钢结构框架梁柱的最不利组合内力计算(Final Version)
框架柱正截面设计时最不利内力组合的选择
配钢筋愈多 。 [1~2] 因此,在框架柱正截面设计时,设计 人员往往采用以下 3 种组合方式: ① Mmax 及相应 的 N;②Nmax 及相应的 M;③Nmin 及相应的 M。
这种最不利内力组合的选择方法是各混凝土结 构设计教材中普遍采用的方法,此方法论据充足,条 理清晰,易于理解和掌握。 但不足之处是计算量大, 至少要计算 3 种组合的情况,这无疑给设计工作增加 了难度。 基于此,笔者在研究工作中发现了一直新的 组合方式,即:直接选取弯矩绝对值最大值和轴力最 大值作为一组组合,弯矩绝对值最大值和轴力最小值 作为另一组组合,该方法能够简单有效地将最大内力 进行组合。
天津市应用基础与前沿技术研究计划12jcqnjc0530019表4抗震组合配筋计算结果编号计算方法mknmnkn偏心asasmm23方法144347164599小偏心2866431481777202828298421598821509方法24434717772029354434715988228174方法137023161665大偏心638289281658985998313101042401007方法2370231658981645370231042404078表2非抗震组合配筋计算结果编号计算方法mknmnkn偏心asasmm21方法18627236001小偏心3233914252064298121233237236方法2862725206456786272332372832方法19872183279大偏心18307285200063200141291778762066方法29872200063186398721778761757表3框架柱抗震内力组合编号截面mm计算长度mm截面位置内力抗震组合左震右震34504104500柱顶mknm2855029842nkn173002159882柱底mknm4314844347nkn17772016459946607004500柱顶mknm3131037023nkn104240161665柱底mknm2181528928nkn108478165898表1框架柱非抗震内力组合编号截面mm计算长度mm截面位置内力组合1组合2组合3左风右风14504104500柱顶mknm812173537703914nkn233237236317239631248955柱底mknm8627471619962073nkn23600123908024239525206426607004500柱顶mknm4129987271507407nkn177876183279183470194109柱底mknm4535923570337285nkn183168188571188762200063别考虑了3种组合方式
钢结构梁柱章节计算题分解课件
THANKS
感谢观看
详细描述:在钢结构梁柱设计中,稳定性和抗震性能是两个重要的问题 。解决这些问题可以确保梁柱在承受荷载和地震作用时能够保持稳定,
避免发生失稳或破坏。在解决这些问题时,应考虑以下几点
1. 进行详细的结构分析,确定梁柱的应力分布、变形情况以及稳定性指 标。
梁柱的稳定性和抗震性能问题及解决方案
2. 根据结构分析结果,采取有效的稳定性加强措施,如增加支撑、加强连接等。
梁柱的节点设计及优化
2. 确保节点连接的可靠性,采 取有效的连接措施,如焊接、 螺栓连接等。
3. 考虑节点的可施工性,尽量 采用易于加工和安装的节点形 式。
4. 对于大型梁柱节点,应进行 详细的力学分析,确保节点的 承载能力和稳定性满足要求。
梁柱的稳定性和抗震性能问题及解决方案
总结词:解决梁柱的稳定性问题和抗震性能问题,确保结构安全可靠。
梁柱的节点设计及优化
详细描述:梁柱节点的设计及优化是钢结构设计中的 重要环节。节点设计应确保传力路径清晰、连接可靠 ,同时还应考虑施工方便、经济合理等因素。在节点 设计及优化时,应考虑以下几点
总结词:合理设计梁柱节点,确保传力路径清晰、连 接可靠。
1. 根据梁柱的受力特点和连接要求,选择合适的节点 形式和连接方式。
钢柱
分为实腹柱和格构柱,具有承载 力高、自重轻、安装方便等特点 。
梁柱的计算模型及假定
01
02
03
简支梁
采用静力平衡条件,计算 跨中弯矩和支座反力。
连续梁
采用挠曲线方程,计算各 跨内力和支座反力。
悬臂梁
采用静力平衡条件,计算 悬臂端弯矩和固定端反力 。
梁柱的受力分析
弯曲变形
由于荷载作用产生弯矩, 导致梁柱轴线上产生弯曲 变形。
