x =-,P 为y 轴右侧或y 轴上动点,且点P 到l 的距离比线段PF 的长度大1,记点P 的轨迹为E . (1)求曲线E 的方程;(2)已知直线1:1l x =交曲线E 于A ,B 两点(点A 在点B 的上方),C ,D 为曲线E 上两个动点,且CAB DAB ∠=∠,求证:直线CD 的斜率为定值.参考答案1.A 【分析】抛物线化为标准方程,即可求解 【详解】 将抛物线212y x =化为标准方程得: 22x y =,故1p =,焦点坐标为10,2⎛⎫⎪⎝⎭故选:A 2.D 【分析】先将抛物线方程化为标准方程,从而可求出其焦点坐标 【详解】解:由24y x =,得214x y =, 所以抛物线的焦点在y 轴的正半轴上,且124p =, 所以18p =,1216p =, 所以焦点坐标为1(0,)16, 故选:D 3.D 【分析】由标准方程可确定焦点位置和焦点横坐标,从而得到结果. 【详解】由抛物线28y x =的方程知其焦点在x 在正半轴上, 且22p=,∴其焦点坐标为()2,0. 故选:D. 4.B 【分析】先求出抛物线3p =,再逆用焦点弦长公式即可得出答案. 【详解】由于抛物线26y x =,所以3p =,则过点3(,0)2F 作直线交抛物线于点,A B ,设点,A B 横坐标分别为12,x x ,则AB 中点的横坐标12015()222x x x AB p +==-=. 故选:B 5.C 【分析】(),x y 到坐标原点的距离,34125x y +-表示动点(),x y 到34120x y +-=的距离,再根据抛物线的定义判断即可; 【详解】解 |3412|5x y +-,此式表示的是动点(,)M x y 到定点(0,0)与定直线34120x y +-=的距离相等且定点不在定直线上,根据抛物线的定义可知:动点的轨迹是以定点()0,0为焦点,定直线34120x y +-=为准线的一条抛物线. 故选:C . 6.D 【分析】利用抛物线的定义,将抛物线上的点到焦点的距离转化为该点到准线的距离. 【详解】由题知,抛物线22(0)y px p =>的准线方程为2px =-, 若横坐标为3的点到焦点的距离为5,则由抛物线的定义知,352p ⎛⎫--= ⎪⎝⎭,解得4p =. 故选:D. 7.C 【分析】由题意可知焦准距为2,由直线的斜率为MAF △是以4为边长的正三角形,从而求出三角形的面积.设准线l 与x 轴交于点N ,所以2FN =,因为直线AF的斜率为60AFN ∠=︒,所以4AF =,由抛物线定义知,MA MF =,且60MAF AFN ∠=∠=︒,所以MAF △是以424= 故选C . 8.D 【分析】先求出圆心坐标和半径,再利用勾股定理求解即可 【详解】易知抛物线22y x =的焦点为1,02F ⎛⎫⎪⎝⎭,由点()001,02M y y ⎛⎫> ⎪⎝⎭在抛物线上,可知1,12M ⎛⎫⎪⎝⎭,||1MF =以M 为圆心,||MF 为半径的圆交y 轴于G ,H两点,则||GH =故选:D 9.D 【分析】由条件得到1p =,设l 的直线方程为12x my =+,()11,A x y ,()22,B x y ,联立直线与抛物线的方程消元,然后韦达定理可得122y y m +=,121y y =-,然后结合2AF FB =解出12,y y 的值即可. 【详解】由题知1p =,抛物线方程为22y x =,设l 的直线方程为12x my =+,代入抛物线方程,得2210y my --=,设()11,A x y ,()22,B x y ,则122y y m +=,121y y =-.因为2AF FB =所以12y y ⎧=⎪⎨=⎪⎩或12y y ⎧=⎪⎨=⎪⎩故m =,即l的斜率为±. 故选:D【分析】首先求出抛物线的准线方程,由题意得到方程,解得即可; 【详解】解:抛物线()20y ax a =>即()201y ax a =>,可得准线方程14y a =-,抛物线()20y ax a =>上点1,2M m ⎛⎫ ⎪⎝⎭到其准线l 的距离为1,可得:11124a+=,解得12a =. 故选:B . 11.D 【分析】利用坐标表示直线OM 的斜率00012112882y k x ny nny ==++,再利用基本不等式求最大值. 【详解】设()00,P x y ,,180F n ⎛⎫ ⎪⎝⎭,M 是线段PF 的中点,所以00,2218M n x y ⎛⎫+ ⎪ ⎪⎪⎝⎭.直线OM 的斜率为:020000001211228821188y y y k x x ny ny nny nn====++++. 显然00y >时的斜率较大,此时0011128k ny ny =≤=+,当且仅当00128ny ny =,014y n=时,斜率最大为1. 故选:D. 12.D 【分析】利用抛物线的定义知||PT 等于P 到准线94y =-的距离,则PT PA +最小值为A 到准线94y =-的距离,即可求PT PA +的最小值.【详解】由题意知:曲线C 是抛物线29x y =的右半部分且90,4T ⎛⎫⎪⎝⎭是焦点,∵P 为曲线C 上一点,若P 到准线94y =-的距离为d ,则||d PT =,∴PT PA d PA +=+,要使其值最小,则d PA +即为A 到准线94y =-的距离,∴PT PA +的最小值为921344+=. 故选:D 13.()0,1- 【分析】先将抛物线的方程转化为标准方程的形式24x y =-,即可判断抛物线的焦点坐标为0,2p ⎛⎫⎪⎝⎭,从而解得答案. 【详解】解:因为抛物线方程为214y x =-,即24x y =-,所以24p =-,12p=-, 所以抛物线的焦点坐标为()0,1-, 故答案为:()0,1-.14 【分析】设点()11,A x y 、()22,B x y ,根据抛物线的定义结合作差法可得出12y y -的值,再利用两点间的距离公式求出12x x -的值,再利用直线的斜率公式可求得结果. 【详解】抛物线的标准方程为21x y a =,该抛物线的焦点为10,4F a ⎛⎫⎪⎝⎭,准线方程为14y a =-, 设点()11,A x y 、()22,B x y ,由抛物线的定义可得1144AF y a =+=,2124BF y a=+=, 所以,122y y -=,因为A 、B均在第一象限,且12x x =>, 因为3AB ==,所以,12x x -因此,直线AB的斜率为1212y y k x x -==-. . 15.24y x =- 【分析】 由准线方程可得12p=,抛物线的焦点在x 的负半轴上,从而可求得抛物线的标准方程 【详解】解:因为抛物线的准线方程为1x =, 所以12p=,且抛物线的焦点在x 的负半轴上, 得2p =,所以抛物线标准方程为24y x =-, 故答案为:24y x =- 16【分析】求出抛物线的焦点坐标即为2221x y a+=()0a >的右焦点可得答案.【详解】由题意可知:抛物线的焦点坐标为()2,0, 由题意知2221x y a+=表示焦点在x 轴的椭圆,在椭圆中:2221,14b c a ==-=,所以25a =, 因为0a >,所以a =17.(1)14k =或34;(2)12k =.【分析】(1)设直线l 方程为2y kx =+,()11,A x y ,()22,B x y ,联立228y kx x y =+⎧⎨=⎩,由韦达定理求出12x x +、12x x ⋅、12y y ⋅、12y y +,再根据()()1212121224241MA MB x x x x y y y y ⋅=-++++++=即可求解.(2)由导数的几何意义求出过点A ,B 的切线方程,将()2,2M -代入两切线方程,即可得直线AB 的方程,进而可得直线l 的斜率. 【详解】解:(1)由题知,焦点()0,2F ,设过点F 的直线l 方程为2y kx =+,()11,A x y ,()22,B x y联立228y kx x y =+⎧⎨=⎩,得28160x kx --=,1212816x x k x x +=⎧⎨⋅=-⎩,所以()21212484y y k x x k +=++=+,()2121212244y y k x x k x x ⋅=⋅+++=,所以()()11222,22,2MA MB x y x y ⋅=-+⋅-+()()121212122424x x x x y y y y =-++++++216164k k =-+1=,解得14k =或34. (2)由抛物线方程得28x y =,24x y '=,所以过点A ,B 的切线方程分别为()1114x y y x x -=-和()2224x y y x x -=-,因为()2,2M -为两切线的交点,所以()111224x y x --=-,()222224xy x --=- 所以过A ,B 的直线方程为()22224242x x x xy x y --=-=-=-,即240x y -+=,所以12k =. 18.(1)28y x =;(2)1y x =+或51y x =-+. 【分析】(1)由双曲线和抛物线的几何性质,即可求解;(2)设()11,A x y ,()22,B x y 及直线l 的方程,与抛物线C 的方程联立,由判别式、韦达定理得出12x x +,12x x ,结合已知条件求出k 的值,即可求得直线l 的方程. 【详解】(1)由题设知,双曲线222:1412x y C -=的右顶点为()2,0, ∴22p=,解得4p =, ∴抛物线1C 的标准方程为28y x =. (2)设()11,A x y ,()22,B x y ,显然直线l 的斜率存在,故设直线l 的方程为1y kx =+,联立218y kx y x =+⎧⎨=⎩,消去y 得()222810k x k x +-+=,由0∆>得()222840k k -->,即2k <, ∴12228k x x k -+=-,1221x x k =. 又∵1FA FB ⋅=,()2,0F ,∴()()1212221FA FB x x y y ⋅=--+=,∴()()()()()()2121212121224111251x x x x kx kx k x x k x x -+++++=++-++=,即2450k k +-=, 解得1k =或5k =-,∴直线l 的方程为1y x =+或51y x =-+.19.(1)抛物线2:C y x =,M 方程为22(2)1x y -+=;(2)相切,理由见解析【分析】(1)根据已知抛物线与1x =相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出,P Q 坐标,由OP OQ ⊥,即可求出p ;由圆M 与直线1x =相切,求出半径,即可得出结论;(2)先考虑12A A 斜率不存在,根据对称性,即可得出结论;若121323,,A A A A A A 斜率存在,由123,,A A A 三点在抛物线上,将直线121223,,A A A A A A 斜率分别用纵坐标表示,再由1212,A A A A 与圆M 相切,得出2323,y y y y +⋅与1y 的关系,最后求出M 点到直线23A A 的距离,即可得出结论. 【详解】(1)依题意设抛物线200:2(0),(1,),(1,)C y px p P y Q y =>-,20,1120,21OP OQ OP OQ y p p ⊥∴⋅=-=-=∴=,所以抛物线C 的方程为2y x =,(0,2),M M 与1x =相切,所以半径为1,所以M 的方程为22(2)1x y -+=; (2)设111222333(),(,),(,)A x y A x y A x y若12A A 斜率不存在,则12A A 方程为1x =或3x =, 若12A A 方程为1x =,根据对称性不妨设1(1,1)A , 则过1A 与圆M 相切的另一条直线方程为1y =,此时该直线与抛物线只有一个交点,即不存在3A ,不合题意; 若12A A 方程为3x =,根据对称性不妨设12(3,A A 则过1A 与圆M 相切的直线13A A为3)y x -=-,又131********A A y y k y x x y y -====∴=-+, 330,(0,0)x A =,此时直线1323,A A A A 关于x 轴对称,所以直线23A A 与圆M 相切; 若直线121323,,A A A A A A 斜率均存在,则121323121323111,,A A A A A A k k k y y y y y y ===+++, 所以直线12A A 方程为()11121y y x x y y -=-+, 整理得1212()0x y y y y y -++=,同理直线13A A 的方程为1313()0x y y y y y -++=, 直线23A A 的方程为2323()0x y y y y y -++=, 12A A 与圆M相切,1=整理得22212121(1)230y y y y y -++-=,13A A 与圆M 相切,同理22213131(1)230y y y y y -++-=所以23,y y 为方程222111(1)230y y y y y -++-=的两根,2112323221123,11y y y y y y y y -+=-⋅=--,M 到直线23A A 的距离为:2123|2|y -+=22121111y y +===+,所以直线23A A 与圆M 相切;综上若直线1213,A A A A 与圆M 相切,则直线23A A 与圆M 相切. 【点睛】关键点点睛:(1)过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;(2)要充分利用1213,A A A A 的对称性,抽象出2323,y y y y +⋅与1y 关系,把23,y y 的关系转化为用1y 表示. 20.(1)24y x =;(2)证明见解析.【分析】(1)由题意,算出MA ,MB 的坐标,进而求出+MA MB ,再利用平面向量数量积的坐标表示求出()2OM OA OB ⋅++,根据已知即可求解.(2)若直线RS y ⊥轴,则直线RS 与曲线C 只有一个交点,不合题意; 设直线RS 的方程为x my n =+,1122(,)(,)R x y S x y ,,联立24x my ny x=+⎧⎨=⎩,由韦达定理,根据0PR PS ⋅=,可得=25n m +,从而得直线过定点(5,2)M -, 进而在PDM △中,当(3,0)Q 为PM 中点时,DQ 为定值.【详解】解:(1)由(1,2)MA x y =--- ,(1,2)MB x y =-- 可得+(22,2)MA MB x y =--, +=2(1MA MB ∴,()2(,)(2,0)222OM OA OB x y x ⋅++=⋅+=+所以,由已知得2x +,化简得24y x =, 所以,曲线C 方程为24y x =.(2)证明:若直线RS y ⊥轴,则直线RS 与曲线C 只有一个交点,不合题意;设直线RS 的方程为x my n =+,联立24x my n y x =+⎧⎨=⎩,得2440y my n --=,则2=16160m n ∆+>,可得20m n +>,设1122(,)(,)R x y S x y ,,则12124,4y y m y y n +==-,21111111(2)(2)(1,2)1,2,244y y y PR x y y y ⎛⎫-+⎛⎫=--=--=- ⎪ ⎪⎝⎭⎝⎭,同理222(2)(2),24y y PS y -+⎛⎫=- ⎪⎝⎭,因为PR PS ⊥,所以121212(2)(2)(2)(2)+(2)(2)=016y y y y PR PS y y --++⋅=--,所以[]1212(2)(2)(2)(2)+16=0y y y y --++,点(1,2)P 在曲线C 上,显然12y ≠且22y ≠, 所以121212(2)(2)+16=2()2048+20=0y y y y y y n m +++++=-+, 所以=25n m +,所以直线RS 的方程为(2)5x m y =++,因此直线过定点(5,2)M -,所以PM =PDM △是以PM 为斜边的直角三角形, 所以PM 中点(3,0)Q满足1=2DQ PM 所以存在(3,0)Q 使DQ 为定值. 【点睛】关键点点睛:设直线RS 的方程为x my n =+,1122(,)(,)R x y S x y ,,联立24x my ny x =+⎧⎨=⎩,由韦达定理,根据0PR PS ⋅=,得=25n m +,从而得直线过定点(5,2)M -是解决本题的关键. 21.(1)8;(2【分析】(1)写出直线AB 方程,把它与抛物线方程联立消元,用弦长公式即可得解;(2)利用给定条件建立起关于A 、B 的横坐标与0x 的关系式,再利用直线AB 与抛物线相交时A 、B 的横坐标的关系即可得解. 【详解】(1)依题意得焦点(0,1)F ,所以直线AB 方程为1y x =+,把1y x =+与24x y =联立得2440x x --=,设1122(,),(,)A x y B x y ,于是124x x +=,124x x ⋅=-,所以12||AB x =-=8=; (2)设()22,A t t,(,)CC C xy ,()0,0P x ,由 ||3||AB CD =,//AB CD ,可得||3||AP CP =,即200323()C C t y x t x x ⎧=⎨-=-⎩2013223C C y t t x x ⎧=⎪⎪⇔⎨+⎪=⎪⎩,而点C 在抛物线24x y =上, 则有22022433t x t +⎛⎫= ⎪⎝⎭2200220t x t x ⇔--=,令()22,B s s ,同理2200 220s x s x --=, 即t ,s 关于x 的方程2200220x x x x --=的两根,于是0s t x +=,202x st =-, 直线AB 斜率k (k>0),联立直线AB 方程:y =kx +1与抛物线方程24x y =得2440x kx --=,则2t ,2s 是此方程的两个根,即224t s ⋅=-,即1ts =-,2012x -=-,解得0x所以0x 【点睛】结论点睛:直线l :y =kx +b 上两点A (x 1,y 1),B (x 2,y 2)间的距离12||||AB x x =-; 直线l :x =my +t 上两点A (x 1,y 1),B (x 2,y 2)间的距离12||||AB y y -. 22.(1)24y x =;(2)证明见解析. 【分析】(1)由题设条件分析讨论,再用抛物线定义即可得解;(2)求出点A 坐标,利用抛物线方程设出点C ,D 坐标,由条件探求出这两点纵坐标关系即可得解. 【详解】(1)依题意,线段PF 的长度等于P 到0:1l x =-的距离,由抛物线定义知, 点P 的轨迹是以(1,0)F 为焦点,0:1l x =-为准线的抛物线, 所以E 的方程为24y x =;(2)将1x =代入24y x =得2y =±,则(1,2)A ,(1,2)B -,如图:设抛物线E 上动点221212(,),(,)44y y C y D y ,显然直线AC ,AD 斜率存在,121124214AC y k y y -==+-,同理242ADk y =+,因为CAB DAB ∠=∠,则0AC AD k k +=,121212440220422y y y y y y +=⇒+++=⇒+=-++, 直线CD 的斜率122212124144y y k y y y y -===-+-, 即直线CD 的斜率为定值-1.。
高中数学抛物线-高考经典例题
1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2抛物线的图形和性质:①顶点是焦点向准线所作垂线段中点。
②焦准距:FK p =③通径:过焦点垂直于轴的弦长为2p 。
④顶点平分焦点到准线的垂线段:2p OF OK ==。
⑤焦半径为半径的圆:以P 为圆心、FP 为半径的圆必与准线相切。
所有这样的圆过定点F 、准线是公切线。
⑥焦半径为直径的圆:以焦半径 FP 为直径的圆必与过顶点垂直于轴的直线相切。
所有这样的圆过定点F 、过顶点垂直于轴的直线是公切线。
⑦焦点弦为直径的圆:以焦点弦PQ 为直径的圆必与准线相切。
所有这样的圆的公切线是准线。
3抛物线标准方程的四种形式:,,px y px y 2222-==。
,py x py x 2222-==4抛物线px y 22=的图像和性质:①焦点坐标是:⎪⎭⎫⎝⎛02,p ,②准线方程是:2p x -=。
③焦半径公式:若点),(00y x P 是抛物线px y 22=上一点,则该点到抛物线的焦点的距离(称为焦半径)是:02p PF x =+, ④焦点弦长公式:过焦点弦长121222p pPQ x x x x p =+++=++ ⑤抛物线px y 22=上的动点可设为P ),2(2y py 或2(2,2)P pt pt 或P px y y x 2),(2=其中5一般情况归纳:方程 图象 焦点 准线 定义特征y 2=kxk>0时开口向右(k/4,0) x= ─k/4到焦点(k/4,0)的距离等于到准线x= ─k/4的距离k<0时开口向左 x 2=kyk>0时开口向上(0,k/4) y= ─k/4到焦点(0,k/4)的距离等于到准线y= ─k/4的距离k<0时开口向下抛物线的定义:例1:点M 与点F (-4,0)的距离比它到直线l :x -6=0的距离4.2,求点M 的轨迹方程.C NM 1QM 2K FPoM 1QM 2KF Poyx分析:点M 到点F 的距离与到直线x =4的距离恰好相等,符合抛物线定义.答案:y 2=-16x例2:斜率为1的直线l 经过抛物线y 2=4x 的焦点,与抛物线相交于点A 、B ,求线段A 、B 的长.分析:这是灵活运用抛物线定义的题目.基本思路是:把求弦长AB 转化为求A 、B 两点到准线距离的和.解:如图8-3-1,y 2=4x 的焦点为F (1,0),则l 的方程为y =x -1.由⎩⎨⎧+==142x y x y 消去y 得x 2-6x +1=0. 设A (x 1,y 1),B (x 2,y 2) 则x 1+x 2=6. 又A 、B 两点到准线的距离为A ',B ',则()()()8262112121=+=++=+++='+'x x x x B B A A点评:抛物线的定义本身也是抛物线最本质的性质,在解题中起到至关重要的作用。
抛物线-考点测试
目录 狂刷小题 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
解析
对于 C,设 MN 的中点为 A,M,N,A 到直线 l 的距离分别为 d1,d2,d,
因为 d=12(d1+d2)=12(|MF|+|NF|)=12|MN|,即 A 到直线 l 的距离等于|MN|
答案
解析 由题意知点 A 为抛物线 C 的准线与 x 轴的交
点,如图,过点 M 作 MN 垂直于准线于点 N,令|FM|=
2a,则|AM|= 5a,由抛物线的定义可得|MN|=|FM|=2a,
所以 cos∠AMN=||MAMN||=255,所以 sin∠AMN= 55.又
MN∥AF,所以∠MAF=∠AMN,所以
解析
7.已知抛物线 C:y2=2px(p>0)的焦点为 F,点 M 在 C 上,点
A-p2,0,若|AM|= 25|FM|,则 cos∠MFA=(
)
A.±
2 2
B.±
3 2
C.±
3 3
D.±12
目录 狂刷小题 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
=x1+p2=x1+1,|BF|=x2+p2=x2+1,所以|AP|+4|BQ|
=x1+4x2,设直线 l:x=my+1,由yx2==m4yx+,1,得 x2-(2+4m2)x+1=0,
所以 x1x2=1,所以|AP|+4|BQ|=x1+4x2≥2 4x1x2=4,当且仅当 x1=4x2,
即 x1=2,x2=12时取等号,所以|AP|+4|BQ|的最小值为 4.
