高三数学分类讨论的思想(第9讲)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 9 讲 分类讨论的思想
【开心自测】
已知
4:2
2=+y x C 圆, (1)过点)3,1(-的圆的切线方程为________________. (2)过点)0,3(的圆的切线方程为________________. (3)过点)1,2(-的圆的切线方程为________________. (4)斜率为-1的圆的切线方程为__________________.
【教学重难点】高考中的分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论
题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”
【秒杀方略】
当问题所给对象不能进行统一研究,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”.
1. 分类讨论的思想的本质
分类讨论思想的本质上是“化整为零,积零为整”,从而增加了题设条件的解题策略. 2. 运用分类讨论的思想解题的基本步骤 ⑴确定讨论对象和确定研究的全域;
⑵对所讨论的问题进行合理的分类(分类时需要做到不重复、不遗漏、标准统一、分层不越级); ⑶逐类讨论:即对各类问题详细讨论,逐步解决; ⑷归纳总结,整合得出结论.
4. 明确分类讨论的思想的原因,有利于掌握分类讨论的思想方法解决问题,其主要原因有: ⑴由数学概念引起的分类讨论:如绝对值定义、等比数列的前n 项和公式等等;
⑵由数学运算要求引起的分类讨论:如偶次方根非负、对数中的底数和真数的要求、不等式两边同乘一实数对不等号方向的影响等等;
⑶由函数的性质、定理、公式的限制引起的分类讨论; ⑷由几何图形中点、线、面的相对位置不确定引起的分类讨论;
⑸由参数的变化引起的分类讨论:某些含参数的问题,由于参数的取值不同会导致所得结果不同,或由于不同的参数值要运用不同的求解或证明方法;
⑹其他根据实际问题具体分析进行分类讨论,如排列、组合问题,实际应用题等。
【金题精讲】
1.问题中的变量或含有需讨论的参数的,要进行分类讨论 【例1】设0>a ,函数|1ln |)(2
-+=x a x x f .
(1) 当1=a 时,求曲线)(x f y =在1=x 处的切线方程; (2) 当),1[+∞∈x 时,求函数)(x f 的最小值.
【解析】(1)当1=a 时,|1ln |)(2
-+=x x x f
令1=x 得 ,1)1(,2)1(='=f f 所以切点为(1,2),切线的斜率为1, 所以曲线)(x f y =在1=x 处的切线方程为:01=+-y x 。
(2)①当e x ≥时,a x a x x f -+=ln )(2
,x
a
x x f +
='2)( )(e x ≥ 0>a ,0)(>∴x f 恒成立。 )(x f ∴在),[+∞e 上增函数。
故当e x =时,2
m in )(e e f y ==
② 当e x <≤1时,1ln )(2+-=x a x x f ,
)2
)(2(22)(a x a x x x a x x f -+=-
='(e x <≤1) (i )当
,12
≤a