内力组合计算书
内力组合计算书内力组合《抗震规范》第条规定如下。
截面抗震验算结构构件的地震作用效应和其他荷载效应的基本组合,应按下式计算:G GE Eh Ehk Ev Evk w w wkS S S S S γγγψγ=+++ ()式中:S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值;γG ——重力荷载分项系数,一般情况应采用,当重力荷载效应对构件承载能力有利时,不应大于;γEh 、γEv ——分别为水平、竖向地震作用分项系数,应按表采用;γw ——风荷载分项系数,应采用;s GE ——重力荷载代表值的效应,有吊车时尚应包括悬吊物重力标准值的效应;s Ehk ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数;s Evk ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数;s wk ——风荷载标准值的效应;ψw ——风荷载组合值系数,一般结构取,风荷载起控制作用的高层建筑应采用。
注:本规范一般略去表示水平方向的下标。
表地震作用分项系数结构构件的截面抗震验算,应采用下列设计表达式:RE RS γ=式中:γRE ——承载力抗震调整系数,除另有规定外,应按表采用;R ——结构构件承载力设计值。
表承载力抗震调整系数当仅计算竖向地震作用时,各类结构构件承载力抗震调整系数均宜采用。
本次毕业设计,各截面不同内力的承载力抗震调整系数取值如下表结构安全等级设为二级,故结构重要性系数为0 1.0γ=根据《建筑结构荷载规范》和《建筑抗震设计规范》,组合三种工况:恒荷载控制下、活荷载控制下和有地震作用参加的组合。
其具体组合方法如下:恒荷载控制下:Gk Qk S 1.35S 1.40.7S =+? 活荷载控制下:Gk Qk S 1.2S 1.4S =+有地震作用参加的:Gk Qk Ehk S 1.2(S 0.5S ) 1.3S =+± Gk Qk Ehk S 1.0(S 0.5S ) 1.3S =+±对柱进行非抗震内力组合时,根据规范,对活载布置计算的荷载进行折减,折减系数由上而下分别为,,,,。
毕业设计指导书框架结构设计)-内力计算及组合
第三章框架内力计算3.1计算方法框架结构一般承担的荷载主要有恒载、使用活荷载、风荷载、地震作用,其中恒载、活荷载一般为竖向作用,风荷载、地震则为水平方向作用,手算多层多跨框架结构的内力(M、N、V)及侧移时,一般采用近似方法。
如求竖向荷载作用下的内力时,有分层法、弯矩分配法、迭代法等;求水平荷载作用下的内力时,有反弯点法、改进反弯点法(D值法)、迭代法等。
这些方法采用的假设不同,计算结果有所差异,但一般都能满足工程设计要求的精度。
本章主要介绍竖向荷载作用下无侧移框架的弯矩分配法和水平荷载作用下D值法的计算。
在计算各项荷载作用效应时,一般按标准值进行计算,以便于后面荷载效应的组合。
3.1.1竖向荷载作用下框架内力计算1.弯矩分配法在竖向荷载作用下较规则的框架产生的侧向位移很小,可忽略不计。
框架的内力采用无侧移的弯矩分配法进行简化计算。
具体方法是对整体框架按照结构力学的—般方法,计算出各节点的弯矩分配系数、计算各节点的不平衡弯矩,然用进行分配、传递,在工程设计中,每节点只分配两至三次即可满足精度要求。
相交于同一点的多个杆件中的某一杆件,其在该节点的弯矩分配系数的计算过程为:(1)确定各杆件在该节点的转动刚度杆件的转动刚度与杆件远端的约束形式有关,如图3-1:(a)杆件在节点A处的转动刚度(b )某节点各杆件弯矩分配系数图 3-1 A 节点弯矩分配系数(图中lEI i =)(2)计算弯矩分配系数μ∑∑∑∑===++=AAD AD AAC AC AAB ABADAC AAB SS S S S S S S S S μμμ,,1=++=∑AD AC ABAμμμμ(3)相交于一点杆件间的弯矩分配弯矩分配之前,还需先要求出节点的固端弯矩,这可查阅相关静力计算手册得到。
表3-1为常见荷载作用下杆件的固端弯矩。
在弯矩分配的过程中,一个循环可同时放松和固定多个节点(各个放松节点和固定节点间间隔布置,如图3-2),以加快收敛速度。
第七章-内力组合
-95.028
V
-11.16
-4.43
-3.474
3.474
-41.33
41.33
-19.594
-19.496
-18.2556
-8.5284
-23.351
-14.5966
-69.779
37.679
跨中
M
-11.46
-5.42