抛物线
抛物线【九大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习
抛物线【九大题型】专练【题型1 抛物线的定义及其应用】........................................................................................................................3【题型2 抛物线的标准方程】................................................................................................................................5【题型3 抛物线的焦点坐标及准线方程】............................................................................................................6【题型4 抛物线的轨迹方程】................................................................................................................................7【题型5 抛物线上的点到定点的距离及最值】....................................................................................................9【题型6 抛物线上的点到定点和焦点距离的和、差最值】..............................................................................11【题型7 抛物线的焦半径公式】..........................................................................................................................14【题型8 抛物线的几何性质】..............................................................................................................................16【题型9 抛物线中的三角形(四边形)面积问题】 (18)1、抛物线【知识点1 抛物线及其性质】1.抛物线的定义(1)定义:平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫作抛物线.点F叫作抛物线的焦点,直线l叫作抛物线的准线.(2)集合语言表示设点M(x,y)是抛物线上任意一点,点M到直线l的距离为d,则抛物线就是点的集合P={M||MF|=d}.2.抛物线的标准方程与几何性质(0,0)(0,0)3.抛物线与椭圆、双曲线几何性质的差异抛物线与椭圆、双曲线几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形;②顶点个数不同,椭圆有4个顶点,双曲线有2个顶点,抛物线只有1个顶点;③焦点个数不同,椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率取值范围不同,椭圆的离心率范围是0<e<1,双曲线的离心率范围是e>1,抛物线的离心率是e=1;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线.【知识点2 抛物线标准方程的求解方法】1.抛物线标准方程的求解待定系数法:求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.【知识点3 抛物线的焦半径公式】1.焦半径公式设抛物线上一点P的坐标为,焦点为F.(1)抛物线:;(2)抛物线:(3)抛物线:;(4)抛物线:.注:在使用焦半径公式时,首先要明确抛物线的标准方程的形式,不同的标准方程对应于不同的焦半径公式.【知识点4 与抛物线有关的最值问题的解题策略】1.与抛物线有关的最值问题的两个转化策略(1)转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”“三角形两边之和大于第三边”,使问题得以解决.(2)转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.【方法技巧与总结】1.通径:过焦点与对称轴垂直的弦长等于2p.2.抛物线P,也称为抛物线的焦半径.【题型1 抛物线的定义及其应用】【例1】(2024·贵州贵阳·二模)抛物线y2=4x上一点M与焦点间的距离是10,则M到x轴的距离是()A.4B.6C.7D.9【解题思路】借助抛物线定义计算即可得.【解答过程】抛物线y2=4x的准线为x=―1,由抛物线定义可得x M+1=10,故x M=10―1=9,则|y M|===6,即M到x轴的距离为6.故选:B.【变式1-1】(2024·河北·模拟预测)已知点P为平面内一动点,设甲:P的运动轨迹为抛物线,乙:P到平面内一定点的距离与到平面内一定直线的距离相等,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解题思路】根据已知条件,结合充分条件、必要条件的定义,即可求解.【解答过程】解:当直线经过定点时,点的轨迹是过定点且垂直于该直线的另一条直线,当直线不经过该定点时,点的轨迹为抛物线,故甲是乙的充分条件但不是必要条件.故选:A.【变式1-2】(2024·北京大兴·三模)已知抛物线y2=4x的焦点为F,过F且斜率为―1的直线与直线x=―1交于点A,点M在抛物线上,且满足|MA|=|MF|,则|MF|=()A.1B C.2D.【解题思路】由题意先求出过F且斜率为―1的直线方程,进而可求出点A,接着结合点M在抛物线上且|MA|=|MF|可求出x M,从而根据焦半径公式|MF|=x M+1即可得解.【解答过程】由题意可得F(1,0),故过F且斜率为―1的直线方程为y=―(x―1)=―x+1,令x=―1⇒y=2,则由题A(―1,2),因为|MA|=|MF|,所以MA垂直于直线x=―1,故y M=2,又M 在抛物线上,所以由22=4x M ⇒x M =1,所以|MF |=x M +1=2.故选:C.【变式1-3】(2024·福建莆田·模拟预测)若抛物线C 的焦点到准线的距离为3,且C 的开口朝左,则C 的标准方程为( )A .y 2=―6xB .y 2=6xC .y 2=―3xD .y 2=3x【解题思路】根据开口设抛物线标准方程,利用p 的几何意义即可求出.【解答过程】依题意可设C 的标准方程为y 2=―2px(p >0),因为C 的焦点到准线的距离为3,所以p =3,所以C 的标准方程为y 2=―6x .故选:A.【题型2 抛物线的标准方程】【例2】(2024·山东菏泽·模拟预测)已知点A (a,2)为抛物线x 2=2py (p >0)上一点,且点A 到抛物线的焦点F 的距离为3,则p =( )A .12B .1C .2D .4【解题思路】由题意,根据抛物线的性质,抛物线x 2=2py (p >0),则抛物线焦点为F 0,M (x 1,y 1)为 抛物线上一点,有|MF |=y 1+p 2,可得|AF |=2+p2=3,解得p =2.【解答过程】因为抛物线为x 2=2py (p >0),则其焦点在y 轴正半轴 上,焦点坐标为由于点A (a,2)为抛物线x 2=2py ,(p >0)为上一点,且点A 到抛物线的焦点F 的距离为3, 所以点A 到抛物线的焦点F 的距离为|AF |=2+p2=3,解得p =2,故选:C.【变式2-1】(2024·陕西安康·模拟预测)过点(2,―3),且焦点在y 轴上的抛物线的标准方程是( )A .x 2=―3yB .x 2=―43yC .x 2=―23yD .x 2=―4y【解题思路】利用待定系数法,设出抛物线方程,把点代入求解即可.【解答过程】设抛物线的标准方程为x 2=ay (a ≠0),将点点(2,―3)代入,得22=―3a,解得a=―43,所以抛物线的标准方程是x2=―43y.故选:B.【变式2-2】(2024·新疆·三模)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1,则抛物线的标准方程为()A.y2=x B.y2=2x C.y2=4x D.y2=8x【解题思路】根据抛物线的定义求解.【解答过程】由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=―1的距离相,因此―p2=―1,p=2,抛物线方程为y2=4x.故选:C.【变式2-3】(2024·宁夏石嘴山·三模)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于两点A、B,交其准线于C,AE与准线垂直且垂足为E,若|BC|=2|BF|,|AE|=3,则此抛物线的方程为()A.y2=3x2B.y2=9xC.y2=9x2D.y2=3x【解题思路】过点A,B作准线的垂线,设|BF|=a,得到|AC|=3+3a,结合抛物线的定义,求得a=1,再由BD//FG,列出方程求得p的值,即可求解.【解答过程】如图所示,分别过点B作准线的垂线,垂足为D,设|BF|=a,则|BC|=2|BF|=2a,由抛物线的定义得|BD|=|BF|=a,在直角△BCD中,可得sin∠BCD=|BD||BC|=12,所以∠BCD=30∘,在直角△ACE中,因为|AE|=3,可得|AC|=3+3a,由|AC |=2|AE |,所以3+3a =6,解得a =1,因为BD //FG ,所以1p =2a3a ,解得p =32,所以抛物线方程为y 2=3x .故选:C.【题型3 抛物线的焦点坐标及准线方程】【例3】(2024·内蒙古赤峰·二模)已知抛物线C 的方程为 x =―116y 2, 则此抛物线的焦点坐标为( )A .(-4,0)B .―14,C .(-2,0)D .―12,【解题思路】由抛物线的几何性质求解.【解答过程】依题意得:y 2=―16x ,则此抛物线的焦点坐标为:―4,0,故选:A.【变式3-1】(2024·黑龙江大庆·模拟预测)已知抛物线C:y =6x 2,则C 的准线方程为( )A .y =―32B .y =32C .y =―124D .y =124【解题思路】根据抛物线的准线方程直接得出结果.【解答过程】抛物线C :y =6x 2的标准方程为x 2=16y ,所以其准线方程为y =―124.故选:C.【变式3-2】(2024·河南·三模)抛物线y 2=―28x 的焦点坐标为( )A .(0,―14)B .(0,―7)C .(―14,0)D .(―7,0)【解题思路】根据抛物线的标准方程直接得出结果.【解答过程】∵2p =28,∴p =14,∴抛物线y 2=―28x 的焦点坐标为(―7,0).故选:D.【变式3-3】(2024·福建厦门·模拟预测)若抛物线y 2=mx 的准线经过双曲线x 2―y 2=2的右焦点,则m的值为()A.―4B.4C.―8D.8【解题思路】根据题意,分别求得双曲线的右焦点以及抛物线的准线方程,代入计算,即可得到结果.【解答过程】因为双曲线x2―y2=2的右焦点为(2,0),又抛物线y2=mx的准线方程为x=―m4,则―m4=2,即m=―8.故选:C.【题型4 抛物线的轨迹方程】【例4】(2024·湖南衡阳·三模)已知点F(2,0),动圆P过点F,且与x=―2相切,记动圆圆心P点的轨迹为曲线Γ,则曲线Γ的方程为()A.y2=2x B.y2=4x C.y2=8x D.y2=12x【解题思路】分析题意,利用抛物线的定义判断曲线是抛物线,再求解轨迹方程即可.【解答过程】由题意知,点P到点F的距离和它到直线x=―2的距离相等,所以点P的轨迹是以(2,0)为焦点的抛物线,所以Γ的方程为y2=8x,故C正确.故选:C.【变式4-1】(23-24高二上·北京延庆·期末)到定点F(1,0)的距离比到y轴的距离大1的动点且动点不在x轴的负半轴的轨迹方程是()A.y2=8x B.y2=C.y2=2x D.y2=x【解题思路】根据抛物线的定义即可得解.【解答过程】因为动点到定点F(1,0)的距离比到y轴的距离大1,所以动点到定点F(1,0)的距离等于到x=―1的距离,所以动点的轨迹是以F(1,0)为焦点,x=―1为准线的抛物线,所以动点的轨迹方程是y2=4x.故选:B.【变式4-2】(23-24高二上·重庆·期末)已知点P(x,y)=|x+1|,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆【解题思路】根据已知条件及抛物线的定义即可求解.P(x,y)到点(1,0)的距离;|x+1|表示点P(x,y)到直线x=―1的距离.=|x+1|,所以点P(x,y)到点(1,0)的距离等于点P(x,y)到直线x=―1的距离,所以P的轨迹为抛物线.故选:C.【变式4-3】(23-24高二上·宁夏石嘴山·阶段练习)一个动圆与定圆F:(x+2)2+y2=1相内切,且与定直线l:x=3相切,则此动圆的圆心M的轨迹方程是( )A.y2=8x B.y2=4x C.y2=―4x D.y2=―8x【解题思路】先利用圆与圆的位置关系,直线与圆的位置关系找到动点M的几何条件,再根据抛物线的定义确定动点M的轨迹,最后利用抛物线的标准方程写出轨迹方程.【解答过程】设动圆M的半径为r,依题意:|MF|=r―1,点M到定直线x=2的距离为d=r―1,所以动点M到定点F(―2,0)的距离等于到定直线x=2的距离,即M的轨迹为以F为焦点,x=2所以此动圆的圆心M的轨迹方程是y2=―8x.故选:D.【题型5 抛物线上的点到定点的距离及最值】【例5】(2024·全国·模拟预测)已知A是抛物线C:y2=4x上的点,N(4,0),则|AN|的最小值为()A.2B.C.4D.【解题思路】由抛物线的方程,利用二次函数的性质求最值【解答过程】设,t,则|AN|===≥当且仅当t=±故选:D.【变式5-1】(2024高三·全国·专题练习)已知P是抛物线y2=2x上的点,Q是圆(x―5)2+y2=1上的点,则|PQ |的最小值是( )A .2B .C .D .3【解题思路】将问题转化为求|PC|的最小值,根据两点之间的距离公式,求得|PC|的最小值再减去半径即可.【解答过程】如图,抛物线上点P (x,y )到圆心C (5,0)的距离为|PC |,|CP |≤|CQ |+|PQ |,因此|PQ |≥|CP |―1,当|CP |最小时,|PQ |=|CP |―1最小,而|CP |2=(x ―5)2+y 2=―52+y 2=2―82+9,当y =±|CP |min =3,因此|PQ |的最小值是2.故选:A.【变式5-2】(2024·湖南益阳·三模)已知M 是抛物线y²=4x 上一点,圆C 1:(x ―1)2+(y ―2)2=1关于直线y =x ―1对称的圆为C 2,N 是圆C 2上的一点,则|MN |的最小值为( )A .1B ―1C―1D .37【解题思路】根据对称性求出圆C 2的方程,设y 0,求出|MC 2|的最小值,即可求出|MN |的最小值.【解答过程】圆C 1:(x ―1)2+(y ―2)2=1圆心为C 1(1,2),半径r =1,设C 2(a,b ),=―1―1=0,解得a =3b =0,则C 2(3,0),所以圆C2 :(x ―3)2+y 2=1,设y 0,则|MC 2|==所以当y 20=4,即y 0=±2时,|MC 2|min=所以|MN |的最小值是―1.故选:A.【变式5-3】(2024·黑龙江齐齐哈尔·二模)已知抛物线C:y2=8x的焦点为F,M为C上的动点,N为圆A:x2+ y2+2x+8y+16=0上的动点,设点M到y轴的距离为d,则|MN|+d的最小值为()A.1B C D.2【解题思路】作出图形,过点M作ME垂直于抛物线的准线,垂足为点E,利用抛物线的定义可知d=|MF|―2,分析可知,当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,|MN|+d取最小值,即可得解.【解答过程】根据已知得到F(2,0),圆A:(x+1)2+(y+4)2=1,所以A(―1,―4),圆A的半径为1,抛物线C的准线为l:x=―2,过点M作ME⊥l,垂足为点E,则|ME|=d+2,由抛物线的定义可得d+2=|ME|=|MF|,所以,|MN|+d=|MN|+|MF|―2≥|AM|+|MF|―1―2≥|AF|―1―2=1―2=2.当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,两个等号成立,因此,|MN|+d的最小值为3.故选:D.【题型6 抛物线上的点到定点和焦点距离的和、差最值】【例6】(2024·四川成都·模拟预测)设点A(2,3),动点P在抛物线C:y2=4x上,记P到直线x=―2的距离为d,则|AP|+d的最小值为()A.1B.3C1D【解题思路】根据抛物线的定义,P到焦点F的距离等于P到准线的距离,可得d=|PF|+1,从而转化为求|AP|+|PF|+1的值,当A,P,F三点共线时,d=|PF|+1取得最小值,即可求解.【解答过程】由题意可得,抛物线C的焦点F(1,0),准线方程为x=―1,由抛物线的定义可得d=|PF|+1,所以|AP|+d=|AP|+|PF|+1,因为|AP|+|PF|≥|AF|==所以|AP|+d=|AP|+|PF|+1≥+1.当且仅当A,P,F三点共线时取等号,所以|AP|+d+1.故选:D.【变式6-1】(2024·湖南常德·一模)已知抛物线方程为:y2=16x,焦点为F.圆的方程为(x―5)2+(y―1)2 =1,设P为抛物线上的点,Q|PF|+|PQ|的最小值为()A.6B.7C.8D.9【解题思路】根据抛物线定义将点到焦点的距离转化为点到直线的距离,即|PF|=|PN|,从而得到|PF|+ |PQ|=|PN|+|PQ|,P、Q、N三点共线时和最小;再由Q在圆上,|QN|min=|MN|―r得到最小值.