0
0
0
0
-21.34
-20.891
-13.752
-13.752
-20.5812
-121.379
V
-77.55
-6.17
-0.671
0.671
-8.53
8.53
-101.698
-110.863
-93.9994
-92.1206
-101.68
-99.9887
-107.85
-85.673
跨中
M
-88.32
-8.88
-0.378
0.378
-4.92
4.92
-118.416
-128.112
第七章内力组合和最不利内力确定
7.1框架梁内力组合:
1、基本组合公式:
1)梁端负弯矩组合公式:
①-1.0[1.2恒+1.4×0.9(活+风)]
②-1.0[1.35恒+1.4×(0.7活+0.6风)]
③-0.75[1.2(恒+0.5活)+1.3地]
2)梁端正弯矩组合公式:
④0.75[1.3地-1.0(恒+0.5活)]
-21.981
-18.846
-18.846
2017毕业设计--框架内力组合(梁端弯矩)
梁端正弯矩
M GEk
M 1.3M Ehk 1.0 M GEk
M Ehk
框架结构梁柱的内力组合第三部分
框架结构
梁的内力组合
构件的内力组合,由EXCEL表格计算。
框架结构梁柱的内力组合第三部分 梁的内力组合 梁弯矩以梁上部受拉为负,下部受拉为正 均为柱端弯矩
框架结构
活载满跨
左、右震
这张表是前面工作的总结!
框架结构梁柱的内力组合第三部分 梁的内力组合
分左、右震
框架结构
4
框架结构梁柱的内力组合第三部分 梁内力组合
Sd γGj SG j γQ1 L1SQ1k γQi γL i ψci SQik
j 1
k
框架结构
m
n
i 2
荷载规范3.2.5 基本组合的荷载分项系数,应按下列规定采用: G j 永久荷载的分项系数: 当其效应对结构不利时 对由可变荷载效应控制的组合,应取1.2; 对由永久荷载效应控制的组合,应取1.35; 当其效应对结构有利时应取1.0;
框架结构梁柱的内力组合第三部分
框架结构
梁内力组合
3.3.2 对持久设计状况、短暂设计状况和地震设计状况,当用内力的形式表达时, 结构构件应采用下列承载能力极限状态设计表达式:
γ0S≤R R=R(fc,fs,ak,…)/γRd
(3.3.2—1) (3.3.2—2)
式中:γ0——结构重要性系数:在持久设计状况和短暂设计状况下,对安全等级为一 级(甲乙)的结构构件不应小于1.1,对安全等级为二级的结构构件不应小于1.0 (丙),对安全等级为三级的结构构件不应小于0.9;对地震设计状况下应取1.0; S——承载能力极限状态下作用组合的效应设计值:对持久设计状况按作用的基本组 合计算;对地震设计状况应按作用的地震组合计算; R——结构构件的抗力设计值; R(· )——结构构件的抗力函数; γRd——结构构件的抗力模型不定性系数:静力设计取1.0,对不确定性较大的结构构 件根据具体情况取大于1.0的数值;抗震设计应用承载力抗震调整系数γRE代替γRd;
框架钢结构内力计算
框架钢结构内力计算对于本结构,考虑如下受荷情况:(1)恒载作用;(2)活荷载满跨布置;(3)风荷载作用(从左向右,或从右向左);(4)横向水平地震作用(从左向右。
或从右向左)。
对于(1)、(2)情况,框架在竖向荷载作用下,采用力矩分配法计算;对于(3)、(4)情况,框架在水平荷载作用下,采用D值法计算。
5.1恒荷载标准值作用下的内力计算5.1.1顶层力矩分配如下:-127.6945.55-8.0113.004-84.147129.8522.775-16.0221.502-0.955137.1574.13-29.81-10.4274.57738.47-74.14-14.905-20.8542.289-1.243-108.843顶层-10.544-8.757三层5.1.3二层力矩分配如下:-11.212-9.203二层0.174.50.185.48.4760.1420.21500.326.265.39-193.8428.684-7.4521.297-171.311214.6814.342-14.9050.649-0.240214.526114.81-18.451-9.7092.08788.737-114.81-9.226-19.4181.044-0.313-142.72382.4253.72686.15142.455-27.815-0.449-28.264-26.5183.00-23.518底层-42.825-0.691-43.516-21.758-40.854.62-36.23-18.11453.7412.42955.85818.724-9.422-7.83928.99-28.99叠加可得到最终的梁端、柱端弯矩。
其次求各层梁的最大弯矩,由于各层梁的最大弯矩求法相同,故此处列举顶层梁AC做实例。
由力矩分配法已求得:第一个集中力处剪力同理在顶梁AC段,第二个集中荷载处,剪力变号,故此处弯矩最大。
同理可求得其它梁的最大弯矩及梁端剪力,列表如下:梁剪力表层号 4 3 2 1 AC跨69.98 117.48 114.67 115.3566.95 101.83 100.62 101.3019.35 38.39 37.18 37.86 16.45 23.45 23.77 24.45 -32.15 -39.99 -39.67 -38.99 -34.19 -55.64 -53.72 -53.04 -81.79 -119.08 -117.16 -116.48 -84.55 -133.30 -129.93 -129.25CD跨62.91 96.97 93.99 92.50 59.88 81.32 79.94 78.45 12.28 17.88 16.50 15.01 9.38 2.94 3.10 1.61 -38.22 -60.50 -60.34 -61.83 -41.26 -76.15 -74.39 -75.88(注:表中单位为kN)梁跨最大弯矩,柱轴力计算如下表:层号4 上146.14 220.49 117.42101.05 48.96 下154.23 228.57 125.503 上401.64 536.69 331.59137.85 65.51 下408.84 543.90 338.212 上647.40 843.20 537.07134.70 64.06 下654.60 850.40 544.271 上893.84 1147.53 744.036132.41 62.77 下907.62 1161.31 757.82柱的剪力可根据平衡方程求出。
钢结构附表1~2 荷载组合和框架内力计算 (1)
qk=
未计梁自重
由可变荷载效应控制的组合:
Mmax=
Vmax=
由永久荷载效应控制的组合:
Mmax=
Vmax=
最不利内力:
Mmax=
Vmax=
考虑梁自重时
最大弯矩Mmax=
最大剪力Vmax=
支座反力R=
2.单位荷载(F=1)作用下框架的内力(未考虑杆件的自重)
横梁的弯矩
MC
MG
MJ
MK
MD
横梁的剪力
2012级土木班钢结构课程的单元练习与课程设计一体化
荷载组合和杆件内力计算
学号:
姓名:
班级
2012级土木()班
日期:
2015.4.
已知
条件
次梁间距d/m
柱间距l/m
楼板自重/kN/m2
活荷载kN/m2
钢材品种
fy/(N/mm2)
f/(N/mm2)
fv/(N/mm2)
1.次梁的最不利内力
板上传来的荷载标准值:
VC
VG左
VG右
VJ左
VJ右
VK左
VK右
VD
立柱的轴力(压力)
NC
ND
NA
NB
框架的内力(F力(kN)
MC
MG
MJ
MK
MD
VC
VG左
VG右
VJ左
VJ右
VK左
VK右
VD
未计梁自重
考虑梁自重
立柱的轴力(压力,kN)
NC
ND
NA
NB
未计柱自重
考虑柱自重
备注:
计算横梁和立柱的内力时,横梁和立柱的自重对杆件的内力的影响系数分别取γb=3%和γc=0.3%。
框架结构梁柱内力组合计算表(精选)
荷载种类
活载
风载
左风
右风
4
2.17 0.95 -1.75 0.95 -1.19 -3.16 -5.39 2.17 -5.39 1.61 0.82 1.91 -1.70 1.91 -0.76 -3.16 -10.86 1.81 -10.86 1.35 0.42 2.72 -1.79 2.72 -0.67 -2.46 -17.46 0.79 -17.46 0.99 -0.55 3.21 -0.80
-49.44 47.96 40.50 -53.64 -52.05 -24.71 12.14 -15.88 -31.52 -7.67 -54.84 40.67 25.70 -44.23 -36.95 -16.99 16.39 -3.04 -17.05 0.55 -59.55 46.40 11.63 -35.65 -36.76 -24.49 0.68 -4.19 -24.47 -0.68 -59.03 45.16 8.81 -49.63 -36.92 -19.98 32.63 -7.61
-2.00