【解答过程】由抛物线方程为y2=16x,得到焦点F(4,0),准线方程为x=―4,过点P做准线的垂线,垂足为N,因为点P在抛物线上,所以|PF|=|PN|,所以|PF|+|PQ|=|PN|+|PQ|,当Q点固定不动时,P、Q、N三点共线,即QN垂直于准线时和最小,又因为Q在圆上运动,由圆的方程为(x―5)2+(y―1)2=1得圆心M(5,1),半径r=1,所以|QN|min=|MN|―r=8,故选:C.【变式6-2】(2024·全国·模拟预测)在直角坐标系xOy中,已知点F(1,0),E(―2,0),M(2,2),动点P满足线段PE的中点在曲线y2=2x+2上,则|PM|+|PF|的最小值为()A.2B.3C.4D.5【解题思路】设P(x,y),由题意求出P的轨迹方程,继而结合抛物线定义将|PM|+|PF|的最小值转化为M 到直线l的距离,即可求得答案.【解答过程】设P(x,y),则PE y2=2x+2,可得y2=4x,故动点P的轨迹是以F为焦点,直线l:x=―1为准线的抛物线,由于22<4×2,故M(2,2)在抛物线y2=4x内部,过点P作PQ⊥l,垂足为Q,则|PM|+|PF|=|PM|+|PQ|,(抛物线的定义),故当且仅当M,P,Q三点共线时,|PM|+|PQ|最小,即|PM|+|PF|最小,最小值为点M到直线l的距离,所以(|PM|+|PF|)min=2―(―1)=3,故选:B.【变式6-3】(2024·陕西西安·一模)设P为抛物线C:y2=4x上的动点,A(2,6)关于P的对称点为B,记P到直线x=―1、x=―4的距离分别d1、d2,则d1+d2+|AB|的最小值为()A B.C+3D.+3【解题思路】根据题意得到d1+d2+|AB|=2d1+3+2|PA|=2(d1+|PA|)+3,再利用抛物线的定义结合三角不等式求解.【解答过程】抛物线C:y2=4x的焦点为F(1,0),准线方程为x=―1,如图,因为d 2=d 1+3,且A (2,6)关于P 的对称点为B ,所以|PA |=|PB |,所以d 1+d 2+|AB |=2d 1+3+2|PA |=2(d 1+|PA |)+3 =2(|PF |+|PA |)+3≥2|AF |+3 ==.当P 在线段AF 与抛物线的交点时,d 1+d 1+|AB |取得最小值,且最小值为.故选:D.【题型7 抛物线的焦半径公式】【例7】(2024·青海西宁·一模)已知F 是抛物线C:x 2=4y 的焦点,点M 在C 上,且M 的纵坐标为3,则|MF |=( )A .B .C .4D .6【解题思路】利用抛物线的标准方程和抛物线的焦半径公式即可求解.【解答过程】由x 2=4y ,得2p =4,解得p =2.所以抛物线C:x 2=4y 的焦点坐标为F (0,1),准线方程为y =―1,又因为M 的纵坐标为3,点M 在C 上,所以|MF |=y M +p2=3+22=4.故选:C.【变式7-1】(2024·河南·模拟预测)已知抛物线C:y 2=2px (p >0)上的点(m,2)到原点的距离为为F ,准线l 与x 轴的交点为M ,过C 上一点P 作PQ ⊥l 于Q ,若∠FPQ =2π3,则|PF |=( )A .13B .12C D .23【解题思路】根据点(m,2)到原点的距离为再设点P 坐标,利用抛物线的定义和等腰三角形的性质列出方程即可求解.【解答过程】因为点(m,2)到原点的距离为所以m 2+22=8,解得m =2,(负值舍),将点(2,2)代入抛物线方程y 2=2px (p >0),得4=4p ,所以p =1,所以C:y 2=2x,F(12,0),l:x =―12.由于抛物线关于x 轴对称,不妨设,因为|PQ|=|PF|=x +12,∠FPQ =2π3,所以△PQF 为等腰三角形,∠PQF =π6,所以|QF|=+12),所以|QF|==+12),解得x =16或x =―12(舍),所以|PF |=16+12=23.故选:D.【变式7-2】(2024·新疆·三模)已知抛物线C :y 2=x 的焦点为F ,在抛物线C 上存在四个点P ,M ,Q ,N ,若弦PQ 与弦MN 的交点恰好为F ,且PQ ⊥MN ,则1|PQ |+1|MN |=( )A B .1C D .2【解题思路】由抛物线的方程可得焦点F 的坐标,应用抛物线焦点弦性质|PF |=p1―cos θ,|QF |=p1+cos θ,|MF |=p1+sin θ,|NF |=p1―sin θ,结合三角的恒等变换的化简可得1|PQ |+1|MN |=12p ,即可求解.【解答过程】由抛物线C:y 2=x 得2p =1,则p =12,F(14,0),不妨设PQ 的倾斜角为θ0<θ<则由|PF |cos θ+p =|PF |,p ―|QF |cos θ=|QF |,得|PF |=p 1―cos θ,|QF |=p1+cos θ,所以|MF |==p1+sin θ,|NF |==p1―sin θ,得|PQ |=|PF |+|QF |=p1―cos θ+p1+cos θ=2psin 2θ,|MN |==2pcos 2θ,所以1|PQ |+1|MN |=12p =1.故选:B.【变式7-3】(2024·北京西城·三模)点F 抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若FA +FB +FC =0,则|FA |+|FB |+|FC |=( )A .2B .C .3D .【解题思路】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),根据抛物线方程求出焦点坐标和准线方程,再由FA +FB +FC =0可得F 为△ABC 的重心,从而可求出x 1+x 2+x 3,再根据抛物线的定义可求得结果.【解答过程】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),由y 2=2x ,得p =1,所以F(12,0),准线方程为x =―12,因为FA +FB +FC =0,所以F 为△ABC 的重心,所以x 1+x 2+x 33=12,所以x 1+x 2+x 3=32,所以|FA |+|FB |+|FC |=x 1+12+x 2+12+x 3+12=x 1+x 2+x 3+32=32+32=3,故选:C.【题型8 抛物线的几何性质】【例8】(2024·重庆·模拟预测)A,B 是抛物线y 2=2px(p >0)上的不同两点,点F 是抛物线的焦点,且△OAB 的重心恰为F ,若|AF|=5,则p =( )A .1B .2C .3D .4【解题思路】根据重心可得x 1+x 2=3p 2y 1=―y 2,结合对称性可得x 1=3p4,再根据抛物线的定义运算求解.【解答过程】设A (x 1,y 1),B (x 2,y 2),因为△OAB 的重心恰为F=p2=0,解得x 1+x 2=3p2y 1=―y 2,由y 1=―y 2可知A,B 关于x 轴对称,即x 1=x 2,则x 1+x 2=2x 1=3p2,即x 1=3p 4,又因为|AF |=x 1+p2=5p 4=5,解得p =4.故选:D.【变式8-1】(23-24高二下·福建厦门·期末)等边三角形的一个顶点位于原点,另外两个顶点在抛物线y 2=2x 上,则这个等边三角形的边长为( )A .2B .C .4D.【解题思路】正三角形的另外两个顶点关于x 轴对称,设另外两个顶点坐标分别是A ),B―a),把顶点代入抛物线方程化简即可求解.【解答过程】设正三角形得边长为2a ,由图可知正三角形的另外两个顶点关于x 轴对称,可设另外两个顶点坐标分别是A),B―a ),把顶点代入抛物线方程得a 2=解得a =所以正三角形的边长为故选:D.【变式8-2】(23-24高三下·北京·阶段练习)设抛物线C 的焦点为F ,点E 是C 的准线与C 的对称轴的交点,点P 在C 上,若∠PEF =30°,则sin ∠PFE =( )A B C D 【解题思路】先设P(x 0,y 0),根据图形分别表示出tan ∠ P EF 和sin ∠ P FE 即可得解.【解答过程】由于抛物线的对称性,不妨设抛物线为C:y 2=2px(p >0),则其焦点为F(p2,0),点E 是C 的准线与C 的对称轴的交点,其坐标为E(―p2,0),点P 在C 上,设为P(x 0,y 0),若∠ P EF =30∘,则tan ∠ P EF =|y 0|x 0+p 2=且|PF|=x 0+p 2,则sin ∠ P FE =sin (π―∠ P FE )=|y 0||PF|=故选:B.【变式8-3】(23-24高二下·重庆·阶段练习)已知x 轴上一定点A (a,0)(a >0),和抛物线y 2=2px (p >0)上的一动点M ,若|AM |≥a 恒成立,则实数a 的取值范围为( )A .B .(0,p ]C .D .(0,2p ]【解题思路】设M (x 0,y 0) (x 0≥0),表示出|AM |,依题意可得x 20―(2a ―2p )x 0≥0恒成立,分x 0=0和x 0>0两种情况讨论,当x0>0时x0≥2a―2p恒成立,即可得到2a―2p≤0,从而求出a的取值范围.【解答过程】设M(x0,y0)(x0≥0),则y20=2px0,所以|AM|====因为|AM|≥a恒成立,所以x20―(2a―2p)x0+a2≥a2恒成立,所以x20―(2a―2p)x0≥0恒成立,当x0=0时显然恒成立,当x0>0时x0≥2a―2p恒成立,所以2a―2p≤0,则a≤p,又a>0,所以0<a≤p,即实数a的取值范围为(0,p].故选:B.【题型9 抛物线中的三角形(四边形)面积问题】【例9】(2024·江西新余·二模)已知点Q(2,―2)在抛物线C:y2=2px上,F为抛物线的焦点,则△OQF (O为坐标原点)的面积是()A.12B.1C.2D.4【解题思路】将点Q代入抛物线C的方程,即可求解p,再结合抛物线的公式,即可求解【解答过程】∵点Q(2,―2)在抛物线C:y2=2px上,F为抛物线C的焦点,∴4=4p,解得p=1,故抛物线C的方程为y2=2x,F(12,0),则△OQF的面积S△OQF=12×12×2=12.故选:A.【变式9-1】(23-24高二上·广东广州·期末)已知抛物线C:y2=2px(p>0)的焦点为F,直线l与C相交于A、B两点,与y轴相交于点E.已知|AF|=5,|BF|=3,若△AEF的面积是△BEF面积的2倍,则抛物线C的方程为()A .y 2=2xB .y 2=4xC .y 2=6xD .y 2=8x【解题思路】过A,B 分别作C 的准线的垂线交y 轴于点M,N ,根据抛物线定义可得|AM |=5―p2,|BN |=3―p 2,再由S △AEF S △BEF=|AE ||BE |=|AM ||BN |即可求参数p ,进而可得抛物线方程.【解答过程】如图,过A,B 分别作C 的准线的垂线交y 轴于点M,N ,则AM //BN ,故|AE ||BE |=|AM ||BN |,因为C 的准线为x =―p2,所以|AM |=|AF |―p2=5―p2,|BN |=|BF |―p2=3―p2,所以S △AEFS △BEF=12|EF ||AE |sin ∠AEF 12|EF ||BE |sin ∠BEF =|AE ||BE |=|AM ||BN |=5―p 23―p 2=2,解得p =2,故抛物线C 的方程为y 2=4x .故选:B.【变式9-2】(23-24高二上·广东广州·期末)设F 为抛物线y 2=4x 的焦点,A,B,C 为该抛物线上不同的三点,且FA +FB +FC =0,O 为坐标原点,若△OFA 、△OFB 、△OFC 的面积分别为S 1、S 2、S 3,则S 21+S 22+S 23=( )A .3B .4C .5D .6【解题思路】设点A,B,C 的坐标,再表示出△OFA,△OFB,△OFC 的面积,借助向量等式即可求得答案.【解答过程】设点A,B,C 的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),而抛物线的焦点F(1,0),|OF|=1,FA =(x 1―1,y 1),FB =(x 2―1,y 2),FC =(x 3―1,y 3),由FA +FB +FC =0,得x 1+x 2+x 3=3,于是S 1=12|y 1|,S 2=12|y 2|,S 3=12|y 3|,所以S 21+S 22+S 23=14(y 21+y 22+y 23)=x 1+x 2+x 3=3.故选:A.【变式9-3】(23-24高二·全国·课后作业)已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2―4x+3=0作切线,切点分别为A,B,则四边形PADB的面积的最小值为()A.1B.2C D【解题思路】由题意圆的圆心与抛物线的焦点重合,可得连接PD,则S四边形PADB=2S Rt△PAD=|PA|,而|PA|=|PD|最小时,四边形PADB的面积最小,再抛物线的定义转化为点P到抛物线的准线的距离的最小值,结合抛物线的性质可求得结果【解答过程】如图,连接PD,圆D:(x―2)2+y2=1,该圆的圆心与抛物线的焦点重合,半径为1,则S四边形PADB=2S Rt△PAD=|PA|.又|PA|=PADB的面积最小时,|PD|最小.过点P向抛物线的准线x=―2作垂线,垂足为E,则|PD|=|PE|,当点P与坐标原点重合时,|PE|最小,此时|PE|=2.==故S四边形PADBmin故选:C.一、单选题1.(2024·江西·模拟预测)若抛物线x 2=8y 上一点(x 0,y 0)到焦点的距离是该点到x 轴距离的2倍.则y 0=( )A .12B .1C .32D .2【解题思路】根据抛物线的方程,结合抛物线的标准方程,得到抛物线的焦点和准线,利用抛物线的定义,得到抛物线上的点(x 0,y 0)到焦点的距离,根据题意得到关于y 0的方程,求解即可.【解答过程】已知拋物线的方程为x 2=8y ,可得p =4.所以焦点为F (0,2),准线为l :y =―2.抛物线上一点A (x 0,y 0)到焦点F 的距离等于到准线l 的距离,即|AF |=y 0+2,又∵A 到x 轴的距离为y 0,由已知得y 0+2=2y 0,解得y 0=2.故选:D .2.(2024·四川·模拟预测)已知抛物线C:x 2=8y 的焦点为F,P 是抛物线C 上的一点,O 为坐标原点,|OP |=4|PF |=( )A .4B .6C .8D .10【解题思路】求出抛物线焦点和准线方程,设P (m,n )(m ≥0),结合|OP |=n =4,由焦半径公式得到答案.【解答过程】抛物线C:x 2=8y 的焦点为F (0,2),准线方程为y =―2,设P (m,n )(m ≥0)=,解得n =4或n =―12(舍去),则|PF |=n +2=6.故选:B .3.(23-24高二下·甘肃白银·期中)若圆C 与x 轴相切且与圆x 2+y 2=4外切,则圆C 的圆心的轨迹方程为( )A .x 2=4y +4B .x 2=―4y +4C .x 2=4|y |+4D .x 2=4y ―4【解题思路】设圆心坐标为(x,y )=2+|y |,化简整理即可得解.【解答过程】设圆心坐标为(x,y)=2+|y|,化简得x2=4|y|+4,即圆C的圆心的轨迹方程为x2=4|y|+4.故选:C.4.(2024·北京海淀·三模)已知抛物线y2=4x的焦点为F、点M在抛物线上,MN垂直y轴于点N,若|MF|=6,则△MNF的面积为()A.8B.C.D.【解题思路】确定抛物线的焦点和准线,根据|MF|=6得到M.【解答过程】因为抛物线y2=4x的焦点为F(1,0),准线方程为x=―1,所以|MF|=x M+1=6,故x M=5,不妨设M在第一象限,故M×(5―0)×=所以S△MNF=12故选:C.5.(2024·西藏林芝·模拟预测)已知抛物线y2=8x上一点P到准线的距离为d1,到直线l:4x―3y+12=0的距离为d2,则d1+d2的最小值为()A.1B.2C.3D.4【解题思路】点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,利用抛物线的定义得|PF|=|PB|,当A,P和F共线时,点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和的最小,由点到直线的距离公式求得答案.【解答过程】由抛物线y2=8x知,焦点F(2,0),准线方程为l:x=―2,根据题意作图如下;点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,由抛物线的定义知:|PB|=|PF|,所以点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和为|PF|+|PA|,=4,且点F(2,0)到直线l:4x―3y+12=0的距离为d=|8―0+12|5所以d1+d2的最小值为4.故选:D.6.(2024·四川雅安·三模)已知过圆锥曲线的焦点且与焦点所在的对称轴垂直的弦被称为该圆锥曲线的通径,清代数学家明安图在《割圆密率捷法》中,也称圆的直径为通径.已知圆(x―2)2+(y+1)2=4的一条直径与拋物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,则p=()B.1C.2D.4A.12【解题思路】根据圆的通径的上端点就是抛物线通径的上右端点,可得抛物线x2=2py(p>0)经过点(2,1),从而可得答案.【解答过程】因为圆(x―2)2+(y+1)2=4的一条直径与抛物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,而抛物线x2=2py(p>0)的通径与y轴垂直,所以圆(x―2)2+(y+1)2=4的这条直径与x轴垂直,且圆的直径的上端点就是抛物线通径的右端点,因为圆(x―2)2+(y+1)2=4的圆心为(2,―1),半径为2,所以该圆与x轴垂直的直径的上端点为(2,1),即抛物线x2=2py(p>0)经过点(2,1),则4=2p,即p=2.故选:C.7.(2024·山西运城·三模)已知抛物线C:y 2=4x 的焦点为F ,动点M 在C 上,点B 与点A (1,―2)关于直线l:y =x ―1对称,则|MF ||MB |的最小值为( )AB .12CD .13【解题思路】根据对称性可得B(―1,0),即点B 为C 的准线与x 轴的交点,作MM ′垂直于C 的准线于点M ′,结合抛物线的定义可知|MF ||MB |=|MM ′||MB |= cos θ(∠MBF =θ),结合图象可得当直线MB 与C 相切时,cos θ最小,求出切线的斜率即可得答案.【解答过程】依题意,F(1,0),A(1,―2),设B(m,n)=―1m+12―1,解得m =―1n =0,即B(―1,0),点B 为C 的准线与x 轴的交点,由抛物线的对称性,不妨设点M 位于第一象限,作MM ′垂直于C 的准线于点M ′,设∠MBF =θ,θ∈ (0,π2),由抛物线的定义得|MM ′|=|MF |,于是|MF ||MB |=|MM ′||MB |= cos θ,当直线MB 与C 相切时,θ最大,cos θ最小,|MF||MB|取得最小值,此时直线BM 的斜率为正,设切线MB 的方程为x =my ―1(m >0),由x =my ―1y 2=4x消去x 得y 2―4my +4=0,则Δ=16m 2―16=0,得m =1,直线MB 的斜率为1,倾斜角为π4,于是θmax =π4,(cos θ)min =,所以|MF||MB|的最小值为故选:A.8.(2024·江西九江·二模)已知抛物线C:y 2=2px 过点A (1,2),F 为C 的焦点,点P 为C 上一点,O 为坐标原点,则( )A .C 的准线方程为x =―2B .△AFO 的面积为1C .不存在点P ,使得点P 到C 的焦点的距离为2D .存在点P ,使得△POF 为等边三角形【解题思路】求解抛物线方程,得到准线方程,判断A ;求解三角形的面积判断B ;利用|PF|=2.判断C ;判断P 的位置,推出三角形的形状,判断D .【解答过程】由题意抛物线C:y 2=2px 过点A(1,2),可得p =2,所以抛物线方程为C:y 2=4x ,所以准线方程为x =―1,A 错误;可以计算S △AFO =12×1×2=1,B 正确;当P(1,2)时,点P 到C 的焦点的距离为2,C 错误;△POF 为等边三角形,可知P 的横坐标为:12,当x =12时,纵坐标为:则12×=≠则△POF 为等腰三角形,不是等边三角形,故等边三角形的点P 不存在,所以D 错误.故选:B .二、多选题9.(2024·湖南长沙·二模)已知抛物线C 与抛物线y 2=4x 关于y 轴对称,则下列说法正确的是( )A .抛物线C 的焦点坐标是(―1,0)B .抛物线C 关于y 轴对称C .抛物线C 的准线方程为x =1D .抛物线C 的焦点到准线的距离为4【解题思路】依题意可得抛物线C 的方程为y 2=―4x ,即可得到其焦点坐标与准线方程,再根据抛物线的性。
高考数学复习题库 抛物线
高考数学复习题库抛物线抛物线一.选择题1.抛物线x2=(2a-1)y的准线方程是y=1,则实数a=( )A. B. C.- D.-解析根据分析把抛物线方程化为x2=-2y,则焦参数p=-a,故抛物线的准线方程是y==,则=1,解得a=-. 答案 D2.若抛物线y2=2px(p>0)的焦点在圆x2+y2+2x-3=0上,则p=( )A. B.1 C.2 D.3 解析∵抛物线y2=2px(p>0)的焦点为(,0)在圆x2+y2+2x-3=0上,∴+p-3=0,解得p=2或p=-6(舍去). 答案 C3.已知抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,则p的值为( ). A. B.1 C.2 D.4 解析抛物线y2=2px(p >0)的准线为x=-,圆x2+y2-6x-7=0,即(x-3)2+y2=16,则圆心为(3,0),半径为4;又因抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,所以3+=4,解得p=2. 答案 C4.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为( ). A.18 B.24 C.36 D.48 解析如图,设抛物线方程为 y2=2px(p>0). ∵当x=时,|y|=p,∴p===6. 又P到AB的距离始终为p,∴S△ABP=×12×6=36. 答案 C5. 过抛物线的焦点的直线交抛物线于两点,点是原点,若,则的面积为() A. B. C. D. 答案 C6.将两个顶点在抛物线y2=2px(p>0)上,另一个顶点是此抛物线焦点的正三角形个数记为n,则( ). A.n=0 B.n=1 C.n=2 D.n≥3 解析结合图象可知,过焦点斜率为和-的直线与抛物线各有两个交点,所以能够构成两组正三角形.本题也可以利用代数的方法求解,但显得有些麻烦. 答案 C7.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为( )A. B.3 C. D. 解析依题设P在抛物线准线的投影为P′,抛物线的焦点为F,则F.依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和d=|PF|+|PA|≥|AF|==. 答案 A二.填空题8.设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为________.解析设抛物线的焦点F,由B为线段FA的中点,所以B,代入抛物线方程得p=,则B到该抛物线准线的距离为+==. 答案9.已知动圆过点(1,0),且与直线x=-1相切,则动圆的圆心的轨迹方程为________. 解析设动圆的圆心坐标为(x,y),则圆心到点(1,0)的距离与其到直线x=-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y2=4x. 答案 y2=4x10.已知抛物线y2=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,且满足|NF|=|MN|,则∠NMF=________. 解析过N 作准线的垂线,垂足是P,则有PN=NF,∴PN=MN,∠NMF=∠MNP.又cos∠MNP=,∴∠MNP=,即∠NMF=. 答案11.设圆C 位于抛物线y2=2x与直线x=3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为________. 解析依题意,结合图形的对称性可知,要使满足题目约束条件的圆的半径最大,圆心位于x轴上时才有可能,可设圆心坐标是(a,0)(0<a<3),则由条件知圆的方程是(x-a)2+y2=(3-a)2.由消去y得x2+2(1-a)x+6a-9=0,结合图形分析可知,当Δ=[2(1-a)]2-4(6a-9)=0且0<a<3,即a=4-时,相应的圆满足题目约束条件,因此所求圆的最大半径是3-a =-1.答案-112. 过抛物线的焦点作直线交抛物线于两点,若则= 。
抛物线高考题精选
抛物线专题1.. 设抛物线28y x =上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是A. 4B. 6C. 8D. 12 2.设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足,如果直线AF斜率为PF =(A )(B ) 8 (C ) (D ) 163.设抛物线y 2=8x 的焦点为F ,准线为l,P 为抛物线上一点,PA ⊥l,A 为垂足.如果直线AF 的斜率为,那么|PF|= (A) (B)8 (C) (D) 164.已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线与A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 (A )1x= (B)1x =- (C)2x = (D)2x =-5.过抛物线24y x =的焦点F的直线交抛物线于,A B 两点,点O 是原点,若3AF =;则AOB ∆的面积为( )()A 2()B ()C2()D 6.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
若点M 到该抛物线焦点的距离为3,则||OM=( )A 、 B 、 C 、4 D 、7.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =则C 的实轴长为( )()A ()B ()C 4 ()D 88.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=A .45 B .35 C .35-D .45-9.将两个顶点在抛物线22(0)y px p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则A .n=0B .n=1C . n=2D .n≥310.设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ).A.24y x =± B.28y x =± C. 24y x = D. 28y x =11.已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。
人教版高考数学试题:抛物线及其标准方程
抛物线的几何性质(1)一. 选择题(共5小题,每小题5分,共25分)1.顶点在原点,坐标轴为对称轴的抛物线,过点(-2,3),则它的方程是 ( B ) A.y x 292-=或x y 342= B. y x 292-=或y x 342= C. y x 342= D. y x 292-= 2.以x 轴为对称轴,抛物线通径的长为8,顶点在坐标原点的抛物线的方程是 ( C ) A.x y 82= B. x y 82-= C. x y 82=或x y 82-= D. y x 82=或y x 82-=3.抛物线x 2=-4y 的通径为AB ,O 为抛物线的顶点,则 ( D )A.通径长为8,△AOB 的面积为4B.通径长为-4,△AOB 的面积为2C.通径长为4,△AOB 的面积为4D.通径长为4,△AOB 的面积为24.已知直线y =kx -k 及抛物线px y 22=(p >0),则 ( C )A.直线与抛物线有一个公共点B.直线与抛物线有两个公共点C.直线与抛物线有一个或两个公共点D.直线与抛物线可能没有公共点5.等腰直角三角形AOB 内接于抛物线px y 22= (p >0),O 为抛物线的顶点,OA ⊥OB ,则△AOB 的面积是 ( B )A.8p 2B.4p 2C. 2p 2D.p 2二、填空题(共4小题,每小题5分,共20分)6.边长为1的等边三角形AOB ,O 为原点,AB ⊥x 轴,以O 为顶点且过A 、B 的抛物线方7.已知点(x ,y )在抛物线x y 42=上,则32122+-=y x z 8.若抛物线px y 22=(p >0)上横坐标为6的点到焦点的距离为8,则焦点到准线的距离为9.已知A (6,2),在抛物线上求一点|QA|+|QF|最小。
三、解答题(共3小题,15+20+20,共55分)10.设M 是抛物线px y 22= (p >0)上的任一点,F 是它的焦点,求证:以FM 为直径的圆 和y 轴相切.证明:作AA1⊥l 于A1,BB1⊥l 于B1,M 为AB 的中点,作MM1⊥l 于M1,则由抛物线的定义可知:|AA1|=|AF|,|BB1|=|BF|.又在直角梯形BB1A1A 中故以AB 为直径的圆,必与抛物线的准线相切.11.过定点A (-2,-1)倾斜角为45°的直线与抛物线2ax y =交于B 、C ,且|BC|是|AB|、|AC|的等比中项,求抛物线方程.答案:y =x212.已知抛物线C 的准线为x =43,对称轴上有一点坐标为(6,2),C 与直线l :y =x -1相交所得弦的长为32,求抛物线方程.解:由题意,可设C 的方程为(y -2)2=2a (x -x 0),顶点为(x 0,2).∵准线方程为x =43, ∴x 0-43=2a ,即a =2x 0-23. 代入C 的方程,并与l 方程联立,消去x ,得y 2-(4x 0+1)y +477020+-x x =0. 于是27364)(02122121-=-+=-x y y y y y y .∵直线l 的斜率为1,倾斜角为45°,弦长为32, ∴345sin 2321=︒=-y y 即21,1,3273600===-a x x ∴抛物线方程为(y -2)2=x -1.。
高考数学抛物线大题专练30题(含详解)经典收藏版
目录目录-------------------------------------------------------------------------------------------------1抛物线大题专练(一)--------------------------------------------------------------------------------2抛物线大题专练(二)--------------------------------------------------------------------------------5抛物线大题专练(三)--------------------------------------------------------------------------------8抛物线大题专练---------------------------------------------------------------------------------------11参考答案与试题解析---------------------------------------------------------------------------------11抛物线大题专练(一)1.已知抛物线C的方程为x2=2py,设点M(x0,1)(x0>0)在抛物线C上,且它到抛物线C的准线距离为;(1)求抛物线C的方程;(2)过点M作倾斜角互补的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(M、A、B三点互不相同),求当∠MAB为钝角时,点A的纵坐标y1的取值范围.2.在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线方程为x=﹣,过点M(0,﹣2)作抛物线的切线MA,切点为A(异于点O).直线l过点M与抛物线交于两点B,C,与直线OA交于点N.(1)求抛物线的方程;(2)试问:的值是否为定值?若是,求出定值;若不是,说明理由.3.如图所示,设F是抛物线E:x2=2py(p>0)的焦点,过点F作斜率分别为k1、k2的两条直线l1、l2,且k1•k2=﹣1,l1与E相交于点A、B,l2与E相交于点C,D.已知△AFO外接圆的圆心到抛物线的准线的距离为3(O为坐标原点).(1)求抛物线E的方程;(2)若•+•=64,求直线l1、l2的方程.4.已知抛物线C:y2=2px(p>0),点A、B在抛物线C上.(Ⅰ)若直线AB过点M(2p,0),且|AB|=4p,求过A,B,O(O为坐标原点)三点的圆的方程;(Ⅱ)设直线OA、OB的倾斜角分别为α,β且α+β=,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.5.已知点A(2,1)在抛物线E:x2=ay上,直线l1:y=kx+1(k∈R,且k≠0)与抛物线E相交于B,C两点,直线AB,AC分别交直线l2:y=﹣1于点S,T.(1)求a的值;(2)若|ST|=2,求直线l1的方程;(3)试判断以线段ST为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.6.已知抛物线y2=2px(p>0),焦点为F,一直线l与抛物线交于A、B两点,且|AF|+|BF|=8,且AB的垂直平分线恒过定点S(6,0)①求抛物线方程;②求△ABS面积的最大值.7.已知抛物线y2=4x,直线l:y=﹣x+b与抛物线交于A,B两点.(Ⅰ)若x轴与以AB为直径的圆相切,求该圆的方程;(Ⅱ)若直线l与y轴负半轴相交,求△AOB面积的最大值.8.抛物线M:y2=2px(p>0)的准线过椭圆N:+y2=1的左焦点,以原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的图象以及y轴的正半轴相交于点A和B,直线AB与x轴相交于点C.(Ⅰ)求抛物线M的方程;(Ⅱ)设点A的横坐标为a,点C的横坐标为c,抛物线M上点D的横坐标为a+2,求直线CD的斜率.9.已知抛物线y2=4x的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C,过点(1,),(Ⅰ)求椭圆C的标准方程;(Ⅱ)设T(2,0),过点F2作直线l与椭圆C交于A,B两点,且=λ,若λ∈[﹣2,﹣1],求|+|2的最小值.抛物线大题专练(二)10.(2015•福建模拟)如图,已知抛物线y2=4x的焦点为F,过点P(2,0)且斜率为k1的直线交抛物线于A(x1,y1),B(x2,y2)两点,直线AF、BF分别与抛物线交于点M、N.(Ⅰ)证明•的值与k1无关;(Ⅱ)记直线MN的斜率为k2,证明为定值.11.已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)当|AM|+4|BM|最小时,求直线l的方程.12.已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)若圆x2+y2﹣2x=0与直线l相交于以C,D(A,C两点均在第一象银),且线段AC,CD,DB长构成等差数列,求直线l的方程.13.已知点A(﹣4,4)、B(4,4),直线AM与BM相交于点M,且直线AM的斜率与直线BM的斜率之差为﹣2,点M的轨迹为曲线C.(Ⅰ)求曲线C的轨迹方程;(Ⅱ)Q为直线y=﹣1上的动点,过Q做曲线C的切线,切点分别为D、E,求△QDE的面积S的最小值.14.如图所示,已知过抛物线x2=4y的焦点F的直线l与抛物线相交于A,B两点.(1)求证:以AF为直径的圆与x轴相切;(2)设抛物线x2=4y在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程:(3)设过抛物线x2=4y焦点F的直线l与椭圆+=1的交点为C、D,是否存在直线l使得|AF|•|CF|=|BF|•|DF|,若存在,求出直线l的方程,若不存在,请说明理由.15.已知抛物线C:y2=2px(p>0),直线交此抛物线于不同的两个点A(x1,y1)、B(x2,y2)(1)当直线过点M(p,0)时,证明y1.y2为定值;(2)如果直线过点M(p,0),过点M再作一条与直线垂直的直线l′交抛物线C于两个不同点D、E.