2.09 -0.57 0.47 0.81 -0.45 2.00 -1.90 0.00 6.79 -1.29 4.00 1.29 1.09 2.79 -1.29 6.35 -6.05 0.00 6.35 -6.05 8.45 -2.20 1.84 4.77 -2.20 10.85 -5.17 0.00 10.85 -5.17 11.94 -2.86 3.36 5.23 -2.86 5.23 -11.31 0.00
0.97 -3.31 3.83 6.10 -8.65 13.77 -13.11 0.00 13.77 -19.07 31.67 -7.99 15.44 16.23 -7.99 36.78 -35.03 0.00 36.78 -35.03 46.34 -13.31 11.51 23.22 -13.31 52.65 -50.14 0.00 52.65 -50.14 58.97 -7.76 14.40 30.17 -7.76 68.40 -65.14 0.00
框架柱最不利内力的概念
框架柱最不利内力的概念
框架柱是指在建筑结构中起支撑和传递荷载作用的主要构件,也是建筑物内部的骨架。
这些柱子通常由混凝土、钢材或木材等材料制成,其设计和构造质量直接影响到建筑物的稳定性和安全性。
然而,框架柱也存在着一些不利因素,其中最不利的内力概念包括:
1. 弯矩:框架柱在遭受荷载时,会产生弯矩。
弯矩是指柱子上不同截面处的荷载引起的曲率差异,导致柱子发生弯曲。
弯矩的大小取决于柱子的几何形状、材料强度以及作用在柱子上的荷载。
过大的弯矩会导致柱子发生屈曲,从而影响整个建筑结构的稳定性。
2. 压力:框架柱在承受垂直荷载时会受到压力的作用。
过大的压力会使柱子变形,甚至发生压碎破坏。
因此,在设计和施工过程中,需要合理估计柱子的承压能力,并采取相应的加固措施来确保其不受过大的压力影响。
3. 剪力:框架柱在承受横向荷载时也会受到剪力的作用。
剪力是指柱子上不同截面处的荷载引起的切变应力差异,会导致柱子产生剪切变形。
过大的剪力会引起柱子的破坏,因此在设计和施工过程中需要考虑柱子的抗剪能力,并采取相应的措施来增强其抗剪性能。
除了上述内力概念,还有一些其他的不利因素也会影响框架柱的性能,例如地震力的作用、柱子与其他构件的连接方式等。
因此,在设计和施工过程中,需要综合考虑这些因素,确保框架柱的设计和施工符合相应的标准和规范,以确保建筑物的安全可靠性。
第六章荷载组合及最不利内力确定
第六章 荷载组合及最不利内力确定6.1 基本组合公式6.1.1框架梁内力组合公式(1)梁端负弯矩组合: ①1.350.7 1.4GK QK M M +⨯②1.2 1.0 1.40.6 1.4GK QK WK M M M +⨯+⨯ ③1.20.7 1.4 1.0 1.4GK QK WK M M M +⨯+⨯ ④1.2 1.3GE EhK M M + (2)梁端正弯矩组合公式: ⑤1.0 1.0 1.4GK WK M M +⨯⑥1.0 1.3GE EhK M M +(3)梁跨中正弯矩组合公式: ⑦1.350.7 1.4GK QK M M +⨯⑧1.2 1.0 1.40.6 1.4GK QK WK M M M +⨯+⨯ ⑨1.20.7 1.4 1.0 1.4GK QK WK M M M +⨯+⨯ ⑩1.2 1.3GE EhK M M + (4)梁端剪力组合公式: 11) 1.350.7 1.4GK QK V V +⨯12) 1.2 1.0 1.40.6 1.4GK QK WK V V V +⨯+⨯ 13) 1.20.7 1.4 1.0 1.4GK QK WK V V V +⨯+⨯ 14) 1.2 1.3GE EhK V V +6.1.2框架柱内力组合公式(1)框架柱max M 组合公式: ①1.2 1.0 1.40.6 1.4GK QK WK M M M +⨯+⨯ ②1.20.7 1.4 1.0 1.4GK QK WK M M M +⨯+⨯ ③1.2 1.3GE EhK M M +(2)框架柱max N 组合公式: ④1.350.7 1.4GK QK N N +⨯⑤1.2 1.0 1.40.6 1.4GK QK WK N N N +⨯+⨯ ⑥1.20.7 1.4 1.0 1.4GK QK WK N N N +⨯+⨯ ⑦1.2 1.3GE EhK N N + (3)框架柱min N 组合公式: ⑧1.0 1.0 1.4GK WK N N +⨯⑨1.0 1.3GE EhK N N +6.2 梁的内力组合6.2.1梁端弯矩的调幅说明:考虑抗震需要,梁端应该先于柱端出现塑性绞,故对于竖向荷载下的梁端负弯矩进行调幅,调幅系数为0.8,并相应地增大跨中弯矩。