设线段AB的中点为P,线段DE的中点为Q,记线段PQ的中点为N.问是否存在一条直线和一个定点,使得点N到它们的距离相等?若存在,求出这条直线和这个定点;若不存在,请说明理由.16.(2014•陕西)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.(Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.17.(2014•山东)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.18.(2014•安徽)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.19.(2014•福建)已知曲线Γ上的点到点F(0,1)的距离比它到直线y=﹣3的距离小2.(Ⅰ)求曲线Γ的方程;(Ⅱ)曲线Γ在点P处的切线l与x轴交于点A.直线y=3分别与直线l及y轴交于点M,N,以MN为直径作圆C,过点A作圆C的切线,切点为B,试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.20.(2014•江西)如图,已知抛物线C:x2=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点).(1)证明:动点D在定直线上;(2)作C的任意一条切线l(不含x轴),与直线y=2相交于点N1,与(1)中的定直线相交于点N2,证明:|MN2|2﹣|MN1|2为定值,并求此定值.抛物线大题专练(三)21.(2014•杭州二模)设抛物线Γ:y2=2px(p>0)过点(t,)(t是大于0的常数).(Ⅰ)求抛物线Γ的方程;(Ⅱ)若F是抛物线Γ的焦点,斜率为1的直线交抛物线Γ于A,B两点,x轴负半轴上的点C,D满足|FA|=|FC|,|FD|=|FB|,直线AC,BD相交于点E,当时,求直线AB的方程.22.(2014•包头一模)设抛物线C:y2=2px(p>0)的焦点为F,准线为l,l与x轴交于点R,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(1)若∠BFD=120°,△ABD的面积为8,求p的值及圆F的方程;(2)在(1)的条件下,若A,B,F三点在同一直线上,FD与抛物线C交于点E,求△EDA的面积.23.(2014•长春三模)已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.(1)求抛物线C的方程;(2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求的最小值.24.(2014•长沙二模)已知A、B为抛物线C:y2=4x上的两个动点,点A在第一象限,点B在第四象限,l1、l2分别过点A、B且与抛物线C相切,P为l1、l2的交点.(Ⅰ)若直线AB过抛物线C的焦点F,求证:动点P在一条定直线上,并求此直线方程;(Ⅱ)设C、D为直线l1、l2与直线x=4的交点,求△PCD面积的最小值.25.(2015•上海模拟)如图,直线l:y=kx+b与抛物线x2=2py(常数p>0)相交于不同的两点A(x1,y1)、B(x2,y2),且|x2﹣x1|=h(h为定值),线段AB的中点为D,与直线l:y=kx+b平行的切线的切点为C(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点).(1)用k、b表示出C点、D点的坐标,并证明CD垂直于x轴;(2)求△ABC的面积,证明△ABC的面积与k、b无关,只与h有关;(3)小张所在的兴趣小组完成上面两个小题后,小张连AC、BC,再作与AC、BC平行的切线,切点分别为E、F,小张马上写出了△ACE、△BCF的面积,由此小张求出了直线l与抛物线围成的面积,你认为小张能做到吗?请你说出理由.26.(2014•乌鲁木齐三模)已知抛物线y2=2px(p>0)的焦点过F,过H(﹣,0)引直线l交此抛物线于A,B两点.(1)若直线AF的斜率为2,求直线BF的斜率;(2)若p=2,点M在抛物线上,且+=t,求t的取值范围.27.(2014•太原二模)已知抛物线y2=4x的焦点为F,直线l1与抛物线交于不同的两点A、B,直线l2与抛物线交于不同的两点C、D.(Ⅰ)当l1过F时,在l1上取不同于F的点P,使得=,求点P的轨迹方程;(Ⅱ)若l1与l2相交于点Q,且倾斜角互补时,|QA|•|QB|=a|QC|•|QD|,求实数a的值.28.(2014•合肥一模)已知△ABC的三个顶点都在抛物线y2=2px(p>0)上,且抛物线的焦点F满足,若BC边上的中线所在直线l的方程为mx+ny﹣m=0(m,n为常数且m≠0).(Ⅰ)求p的值;(Ⅱ)O为抛物线的顶点,△OFA、△OFB、△OFC的面积分别记为S1、S2、S3,求证:为定值.29.(2014•呼和浩特一模)已知抛物线C:y2=2px(p>0),直线l过定点A(4,0)且与抛物线C交于P、Q两点,若以弦PQ为直径的圆E过原点O.(Ⅰ)求抛物线C的方程;(Ⅱ)当圆E的面积最小时,求E的方程.30.(2014•普陀区一模)已知点P(2,0),点Q在曲线C:y2=2x上.(1)若点Q在第一象限内,且|PQ|=2,求点Q的坐标;(2)求|PQ|的最小值.抛物线大题专练参考答案与试题解析1.已知抛物线C的方程为x2=2py,设点M(x0,1)(x0>0)在抛物线C上,且它到抛物线C的准线距离为;(1)求抛物线C的方程;(2)过点M作倾斜角互补的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(M、A、B三点互不相同),求当∠MAB为钝角时,点A的纵坐标y1的取值范围.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)由抛物线的定义,求出p,即可求抛物线C的方程;(2)设直线AM的方程为:y=k(x﹣1)+1,与抛物线方程联立,求出k的范围,利用,即可求出点A的纵坐标y1的取值范围.解答:解:(1)由定义得,则抛物线C的方程:x2=y(2)设直线AM的方程为:y=k(x﹣1)+1联立方程得x2﹣kx+k﹣1=0,A(k﹣1,(k﹣1)2),△1>0即k≠2同理B(﹣k﹣1,(﹣k﹣1)2),△2>0即k≠﹣2,令,则所以k>2或,所以点评:本题考查抛物线的定义与方程,考查直线与抛物线的位置关系,考查学生的计算能力,属于中档题.2.(2015•淮安一模)在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线方程为x=﹣,过点M(0,﹣2)作抛物线的切线MA,切点为A(异于点O).直线l过点M与抛物线交于两点B,C,与直线OA交于点N.(1)求抛物线的方程;(2)试问:的值是否为定值?若是,求出定值;若不是,说明理由.考点:抛物线的简单性质.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)由抛物线的准线方程可得p,进而得到抛物线方程;(2)求出函数y=﹣的导数,求出切线的斜率,以及切线方程,联立切线方程和抛物线方程求得切点A,进而直线OA的方程,设出直线BC的方程,联立抛物线方程运用韦达定理,求出N的坐标,代入所求式子化简即可得到定值2.解答:解:(1)由题设知,,即,所以抛物线的方程为y2=x;(2)因为函数的导函数为,设A(x0,y0),则直线MA的方程为,因为点M(0,﹣2)在直线MA上,所以﹣2﹣y0=﹣•(﹣x0).联立,解得A(16,﹣4),所以直线OA的方程为.设直线BC方程为y=kx﹣2,由,得k2x2﹣(4k+1)x+4=0,所以.由,得.所以,故的为定值2.点评:本题考查抛物线的方程和性质,考查直线方程和抛物线方程联立,运用韦达定理,以及导数的运用:求切线方程,考查运算能力,属于中档题和易错题.3.(2014•九江三模)如图所示,设F是抛物线E:x2=2py(p>0)的焦点,过点F作斜率分别为k1、k2的两条直线l1、l2,且k1•k2=﹣1,l1与E相交于点A、B,l2与E相交于点C,D.已知△AFO外接圆的圆心到抛物线的准线的距离为3(O为坐标原点).(1)求抛物线E的方程;(2)若•+•=64,求直线l1、l2的方程.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)确定△AFO外接圆的圆心在线段OF的垂直平分线y=上,求出p,即可求抛物线E的方程;(2)利用•+•=64,结合韦达定理,基本不等式,即可求直线l1、l2的方程.解答:解:(1)由题意,F(0,),△AFO外接圆的圆心在线段OF的垂直平分线y=上,∴+=3,∴p=4.∴抛物线E的方程是x2=8y;(2)设直线l1的方程y=k1x+2,代入抛物线方程,得y2﹣(8k12+4)y+4=0设A(x1,y1),B(x2,y2),则y1+y2=8k12+4,y1y2=4设C(x3,y3),D(x4,y4),同理可得y3+y4=+4,y3y4=4∴•+•=32+16(k12+)≥64,当且仅当k12=,即k1=±1时取等号,∴直线l1、l2的方程为y=x+2或y=﹣x+2.点评:本题考查抛物线的方程,考查直线与抛物线的位置关系,考查向量知识的运用,属于中档题.4.(2014•浙江二模)已知抛物线C:y2=2px(p>0),点A、B在抛物线C上.(Ⅰ)若直线AB过点M(2p,0),且|AB|=4p,求过A,B,O(O为坐标原点)三点的圆的方程;(Ⅱ)设直线OA、OB的倾斜角分别为α,β且α+β=,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)求出A,B的坐标,可得三角形ABO是Rt△,从而可求过A,B,O三点的圆方程;(Ⅱ)直线AB的方程为:x=my+b,代入抛物线方程,利用韦达定理,结合α+β=,可得b=﹣2p﹣2mp,即可得出结论.解答:解:(Ⅰ)∵直线AB过点M(2p,0),且|AB|=4p,∴直线x=2p与抛物线y2=2px的两个交点坐标分别是:A(2p,2p),B(2p,﹣2p),∴三角形ABO是Rt△,∴过A,B,O三点的圆方程是:(x﹣2p)2+y2=4p2;(Ⅱ)设点,直线AB的方程为:x=my+b,它与抛物线相交,由方程组消去x可得y2﹣2mpy﹣2pb=0,故y1+y2=2mp,y1y2=﹣2pb,这样,tan==即1=,所以b=﹣2p﹣2mp,∴直线AB的方程可以写成为:x=my﹣2p﹣2mp,即x+2p=m(y﹣2p),∴直线AB过定点(﹣2p,2p).点评:本题考查圆的方程,考查直线与抛物线的位置关系,考查和角的正切公式,考查直线过定点,属于中档题.5.(2014•广州二模)已知点A(2,1)在抛物线E:x2=ay上,直线l1:y=kx+1(k∈R,且k≠0)与抛物线E相交于B,C两点,直线AB,AC分别交直线l2:y=﹣1于点S,T.(1)求a的值;(2)若|ST|=2,求直线l1的方程;(3)试判断以线段ST为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)根据点A(2,1)在抛物线E:x2=ay上,可求a的值;(2)y=kx+1代入抛物线方程,利用韦达定理,确定S,T的坐标,根据|ST|=2,即可求直线l1的方程;(3)确定以线段ST为直径的圆的方程,展开令x=0,即可求这两个定点的坐标.解答:解:(1)∵点A(2,1)在抛物线E:x2=ay上,∴a=4.…(1分)(2)由(1)得抛物线E的方程为x2=4y.设点B,C的坐标分别为(x1,y1),(x2,y2),依题意,,y=kx+1代入抛物线方程,消去y得x2﹣4kx﹣4=0,解得.∴x1+x2=4k,x1x2=﹣4.…(2分)直线AB的斜率,故直线AB的方程为.…(3分)令y=﹣1,得,∴点S的坐标为.…(4分)同理可得点T的坐标为.…(5分)∴=.…(6分)∵,∴.由,得20k2=16k2+16,解得k=2,或k=﹣2,…(7分)∴直线l1的方程为y=2x+1,或y=﹣2x+1.…(9分)(3)设线段ST的中点坐标为(x0,﹣1),则=.…(10分)而|ST|2=,…(11分)∴以线段ST为直径的圆的方程为=.展开得.…(12分)令x=0,得(y+1)2=4,解得y=1或y=﹣3.…(13分)∴以线段ST为直径的圆恒过两个定点(0,1),(0,﹣3).…(14分)点评:本题考查抛物线的方程,考查直线与抛物线的位置关系,考查圆的方程,考查学生的计算能力,属于中档题.6.(2015•兴国县一模)已知抛物线y2=2px(p>0),焦点为F,一直线l与抛物线交于A、B两点,且|AF|+|BF|=8,且AB的垂直平分线恒过定点S(6,0)①求抛物线方程;②求△ABS面积的最大值.考点:抛物线的标准方程;抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:①利用点差法,确定AB中点M的坐标,分类讨论,根据AB的垂直平分线恒过定点S(6,0),即可求抛物线方程;②分类讨论,求出△ABS面积的表达式,即可求得其最大值.解答:解:①设A(x1,y1),B(x2,y2),AB中点M(x0,y0)当直线的斜率存在时,设斜率为k,则由|AF|+|BF|=8得x1+x2+p=8,∴又得,∴所以依题意,∴p=4∴抛物线方程为y2=8x﹣﹣﹣﹣(6分)当直线的斜率不存在时,2p=8,也满足上式,∴抛物线方程为y2=8x②当直线的斜率存在时,由(2,y0)及,令y=0,得又由y2=8x和得:∴=﹣﹣﹣﹣(12分)当直线的斜率不存在时,AB的方程为x=2,|AB|=8,△ABS面积为∵,∴△ABS面积的最大值为.点评:本题考查抛物线的标准方程,考查三角形面积的计算,考查学生的计算能力,属于中档题.7.(2015•路南区二模)已知抛物线y2=4x,直线l:y=﹣x+b与抛物线交于A,B两点.(Ⅰ)若x轴与以AB为直径的圆相切,求该圆的方程;(Ⅱ)若直线l与y轴负半轴相交,求△AOB面积的最大值.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)联立得y2+8y﹣8b=0.由此利用根的判别式、弦长公式,结合已知条件能求出圆的方程.(Ⅱ)由直线l与y轴负半轴相交,得﹣1<b<0,由点O到直线l的距离d=,得S△AOB=|AB|d=4.由此利用导数性质能求出△AOB的面积的最大值.解答:解:(Ⅰ)联立得:y2+8y﹣8b=0.依题意应有△=64+32b>0,解得b>﹣2.设A(x1,y1),B(x2,y2),设圆心Q(x0,y0),则应有x0=,y0==﹣4.因为以AB为直径的圆与x轴相切,得到圆半径为r=|y1|=4,又|AB|==.所以|AB|=2r,即=8,解得b=﹣.所以x0==2b+8=,所以圆心为(,﹣4).故所求圆的方程为(x﹣)2+(y+4)2=16..(Ⅱ)因为直线l与y轴负半轴相交,∴b<0,又l与抛物线交于两点,由(Ⅰ)知b>﹣2,∴﹣2<b<0,直线l:y=﹣x+b整理得x+2y﹣2b=0,点O到直线l的距离d==,所以∴S△AOB=|AB|d=﹣4b=4.令g(b)=b3+2b2,﹣2<b<0,g′(b)=3b2+4b=3b(b+),∴g(b)在(﹣2,﹣)增函数,在(﹣,0)是减函数,∴g(b)的最大值为g(﹣)=.∴当b=﹣时,△AOB的面积取得最大值.点评:本题主要考查圆的方程的求法,考查三角形面积的最大值的求法,考查直线与抛物线、圆等知识,同时考查解析几何的基本思想方法和运算求解能力.8.(2015•大庆二模)抛物线M:y2=2px(p>0)的准线过椭圆N:+y2=1的左焦点,以原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的图象以及y轴的正半轴相交于点A和B,直线AB与x轴相交于点C.(Ⅰ)求抛物线M的方程;(Ⅱ)设点A的横坐标为a,点C的横坐标为c,抛物线M上点D的横坐标为a+2,求直线CD的斜率.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由椭圆方程求出椭圆左焦点坐标,得到抛物线准线方程,从而求得p值,则抛物线方程可求;(Ⅱ)写出A的坐标,由|OA|=t列式求得t与A的坐标间的关系,求出直线BC的方程,把A代入BC方程,得到a,c的关系,然后直接代入斜率公式求直线CD的斜率.解答:解:(Ⅰ)∵椭圆N:+y2=1,∴c2=a2﹣b2=﹣1=,∴椭圆的左焦点为F1(﹣,0),∴﹣=﹣,则p=1.故M:y2=2x;(Ⅱ)由题意知,A(a,2a),∵|OA|=t,∴a2+2a=t2.由于t>0,故有t=①由点B(0,t),C(c,0)的坐标知,直线BC的方程为+=1.又∵A在直线BC上,故有+=1.将①代入上式,得:+=1,解得c=a+2+.又∵D(a+2,2),∴直线CD的斜率为:k CD====﹣1.点评:本题主要抛物线方程的求法,考查了直线与圆锥曲线位置关系的应用,解答此题的关键是对抛物线定义的灵活应用,是高考试卷中的压轴题.9.(2015•黄冈模拟)已知抛物线y2=4x的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C,过点(1,),(Ⅰ)求椭圆C的标准方程;(Ⅱ)设T(2,0),过点F2作直线l与椭圆C交于A,B两点,且=λ,若λ∈[﹣2,﹣1],求|+|2的最小值.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设椭圆的半焦距为c,由y2=4x求得c=1.设椭圆C的标准方程为(a>b>0),由于椭圆C过点(1,),代入椭圆方程结合a2=b2+c2,联立解得即可;(II)设l:x=ky+1,与椭圆的方程联立可得根与系数的关系,由λ∈[﹣2,﹣1)可得到k2的取值范围.由于=(x1﹣2,y1),=(x2﹣2,y2),通过换元,令t=∈[,],即可得出|+|2的最小值.解答:解:(Ⅰ)设椭圆的半焦距为c,由y2=4x得c=1,设椭圆C的标准方程为(a>b>0),∵椭圆C过点(1,),∴,又a2=b2+1,联立解得b2=1,a2=2.故椭圆C的标准方程为椭圆方程为+y2=1…(5分)(Ⅱ)由题意可设l:x=ky+1,由得(k2+2)y2+2ky﹣1=0…(6分)设A(x1,y1),B(x2,y2),则有将①2÷②得+2=﹣⇒λ++2=…(8分)由λ∈[﹣2,﹣1]得﹣≤λ++2≤0⇒﹣≤≤0,0≤k2≤…(9分)=(x1﹣2,y1),=(x2﹣2,y2),+=(x1+x2﹣4,y1+y2)x1+x2﹣4=k(y1+y2)﹣2=﹣,|+|=+==16﹣+令t=∈[,],|+|2=8t2﹣28t+16∴t=时|+|2的最小值是4点评:本题综合考查了椭圆与抛物线的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数、换元法、分类讨论、向量相等及其向量运算和向量的模等基础知识与基本技能方法,考查了分析问题和解决问题的能力,考查了推理能力和计算能力,属于中档题.10.(2015•福建模拟)如图,已知抛物线y2=4x的焦点为F,过点P(2,0)且斜率为k1的直线交抛物线于A(x1,y1),B(x2,y2)两点,直线AF、BF分别与抛物线交于点M、N.(Ⅰ)证明•的值与k1无关;(Ⅱ)记直线MN的斜率为k2,证明为定值.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)依题意,设直线AB的方程为x=my+2,与抛物线方程联立消x得关于y的一元二次方程,根据韦达定理即可求得y1y2,进而求出x1x2,根据向量数量积运算公式,可得•的值与k1无关;(Ⅱ)设M(x3,y3),N(x4,y4),设直线AM的方程为x=ny+1,将其代入y2=4x,消去x,得到关于y的一元二次方程,从而得y1y3=﹣4,同理可得y2y4=﹣4,根据斜率公式可把表示成关于y1与y2的表达式,再借助(Ⅰ)的结果即可证明.解答:证明:(Ⅰ)依题意,设直线AB的方程为x=my+2(m≠0).…(1分)将其代入y2=4x,消去x,整理得y2﹣4my﹣8=0.…(2分)从而y1y2=﹣8,于是,…(3分)∴与k 1无关.…(5分)(Ⅱ)设M(x3,y3),N(x4,y4).则.…(8分)设直线AM的方程为x=ny+1(n≠0),将其代入y2=4x,消去x,整理得y2﹣4ny﹣4=0∴y1y3=﹣4.同理可得y2y4=﹣4.…(10分)故,…(11分)由(Ⅰ)知,y1y2=﹣8,∴为定值.…(12分)点评:本题考查直线与圆锥曲线的位置关系及抛物线的简单性质,考查学生综合运用知识分析问题解决问题的能力,难度较大.11.(2015•洛阳一模)已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)当|AM|+4|BM|最小时,求直线l的方程.考点:直线与圆锥曲线的关系.专题:计算题;平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,运用韦达定理,及平面向量的数量积的坐标表示,即可得到p=2;(2)运用抛物线的定义,及均值不等式,即可得到最小值9,注意等号成立的条件,求得B的坐标,代入直线方程,求得m,即可得到直线l的方程.解答:解:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,消去x,得,y2﹣2pmy﹣p2=0,y1+y2=2pm,y1y2=﹣p2,由于•=﹣3,即x1x2+y1y2=﹣3,x1x2==,即有﹣p2=﹣3,解得,p=2;(2)由抛物线的定义,可得,|AM|=x1+1,|BM|=x2+1,则|AM|+4|BM|=x 1+4x2+5+5=9,当且仅当x1=4x2时取得最小值9.由于x1x2=1,则解得,x2=(负的舍去),代入抛物线方程y2=4x,解得,y2=,即有B(),将B的坐标代入直线x=my+1,得m=.则直线l:x=y+1,即有4x+y﹣4=0或4x﹣y﹣4=0.点评:本题考查抛物线的定义、方程和性质,考查直线方程和抛物线方程联立,消去未知数,运用韦达定理,考查基本不等式的运用:求最值,考查运算能力,属于中档题.12.(2015•洛阳一模)已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)若圆x2+y2﹣2x=0与直线l相交于以C,D(A,C两点均在第一象银),且线段AC,CD,DB长构成等差数列,求直线l的方程.考点:直线与圆锥曲线的关系;直线的一般式方程.专题:计算题;平面向量及应用;圆锥曲线的定义、性质与方程.分析:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,运用韦达定理,及平面向量的数量积的坐标表示,即可得到p=2;(2)求出AB的长,用m表示,再由等差数列的性质,以及CD为圆的直径,即可得到m的方程,解出m,即可得到直线l的方程.解答:解:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,消去x,得,y2﹣2pmy﹣p2=0,y1+y2=2pm,y1y2=﹣p2,由于•=﹣3,即x1x2+y1y2=﹣3,x1x2==,即有﹣p2=﹣3,解得,p=2;(2)由(1)得,y1+y2=4m,y1y2=﹣4,则(y1﹣y2)2=(y1+y2)2﹣4y1y2=16(1+m2),|AB|2=(y1﹣y2)2+(x1﹣x2)2=(y1﹣y2)2+()2=y1﹣y2)2[1+()2]=16(1+m2)2,即有|AB|=4(1+m2),由于线段AC,CD,DB长构成等差数列,则2|CD|=|AC|+|DB|=|AC|+|BC|﹣|CD|=|AB|﹣|CD|,又CD为圆x2+y2﹣2x=0的直径,即有|CD|=2,则4(1+m2)=6,解得,m=,则直线l的方程是x+y﹣=0或x﹣y﹣=0.点评:本题考查抛物线的定义、方程和性质,考查直线方程和抛物线方程联立,消去未知数,运用韦达定理,考查等差数列的性质,考查运算能力,属于中档题.13.(2015•衡水模拟)已知点A(﹣4,4)、B(4,4),直线AM与BM相交于点M,且直线AM的斜率与直线BM的斜率之差为﹣2,点M的轨迹为曲线C.(Ⅰ)求曲线C的轨迹方程;(Ⅱ)Q为直线y=﹣1上的动点,过Q做曲线C的切线,切点分别为D、E,求△QDE的面积S的最小值.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(I)设M(x,y),由题意可得:,化简可得曲线C的轨迹方程为x2=4y且(x≠±4).(II)设Q(m,﹣1),切线方程为y+1=k(x﹣m),与抛物线方程联立化为x2﹣4kx+4(km+1)=0,由于直线与抛物线相切可得△=0,即k2﹣km﹣1=0.解得x=2k.可得切点(2k,k2),由k2﹣km﹣1=0.可得k1+k2=m,k1•k2=﹣1.得到切线QD⊥QE.因此△QDE为直角三角形,|QD|•|QE|.令切点(2k,k2)到Q的距离为d,则d2=(2k﹣m)2+(k2+1)2=(4+m2)(k2+1),利用两点之间的距离公式可得|QD|=,|QE|=,代入即可得出.解答:解:(I)设M(x,y),由题意可得:,化为x2=4y.∴曲线C的轨迹方程为x2=4y且(x≠±4).(II)设Q(m,﹣1),切线方程为y+1=k(x﹣m),联立,化为x2﹣4kx+4(km+1)=0,由于直线与抛物线相切可得△=0,即k2﹣km﹣1=0.∴x2﹣4kx+4k2=0,解得x=2k.可得切点(2k,k2),由k2﹣km﹣1=0.∴k1+k2=m,k1•k2=﹣1.∴切线QD⊥QE.∴△QDE为直角三角形,|QD|•|QE|.令切点(2k,k2)到Q的距离为d,则d2=(2k﹣m)2+(k2+1)2=4(k2﹣km)+m2+(km+2)2=4(k2﹣km)+m2+k2m2+4km+4=(4+m2)(k2+1),∴|QD|=,|QE|=,∴(4+m2)=≥4,当m=0时,即Q(0,﹣1)时,△QDE的面积S取得最小值4.点评:本题考查了直线与抛物线相切的性质、切线方程、相互垂直的斜率之间的关系、两点之间的距离公式、三角形的面积计算公式、二次函数的性质,考查了推理能力与计算能力,属于难题.14.(2015•郴州二模)如图所示,已知过抛物线x2=4y的焦点F的直线l与抛物线相交于A,B两点.(1)求证:以AF为直径的圆与x轴相切;(2)设抛物线x2=4y在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程:(3)设过抛物线x2=4y焦点F的直线l与椭圆+=1的交点为C、D,是否存在直线l使得|AF|•|CF|=|BF|•|DF|,若存在,求出直线l的方程,若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)如图所示,设线段AF的中点为O1,过O1作O1O2⊥x轴,垂足为点O2,作AA1⊥x轴.利用抛物线的定义及梯形的中位线定理可得可得r====|O1O2|,即可证明;(2)设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2).与抛物线方程联立化为x2﹣4kx﹣4=0,可得根与系数的关系,由x2=4y,可得.可得k MA•k MB==﹣1,可得△MAB为直角三角形,可得△MAB的外接圆的圆心为线段AB的中点.设线段AB的中点为P,可得⊙P与抛物线的准线相切,切点为点M,利用中点坐标公式与根与系数的关系可得圆心P(2,3),半径r=|MP|=|3﹣(﹣1)|=4,即可得出所求的△MAB的外接圆的方程.(3)假设存在直线l使得|AF|•|CF|=|BF|•|DF|,设=λ,可得,,设C(x3,y3),D (x4,y4).利用向量的坐标运算可得x1=﹣λx2,x4=﹣λx3.把x1=﹣λx2代入根与系数的关系可得.把y=kx+1代入椭圆方程可得(3k2+6)x2+6kx﹣1=0,把根与系数的关系与x4=﹣λx3联立可得,联立解得即可.解答:(1)证明:如图所示,设线段AF的中点为O1,过O1作O1O2⊥x轴,垂足为点O2,作AA1⊥x轴.则r====|O1O2|,∴r=|O1O2|,∴以AF为直径的圆与x轴相切;(2)解:设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2).联立,化为x2﹣4kx﹣4=0,∴x1+x2=4k,x1x2=﹣4.。
高考数学 抛物线典型题例
高考数学 抛物线典型题例(1)抛物线——二次曲线的和谐线椭圆与双曲线都有两种定义方法,可抛物线只有一种:到一个定点和一条定直线的距离相等的所有点的集合.其离心率e=1,这使它既与椭圆、双曲线相依相伴,又鼎立在圆锥曲线之中.由于这个美好的1,既使它享尽和谐之美,又生出多少华丽的篇章.【例1】P 为抛物线px y 22=上任一点,F 为焦点,则以PF 为直径的圆与y 轴( ).A 相交 .B 相切 .C 相离 .D 位置由P 确定【解析】如图,抛物线的焦点为,02p F ⎛⎫⎪⎝⎭,准线是 :2pl x =-.作PH ⊥l 于H ,交y 轴于Q ,那么PF PH =, 且2pQH OF ==.作MN ⊥y 轴于N 则MN 是梯形PQOF 的中位线,()111222MN OF PQ PH PF =+==.故以PF 为直径的圆与y 轴相切,选B.【评注】相似的问题对于椭圆和双曲线来说,其结论则 分别是相离或相交的.(2)焦点弦——常考常新的亮点弦有关抛物线的试题,许多都与它的焦点弦有关.理解并掌握这个焦点弦的性质,对破解这些试题是大有帮助的.【例2】 过抛物线()022 p px y =的焦点F 作直线交抛物线于()()1122,,,A x y B x y 两点,求证: (1)12AB x x p =++ (2)pBF AF 211=+ 【证明】(1)如图设抛物线的准线为l ,作1AA l ⊥11111,2pA BB l B AA x ⊥==+于,则AF , 122pBF BB x ==+.两式相加即得: 12AB x x p =++(2)当AB ⊥x 轴时,有AF BF p ==,112AF BF p∴+=成立; 当AB 与x 轴不垂直时,设焦点弦AB 的方程为:2p y k x ⎛⎫=- ⎪⎝⎭.代入抛物线方程:l XY FA(x,y)11B(x,y)22A 1B 1l2222p k x px ⎛⎫-= ⎪⎝⎭.化简得:()()222222014p k x p k x k -++=∵方程(1)之二根为x 1,x 2,∴1224k x x ⋅=.()122111212121111112224x x p p pp p AF BF AA BB x x x x x x +++=+=+=+++++ ()()121222121222424x x p x x p p p p pp x x p x x ++++===+++++. 故不论弦AB 与x 轴是否垂直,恒有pBF AF 211=+成立.(3)切线——抛物线与函数有缘有关抛物线的许多试题,又与它的切线有关.理解并掌握抛物线的切线方程,是解题者不可或缺的基本功.【例3】证明:过抛物线22y px =上一点M (x 0,y 0)的切线方程是:y 0y=p (x+x 0)【证明】对方程22y px =两边取导数:22.py y p y y''⋅=∴=,切线的斜率 00x x p k y y ='==.由点斜式方程:()()20000001p y y x x y y px px y y -=-⇒=-+20021y px = ,代入()即得: y 0y=p (x+x 0)(4)定点与定值——抛物线埋在深处的宝藏抛物线中存在许多不不易发现,却容易为人疏忽的定点和定值.掌握它们,在解题中常会有意想不到的收获.例如:1.一动圆的圆心在抛物线x y 82=上,且动圆恒与直线02=+x 相切,则此动圆必过定点 ( )()()()().4,0.2,0.0,2.0,2A B C D -显然.本题是例1的翻版,该圆必过抛物线的焦点,选B. 2.抛物线22y px =的通径长为2p ;3.设抛物线22y px =过焦点的弦两端分别为()()1122,,,A x y B x y ,那么:212y y p =-以下再举一例【例4】设抛物线22y px =的焦点弦AB 在其准线上的射影是A 1B 1,证明:以A 1B 1为直径的圆必过一定点【分析】假定这条焦点弦就是抛物线的通径,那么A 1B 1=AB=2p ,而A 1B 1与AB 的距离为p ,可知该圆必过抛物线的焦点.由此我们猜想:一切这样的圆都过抛物线的焦点.以下我们对AB 的一般情形给于证明.【证明】如图设焦点两端分别为()()1122,,,A x y B x y ,那么:22121112.y y p CA CB y y p =-⇒⋅==设抛物线的准线交x 轴于C ,那么.CF p =2111111.90A FB CF CA CB A FB ∴∆=⋅∠=︒中故.这就说明:以A 1B 1为直径的圆必过该抛物线的焦点.● 通法 特法 妙法(1)解析法——为对称问题解困排难 解析几何是用代数的方法去研究几何,所以它能解决纯几何方法不易解决的几何问题(如对称问题等). 【例5】(07.四川文科卷.10题)已知抛物线y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于( )A.3B.4C.32D.42【分析】直线AB 必与直线x+y=0垂直,且线段 AB 的中点必在直线x+y=0上,因得解法如下.【解析】∵点A 、B 关于直线x+y=0对称,∴设直线AB的方程为:y x =+. 由()223013y x mx x m y x =+⎧⇒++-=⎨=-+⎩设方程(1)之两根为x 1,x 2,则121x x +=-. 设AB 的中点为M (x 0,y 0),则120122x x x +==-.代入x+y=0:y 0=12.故有11,22M ⎛⎫- ⎪⎝⎭.从而1m y x =-=.直线AB 的方程为:1y x =+.方程(1)成为:220x x +-=.解得:2,1x =-,从而1,2y =-,故得:A (-2,-1),B (1,2).AB ∴=,选C.(2)几何法——为解析法添彩扬威虽然解析法使几何学得到长足的发展,但伴之而来的却是难以避免的繁杂计算,这又使得许多考生对解析几何习题望而生畏.针对这种现状,人们研究出多种使计算量大幅度减少的优秀方法,其中最有成效的就是几何法.【例6】(07.全国1卷.11题)抛物线24y x =的焦点为F ,准线为l ,经过FXYAB FA 1B 11M C XOY ABMl x y +=ÿ物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积( )A .4 B. C. D .8 【解析】如图直线AFAFX=60°. △AFK 为正三角形.设准线l 交x 轴于M ,则2,FM p ==且∠KFM=60°,∴24,4AKFKF S ∆===选C. 【评注】(1)平面几何知识:边长为a 的正三角形的面积用公式2S ∆=计算. (2)本题如果用解析法,需先列方程组求点A 的坐标,,再计算正三角形的边长和面积.虽不是很难,但决没有如上的几何法简单.(3)定义法——追本求真的简单一着许多解析几何习题咋看起来很难.但如果返朴归真,用最原始的定义去做,反而特别简单. 【例7】(07.湖北卷.7题)双曲线22122:1(00)x y C a b a b-=>>,的左准线为l ,左焦点和右焦点分别为1F 和2F ;抛物线2C 的线为l ,焦点为21F C ;与2C 的一个交点为M ,则12112F F MF MF MF -等于( )A .1-B .1C .12-D .12【分析】 这道题如果用解析法去做,计算会特别繁杂,而平面几何知识又一时用不上,那么就从最原始的定义方面去寻找出路吧.如图,我们先做必要的准备工作:设双曲线的半 焦距c ,离心率为e ,作 MH l H ⊥于,令1122,MF r MF r ==.∵点M 在抛物线上,1112222,MF MF rMH MF r e MH MF r ∴=====故,这就是说:12||||MF MF 的实质是离心率e.其次,121||||F F MF 与离心率e 有什么关系?注意到: ()1212111122111F F e r r c e a e e MF r r r e +⋅⎛⎫====-=- ⎪⎝⎭. XY O F(1,0)AK60°Y2=2px L:x=-1M这样,最后的答案就自然浮出水面了:由于()12112||||11||||F F MF e e MF MF -=-+=-.∴选 A..(4)三角法——本身也是一种解析三角学蕴藏着丰富的解题资源.利用三角手段,可以比较容易地将异名异角的三角函数转化为同名同角的三角函数,然后根据各种三角关系实施“九九归一”——达到解题目的.因此,在解析几何解题中,恰当地引入三角资源,常可以摆脱困境,简化计算.【例8】(07.重庆文科.21题)如图,倾斜角为a 的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点。