框架计算简图及梁柱线刚度
一、框架梁柱线刚度初估梁柱截面尺寸: ⑴、梁:493010104254103010604.2500250121,500250·1093.4780010373.1108.2,10373.165030012122300,2173273121(,650,65097512181(,7800mm I mm mm h b mmN l EI i C mm I I mmb mm ~ h ~b mm h mm mm ~l ~h mm l b ⨯=⨯⨯=⨯=⨯⨯=⨯⨯⨯==⨯=⨯⨯⨯=========次梁取级,混凝土用取)取)⑵、柱:混凝土用30C 级按层高确定截面尺寸:底层取mm H 71006504506000=++=,mmN i mmmm h b mm mm ~H ~b c ·10896.15400/100.3800121800800,355473201151(1144⨯=⨯⨯⨯=⨯=⨯==取)底层mm N i c ·10442.17100/100.38001211144⨯=⨯⨯⨯=取梁的线刚度值为基准值1,则柱为:846.3,底层柱为:925.2,见下图2:G 44444G G G 3333321G21212121H J K L H J K L H J K L H J K L HJKL1.03.8462.9251.03.8461.03.8461.03.8463.8463.8463.8461.03.8461.03.8461.01.03.8461.03.8461.03.8461.03.8461.01.01.01.01.02.9252.9252.9252.9253.8463.846二、荷载计算双向板板厚:mm h mm ~l ~h 100,785.97501401(===取) 1、恒荷载计算:(标准值)⑴、屋面恒载:屋10 3.44 KN/ m 2 100厚现浇混凝土屋面板 0.1×25=2.5 KN/ m 2 10厚水泥砂浆抹灰 0.01×20=0.2 KN/ m 2 合计: 6.14 KN/ m 2 ⑵、楼面恒载:楼10 0.7 KN/ m 2 结合层一道100厚现浇混凝土屋面板 0.1×25=2.5 KN/ m 210厚水泥砂浆抹灰 0.01×20=0.2 KN/ m 2 合计: 3.4 KN/ m 2 ⑶、梁自重:主梁mm mm h b 650300⨯=⨯主梁自重 25×0.3×(0.65-0.1)=4.125 KN/m 10厚水泥砂浆抹灰 0.01×(0.65-0.1+0.3) ×2×20=0.34KN/m合计: 4.465 KN/m 次梁自重 25×0.25×(0.5-0.1 )=2.5 KN/m 10厚水泥砂浆抹灰 0.01×(0.5-0.1+0.25)×2×20=0.26KN/m 合计: 2.76KN/m⑷、柱自重:mm mm h b 800800⨯=⨯柱自重 25×0.8×0.8=16KN/m 10厚水泥砂浆抹灰 0.01×0.8×4×20=0.64KN/m合计: 16.64KN/m⑸、外墙自重:粉煤灰轻渣空心砌块:自重取8.0 KN/ m3标准层 8×0.2×(5.4-0.65)=7.6KN/m 水刷石外墙面 5.4×0.5=2.7KN/m 水泥粉刷内墙面 (5.4-0.65)×0.36=1.71KN/m 合计: 12.01KN/m 底层 8×0.2×(7.1-0.65)=10.32KN/m 水刷石外墙面 6.0×0.5=3.0 KN/m 水泥粉刷内墙面 (6.0-0.65)×0.36=1.926 KN/m 合计: 15.246 KN/m ⑹、内墙自重:(同外墙)标准层 8×0.2×(5.4-0.65)=7.6 KN/m 水泥粉刷墙面 (5.4-0.65)×2×0.36=3.42 KN/m 合计: 11.02 KN/m 底层 8×0.2×(6-0.65)=8.56 KN/m图2. 梁、柱相对线刚度图水泥粉刷墙面 (6-0.65)×2×0.36=3.852 KN/m 合计: 12.412 KN/m 2、恒载作用下框架受力分析:板传到次梁以及次梁传到主梁的荷载按三角形和梯形进行传递,计算时折算为均布荷载。
框架钢结构内力组合
77框架钢结构内力组合根据《建筑结构荷载规范》进行内力组合,考虑如下可能的组合方式: 1)可变荷载控制的组合:2) 永久荷载控制的组合:3)抗震组合:(选取最不利内力组合时考虑抗震调整系数0.75) 控制界面及最不利内力组合:对梁而言,控制界面在梁梁端和跨中,最不利内力组合为梁端最大正弯矩和最大负弯矩以及最大剪力,跨中的最大正弯矩。
柱为偏压构件,控制界面为柱的两端。