专题23--抛物线(解答题压轴题)(解析版)-【挑战压轴题】备战2023年高考数学高分必刷必过题
(1)若1l 过抛物线C 的焦点,且垂直于(2)若直线1l 的斜率k ∈2MN MQ =,且MNQ △【答案】(1)22y x =1(1)若B为线段AC的中点,求直线(2)若正方形DFMN的边长为实数λ,使得k1+k2=λk3?若存在,求出【答案】(1)22;λ=,理由见解析(2)存在2(1)由已知可得DN为抛物线的准线.(2)λ=,使得k1+k2=λk3,理由如下:存在2(1)若抛物线2C的焦点正好为椭圆1C的上顶点,求(2)椭圆1C与抛物线2C在第一象限的交点为于点Q,交抛物线2C于点M(Q,M值,并求当p取最大时直线l的斜率.(1)证明:以DE为直径的圆经过点(1)求点P的纵坐标的取值范围;(2)设D是抛物线2Γ上一点,且位于椭圆PCD的面积存在最大值.【答案】(1)3,22⎛⎫ ⎪⎝⎭;32⎛⎫(1)当k 取不同数值时,求直线l 与抛物线公共点的个数;(2)若直线l 与抛物线相交于A 、B (3)在x 轴上是否存在这样的定点均能使得MA MB k k ⋅为定值,若有,找出满足条件的点【答案】(1)答案见解析(2)证明见解析(3)存在,()0,0M (1)420240x y x y -+-=+-=(1)写出这条抛物线的焦点坐标和准线方程;(2)求证:1x 、0x 、2x 成等差数列,(3)若A ,F ,B 三点共线,求出动点【答案】(1)焦点坐标为()0,1F ,准线方程为(2)证明见解析(3)1y =-,4(1)(1)抛物线的标准方程为24x y =,于是焦点坐标为(1)若抛物线2C 的焦点恰为椭圆1C (2)若椭圆1C 与抛物线2C 在第一象限的交点为交抛物线2C 于M ,且AM MB =,求【答案】(1)28y x =(2)p 的最大值为3540,此时直线(1)求抛物线的方程;(2)若||||AB CD =,求凹四边形OEBC 面积的最小值.【答案】(1)24y x =(2)324+①若0m ≤,2(22)S m =++②若0m >,((21)2S m ⎡=+⎢⎣综上所述,凹四边形OEBC 面积的最小值是。
高中数学高考总复习抛物线习题及详解
高中数学高考总复习抛物线习题及详解一、选择题1.(2010·湖北黄冈)若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( )A .-2B .2C .-4D .4[答案] D[解析] 椭圆中,a 2=6,b 2=2,∴c =a 2-b 2=2, ∴右焦点(2,0),由题意知p2=2,∴p =4.2.已知点M 是抛物线y 2=2px (p >0)上的一点,F 为抛物线的焦点,若以|MF |为直径作圆,则这个圆与y 轴的关系是( )A .相交B .相切C .相离D .以上三种情形都有可能[答案] B[解析] 如图,由MF 的中点A 作准线l 的垂线AE ,交直线l 于点E ,交y 轴于点B ;由点M 作准线l 的垂线MD ,垂足为D ,交y 轴于点C ,则MD =MF ,ON =OF , ∴AB =OF +CM 2=ON +CM2=DM 2=MF 2, ∴这个圆与y 轴相切.3.(2010·山东文)已知抛物线y 2=2px (p >0),过焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2[答案] B[解析] 设A (x 1,y 1),B (x 2,y 2),则线段AB 的中点(x 1+x 22,y 1+y 22),∴y 1+y 22=2,∵A 、B 在抛物线y 2=2px 上,∴⎩⎪⎨⎪⎧y 12=2px 1 ①y 22=2px 2 ② ①-②得y 12-y 22=2p (x 1-x 2),∴k AB =y 1-y 2x 1-x 2=2p y 1+y 2=p 2,∵k AB =1,∴,p =2∴抛物线方程为y 2=4x ,∴准线方程为:x =-1,故选B.4.双曲线x 29-y 24=1的渐近线上一点A 到双曲线的右焦点F 的距离等于2,抛物线y 2=2px (p >0)过点A ,则该抛物线的方程为( )A .y 2=9xB .y 2=4xC .y 2=41313xD .y 2=21313x[答案] C[解析] ∵双曲线x 29-y 24=1的渐近线方程为y =±23x ,F 点坐标为(13,0),设A 点坐标为(x ,y ),则y =±23x ,由|AF |=2⇒(x -13)2+⎝⎛⎭⎫23x 2=2⇒x =913,y =±613,代入y 2=2px 得p =21313,所以抛物线方程为y 2=41313x ,所以选C.5.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172B .3 C. 5D.92[答案] A[解析] 记抛物线y 2=2x 的焦点为F ⎝⎛⎭⎫12,0,准线是l ,由抛物线的定义知点P 到焦点F 的距离等于它到准线l 的距离,因此要求点P 到点(0,2)的距离与点P 到抛物线的准线的距离之和的最小值,可以转化为求点P 到点(0,2)的距离与点P 到焦点F 的距离之和的最小值,结合图形不难得知相应的最小值就等于焦点F 与点(0,2)的距离,因此所求的最小值等于⎝⎛⎭⎫122+22=172,选A. 6.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△AOF (其中O 为坐标原点)的面积之比为3 1,则点A 的坐标为( )A .(2,22)B .(2,-22)C .(2,±2)D .(2,±22)[答案] D[解析] 如图,由题意可得,|OF |=1,由抛物线定义得,|AF |=|AM |,∵△AMF 与△AOF (其中O 为坐标原点)的面积之比为3∶1,∴S △AMFS △AOF =12×|AF |×|AM |×sin ∠MAF 12×|OF |×|AF |×sin (π-∠MAF )=3, ∴|AM |=3,设A ⎝⎛⎭⎫y 024,y 0,∴y024+1=3, 解得y 0=±22,∴y 024=2,∴点A 的坐标是(2,±22),故选D.7.(2010·河北许昌调研)过点P (-3,1)且方向向量为a =(2,-5)的光线经直线y =-2反射后通过抛物线y 2=mx ,(m ≠0)的焦点,则抛物线的方程为( )A .y 2=-2xB .y 2=-32xC .y 2=4xD .y 2=-4x[答案] D[解析] 设过P (-3,1),方向向量为a =(2,-5)的直线上任一点Q (x ,y ),则PQ →∥a ,∴x +32=y -1-5,∴5x +2y +13=0,此直线关于直线y =-2对称的直线方程为5x +2(-4-y )+13=0,即5x -2y +5=0,此直线过抛物线y 2=mx 的焦点F ⎝⎛⎭⎫m 4,0,∴m =-4,故选D.8.已知mn ≠0,则方程是mx 2+ny 2=1与mx +ny 2=0在同一坐标系内的图形可能是( )[答案] A[解析] 若mn >0,则mx 2+ny 2=1应为椭圆,y 2=-mnx 应开口向左,故排除C 、D ;∴mn <0,此时抛物线y 2=-mnx 应开口向右,排除B ,选A.9.(2010·山东聊城模考)已知A 、B 为抛物线C :y 2=4x 上的不同两点,F 为抛物线C 的焦点,若F A →=-4FB →,则直线AB 的斜率为( )A .±23B .±32C .±34D .±43[答案] D[解析] ∵F A →=-4FB →,∴|F A →|=4|FB →|,设|BF |=t ,则|AF |=4t ,∴|BM |=|AA 1|-|BB 1|=|AF |-|BF |=3t ,又|AB |=|AF |+|BF |=5t ,∴|AM |=4t ,∴tan ∠ABM =43,由对称性可知,这样的直线AB 有两条,其斜率为±43.10.已知抛物线C 的方程为x 2=12y ,过点A (0,-4)和点B (t,0)的直线与抛物线C 没有公共点,则实数t 的取值范围是( )A .(-∞,-1)∪(1,+∞) B.⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞ C .(-∞,-22)∪(22,+∞) D .(-∞,-22)∪(2,+∞) [答案] B[解析] 由题意知方程组⎩⎨⎧x 2=12y ①x t +y-4=1 ②无实数解由②得y =4xt -4,代入①整理得,2x 2-4x t +4=0,∴Δ=16t2-32<0,∴t >22或t <-22,故选B. [点评] 可用数形结合法求解,设过点A (0,-4)与抛物线x 2=12y 相切的直线与抛物线切点为M (x 0,y 0),则切线方程为y -y 0=4x 0(x -x 0), ∵过A 点,∴-4-2x 02=4x 0(0-x 0), ∴x 0=±2,∴y 0=4,∴切线方程为y -4=±42x -8, 令y =0得x =±22,即t =±22,由图形易知直线与抛物线无公共点时,t <-22或t >22. 二、填空题11.已知点A (2,0)、B (4,0),动点P 在抛物线y 2=-4x 上运动,则AP →·BP →取得最小值时的点P 的坐标是______.[答案] (0,0)[解析] 设P ⎝⎛⎭⎫-y 24,y ,则AP →=⎝⎛⎭⎫-y 24-2,y ,BP →=⎝⎛⎭⎫-y 24-4,y ,AP →·BP →=⎝⎛⎭⎫-y24-2⎝⎛⎭⎫-y 24-4+y 2=y 416+52y 2+8≥8,当且仅当y =0时取等号,此时点P 的坐标为(0,0).12.(文)(2010·泰安市模拟)如图,过抛物线y 2=2px (p >0)的焦点F 作倾斜角为60°的直线l ,交抛物线于A 、B 两点,且|F A |=3,则抛物线的方程是________.[答案] y 2=3x[解析] 设抛物线准线为l ,作AA 1⊥l ,BB 1⊥l ,FQ ⊥l ,垂足分别为A 1、B 1、Q ,作BM ⊥AA 1垂足为M ,BM 交FQ 于N ,则由条件易知∠ABM =30°,设|BF |=t ,则|NF |=t 2,|MA |=t +32,∵|AM |=|QN |,∴3-t +32=p -t 2,∴p =32,∴抛物线方程为y 2=3x .(理)(2010·泰安质检)如图,过抛物线y 2=2px (p >0)的焦点的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程是________.[答案] y 2=3x[解析] 解法1:过A 、B 作准线垂线,垂足分别为A 1,B 1,则|AA 1|=3,|BB 1|=|BF |,∵|BC |=2|BF |,∴|BC |=2|BB 1|,∴|AC |=2|AA 1|=2|AF |=6,∴|CF |=3,∴p =12|CF |=32,∴抛物线方程为y 2=3x .解法2:由抛物线定义,|BF |等于B 到准线的距离,由|BC |=2|BF |得∠BCB 1=30°,又|AF |=3,从而A ⎝⎛⎭⎫p 2+32,332在抛物线上,代入抛物线方程y 2=2px ,解得p =32.点评:还可以由|BC |=2|BF |得出∠BCB 1=30°,从而求得A 点的横坐标为|OF |+12|AF |=p2+32或3-p 2,∴p 2+32=3-p 2,∴p =32. 13.已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设|F A |>|FB |,则|F A |与|FB |的比值等于________.[答案] 3+2 2[解析] 分别由A 和B 向准线作垂线,垂足分别为A 1,B 1,则由条件知, ⎩⎪⎨⎪⎧|AA 1|+|BB 1|=|AB |,|AA 1|-|BB 1|=22|AB |,解得⎩⎪⎨⎪⎧|AA 1|=2+24|AB ||BB 1|=2-24|AB |,∴|AA 1||BB 1|=3+22,即|F A ||FB |=3+2 2. 14.(文)若点(3,1)是抛物线y 2=2px 的一条弦的中点,且这条弦所在直线的斜率为2,则p =________.[答案] 2[解析] 设弦两端点P 1(x 1,y 1),P 2(x 2,y 2),则⎩⎪⎨⎪⎧y 12=2px 1y 22=2px 2,两式相减得,y 1-y 2x 1-x 2=2p y 1+y 2=2,∵y 1+y 2=2,∴p =2.(理)(2010·衡水市模考)设抛物线x 2=12y 的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于A 、B 两点,又知点P 恰为AB 的中点,则|AF |+|BF |=________.[答案] 8[解析] 过A 、B 、P 作准线的垂线AA 1、BB 1与PP 1,垂足A 1、B 1、P 1,则|AF |+|BF |=|AA 1|+|BB 1|=2|PP 1|=2[1-(-3)]=8.三、解答题15.(文)若椭圆C 1:x 24+y 2b 2=1(0<b <2)的离心率等于32,抛物线C 2:x 2=2py (p >0)的焦点在椭圆C 1的顶点上.(1)求抛物线C 2的方程;(2)若过M (-1,0)的直线l 与抛物线C 2交于E 、F 两点,又过E 、F 作抛物线C 2的切线l 1、l 2,当l 1⊥l 2时,求直线l 的方程.[解析] (1)已知椭圆的长半轴长为a =2,半焦距c =4-b 2, 由离心率e =c a =4-b 22=32得,b 2=1.∴椭圆的上顶点为(0,1),即抛物线的焦点为(0,1), ∴p =2,抛物线的方程为x 2=4y .(2)由题知直线l 的斜率存在且不为零,则可设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2),∵y =14x 2,∴y ′=12x ,∴切线l 1,l 2的斜率分别为12x 1,12x 2,当l 1⊥l 2时,12x 1·12x 2=-1,即x 1·x 2=-4,由⎩⎪⎨⎪⎧y =k (x +1)x 2=4y得:x 2-4kx -4k =0, 由Δ=(-4k )2-4×(-4k )>0,解得k <-1或k >0. 又x 1·x 2=-4k =-4,得k =1. ∴直线l 的方程为x -y +1=0.(理)在△ABC 中,CA →⊥CB →,OA →=(0,-2),点M 在y 轴上且AM →=12(AB →+CD →),点C在x 轴上移动.(1)求B 点的轨迹E 的方程;(2)过点F ⎝⎛⎭⎫0,-14的直线l 交轨迹E 于H 、E 两点,(H 在F 、G 之间),若FH →=12HG →,求直线l 的方程.[解析] (1)设B (x ,y ),C (x 0,0),M (0,y 0),x 0≠0, ∵CA →⊥CB →,∴∠ACB =π2,∴2x 0·y 0-x 0=-1,于是x 02=2y 0① M 在y 轴上且AM →=12(AB →+AC →),所以M 是BC 的中点,可得 ⎩⎨⎧x 0+x 2=0y +02=y,∴⎩⎪⎨⎪⎧x 0=-x ②y 0=y2③ 把②③代入①,得y =x 2(x ≠0),所以,点B 的轨迹E 的方程为y =x 2(x ≠0). (2)点F ⎝⎛⎭⎫0,-14,设满足条件的直线l 方程为: y =kx -14,H (x 1,y 1),G (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -14y =x 2消去y 得,x 2-kx +14=0.Δ=k 2-1>0⇒k 2>1,∵FH →=12HG →,即⎝⎛⎭⎫x 1,y 1+14=12(x 2-x 1,y 2-y 1), ∴x 1=12x 2-12x 1⇒3x 1=x 2.∵x 1+x 2=k ,x 1x 2=14,∴k =±233,故满足条件的直线有两条,方程为:8x +43y +3=0和8x -43y -3=0. 16.(文)已知P (x ,y )为平面上的动点且x ≥0,若P 到y 轴的距离比到点(1,0)的距离小1.(1)求点P 的轨迹C 的方程;(2)设过点M (m,0)的直线交曲线C 于A 、B 两点,问是否存在这样的实数m ,使得以线段AB 为直径的圆恒过原点.[解析] (1)由题意得:(x -1)2+y 2-x =1,化简得:y 2=4x (x ≥0). ∴点P 的轨迹方程为y 2=4x (x ≥0).(2)设直线AB 为y =k (x -m ),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -m )y 2=4x ,得ky 2-4y -4km =0, ∴y 1+y 2=4k ,y 1·y 2=-4m .∴x 1·x 2=m 2,∵以线段AB 为直径的圆恒过原点, ∴OA ⊥OB ,∴x 1·x 2+y 1·y 2=0.即m 2-4m =0⇒m =0或4.当k 不存在时,m =0或4. ∴存在m =0或4,使得以线段AB 为直径的圆恒过原点.[点评] (1)点P 到定点F (1,0)的距离比到y 轴的距离大1,即点P 到定点F (1,0)的距离与到定直线l :x =-1的距离相等.∴P 点轨迹是以F 为焦点,l 为准线的抛物线,∴p =2,∴方程为y 2=4x .(理)已知抛物线y 2=4x ,过点(0,-2)的直线交抛物线于A 、B 两点,O 为坐标原点. (1)若OA →·OB →=4,求直线AB 的方程.(2)若线段AB 的垂直平分线交x 轴于点(n,0),求n 的取值范围.[解析] (1)设直线AB 的方程为y =kx -2 (k ≠0),代入y 2=4x 中得,k 2x 2-(4k +4)x +4=0①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k +4k 2,x 1x 2=4k 2.y 1y 2=(kx 1-2)·(kx 2-2)=k 2x 1x 2-2k (x 1+x 2)+4=-8k.∵OA →·OB →=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=4k 2-8k =4,∴k 2+2k -1=0,解得k =-1±2.又由方程①的判别式Δ=(4k +4)2-16k 2=32k +16>0得k >-12,∴k =-1+2,∴直线AB 的方程为(2-1)x -y -2=0.