大偏压时弯矩越大越不利,小偏压时轴力越大越不利,考虑如下四种情况:(1) 及相应的N 、V ; (2) 及相应的M 、V ; (3) 及相应的M 、V ; (4)比较大或都较小。
梁内力组合如表6-1:由于本结构所选用的梁的尺寸都一样,故仅需验算受力较大的梁。
由以上的弯矩图可知本结构第一层的梁在各种荷载作用下受力最大,故仅需验算第一层的梁即可。
柱内力组合如表6-2:柱尺寸一层与二、三、四层尺寸不同,而三、四层柱与二层柱相比,二层受力大于三、四层柱,故仅需验算一层和二层柱即可。
梁截面内力恒载活载风载地震荷载A C 跨A端M-171.311-50.86810.462(-10.462)220.86(-220.86)-268.00(-285.57)-240.78(-270.07)-281.1238.27(-408.97) V115.3531.54-2.261(2.261)-48.243(48.243)180.70(184.48)166.21(172.49)186.6370.97(168.66)跨中M132.4138.560.738(-0.738)-12.357(12.357)213.50(212.26)197.71(195.65)216.54124.47(149.50) V-38.99-12.46-2.261(2.261)-48.243(48.243)-66.13(-62.33)-62.16(-55.83)-64.85-87.73(9.96)C端M-214.526-60.765-8.758(8.758)-189.207(189.207)-349.86(-335.15)-329.24(-304.72)-349.16-404.89(-21.75)7777(13.23 7) (283.3 3)V -75.88-19.54-3.794(3.794)-81.551(81.551)-121.60(-115.23)-104.89(-121.59)-121.59-156.60(8.54)(注:括号中的力为反方向的风荷载或地震荷载)表6-2.1 底层柱内力组合柱截面内力恒载活载风载地震荷载A 柱柱顶M86.15127.044-6.386(6.386)-108.18(108.18)135.88(146.61)120.94(132.65)142.81-15.77(195.18) N893.84203.48-5.591(5.591)-142.086(142.086)1352.78(1362.18)1264.19(1224.17)1406.09757.49(1034.56) V25.988.2-5.20(5.20)-106.6(106.6)38.29(47.02)31.93(45.60)43.11-76.86(131.01)777777底 4 (-19.371) (-423.60)(13.10) (-0.17) (394.25)N 757.82154.53-9.309(9.309)-236.421(236.421)1117.91(1133.55)1047.79(1031.99)1174.50521.07(982.09)V -10.98-3.30-5.60(5.60)-114.9(114.9)-22.5(-13.09)-24.25(-6.25)-18.06-123.39(100.66)(注:括号中的力为反方向的风荷载或地震荷载)柱截面内力恒载活载风载地震荷载A 柱柱顶M87.27727.386-5.865(5.865)-137.72(137.72)138.15(148.00)123.36(139.78)144.66-43.40(225.15) N647.40149.24-3.330(3.330)-93.843(93.843)983.02(988.61)918.47(927.80)1020.25558.32(741.31)777777(注:括号中的力为反方向的风荷载或地震荷载)77根据内力组合结果,选取结构最不利内力组合如下表:77。
【土木毕设】横梁内力组合_内力组合最不利表
138.9 231.19 69.48 277.84
132.14 266.76 53.43 271.5
Nmax 78.46 287.68 45.99 340.17
69.16 268.95 40.72 321.44
69.16 268.95 40.72 321.44
1633.46 1633.46 1023.66
181.33 181.33 35.59
1680.12 1680.12 1521.48
258.49 1605.26 216.59 1651.92