(2)设线段AB 的中点的坐标为(x 0,y 0),则由(1)知x 0=x 1+x 22=2k +2k 2,y 0=kx 0-2=2k,∴线段AB 的垂直平分线的方程是 y -2k =-1k ⎝⎛⎭⎫x -2k +2k 2. 令y =0,得n =2+2k +2k 2=2k 2+2k +2=2⎝⎛⎭⎫1k +122+32.又由k >-12且k ≠0得1k <-2,或1k>0,∴n >2⎝⎛⎭⎫0+122+32=2.∴n 的取值范围为(2,+∞). 17.(文)(2010·全国Ⅰ)已知抛物线C :y 2=4x 的焦点为F ,过点K (-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(1)证明:点F 在直线BD 上;(2)设F A →·FB →=89,求△BDK 的内切圆M 的方程.[解析] 设A (x 1,y 1),B (x 2,y 2),D (x 1,-y 1),l 的方程为x =my -1(m ≠0) (1)将x =my -1(m ≠0)代入y 2=4x 并整理得 y 2-4my +4=0,从而y 1+y 2=4m ,y 1y 2=4① 直线BD 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2)即y -y 2=4y 2-y 1⎝⎛⎭⎫x -y 224 令y =0,得x =y 1y 24=1,所以点F (1,0)在直线BD 上.(2)由(1)知,x 1+x 2=(my 1-1)+(my 2-1)=4m 2-2, x 1x 2=(my 1-1)(my 2-1)=1因为F A →=(x 1-1,y 1),FB →=(x 2-1,y 2),F A →·FB →=(x 1-1,y 1)·(x 2-1,y 2)=x 1x 2-(x 1+x 2)+1+4=8-4m 2,故8-4m 2=89,解得m =±43,直线l 的方程为3x +4y +3=0,3x -4y +3=0. 从而y 2-y 1=±(4m )2-4×4=±437,故4y 2-y 1=±37因而直线BD 的方程为3x +7y -3=0,3x -7y -3=0.因为KF 为∠BKD 的角平分线,故可设圆心M (t,0),(-1<t <1),M (t,0)到直线l 及BD 的距离分别为3|t +1|5,3|t -1|4, 由3|t +1|5=3|t -1|4得t =19或t =9(舍去),故圆M 的半径为r =3|t +1|5=23, 所以圆M 的方程为⎝⎛⎭⎫x -192+y 2=49. (理)(2010·揭阳市模考)已知点C (1,0),点A 、B 是⊙O :x 2+y 2=9上任意两个不同的点,且满足AC →·BC →=0,设P 为弦AB 的中点.(1)求点P 的轨迹T 的方程;(2)试探究在轨迹T 上是否存在这样的点:它到直线x =-1的距离恰好等于到点C 的距离?若存在,求出这样的点的坐标;若不存在,说明理由.[解析] (1)法一:连结CP ,由AC →·BC →=0知,AC ⊥BC ,∴|CP |=|AP |=|BP |=12|AB |, 由垂径定理知|OP |2+|AP |2=|OA |2,即|OP |2+|CP |2=9,设点P (x ,y ),有(x 2+y 2)+[(x -1)2+y 2]=9,化简得,x 2-x +y 2=4.法二:设A (x 1,y 1),B (x 2,y 2),P (x ,y ),根据题意知,x 12+y 12=9,x 22+y 22=9,2x =x 1+x 2,2y =y 1+y 2,∴4x 2=x 12+2x 1x 2+x 22,4y 2=y 12+2y 1y 2+y 22故4x 2+4y 2=(x 12+y 12)+(2x 1x 2+2y 1y 2)+(x 22+y 22)=18+2(x 1x 2+y 1y 2)①又∵AC →·BC →=0,∴(1-x 1,-y 1)·(1-x 2,-y 2)=0∴(1-x 1)×(1-x 2)+y 1y 2=0,故x 1x 2+y 1y 2=(x 1+x 2)-1=2x -1,代入①式得,4x 2+4y 2=18+2(2x -1),化简得,x 2-x +y 2=4.(2)根据抛物线的定义,到直线x =-1的距离等于到点C (1,0)的距离的点都在抛物线y 2=2px 上,其中p 2=1,∴p =2,故抛物线方程为y 2=4x ,由方程组⎩⎪⎨⎪⎧ y 2=4x x 2-x +y 2=4得,x 2+3x -4=0,解得x 1=1,x 2=-4,由于x ≥0,故取x =1,此时y =±2,故满足条件的点存在,其坐标为(1,-2)和(1,2).。
高考抛物线部分真题
1. 抛物线2x y =的准线方程是 。
2. 已知抛物线22y px =(0)p >的焦点为F ,点111(,)P x y ,222(,)P x y ,333(,)P x y ,在抛物线上,且2132x x x =+, 则有 。
A.123||||||FP FP FP +=B. 222123||||||FP FP FP +=C. 2132||||||FP FP FP =+D. 2213||||||FP FP FP =3. 设双曲线22221x y a b-=(0a b >>的离心且它的一条准线与抛物线24y x =的准线重合,则此双曲线的方程为 。
4. 设F 为抛物线24y x =的焦点,A 、B 、C 为该抛物线上三点,若0FA FB FC ++= ,则|||F A FB F ++= 。
5. 抛物线24y x =的焦点为F ,准线为l ,经过F物线在x 轴上方的部分相交于点A ,AK l ^,垂足为K ,则△AKF 的面积是 。
6. 双曲线C 1:22221x y a b-=(0,0)a b >>的左准线为l ,左焦点和右焦点分别为F 1和F 2;抛物线C 2的准线为l ,焦点为F 2.C 1与C 2的一个交点为M ,则12112||||||||F F MF MF MF -等于 。
7. 设O 是坐标原点,F 是抛物线y 2=2px(p >0)的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60°,则||OA 为 。
8. 连接抛物线x 2=4y 的焦点F 与点M(1,0)所得的线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为 。
9. 已知抛物线23y x =-+上存在关于直线0x y +=对称的相异两点A 、B ,则||AB 等于 。
10. 在平面直角坐标系中,过y 轴正方向上一点(0,)C c 任作一直线,与抛物线2y x =相交于A 、B 两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线专题1.. 设抛物线28y x =上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是A. 4B. 6C. 8D. 12 2.设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足,如果直线AF 斜率为3-,那么PF =(A )43 (B ) 8 (C ) 83 (D ) 163.设抛物线y 2=8x 的焦点为F ,准线为l,P 为抛物线上一点,PA ⊥l,A 为垂足.如果直线AF 的斜率为-3,那么|PF|= (A)43 (B)8 (C)83 (D) 164.已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线与A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 (A )1x = (B)1x =- (C)2x = (D)2x =-5.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =;则AOB ∆的面积为( )()A 2()B 2 ()C32()D 226.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
若点M 到该抛物线焦点的距离为3,则||OM=( )A 、22 B 、23 C 、4 D 、257.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 88.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=A .45 B .35 C .35-D .45-9.将两个顶点在抛物线22(0)y px p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则A .n=0B .n=1C . n=2D .n≥310.设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ).A.24y x =± B.28y x =± C. 24y x = D. 28y x =11.已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。
若FB FA 2=,则k= (A)31(B)32 (C)32(D)32212.设抛物线2y =2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C ,BF=2,则∆BCF 与∆ACF 的面积之比BCF ACFS S ∆∆=(A )45 (B )23 (C )47 (D )1213.(2009四川卷理)已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是 A.2 B.3 C.115 D.371614.(2009重庆卷理)已知以4T =为周期的函数21,(1,1]()12,(1,3]m x x f x x x ⎧-∈-⎪=⎨--∈⎪⎩,其中0m >。
若方程3()f x x =恰有5个实数解,则m 的取值范围为( )A .158)3B .157)C .48(,)33D .4(7)315.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且2AK =,则AFK ∆的面积为( )(A)4 (B)8(C)16 (D)3216.已知抛物线y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.32D.4217.设F为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0u u u r u u u r u u u r,则FA FB FC ++=u u u r u u u r u u u r( ) A .9B .6C .4D .318.抛物线24y x =的焦点为F ,准线为l ,经过F 3x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是() A .4B .33C .43D .819.已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132x x x =+, 则有() A.123FP FP FP +=B.222123FP FP FP +=C.2132FP FP FP =+D.2213FP FP FP =·20.已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足||||MN MP MN NP ⋅+⋅u u u u r u u u r u u u u r u u u r=0,则动点P (x ,y )的轨迹方程为(A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-= 21.(全国卷I )抛物线2y x =-上的点到直线4380x y +-=距离的最小值是A .43 B .75 C .85D .3 22.在直角坐标系xOy 中,直线l 过抛物线=4x 的焦点F.且与该撇物线相交于A 、B 两点.其中点A 在x 轴上方。
若直线l 的倾斜角为60º.则△OAF 的面积为 _______23陕西13. 右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.24.己知抛物线的参数方程为2=2,=2,x pt y pt ⎧⎨⎩(t 为参数),其中>0p ,焦点为F ,准线为l ,过抛物线上一点M 作的垂线,垂足为E ,若||=||EF MF ,点M 的横坐标是3,则=p .25.(2009宁夏海南卷理)设已知抛物线C 的顶点在坐标原点,焦点为F(1,0),直线l 与抛物线C 相交于A ,B 两点。
若AB 的中点为(2,2),则直线ι的方程为____________. 26.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线分别交于A 、B 两点(A 在y 轴左侧),则AF FB= .27.(全国一14)已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 . 28.重庆14、过抛物线22y x =的焦点F作直线交抛物线于,A B 两点,若25,,12AB AF BF =<则AF = 。
29.(全国二15)已知F 是抛物线24C yx =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB>,则FA 与FB的比值等于 .30.(2010浙江理数)设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。
31.(2010全国卷2)已知抛物线2:2(0)C y px p =>的准线为l ,过(1,0)Ml 相交于点A ,与C 的一个交点为B .若AM MB =u u u u r u u u r,则p = .32.(2010重庆理数)(14)已知以F 为焦点的抛物线24y x =上的两点A 、B 满足3AF FB =u u u r u u u r,则弦AB 的中点到准线的距离为___________.33.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 .34.新课标(20)设抛物线2:2(0)C xpy p =>的焦点为F ,准线为l ,A C ∈,已知以F 为圆心,FA为半径的圆F 交l 于,B D 两点;(1)若090=∠BFD ,ABD ∆的面积为24;求p 的值及圆F 的方程;(2)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值。
35.(2010江西理数)设椭圆22122:1(0)x y C a b a b +=>>,抛物线222:C x by b +=。
(1) 若2C 经过1C 的两个焦点,求1C 的离心率; (2) 设A (0,b ),)Q ,又M 、N 为1C 与2C 不在y 轴上的两个交点,若△AMN 的垂心为34B b ⎛⎫⎪⎝⎭0,,且△QMN 的重心在2C 上,求椭圆1C 和抛物线2C 的方程。
36(2010福建文数)已知抛物线C :22(0)y px p =>过点A (1 , -2)。
(I )求抛物线C 的方程,并求其准线方程;(II )是否存在平行于OA (O 为坐标原点)的直线L ,使得直线L 与抛物线C 有公共点,且直线OA 与L 的距离等于5?若存在,求直线L 的方程;若不存在,说明理由。
37.(2010全国卷1理数) 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B两点,点A 关于x 轴的对称点为D.(Ⅰ)证明:点F 在直线BD 上;(Ⅱ)设89FA FB =u u u r u u u r g ,求BDK ∆的内切圆M 的方程38.(2010湖北文数)已知一条曲线C 在y 轴右边,C 上没一点到点F (1,0)的距离减去它到y 轴距离的差都是1。
(Ⅰ)求曲线C 的方程(Ⅱ)是否存在正数m ,对于过点M (m ,0)且与曲线C 有两个交点A,B 的任一直线,都有FA?FB u u u r u u u r<0?若存在,求出m 的取值范围;若不存在,请说明理由。
39.(2009全国卷Ⅰ理) 已知抛物线2:E y x =与圆222:(4)(0)M x y r r -+=>相交于A 、B 、C 、D 四个点。
(I )求r 得取值范围;15(,4)r ∈(II )当四边形ABCD 的面积最大时,求对角线AC 、BD 的交点P 坐标40.(2009江苏卷)在平面直角坐标系xoy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上。
(1)求抛物线C 的标准方程;(2)求过点F ,且与直线OA 垂直的直线的方程;(3)设过点(,0)(0)M m m >的直线交抛物线C 于D 、E 两点,ME=2DM ,记D 和E 两点间的距离为()f m ,求()f m 关于m 的表达式。
41.(陕西卷20).已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N . (Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0NA NB =u u u r u u u rg ,若存在,求k 的值;若不存在,说明理由.42.在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)相交于A B ,两点.(I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值;43.(本小题满分12分)如图,已知点(10)F ,,直线:1l x =-,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且QP QF FP FQ =u u u r u u u r u u u r u u u r g g .(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M ,已知1MA AF λ=u u u r u u u r ,2MB BF λ=u u u r u u u r,求12λλ+的值;。