31.69 1841.58 32.17 1894.06
205.66 1518.53 163.17 1565.18
内力种类
M N M N V M N M N V M N M N V M N M N V
内力种类
Mmax N
166.59 909.63 120.87 956.29
M Nmax 35.49 919.04 120.87 956.29
M Nmin 107.76 664.74 62.03 711.39
197.59 907.42 140.53 954.08
31.59 1402.98 136.8 1248.64
225.9 1254.58 189.63 1301.24
225.9 1254.58 31.64 1500.91
31.59 1402.97 136.8 1248.64
189.27 1261.06 160.2 1307.7
189.27 1261.06 160.2 1307.7
截面 上端 下端
上端 下端
上端 下端
上端 下端
内力组合最不利表
上端 C1C0 1 上端 D1D0 下端 下端
上端 E1E0 下端
层次
杆件
截面 上端
C3C2
下端
最不利内力组合 Mmax M M N Nmax Nmin 215.37 215.37 156.53 1633.46 1633.46 1023.66 181.33 181.33 35.59 1680.12 1680.12 1521.48 258.49 1605.26 216.59 1651.92 258.49 1605.26 216.59 1651.92 215.37 1633.47 181.33 1680.13 31.69 1841.58 32.17 1894.06 31.69 1841.58 32.17 1894.06 215.37 1633.47 181.33 1680.13 205.66 1518.53 163.17 1565.18 205.66 1518.53 163.17 1565.18 35.7 1474.82 122.95 1070.32
B1B0
下端
最不利内力组合 Mmax M M N Nmax Nmin 179.74 179.74 27.55 2333.32 2333.32 2117.18 376.64 376.64 11.57 2392.28 2392.28 2185.52 191.43 2162.52 414.89 2221.5 20.8 2460.73 414.89 2221.5 179.74 2333.32 376.64 2392.28 20.8 2460.72 10.39 2527.07 191.43 2162.53 10.39 2527.07 179.74 2333.32 376.64 2392.28 20.73 2395.63 10.36 2454.59 20.73 2395.63 10.36 2354.59 27.55 2117.18 11.57 2183.52
荷载效应组合中有关最不利的内力
•
8 1 816 11.94 11.15 1.07 3000.
•
802 1.43 1.41 1.02 1/2096. 8.0% 1.07
•
7 1 709 10.57 9.82 1.08 3000.
•
709 1.55 1.53 1.01 1/1933. 5.2% 1.01
•
6 1 602 9.05 8.35 1.08 3000.
的比值的大者 • X-Disp,Y-Disp,Z-Disp:节点X,Y,Z方向的位移
罕遇地震层间侧移的限值
• 作用:防止倒塌
4.3 舒适度要求
• 目的:保证人的舒适 • 对象:高度超过150m的建筑需要验算 • 荷载:采用重现期为10年的风荷载。 • 内容:是风荷载作用下的顶点加速度amax
住宅、公 ama 寓 x0.15/s2 办公、旅 ama馆 x0.25/s2
本章讲授内容提要
• 4.1 承载力验算 • 4.2 侧移的限值 • 4.3 舒适度要求 • 4.4 稳定和抗倾覆 • 4.5 抗震结构延性要求和抗震等级
– 延性 – 抗震等级
• 4.6 荷载效应组合与最不利内力
– 调幅问题
4.1 承载力验算
SERE RE
有地震作用的内力组
承载力调整系数
合设计值
抗震承载力设计值
•
602 1.66 1.62 1.02 1/1812. 2.3% 0.96
•
5 1 495 7.42 6.79 1.09 3000.
•
495 1.72 1.67 1.03 1/1742. 1.3% 0.91
•
4 1 388 5.71 5.16 1.11 3000.
•